about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/jiter-0.9.0.dist-info/METADATA
blob: 611a133362028c15b28187c333bc4a1882e60064 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
Metadata-Version: 2.4
Name: jiter
Version: 0.9.0
Classifier: Development Status :: 4 - Beta
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: Intended Audience :: System Administrators
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: Unix
Classifier: Operating System :: POSIX :: Linux
Classifier: Environment :: Console
Classifier: Environment :: MacOS X
Classifier: Topic :: File Formats :: JSON
Classifier: Framework :: Pydantic :: 2
Summary: Fast iterable JSON parser.
Keywords: JSON,parsing,deserialization,iter
Home-Page: https://github.com/pydantic/jiter/
Author: Samuel Colvin <samuel@pydantic.dev>
Author-email: Samuel Colvin <s@muelcolvin.com>
License: MIT
Requires-Python: >=3.8
Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM
Project-URL: Source Code, https://github.com/pydantic/jiter/

# jiter

[![CI](https://github.com/pydantic/jiter/workflows/CI/badge.svg?event=push)](https://github.com/pydantic/jiter/actions?query=event%3Apush+branch%3Amain+workflow%3ACI)
[![pypi](https://img.shields.io/pypi/v/jiter.svg)](https://pypi.python.org/pypi/jiter)
[![versions](https://img.shields.io/pypi/pyversions/jiter.svg)](https://github.com/pydantic/jiter)
[![license](https://img.shields.io/github/license/pydantic/jiter.svg)](https://github.com/pydantic/jiter/blob/main/LICENSE)

This is a standalone version of the JSON parser used in `pydantic-core`. The recommendation is to only use this package directly if you do not use `pydantic`.

The API is extremely minimal:

```python
def from_json(
    json_data: bytes,
    /,
    *,
    allow_inf_nan: bool = True,
    cache_mode: Literal[True, False, "all", "keys", "none"] = "all",
    partial_mode: Literal[True, False, "off", "on", "trailing-strings"] = False,
    catch_duplicate_keys: bool = False,
    float_mode: Literal["float", "decimal", "lossless-float"] = False,
) -> Any:
    """
    Parse input bytes into a JSON object.

    Arguments:
        json_data: The JSON data to parse
        allow_inf_nan: Whether to allow infinity (`Infinity` an `-Infinity`) and `NaN` values to float fields.
            Defaults to True.
        cache_mode: cache Python strings to improve performance at the cost of some memory usage
            - True / 'all' - cache all strings
            - 'keys' - cache only object keys
            - False / 'none' - cache nothing
        partial_mode: How to handle incomplete strings:
            - False / 'off' - raise an exception if the input is incomplete
            - True / 'on' - allow incomplete JSON but discard the last string if it is incomplete
            - 'trailing-strings' - allow incomplete JSON, and include the last incomplete string in the output
        catch_duplicate_keys: if True, raise an exception if objects contain the same key multiple times
        float_mode: How to return floats: as a `float`, `Decimal` or `LosslessFloat`

    Returns:
        Python object built from the JSON input.
    """

def cache_clear() -> None:
    """
    Reset the string cache.
    """

def cache_usage() -> int:
    """
    get the size of the string cache.

    Returns:
        Size of the string cache in bytes.
    """
```
## Examples

The main function provided by Jiter is `from_json()`, which accepts a bytes object containing JSON and returns a Python dictionary, list or other value.

```python
import jiter

json_data = b'{"name": "John", "age": 30}'
parsed_data = jiter.from_json(json_data)
print(parsed_data)  # Output: {'name': 'John', 'age': 30}
```

### Handling Partial JSON

Incomplete JSON objects can be parsed using the `partial_mode=` parameter.

```python
import jiter

partial_json = b'{"name": "John", "age": 30, "city": "New Yor'

# Raise error on incomplete JSON
try:
    jiter.from_json(partial_json, partial_mode=False)
except ValueError as e:
    print(f"Error: {e}")

# Parse incomplete JSON, discarding incomplete last field
result = jiter.from_json(partial_json, partial_mode=True)
print(result)  # Output: {'name': 'John', 'age': 30}

# Parse incomplete JSON, including incomplete last field
result = jiter.from_json(partial_json, partial_mode='trailing-strings')
print(result)  # Output: {'name': 'John', 'age': 30, 'city': 'New Yor'}
```

### Catching Duplicate Keys

The `catch_duplicate_keys=True` option can be used to raise a `ValueError` if an object contains duplicate keys.

```python
import jiter

json_with_dupes = b'{"foo": 1, "foo": 2}'

# Default behavior (last value wins)
result = jiter.from_json(json_with_dupes)
print(result)  # Output: {'foo': 2}

# Catch duplicate keys
try:
    jiter.from_json(json_with_dupes, catch_duplicate_keys=True)
except ValueError as e:
    print(f"Error: {e}")
```