aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/openai/responses/transformation.py
blob: e062c0c9fa60da58ded2bd000ba14c08b8c9cb52 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from typing import TYPE_CHECKING, Any, Dict, Optional, Union, cast

import httpx

import litellm
from litellm._logging import verbose_logger
from litellm.llms.base_llm.responses.transformation import BaseResponsesAPIConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import *
from litellm.types.router import GenericLiteLLMParams

from ..common_utils import OpenAIError

if TYPE_CHECKING:
    from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj

    LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
    LiteLLMLoggingObj = Any


class OpenAIResponsesAPIConfig(BaseResponsesAPIConfig):
    def get_supported_openai_params(self, model: str) -> list:
        """
        All OpenAI Responses API params are supported
        """
        return [
            "input",
            "model",
            "include",
            "instructions",
            "max_output_tokens",
            "metadata",
            "parallel_tool_calls",
            "previous_response_id",
            "reasoning",
            "store",
            "stream",
            "temperature",
            "text",
            "tool_choice",
            "tools",
            "top_p",
            "truncation",
            "user",
            "extra_headers",
            "extra_query",
            "extra_body",
            "timeout",
        ]

    def map_openai_params(
        self,
        response_api_optional_params: ResponsesAPIOptionalRequestParams,
        model: str,
        drop_params: bool,
    ) -> Dict:
        """No mapping applied since inputs are in OpenAI spec already"""
        return dict(response_api_optional_params)

    def transform_responses_api_request(
        self,
        model: str,
        input: Union[str, ResponseInputParam],
        response_api_optional_request_params: Dict,
        litellm_params: GenericLiteLLMParams,
        headers: dict,
    ) -> Dict:
        """No transform applied since inputs are in OpenAI spec already"""
        return dict(
            ResponsesAPIRequestParams(
                model=model, input=input, **response_api_optional_request_params
            )
        )

    def transform_response_api_response(
        self,
        model: str,
        raw_response: httpx.Response,
        logging_obj: LiteLLMLoggingObj,
    ) -> ResponsesAPIResponse:
        """No transform applied since outputs are in OpenAI spec already"""
        try:
            raw_response_json = raw_response.json()
        except Exception:
            raise OpenAIError(
                message=raw_response.text, status_code=raw_response.status_code
            )
        return ResponsesAPIResponse(**raw_response_json)

    def validate_environment(
        self,
        headers: dict,
        model: str,
        api_key: Optional[str] = None,
    ) -> dict:
        api_key = (
            api_key
            or litellm.api_key
            or litellm.openai_key
            or get_secret_str("OPENAI_API_KEY")
        )
        headers.update(
            {
                "Authorization": f"Bearer {api_key}",
            }
        )
        return headers

    def get_complete_url(
        self,
        api_base: Optional[str],
        model: str,
        stream: Optional[bool] = None,
    ) -> str:
        """
        Get the endpoint for OpenAI responses API
        """
        api_base = (
            api_base
            or litellm.api_base
            or get_secret_str("OPENAI_API_BASE")
            or "https://api.openai.com/v1"
        )

        # Remove trailing slashes
        api_base = api_base.rstrip("/")

        return f"{api_base}/responses"

    def transform_streaming_response(
        self,
        model: str,
        parsed_chunk: dict,
        logging_obj: LiteLLMLoggingObj,
    ) -> ResponsesAPIStreamingResponse:
        """
        Transform a parsed streaming response chunk into a ResponsesAPIStreamingResponse
        """
        # Convert the dictionary to a properly typed ResponsesAPIStreamingResponse
        verbose_logger.debug("Raw OpenAI Chunk=%s", parsed_chunk)
        event_type = str(parsed_chunk.get("type"))
        event_pydantic_model = OpenAIResponsesAPIConfig.get_event_model_class(
            event_type=event_type
        )
        return event_pydantic_model(**parsed_chunk)

    @staticmethod
    def get_event_model_class(event_type: str) -> Any:
        """
        Returns the appropriate event model class based on the event type.

        Args:
            event_type (str): The type of event from the response chunk

        Returns:
            Any: The corresponding event model class

        Raises:
            ValueError: If the event type is unknown
        """
        event_models = {
            ResponsesAPIStreamEvents.RESPONSE_CREATED: ResponseCreatedEvent,
            ResponsesAPIStreamEvents.RESPONSE_IN_PROGRESS: ResponseInProgressEvent,
            ResponsesAPIStreamEvents.RESPONSE_COMPLETED: ResponseCompletedEvent,
            ResponsesAPIStreamEvents.RESPONSE_FAILED: ResponseFailedEvent,
            ResponsesAPIStreamEvents.RESPONSE_INCOMPLETE: ResponseIncompleteEvent,
            ResponsesAPIStreamEvents.OUTPUT_ITEM_ADDED: OutputItemAddedEvent,
            ResponsesAPIStreamEvents.OUTPUT_ITEM_DONE: OutputItemDoneEvent,
            ResponsesAPIStreamEvents.CONTENT_PART_ADDED: ContentPartAddedEvent,
            ResponsesAPIStreamEvents.CONTENT_PART_DONE: ContentPartDoneEvent,
            ResponsesAPIStreamEvents.OUTPUT_TEXT_DELTA: OutputTextDeltaEvent,
            ResponsesAPIStreamEvents.OUTPUT_TEXT_ANNOTATION_ADDED: OutputTextAnnotationAddedEvent,
            ResponsesAPIStreamEvents.OUTPUT_TEXT_DONE: OutputTextDoneEvent,
            ResponsesAPIStreamEvents.REFUSAL_DELTA: RefusalDeltaEvent,
            ResponsesAPIStreamEvents.REFUSAL_DONE: RefusalDoneEvent,
            ResponsesAPIStreamEvents.FUNCTION_CALL_ARGUMENTS_DELTA: FunctionCallArgumentsDeltaEvent,
            ResponsesAPIStreamEvents.FUNCTION_CALL_ARGUMENTS_DONE: FunctionCallArgumentsDoneEvent,
            ResponsesAPIStreamEvents.FILE_SEARCH_CALL_IN_PROGRESS: FileSearchCallInProgressEvent,
            ResponsesAPIStreamEvents.FILE_SEARCH_CALL_SEARCHING: FileSearchCallSearchingEvent,
            ResponsesAPIStreamEvents.FILE_SEARCH_CALL_COMPLETED: FileSearchCallCompletedEvent,
            ResponsesAPIStreamEvents.WEB_SEARCH_CALL_IN_PROGRESS: WebSearchCallInProgressEvent,
            ResponsesAPIStreamEvents.WEB_SEARCH_CALL_SEARCHING: WebSearchCallSearchingEvent,
            ResponsesAPIStreamEvents.WEB_SEARCH_CALL_COMPLETED: WebSearchCallCompletedEvent,
            ResponsesAPIStreamEvents.ERROR: ErrorEvent,
        }

        model_class = event_models.get(cast(ResponsesAPIStreamEvents, event_type))
        if not model_class:
            raise ValueError(f"Unknown event type: {event_type}")

        return model_class

    def should_fake_stream(
        self,
        model: Optional[str],
        stream: Optional[bool],
        custom_llm_provider: Optional[str] = None,
    ) -> bool:
        if stream is not True:
            return False
        if model is not None:
            try:
                if (
                    litellm.utils.supports_native_streaming(
                        model=model,
                        custom_llm_provider=custom_llm_provider,
                    )
                    is False
                ):
                    return True
            except Exception as e:
                verbose_logger.debug(
                    f"Error getting model info in OpenAIResponsesAPIConfig: {e}"
                )
        return False