1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
from typing import TYPE_CHECKING, Any, Dict, Optional, Union, cast
import httpx
import litellm
from litellm._logging import verbose_logger
from litellm.llms.base_llm.responses.transformation import BaseResponsesAPIConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import *
from litellm.types.router import GenericLiteLLMParams
from ..common_utils import OpenAIError
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class OpenAIResponsesAPIConfig(BaseResponsesAPIConfig):
def get_supported_openai_params(self, model: str) -> list:
"""
All OpenAI Responses API params are supported
"""
return [
"input",
"model",
"include",
"instructions",
"max_output_tokens",
"metadata",
"parallel_tool_calls",
"previous_response_id",
"reasoning",
"store",
"stream",
"temperature",
"text",
"tool_choice",
"tools",
"top_p",
"truncation",
"user",
"extra_headers",
"extra_query",
"extra_body",
"timeout",
]
def map_openai_params(
self,
response_api_optional_params: ResponsesAPIOptionalRequestParams,
model: str,
drop_params: bool,
) -> Dict:
"""No mapping applied since inputs are in OpenAI spec already"""
return dict(response_api_optional_params)
def transform_responses_api_request(
self,
model: str,
input: Union[str, ResponseInputParam],
response_api_optional_request_params: Dict,
litellm_params: GenericLiteLLMParams,
headers: dict,
) -> Dict:
"""No transform applied since inputs are in OpenAI spec already"""
return dict(
ResponsesAPIRequestParams(
model=model, input=input, **response_api_optional_request_params
)
)
def transform_response_api_response(
self,
model: str,
raw_response: httpx.Response,
logging_obj: LiteLLMLoggingObj,
) -> ResponsesAPIResponse:
"""No transform applied since outputs are in OpenAI spec already"""
try:
raw_response_json = raw_response.json()
except Exception:
raise OpenAIError(
message=raw_response.text, status_code=raw_response.status_code
)
return ResponsesAPIResponse(**raw_response_json)
def validate_environment(
self,
headers: dict,
model: str,
api_key: Optional[str] = None,
) -> dict:
api_key = (
api_key
or litellm.api_key
or litellm.openai_key
or get_secret_str("OPENAI_API_KEY")
)
headers.update(
{
"Authorization": f"Bearer {api_key}",
}
)
return headers
def get_complete_url(
self,
api_base: Optional[str],
model: str,
stream: Optional[bool] = None,
) -> str:
"""
Get the endpoint for OpenAI responses API
"""
api_base = (
api_base
or litellm.api_base
or get_secret_str("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
# Remove trailing slashes
api_base = api_base.rstrip("/")
return f"{api_base}/responses"
def transform_streaming_response(
self,
model: str,
parsed_chunk: dict,
logging_obj: LiteLLMLoggingObj,
) -> ResponsesAPIStreamingResponse:
"""
Transform a parsed streaming response chunk into a ResponsesAPIStreamingResponse
"""
# Convert the dictionary to a properly typed ResponsesAPIStreamingResponse
verbose_logger.debug("Raw OpenAI Chunk=%s", parsed_chunk)
event_type = str(parsed_chunk.get("type"))
event_pydantic_model = OpenAIResponsesAPIConfig.get_event_model_class(
event_type=event_type
)
return event_pydantic_model(**parsed_chunk)
@staticmethod
def get_event_model_class(event_type: str) -> Any:
"""
Returns the appropriate event model class based on the event type.
Args:
event_type (str): The type of event from the response chunk
Returns:
Any: The corresponding event model class
Raises:
ValueError: If the event type is unknown
"""
event_models = {
ResponsesAPIStreamEvents.RESPONSE_CREATED: ResponseCreatedEvent,
ResponsesAPIStreamEvents.RESPONSE_IN_PROGRESS: ResponseInProgressEvent,
ResponsesAPIStreamEvents.RESPONSE_COMPLETED: ResponseCompletedEvent,
ResponsesAPIStreamEvents.RESPONSE_FAILED: ResponseFailedEvent,
ResponsesAPIStreamEvents.RESPONSE_INCOMPLETE: ResponseIncompleteEvent,
ResponsesAPIStreamEvents.OUTPUT_ITEM_ADDED: OutputItemAddedEvent,
ResponsesAPIStreamEvents.OUTPUT_ITEM_DONE: OutputItemDoneEvent,
ResponsesAPIStreamEvents.CONTENT_PART_ADDED: ContentPartAddedEvent,
ResponsesAPIStreamEvents.CONTENT_PART_DONE: ContentPartDoneEvent,
ResponsesAPIStreamEvents.OUTPUT_TEXT_DELTA: OutputTextDeltaEvent,
ResponsesAPIStreamEvents.OUTPUT_TEXT_ANNOTATION_ADDED: OutputTextAnnotationAddedEvent,
ResponsesAPIStreamEvents.OUTPUT_TEXT_DONE: OutputTextDoneEvent,
ResponsesAPIStreamEvents.REFUSAL_DELTA: RefusalDeltaEvent,
ResponsesAPIStreamEvents.REFUSAL_DONE: RefusalDoneEvent,
ResponsesAPIStreamEvents.FUNCTION_CALL_ARGUMENTS_DELTA: FunctionCallArgumentsDeltaEvent,
ResponsesAPIStreamEvents.FUNCTION_CALL_ARGUMENTS_DONE: FunctionCallArgumentsDoneEvent,
ResponsesAPIStreamEvents.FILE_SEARCH_CALL_IN_PROGRESS: FileSearchCallInProgressEvent,
ResponsesAPIStreamEvents.FILE_SEARCH_CALL_SEARCHING: FileSearchCallSearchingEvent,
ResponsesAPIStreamEvents.FILE_SEARCH_CALL_COMPLETED: FileSearchCallCompletedEvent,
ResponsesAPIStreamEvents.WEB_SEARCH_CALL_IN_PROGRESS: WebSearchCallInProgressEvent,
ResponsesAPIStreamEvents.WEB_SEARCH_CALL_SEARCHING: WebSearchCallSearchingEvent,
ResponsesAPIStreamEvents.WEB_SEARCH_CALL_COMPLETED: WebSearchCallCompletedEvent,
ResponsesAPIStreamEvents.ERROR: ErrorEvent,
}
model_class = event_models.get(cast(ResponsesAPIStreamEvents, event_type))
if not model_class:
raise ValueError(f"Unknown event type: {event_type}")
return model_class
def should_fake_stream(
self,
model: Optional[str],
stream: Optional[bool],
custom_llm_provider: Optional[str] = None,
) -> bool:
if stream is not True:
return False
if model is not None:
try:
if (
litellm.utils.supports_native_streaming(
model=model,
custom_llm_provider=custom_llm_provider,
)
is False
):
return True
except Exception as e:
verbose_logger.debug(
f"Error getting model info in OpenAIResponsesAPIConfig: {e}"
)
return False
|