1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
try:
from future_builtins import filter
except ImportError:
pass
from copy import deepcopy
###{standalone
from collections import OrderedDict
class Meta:
def __init__(self):
self.empty = True
class Tree(object):
"""The main tree class.
Creates a new tree, and stores "data" and "children" in attributes of the same name.
Trees can be hashed and compared.
Parameters:
data: The name of the rule or alias
children: List of matched sub-rules and terminals
meta: Line & Column numbers (if ``propagate_positions`` is enabled).
meta attributes: line, column, start_pos, end_line, end_column, end_pos
"""
def __init__(self, data, children, meta=None):
self.data = data
self.children = children
self._meta = meta
@property
def meta(self):
if self._meta is None:
self._meta = Meta()
return self._meta
def __repr__(self):
return 'Tree(%r, %r)' % (self.data, self.children)
def _pretty_label(self):
return self.data
def _pretty(self, level, indent_str):
if len(self.children) == 1 and not isinstance(self.children[0], Tree):
return [indent_str*level, self._pretty_label(), '\t', '%s' % (self.children[0],), '\n']
l = [indent_str*level, self._pretty_label(), '\n']
for n in self.children:
if isinstance(n, Tree):
l += n._pretty(level+1, indent_str)
else:
l += [indent_str*(level+1), '%s' % (n,), '\n']
return l
def pretty(self, indent_str=' '):
"""Returns an indented string representation of the tree.
Great for debugging.
"""
return ''.join(self._pretty(0, indent_str))
def __eq__(self, other):
try:
return self.data == other.data and self.children == other.children
except AttributeError:
return False
def __ne__(self, other):
return not (self == other)
def __hash__(self):
return hash((self.data, tuple(self.children)))
def iter_subtrees(self):
"""Depth-first iteration.
Iterates over all the subtrees, never returning to the same node twice (Lark's parse-tree is actually a DAG).
"""
queue = [self]
subtrees = OrderedDict()
for subtree in queue:
subtrees[id(subtree)] = subtree
queue += [c for c in reversed(subtree.children)
if isinstance(c, Tree) and id(c) not in subtrees]
del queue
return reversed(list(subtrees.values()))
def find_pred(self, pred):
"""Returns all nodes of the tree that evaluate pred(node) as true."""
return filter(pred, self.iter_subtrees())
def find_data(self, data):
"""Returns all nodes of the tree whose data equals the given data."""
return self.find_pred(lambda t: t.data == data)
###}
def expand_kids_by_index(self, *indices):
"""Expand (inline) children at the given indices"""
for i in sorted(indices, reverse=True): # reverse so that changing tail won't affect indices
kid = self.children[i]
self.children[i:i+1] = kid.children
def expand_kids_by_data(self, *data_values):
"""Expand (inline) children with any of the given data values. Returns True if anything changed"""
changed = False
for i in range(len(self.children)-1, -1, -1):
child = self.children[i]
if isinstance(child, Tree) and child.data in data_values:
self.children[i:i+1] = child.children
changed = True
return changed
def scan_values(self, pred):
"""Return all values in the tree that evaluate pred(value) as true.
This can be used to find all the tokens in the tree.
Example:
>>> all_tokens = tree.scan_values(lambda v: isinstance(v, Token))
"""
for c in self.children:
if isinstance(c, Tree):
for t in c.scan_values(pred):
yield t
else:
if pred(c):
yield c
def iter_subtrees_topdown(self):
"""Breadth-first iteration.
Iterates over all the subtrees, return nodes in order like pretty() does.
"""
stack = [self]
while stack:
node = stack.pop()
if not isinstance(node, Tree):
continue
yield node
for n in reversed(node.children):
stack.append(n)
def __deepcopy__(self, memo):
return type(self)(self.data, deepcopy(self.children, memo), meta=self._meta)
def copy(self):
return type(self)(self.data, self.children)
def set(self, data, children):
self.data = data
self.children = children
# XXX Deprecated! Here for backwards compatibility <0.6.0
@property
def line(self):
return self.meta.line
@property
def column(self):
return self.meta.column
@property
def end_line(self):
return self.meta.end_line
@property
def end_column(self):
return self.meta.end_column
class SlottedTree(Tree):
__slots__ = 'data', 'children', 'rule', '_meta'
def pydot__tree_to_png(tree, filename, rankdir="LR", **kwargs):
graph = pydot__tree_to_graph(tree, rankdir, **kwargs)
graph.write_png(filename)
def pydot__tree_to_dot(tree, filename, rankdir="LR", **kwargs):
graph = pydot__tree_to_graph(tree, rankdir, **kwargs)
graph.write(filename)
def pydot__tree_to_graph(tree, rankdir="LR", **kwargs):
"""Creates a colorful image that represents the tree (data+children, without meta)
Possible values for `rankdir` are "TB", "LR", "BT", "RL", corresponding to
directed graphs drawn from top to bottom, from left to right, from bottom to
top, and from right to left, respectively.
`kwargs` can be any graph attribute (e. g. `dpi=200`). For a list of
possible attributes, see https://www.graphviz.org/doc/info/attrs.html.
"""
import pydot
graph = pydot.Dot(graph_type='digraph', rankdir=rankdir, **kwargs)
i = [0]
def new_leaf(leaf):
node = pydot.Node(i[0], label=repr(leaf))
i[0] += 1
graph.add_node(node)
return node
def _to_pydot(subtree):
color = hash(subtree.data) & 0xffffff
color |= 0x808080
subnodes = [_to_pydot(child) if isinstance(child, Tree) else new_leaf(child)
for child in subtree.children]
node = pydot.Node(i[0], style="filled", fillcolor="#%x" % color, label=subtree.data)
i[0] += 1
graph.add_node(node)
for subnode in subnodes:
graph.add_edge(pydot.Edge(node, subnode))
return node
_to_pydot(tree)
return graph
|