aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/lark/tree.py
blob: 0937b859f3c57a6a9e22a8fb5a0e51c311c122fc (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
try:
    from future_builtins import filter
except ImportError:
    pass

from copy import deepcopy


###{standalone
from collections import OrderedDict


class Meta:
    def __init__(self):
        self.empty = True


class Tree(object):
    """The main tree class.

    Creates a new tree, and stores "data" and "children" in attributes of the same name.
    Trees can be hashed and compared.

    Parameters:
        data: The name of the rule or alias
        children: List of matched sub-rules and terminals
        meta: Line & Column numbers (if ``propagate_positions`` is enabled).
            meta attributes: line, column, start_pos, end_line, end_column, end_pos
    """
    def __init__(self, data, children, meta=None):
        self.data = data
        self.children = children
        self._meta = meta

    @property
    def meta(self):
        if self._meta is None:
            self._meta = Meta()
        return self._meta

    def __repr__(self):
        return 'Tree(%r, %r)' % (self.data, self.children)

    def _pretty_label(self):
        return self.data

    def _pretty(self, level, indent_str):
        if len(self.children) == 1 and not isinstance(self.children[0], Tree):
            return [indent_str*level, self._pretty_label(), '\t', '%s' % (self.children[0],), '\n']

        l = [indent_str*level, self._pretty_label(), '\n']
        for n in self.children:
            if isinstance(n, Tree):
                l += n._pretty(level+1, indent_str)
            else:
                l += [indent_str*(level+1), '%s' % (n,), '\n']

        return l

    def pretty(self, indent_str='  '):
        """Returns an indented string representation of the tree.

        Great for debugging.
        """
        return ''.join(self._pretty(0, indent_str))

    def __eq__(self, other):
        try:
            return self.data == other.data and self.children == other.children
        except AttributeError:
            return False

    def __ne__(self, other):
        return not (self == other)

    def __hash__(self):
        return hash((self.data, tuple(self.children)))

    def iter_subtrees(self):
        """Depth-first iteration.

        Iterates over all the subtrees, never returning to the same node twice (Lark's parse-tree is actually a DAG).
        """
        queue = [self]
        subtrees = OrderedDict()
        for subtree in queue:
            subtrees[id(subtree)] = subtree
            queue += [c for c in reversed(subtree.children)
                      if isinstance(c, Tree) and id(c) not in subtrees]

        del queue
        return reversed(list(subtrees.values()))

    def find_pred(self, pred):
        """Returns all nodes of the tree that evaluate pred(node) as true."""
        return filter(pred, self.iter_subtrees())

    def find_data(self, data):
        """Returns all nodes of the tree whose data equals the given data."""
        return self.find_pred(lambda t: t.data == data)

###}

    def expand_kids_by_index(self, *indices):
        """Expand (inline) children at the given indices"""
        for i in sorted(indices, reverse=True):  # reverse so that changing tail won't affect indices
            kid = self.children[i]
            self.children[i:i+1] = kid.children

    def expand_kids_by_data(self, *data_values):
        """Expand (inline) children with any of the given data values. Returns True if anything changed"""
        changed = False
        for i in range(len(self.children)-1, -1, -1):
            child = self.children[i]
            if isinstance(child, Tree) and child.data in data_values:
                self.children[i:i+1] = child.children
                changed = True
        return changed


    def scan_values(self, pred):
        """Return all values in the tree that evaluate pred(value) as true.

        This can be used to find all the tokens in the tree.

        Example:
            >>> all_tokens = tree.scan_values(lambda v: isinstance(v, Token))
        """
        for c in self.children:
            if isinstance(c, Tree):
                for t in c.scan_values(pred):
                    yield t
            else:
                if pred(c):
                    yield c

    def iter_subtrees_topdown(self):
        """Breadth-first iteration.

        Iterates over all the subtrees, return nodes in order like pretty() does.
        """
        stack = [self]
        while stack:
            node = stack.pop()
            if not isinstance(node, Tree):
                continue
            yield node
            for n in reversed(node.children):
                stack.append(n)

    def __deepcopy__(self, memo):
        return type(self)(self.data, deepcopy(self.children, memo), meta=self._meta)

    def copy(self):
        return type(self)(self.data, self.children)

    def set(self, data, children):
        self.data = data
        self.children = children

    # XXX Deprecated! Here for backwards compatibility <0.6.0
    @property
    def line(self):
        return self.meta.line

    @property
    def column(self):
        return self.meta.column

    @property
    def end_line(self):
        return self.meta.end_line

    @property
    def end_column(self):
        return self.meta.end_column


class SlottedTree(Tree):
    __slots__ = 'data', 'children', 'rule', '_meta'


def pydot__tree_to_png(tree, filename, rankdir="LR", **kwargs):
    graph = pydot__tree_to_graph(tree, rankdir, **kwargs)
    graph.write_png(filename)


def pydot__tree_to_dot(tree, filename, rankdir="LR", **kwargs):
    graph = pydot__tree_to_graph(tree, rankdir, **kwargs)
    graph.write(filename)


def pydot__tree_to_graph(tree, rankdir="LR", **kwargs):
    """Creates a colorful image that represents the tree (data+children, without meta)

    Possible values for `rankdir` are "TB", "LR", "BT", "RL", corresponding to
    directed graphs drawn from top to bottom, from left to right, from bottom to
    top, and from right to left, respectively.

    `kwargs` can be any graph attribute (e. g. `dpi=200`). For a list of
    possible attributes, see https://www.graphviz.org/doc/info/attrs.html.
    """

    import pydot
    graph = pydot.Dot(graph_type='digraph', rankdir=rankdir, **kwargs)

    i = [0]

    def new_leaf(leaf):
        node = pydot.Node(i[0], label=repr(leaf))
        i[0] += 1
        graph.add_node(node)
        return node

    def _to_pydot(subtree):
        color = hash(subtree.data) & 0xffffff
        color |= 0x808080

        subnodes = [_to_pydot(child) if isinstance(child, Tree) else new_leaf(child)
                    for child in subtree.children]
        node = pydot.Node(i[0], style="filled", fillcolor="#%x" % color, label=subtree.data)
        i[0] += 1
        graph.add_node(node)

        for subnode in subnodes:
            graph.add_edge(pydot.Edge(node, subnode))

        return node

    _to_pydot(tree)
    return graph