1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
# coding: utf-8
"""
Hatchet API
The Hatchet API
The version of the OpenAPI document: 1.0.0
Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
""" # noqa: E501
from __future__ import annotations
import json
import pprint
import re # noqa: F401
from datetime import datetime
from typing import Any, ClassVar, Dict, List, Optional, Set
from pydantic import BaseModel, ConfigDict, Field, StrictInt, StrictStr
from typing_extensions import Self
from hatchet_sdk.clients.rest.models.step_run_event_reason import StepRunEventReason
from hatchet_sdk.clients.rest.models.step_run_event_severity import StepRunEventSeverity
class StepRunEvent(BaseModel):
"""
StepRunEvent
""" # noqa: E501
id: StrictInt
time_first_seen: datetime = Field(alias="timeFirstSeen")
time_last_seen: datetime = Field(alias="timeLastSeen")
step_run_id: Optional[StrictStr] = Field(default=None, alias="stepRunId")
workflow_run_id: Optional[StrictStr] = Field(default=None, alias="workflowRunId")
reason: StepRunEventReason
severity: StepRunEventSeverity
message: StrictStr
count: StrictInt
data: Optional[Dict[str, Any]] = None
__properties: ClassVar[List[str]] = [
"id",
"timeFirstSeen",
"timeLastSeen",
"stepRunId",
"workflowRunId",
"reason",
"severity",
"message",
"count",
"data",
]
model_config = ConfigDict(
populate_by_name=True,
validate_assignment=True,
protected_namespaces=(),
)
def to_str(self) -> str:
"""Returns the string representation of the model using alias"""
return pprint.pformat(self.model_dump(by_alias=True))
def to_json(self) -> str:
"""Returns the JSON representation of the model using alias"""
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
return json.dumps(self.to_dict())
@classmethod
def from_json(cls, json_str: str) -> Optional[Self]:
"""Create an instance of StepRunEvent from a JSON string"""
return cls.from_dict(json.loads(json_str))
def to_dict(self) -> Dict[str, Any]:
"""Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
`self.model_dump(by_alias=True)`:
* `None` is only added to the output dict for nullable fields that
were set at model initialization. Other fields with value `None`
are ignored.
"""
excluded_fields: Set[str] = set([])
_dict = self.model_dump(
by_alias=True,
exclude=excluded_fields,
exclude_none=True,
)
return _dict
@classmethod
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
"""Create an instance of StepRunEvent from a dict"""
if obj is None:
return None
if not isinstance(obj, dict):
return cls.model_validate(obj)
_obj = cls.model_validate(
{
"id": obj.get("id"),
"timeFirstSeen": obj.get("timeFirstSeen"),
"timeLastSeen": obj.get("timeLastSeen"),
"stepRunId": obj.get("stepRunId"),
"workflowRunId": obj.get("workflowRunId"),
"reason": obj.get("reason"),
"severity": obj.get("severity"),
"message": obj.get("message"),
"count": obj.get("count"),
"data": obj.get("data"),
}
)
return _obj
|