1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
|
""""This module implements an SPPF implementation
This is used as the primary output mechanism for the Earley parser
in order to store complex ambiguities.
Full reference and more details is here:
http://www.bramvandersanden.com/post/2014/06/shared-packed-parse-forest/
"""
from random import randint
from math import isinf
from collections import deque
from operator import attrgetter
from importlib import import_module
from functools import partial
from ..parse_tree_builder import AmbiguousIntermediateExpander
from ..visitors import Discard
from ..lexer import Token
from ..utils import logger
from ..tree import Tree
class ForestNode(object):
pass
class SymbolNode(ForestNode):
"""
A Symbol Node represents a symbol (or Intermediate LR0).
Symbol nodes are keyed by the symbol (s). For intermediate nodes
s will be an LR0, stored as a tuple of (rule, ptr). For completed symbol
nodes, s will be a string representing the non-terminal origin (i.e.
the left hand side of the rule).
The children of a Symbol or Intermediate Node will always be Packed Nodes;
with each Packed Node child representing a single derivation of a production.
Hence a Symbol Node with a single child is unambiguous.
:ivar s: A Symbol, or a tuple of (rule, ptr) for an intermediate node.
:ivar start: The index of the start of the substring matched by this
symbol (inclusive).
:ivar end: The index of the end of the substring matched by this
symbol (exclusive).
:ivar is_intermediate: True if this node is an intermediate node.
:ivar priority: The priority of the node's symbol.
"""
__slots__ = ('s', 'start', 'end', '_children', 'paths', 'paths_loaded', 'priority', 'is_intermediate', '_hash')
def __init__(self, s, start, end):
self.s = s
self.start = start
self.end = end
self._children = set()
self.paths = set()
self.paths_loaded = False
### We use inf here as it can be safely negated without resorting to conditionals,
# unlike None or float('NaN'), and sorts appropriately.
self.priority = float('-inf')
self.is_intermediate = isinstance(s, tuple)
self._hash = hash((self.s, self.start, self.end))
def add_family(self, lr0, rule, start, left, right):
self._children.add(PackedNode(self, lr0, rule, start, left, right))
def add_path(self, transitive, node):
self.paths.add((transitive, node))
def load_paths(self):
for transitive, node in self.paths:
if transitive.next_titem is not None:
vn = SymbolNode(transitive.next_titem.s, transitive.next_titem.start, self.end)
vn.add_path(transitive.next_titem, node)
self.add_family(transitive.reduction.rule.origin, transitive.reduction.rule, transitive.reduction.start, transitive.reduction.node, vn)
else:
self.add_family(transitive.reduction.rule.origin, transitive.reduction.rule, transitive.reduction.start, transitive.reduction.node, node)
self.paths_loaded = True
@property
def is_ambiguous(self):
"""Returns True if this node is ambiguous."""
return len(self.children) > 1
@property
def children(self):
"""Returns a list of this node's children sorted from greatest to
least priority."""
if not self.paths_loaded: self.load_paths()
return sorted(self._children, key=attrgetter('sort_key'))
def __iter__(self):
return iter(self._children)
def __eq__(self, other):
if not isinstance(other, SymbolNode):
return False
return self is other or (type(self.s) == type(other.s) and self.s == other.s and self.start == other.start and self.end is other.end)
def __hash__(self):
return self._hash
def __repr__(self):
if self.is_intermediate:
rule = self.s[0]
ptr = self.s[1]
before = ( expansion.name for expansion in rule.expansion[:ptr] )
after = ( expansion.name for expansion in rule.expansion[ptr:] )
symbol = "{} ::= {}* {}".format(rule.origin.name, ' '.join(before), ' '.join(after))
else:
symbol = self.s.name
return "({}, {}, {}, {})".format(symbol, self.start, self.end, self.priority)
class PackedNode(ForestNode):
"""
A Packed Node represents a single derivation in a symbol node.
:ivar rule: The rule associated with this node.
:ivar parent: The parent of this node.
:ivar left: The left child of this node. ``None`` if one does not exist.
:ivar right: The right child of this node. ``None`` if one does not exist.
:ivar priority: The priority of this node.
"""
__slots__ = ('parent', 's', 'rule', 'start', 'left', 'right', 'priority', '_hash')
def __init__(self, parent, s, rule, start, left, right):
self.parent = parent
self.s = s
self.start = start
self.rule = rule
self.left = left
self.right = right
self.priority = float('-inf')
self._hash = hash((self.left, self.right))
@property
def is_empty(self):
return self.left is None and self.right is None
@property
def sort_key(self):
"""
Used to sort PackedNode children of SymbolNodes.
A SymbolNode has multiple PackedNodes if it matched
ambiguously. Hence, we use the sort order to identify
the order in which ambiguous children should be considered.
"""
return self.is_empty, -self.priority, self.rule.order
@property
def children(self):
"""Returns a list of this node's children."""
return [x for x in [self.left, self.right] if x is not None]
def __iter__(self):
yield self.left
yield self.right
def __eq__(self, other):
if not isinstance(other, PackedNode):
return False
return self is other or (self.left == other.left and self.right == other.right)
def __hash__(self):
return self._hash
def __repr__(self):
if isinstance(self.s, tuple):
rule = self.s[0]
ptr = self.s[1]
before = ( expansion.name for expansion in rule.expansion[:ptr] )
after = ( expansion.name for expansion in rule.expansion[ptr:] )
symbol = "{} ::= {}* {}".format(rule.origin.name, ' '.join(before), ' '.join(after))
else:
symbol = self.s.name
return "({}, {}, {}, {})".format(symbol, self.start, self.priority, self.rule.order)
class ForestVisitor(object):
"""
An abstract base class for building forest visitors.
This class performs a controllable depth-first walk of an SPPF.
The visitor will not enter cycles and will backtrack if one is encountered.
Subclasses are notified of cycles through the ``on_cycle`` method.
Behavior for visit events is defined by overriding the
``visit*node*`` functions.
The walk is controlled by the return values of the ``visit*node_in``
methods. Returning a node(s) will schedule them to be visited. The visitor
will begin to backtrack if no nodes are returned.
:ivar single_visit: If ``True``, non-Token nodes will only be visited once.
"""
def __init__(self, single_visit=False):
self.single_visit = single_visit
def visit_token_node(self, node):
"""Called when a ``Token`` is visited. ``Token`` nodes are always leaves."""
pass
def visit_symbol_node_in(self, node):
"""Called when a symbol node is visited. Nodes that are returned
will be scheduled to be visited. If ``visit_intermediate_node_in``
is not implemented, this function will be called for intermediate
nodes as well."""
pass
def visit_symbol_node_out(self, node):
"""Called after all nodes returned from a corresponding ``visit_symbol_node_in``
call have been visited. If ``visit_intermediate_node_out``
is not implemented, this function will be called for intermediate
nodes as well."""
pass
def visit_packed_node_in(self, node):
"""Called when a packed node is visited. Nodes that are returned
will be scheduled to be visited. """
pass
def visit_packed_node_out(self, node):
"""Called after all nodes returned from a corresponding ``visit_packed_node_in``
call have been visited."""
pass
def on_cycle(self, node, path):
"""Called when a cycle is encountered.
:param node: The node that causes a cycle.
:param path: The list of nodes being visited: nodes that have been
entered but not exited. The first element is the root in a forest
visit, and the last element is the node visited most recently.
``path`` should be treated as read-only.
"""
pass
def get_cycle_in_path(self, node, path):
"""A utility function for use in ``on_cycle`` to obtain a slice of
``path`` that only contains the nodes that make up the cycle."""
index = len(path) - 1
while id(path[index]) != id(node):
index -= 1
return path[index:]
def visit(self, root):
# Visiting is a list of IDs of all symbol/intermediate nodes currently in
# the stack. It serves two purposes: to detect when we 'recurse' in and out
# of a symbol/intermediate so that we can process both up and down. Also,
# since the SPPF can have cycles it allows us to detect if we're trying
# to recurse into a node that's already on the stack (infinite recursion).
visiting = set()
# set of all nodes that have been visited
visited = set()
# a list of nodes that are currently being visited
# used for the `on_cycle` callback
path = []
# We do not use recursion here to walk the Forest due to the limited
# stack size in python. Therefore input_stack is essentially our stack.
input_stack = deque([root])
# It is much faster to cache these as locals since they are called
# many times in large parses.
vpno = getattr(self, 'visit_packed_node_out')
vpni = getattr(self, 'visit_packed_node_in')
vsno = getattr(self, 'visit_symbol_node_out')
vsni = getattr(self, 'visit_symbol_node_in')
vino = getattr(self, 'visit_intermediate_node_out', vsno)
vini = getattr(self, 'visit_intermediate_node_in', vsni)
vtn = getattr(self, 'visit_token_node')
oc = getattr(self, 'on_cycle')
while input_stack:
current = next(reversed(input_stack))
try:
next_node = next(current)
except StopIteration:
input_stack.pop()
continue
except TypeError:
### If the current object is not an iterator, pass through to Token/SymbolNode
pass
else:
if next_node is None:
continue
if id(next_node) in visiting:
oc(next_node, path)
continue
input_stack.append(next_node)
continue
if not isinstance(current, ForestNode):
vtn(current)
input_stack.pop()
continue
current_id = id(current)
if current_id in visiting:
if isinstance(current, PackedNode):
vpno(current)
elif current.is_intermediate:
vino(current)
else:
vsno(current)
input_stack.pop()
path.pop()
visiting.remove(current_id)
visited.add(current_id)
elif self.single_visit and current_id in visited:
input_stack.pop()
else:
visiting.add(current_id)
path.append(current)
if isinstance(current, PackedNode):
next_node = vpni(current)
elif current.is_intermediate:
next_node = vini(current)
else:
next_node = vsni(current)
if next_node is None:
continue
if not isinstance(next_node, ForestNode) and \
not isinstance(next_node, Token):
next_node = iter(next_node)
elif id(next_node) in visiting:
oc(next_node, path)
continue
input_stack.append(next_node)
class ForestTransformer(ForestVisitor):
"""The base class for a bottom-up forest transformation. Most users will
want to use ``TreeForestTransformer`` instead as it has a friendlier
interface and covers most use cases.
Transformations are applied via inheritance and overriding of the
``transform*node`` methods.
``transform_token_node`` receives a ``Token`` as an argument.
All other methods receive the node that is being transformed and
a list of the results of the transformations of that node's children.
The return value of these methods are the resulting transformations.
If ``Discard`` is raised in a node's transformation, no data from that node
will be passed to its parent's transformation.
"""
def __init__(self):
super(ForestTransformer, self).__init__()
# results of transformations
self.data = dict()
# used to track parent nodes
self.node_stack = deque()
def transform(self, root):
"""Perform a transformation on an SPPF."""
self.node_stack.append('result')
self.data['result'] = []
self.visit(root)
assert len(self.data['result']) <= 1
if self.data['result']:
return self.data['result'][0]
def transform_symbol_node(self, node, data):
"""Transform a symbol node."""
return node
def transform_intermediate_node(self, node, data):
"""Transform an intermediate node."""
return node
def transform_packed_node(self, node, data):
"""Transform a packed node."""
return node
def transform_token_node(self, node):
"""Transform a ``Token``."""
return node
def visit_symbol_node_in(self, node):
self.node_stack.append(id(node))
self.data[id(node)] = []
return node.children
def visit_packed_node_in(self, node):
self.node_stack.append(id(node))
self.data[id(node)] = []
return node.children
def visit_token_node(self, node):
try:
transformed = self.transform_token_node(node)
except Discard:
pass
else:
self.data[self.node_stack[-1]].append(transformed)
def visit_symbol_node_out(self, node):
self.node_stack.pop()
try:
transformed = self.transform_symbol_node(node, self.data[id(node)])
except Discard:
pass
else:
self.data[self.node_stack[-1]].append(transformed)
finally:
del self.data[id(node)]
def visit_intermediate_node_out(self, node):
self.node_stack.pop()
try:
transformed = self.transform_intermediate_node(node, self.data[id(node)])
except Discard:
pass
else:
self.data[self.node_stack[-1]].append(transformed)
finally:
del self.data[id(node)]
def visit_packed_node_out(self, node):
self.node_stack.pop()
try:
transformed = self.transform_packed_node(node, self.data[id(node)])
except Discard:
pass
else:
self.data[self.node_stack[-1]].append(transformed)
finally:
del self.data[id(node)]
class ForestSumVisitor(ForestVisitor):
"""
A visitor for prioritizing ambiguous parts of the Forest.
This visitor is used when support for explicit priorities on
rules is requested (whether normal, or invert). It walks the
forest (or subsets thereof) and cascades properties upwards
from the leaves.
It would be ideal to do this during parsing, however this would
require processing each Earley item multiple times. That's
a big performance drawback; so running a forest walk is the
lesser of two evils: there can be significantly more Earley
items created during parsing than there are SPPF nodes in the
final tree.
"""
def __init__(self):
super(ForestSumVisitor, self).__init__(single_visit=True)
def visit_packed_node_in(self, node):
yield node.left
yield node.right
def visit_symbol_node_in(self, node):
return iter(node.children)
def visit_packed_node_out(self, node):
priority = node.rule.options.priority if not node.parent.is_intermediate and node.rule.options.priority else 0
priority += getattr(node.right, 'priority', 0)
priority += getattr(node.left, 'priority', 0)
node.priority = priority
def visit_symbol_node_out(self, node):
node.priority = max(child.priority for child in node.children)
class PackedData():
"""Used in transformationss of packed nodes to distinguish the data
that comes from the left child and the right child.
"""
class _NoData():
pass
NO_DATA = _NoData()
def __init__(self, node, data):
self.left = self.NO_DATA
self.right = self.NO_DATA
if data:
if node.left is not None:
self.left = data[0]
if len(data) > 1:
self.right = data[1]
else:
self.right = data[0]
class ForestToParseTree(ForestTransformer):
"""Used by the earley parser when ambiguity equals 'resolve' or
'explicit'. Transforms an SPPF into an (ambiguous) parse tree.
tree_class: The tree class to use for construction
callbacks: A dictionary of rules to functions that output a tree
prioritizer: A ``ForestVisitor`` that manipulates the priorities of
ForestNodes
resolve_ambiguity: If True, ambiguities will be resolved based on
priorities. Otherwise, `_ambig` nodes will be in the resulting
tree.
use_cache: If True, the results of packed node transformations will be
cached.
"""
def __init__(self, tree_class=Tree, callbacks=dict(), prioritizer=ForestSumVisitor(), resolve_ambiguity=True, use_cache=True):
super(ForestToParseTree, self).__init__()
self.tree_class = tree_class
self.callbacks = callbacks
self.prioritizer = prioritizer
self.resolve_ambiguity = resolve_ambiguity
self._use_cache = use_cache
self._cache = {}
self._on_cycle_retreat = False
self._cycle_node = None
self._successful_visits = set()
def visit(self, root):
if self.prioritizer:
self.prioritizer.visit(root)
super(ForestToParseTree, self).visit(root)
self._cache = {}
def on_cycle(self, node, path):
logger.debug("Cycle encountered in the SPPF at node: %s. "
"As infinite ambiguities cannot be represented in a tree, "
"this family of derivations will be discarded.", node)
self._cycle_node = node
self._on_cycle_retreat = True
def _check_cycle(self, node):
if self._on_cycle_retreat:
if id(node) == id(self._cycle_node) or id(node) in self._successful_visits:
self._cycle_node = None
self._on_cycle_retreat = False
return
raise Discard()
def _collapse_ambig(self, children):
new_children = []
for child in children:
if hasattr(child, 'data') and child.data == '_ambig':
new_children += child.children
else:
new_children.append(child)
return new_children
def _call_rule_func(self, node, data):
# called when transforming children of symbol nodes
# data is a list of trees or tokens that correspond to the
# symbol's rule expansion
return self.callbacks[node.rule](data)
def _call_ambig_func(self, node, data):
# called when transforming a symbol node
# data is a list of trees where each tree's data is
# equal to the name of the symbol or one of its aliases.
if len(data) > 1:
return self.tree_class('_ambig', data)
elif data:
return data[0]
raise Discard()
def transform_symbol_node(self, node, data):
if id(node) not in self._successful_visits:
raise Discard()
self._check_cycle(node)
self._successful_visits.remove(id(node))
data = self._collapse_ambig(data)
return self._call_ambig_func(node, data)
def transform_intermediate_node(self, node, data):
if id(node) not in self._successful_visits:
raise Discard()
self._check_cycle(node)
self._successful_visits.remove(id(node))
if len(data) > 1:
children = [self.tree_class('_inter', c) for c in data]
return self.tree_class('_iambig', children)
return data[0]
def transform_packed_node(self, node, data):
self._check_cycle(node)
if self.resolve_ambiguity and id(node.parent) in self._successful_visits:
raise Discard()
if self._use_cache and id(node) in self._cache:
return self._cache[id(node)]
children = []
assert len(data) <= 2
data = PackedData(node, data)
if data.left is not PackedData.NO_DATA:
if node.left.is_intermediate and isinstance(data.left, list):
children += data.left
else:
children.append(data.left)
if data.right is not PackedData.NO_DATA:
children.append(data.right)
if node.parent.is_intermediate:
return self._cache.setdefault(id(node), children)
return self._cache.setdefault(id(node), self._call_rule_func(node, children))
def visit_symbol_node_in(self, node):
super(ForestToParseTree, self).visit_symbol_node_in(node)
if self._on_cycle_retreat:
return
return node.children
def visit_packed_node_in(self, node):
self._on_cycle_retreat = False
to_visit = super(ForestToParseTree, self).visit_packed_node_in(node)
if not self.resolve_ambiguity or id(node.parent) not in self._successful_visits:
if not self._use_cache or id(node) not in self._cache:
return to_visit
def visit_packed_node_out(self, node):
super(ForestToParseTree, self).visit_packed_node_out(node)
if not self._on_cycle_retreat:
self._successful_visits.add(id(node.parent))
def handles_ambiguity(func):
"""Decorator for methods of subclasses of ``TreeForestTransformer``.
Denotes that the method should receive a list of transformed derivations."""
func.handles_ambiguity = True
return func
class TreeForestTransformer(ForestToParseTree):
"""A ``ForestTransformer`` with a tree ``Transformer``-like interface.
By default, it will construct a tree.
Methods provided via inheritance are called based on the rule/symbol
names of nodes in the forest.
Methods that act on rules will receive a list of the results of the
transformations of the rule's children. By default, trees and tokens.
Methods that act on tokens will receive a token.
Alternatively, methods that act on rules may be annotated with
``handles_ambiguity``. In this case, the function will receive a list
of all the transformations of all the derivations of the rule.
By default, a list of trees where each tree.data is equal to the
rule name or one of its aliases.
Non-tree transformations are made possible by override of
``__default__``, ``__default_token__``, and ``__default_ambig__``.
.. note::
Tree shaping features such as inlined rules and token filtering are
not built into the transformation. Positions are also not
propagated.
:param tree_class: The tree class to use for construction
:param prioritizer: A ``ForestVisitor`` that manipulates the priorities of
nodes in the SPPF.
:param resolve_ambiguity: If True, ambiguities will be resolved based on
priorities.
:param use_cache: If True, caches the results of some transformations,
potentially improving performance when ``resolve_ambiguity==False``.
Only use if you know what you are doing: i.e. All transformation
functions are pure and referentially transparent.
"""
def __init__(self, tree_class=Tree, prioritizer=ForestSumVisitor(), resolve_ambiguity=True, use_cache=False):
super(TreeForestTransformer, self).__init__(tree_class, dict(), prioritizer, resolve_ambiguity, use_cache)
def __default__(self, name, data):
"""Default operation on tree (for override).
Returns a tree with name with data as children.
"""
return self.tree_class(name, data)
def __default_ambig__(self, name, data):
"""Default operation on ambiguous rule (for override).
Wraps data in an '_ambig_' node if it contains more than
one element.
"""
if len(data) > 1:
return self.tree_class('_ambig', data)
elif data:
return data[0]
raise Discard()
def __default_token__(self, node):
"""Default operation on ``Token`` (for override).
Returns ``node``.
"""
return node
def transform_token_node(self, node):
return getattr(self, node.type, self.__default_token__)(node)
def _call_rule_func(self, node, data):
name = node.rule.alias or node.rule.options.template_source or node.rule.origin.name
user_func = getattr(self, name, self.__default__)
if user_func == self.__default__ or hasattr(user_func, 'handles_ambiguity'):
user_func = partial(self.__default__, name)
if not self.resolve_ambiguity:
wrapper = partial(AmbiguousIntermediateExpander, self.tree_class)
user_func = wrapper(user_func)
return user_func(data)
def _call_ambig_func(self, node, data):
name = node.s.name
user_func = getattr(self, name, self.__default_ambig__)
if user_func == self.__default_ambig__ or not hasattr(user_func, 'handles_ambiguity'):
user_func = partial(self.__default_ambig__, name)
return user_func(data)
class ForestToPyDotVisitor(ForestVisitor):
"""
A Forest visitor which writes the SPPF to a PNG.
The SPPF can get really large, really quickly because
of the amount of meta-data it stores, so this is probably
only useful for trivial trees and learning how the SPPF
is structured.
"""
def __init__(self, rankdir="TB"):
super(ForestToPyDotVisitor, self).__init__(single_visit=True)
self.pydot = import_module('pydot')
self.graph = self.pydot.Dot(graph_type='digraph', rankdir=rankdir)
def visit(self, root, filename):
super(ForestToPyDotVisitor, self).visit(root)
try:
self.graph.write_png(filename)
except FileNotFoundError as e:
logger.error("Could not write png: ", e)
def visit_token_node(self, node):
graph_node_id = str(id(node))
graph_node_label = "\"{}\"".format(node.value.replace('"', '\\"'))
graph_node_color = 0x808080
graph_node_style = "\"filled,rounded\""
graph_node_shape = "diamond"
graph_node = self.pydot.Node(graph_node_id, style=graph_node_style, fillcolor="#{:06x}".format(graph_node_color), shape=graph_node_shape, label=graph_node_label)
self.graph.add_node(graph_node)
def visit_packed_node_in(self, node):
graph_node_id = str(id(node))
graph_node_label = repr(node)
graph_node_color = 0x808080
graph_node_style = "filled"
graph_node_shape = "diamond"
graph_node = self.pydot.Node(graph_node_id, style=graph_node_style, fillcolor="#{:06x}".format(graph_node_color), shape=graph_node_shape, label=graph_node_label)
self.graph.add_node(graph_node)
yield node.left
yield node.right
def visit_packed_node_out(self, node):
graph_node_id = str(id(node))
graph_node = self.graph.get_node(graph_node_id)[0]
for child in [node.left, node.right]:
if child is not None:
child_graph_node_id = str(id(child))
child_graph_node = self.graph.get_node(child_graph_node_id)[0]
self.graph.add_edge(self.pydot.Edge(graph_node, child_graph_node))
else:
#### Try and be above the Python object ID range; probably impl. specific, but maybe this is okay.
child_graph_node_id = str(randint(100000000000000000000000000000,123456789012345678901234567890))
child_graph_node_style = "invis"
child_graph_node = self.pydot.Node(child_graph_node_id, style=child_graph_node_style, label="None")
child_edge_style = "invis"
self.graph.add_node(child_graph_node)
self.graph.add_edge(self.pydot.Edge(graph_node, child_graph_node, style=child_edge_style))
def visit_symbol_node_in(self, node):
graph_node_id = str(id(node))
graph_node_label = repr(node)
graph_node_color = 0x808080
graph_node_style = "\"filled\""
if node.is_intermediate:
graph_node_shape = "ellipse"
else:
graph_node_shape = "rectangle"
graph_node = self.pydot.Node(graph_node_id, style=graph_node_style, fillcolor="#{:06x}".format(graph_node_color), shape=graph_node_shape, label=graph_node_label)
self.graph.add_node(graph_node)
return iter(node.children)
def visit_symbol_node_out(self, node):
graph_node_id = str(id(node))
graph_node = self.graph.get_node(graph_node_id)[0]
for child in node.children:
child_graph_node_id = str(id(child))
child_graph_node = self.graph.get_node(child_graph_node_id)[0]
self.graph.add_edge(self.pydot.Edge(graph_node, child_graph_node))
|