1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
"""
Translates from OpenAI's `/v1/audio/transcriptions` to Deepgram's `/v1/listen`
"""
from typing import List, Optional, Union
from httpx import Headers, Response
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import (
AllMessageValues,
OpenAIAudioTranscriptionOptionalParams,
)
from litellm.types.utils import TranscriptionResponse
from ...base_llm.audio_transcription.transformation import (
BaseAudioTranscriptionConfig,
LiteLLMLoggingObj,
)
from ..common_utils import DeepgramException
class DeepgramAudioTranscriptionConfig(BaseAudioTranscriptionConfig):
def get_supported_openai_params(
self, model: str
) -> List[OpenAIAudioTranscriptionOptionalParams]:
return ["language"]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
supported_params = self.get_supported_openai_params(model)
for k, v in non_default_params.items():
if k in supported_params:
optional_params[k] = v
return optional_params
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return DeepgramException(
message=error_message, status_code=status_code, headers=headers
)
def transform_audio_transcription_response(
self,
model: str,
raw_response: Response,
model_response: TranscriptionResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
) -> TranscriptionResponse:
"""
Transforms the raw response from Deepgram to the TranscriptionResponse format
"""
try:
response_json = raw_response.json()
# Get the first alternative from the first channel
first_channel = response_json["results"]["channels"][0]
first_alternative = first_channel["alternatives"][0]
# Extract the full transcript
text = first_alternative["transcript"]
# Create TranscriptionResponse object
response = TranscriptionResponse(text=text)
# Add additional metadata matching OpenAI format
response["task"] = "transcribe"
response["language"] = (
"english" # Deepgram auto-detects but doesn't return language
)
response["duration"] = response_json["metadata"]["duration"]
# Transform words to match OpenAI format
if "words" in first_alternative:
response["words"] = [
{"word": word["word"], "start": word["start"], "end": word["end"]}
for word in first_alternative["words"]
]
# Store full response in hidden params
response._hidden_params = response_json
return response
except Exception as e:
raise ValueError(
f"Error transforming Deepgram response: {str(e)}\nResponse: {raw_response.text}"
)
def get_complete_url(
self,
api_base: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
if api_base is None:
api_base = (
get_secret_str("DEEPGRAM_API_BASE") or "https://api.deepgram.com/v1"
)
api_base = api_base.rstrip("/") # Remove trailing slash if present
return f"{api_base}/listen?model={model}"
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
api_key = api_key or get_secret_str("DEEPGRAM_API_KEY")
return {
"Authorization": f"Token {api_key}",
}
|