1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
"""
- call /messages on Anthropic API
- Make streaming + non-streaming request - just pass it through direct to Anthropic. No need to do anything special here
- Ensure requests are logged in the DB - stream + non-stream
"""
import json
from typing import Any, AsyncIterator, Dict, Optional, Union, cast
import httpx
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.base_llm.anthropic_messages.transformation import (
BaseAnthropicMessagesConfig,
)
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
get_async_httpx_client,
)
from litellm.types.router import GenericLiteLLMParams
from litellm.types.utils import ProviderSpecificHeader
from litellm.utils import ProviderConfigManager, client
class AnthropicMessagesHandler:
@staticmethod
async def _handle_anthropic_streaming(
response: httpx.Response,
request_body: dict,
litellm_logging_obj: LiteLLMLoggingObj,
) -> AsyncIterator:
"""Helper function to handle Anthropic streaming responses using the existing logging handlers"""
from datetime import datetime
from litellm.proxy.pass_through_endpoints.streaming_handler import (
PassThroughStreamingHandler,
)
from litellm.proxy.pass_through_endpoints.success_handler import (
PassThroughEndpointLogging,
)
from litellm.proxy.pass_through_endpoints.types import EndpointType
# Create success handler object
passthrough_success_handler_obj = PassThroughEndpointLogging()
# Use the existing streaming handler for Anthropic
start_time = datetime.now()
return PassThroughStreamingHandler.chunk_processor(
response=response,
request_body=request_body,
litellm_logging_obj=litellm_logging_obj,
endpoint_type=EndpointType.ANTHROPIC,
start_time=start_time,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route="/v1/messages",
)
@client
async def anthropic_messages(
api_key: str,
model: str,
stream: bool = False,
api_base: Optional[str] = None,
client: Optional[AsyncHTTPHandler] = None,
custom_llm_provider: Optional[str] = None,
**kwargs,
) -> Union[Dict[str, Any], AsyncIterator]:
"""
Makes Anthropic `/v1/messages` API calls In the Anthropic API Spec
"""
# Use provided client or create a new one
optional_params = GenericLiteLLMParams(**kwargs)
model, _custom_llm_provider, dynamic_api_key, dynamic_api_base = (
litellm.get_llm_provider(
model=model,
custom_llm_provider=custom_llm_provider,
api_base=optional_params.api_base,
api_key=optional_params.api_key,
)
)
anthropic_messages_provider_config: Optional[BaseAnthropicMessagesConfig] = (
ProviderConfigManager.get_provider_anthropic_messages_config(
model=model,
provider=litellm.LlmProviders(_custom_llm_provider),
)
)
if anthropic_messages_provider_config is None:
raise ValueError(
f"Anthropic messages provider config not found for model: {model}"
)
if client is None or not isinstance(client, AsyncHTTPHandler):
async_httpx_client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.ANTHROPIC
)
else:
async_httpx_client = client
litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj", None)
# Prepare headers
provider_specific_header = cast(
Optional[ProviderSpecificHeader], kwargs.get("provider_specific_header", None)
)
extra_headers = (
provider_specific_header.get("extra_headers", {})
if provider_specific_header
else {}
)
headers = anthropic_messages_provider_config.validate_environment(
headers=extra_headers or {},
model=model,
api_key=api_key,
)
litellm_logging_obj.update_environment_variables(
model=model,
optional_params=dict(optional_params),
litellm_params={
"metadata": kwargs.get("metadata", {}),
"preset_cache_key": None,
"stream_response": {},
**optional_params.model_dump(exclude_unset=True),
},
custom_llm_provider=_custom_llm_provider,
)
litellm_logging_obj.model_call_details.update(kwargs)
# Prepare request body
request_body = kwargs.copy()
request_body = {
k: v
for k, v in request_body.items()
if k
in anthropic_messages_provider_config.get_supported_anthropic_messages_params(
model=model
)
}
request_body["stream"] = stream
request_body["model"] = model
litellm_logging_obj.stream = stream
# Make the request
request_url = anthropic_messages_provider_config.get_complete_url(
api_base=api_base, model=model
)
litellm_logging_obj.pre_call(
input=[{"role": "user", "content": json.dumps(request_body)}],
api_key="",
additional_args={
"complete_input_dict": request_body,
"api_base": str(request_url),
"headers": headers,
},
)
response = await async_httpx_client.post(
url=request_url,
headers=headers,
data=json.dumps(request_body),
stream=stream,
)
response.raise_for_status()
# used for logging + cost tracking
litellm_logging_obj.model_call_details["httpx_response"] = response
if stream:
return await AnthropicMessagesHandler._handle_anthropic_streaming(
response=response,
request_body=request_body,
litellm_logging_obj=litellm_logging_obj,
)
else:
return response.json()
|