aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/google/genai/_transformers.py
blob: f1b392e9fb480dd09fbc728d679709623bda8f84 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Transformers for Google GenAI SDK."""

import base64
from collections.abc import Iterable, Mapping
import inspect
import io
import re
import time
import typing
from typing import Any, GenericAlias, Optional, Union

import PIL.Image
import PIL.PngImagePlugin
import pydantic

from . import _api_client
from . import types


def _resource_name(
    client: _api_client.ApiClient,
    resource_name: str,
    *,
    collection_identifier: str,
    collection_hierarchy_depth: int = 2,
):
  # pylint: disable=line-too-long
  """Prepends resource name with project, location, collection_identifier if needed.

  The collection_identifier will only be prepended if it's not present
  and the prepending won't violate the collection hierarchy depth.
  When the prepending condition doesn't meet, returns the input
  resource_name.

  Args:
    client: The API client.
    resource_name: The user input resource name to be completed.
    collection_identifier: The collection identifier to be prepended. See
      collection identifiers in https://google.aip.dev/122.
    collection_hierarchy_depth: The collection hierarchy depth. Only set this
      field when the resource has nested collections. For example,
      `users/vhugo1802/events/birthday-dinner-226`, the collection_identifier is
      `users` and collection_hierarchy_depth is 4. See nested collections in
      https://google.aip.dev/122.

  Example:

    resource_name = 'cachedContents/123'
    client.vertexai = True
    client.project = 'bar'
    client.location = 'us-west1'
    _resource_name(client, 'cachedContents/123',
      collection_identifier='cachedContents')
    returns: 'projects/bar/locations/us-west1/cachedContents/123'

  Example:

    resource_name = 'projects/foo/locations/us-central1/cachedContents/123'
    # resource_name = 'locations/us-central1/cachedContents/123'
    client.vertexai = True
    client.project = 'bar'
    client.location = 'us-west1'
    _resource_name(client, resource_name,
      collection_identifier='cachedContents')
    returns: 'projects/foo/locations/us-central1/cachedContents/123'

  Example:

    resource_name = '123'
    # resource_name = 'cachedContents/123'
    client.vertexai = False
    _resource_name(client, resource_name,
      collection_identifier='cachedContents')
    returns 'cachedContents/123'

  Example:
    resource_name = 'some/wrong/cachedContents/resource/name/123'
    resource_prefix = 'cachedContents'
    client.vertexai = False
    # client.vertexai = True
    _resource_name(client, resource_name,
      collection_identifier='cachedContents')
    returns: 'some/wrong/cachedContents/resource/name/123'

  Returns:
    The completed resource name.
  """
  should_prepend_collection_identifier = (
      not resource_name.startswith(f'{collection_identifier}/')
      # Check if prepending the collection identifier won't violate the
      # collection hierarchy depth.
      and f'{collection_identifier}/{resource_name}'.count('/') + 1
      == collection_hierarchy_depth
  )
  if client.vertexai:
    if resource_name.startswith('projects/'):
      return resource_name
    elif resource_name.startswith('locations/'):
      return f'projects/{client.project}/{resource_name}'
    elif resource_name.startswith(f'{collection_identifier}/'):
      return f'projects/{client.project}/locations/{client.location}/{resource_name}'
    elif should_prepend_collection_identifier:
      return f'projects/{client.project}/locations/{client.location}/{collection_identifier}/{resource_name}'
    else:
      return resource_name
  else:
    if should_prepend_collection_identifier:
      return f'{collection_identifier}/{resource_name}'
    else:
      return resource_name


def t_model(client: _api_client.ApiClient, model: str):
  if not model:
    raise ValueError('model is required.')
  if client.vertexai:
    if (
        model.startswith('projects/')
        or model.startswith('models/')
        or model.startswith('publishers/')
    ):
      return model
    elif '/' in model:
      publisher, model_id = model.split('/', 1)
      return f'publishers/{publisher}/models/{model_id}'
    else:
      return f'publishers/google/models/{model}'
  else:
    if model.startswith('models/'):
      return model
    elif model.startswith('tunedModels/'):
      return model
    else:
      return f'models/{model}'


def t_models_url(api_client: _api_client.ApiClient, base_models: bool) -> str:
  if api_client.vertexai:
    if base_models:
      return 'publishers/google/models'
    else:
      return 'models'
  else:
    if base_models:
      return 'models'
    else:
      return 'tunedModels'


def t_extract_models(
    api_client: _api_client.ApiClient, response: dict
) -> list[types.Model]:
  if not response:
    return []
  elif response.get('models') is not None:
    return response.get('models')
  elif response.get('tunedModels') is not None:
    return response.get('tunedModels')
  elif response.get('publisherModels') is not None:
    return response.get('publisherModels')
  else:
    raise ValueError('Cannot determine the models type.')


def t_caches_model(api_client: _api_client.ApiClient, model: str):
  model = t_model(api_client, model)
  if not model:
    return None
  if model.startswith('publishers/') and api_client.vertexai:
    # vertex caches only support model name start with projects.
    return (
        f'projects/{api_client.project}/locations/{api_client.location}/{model}'
    )
  elif model.startswith('models/') and api_client.vertexai:
    return f'projects/{api_client.project}/locations/{api_client.location}/publishers/google/{model}'
  else:
    return model


def pil_to_blob(img):
  bytesio = io.BytesIO()
  if isinstance(img, PIL.PngImagePlugin.PngImageFile) or img.mode == 'RGBA':
    img.save(bytesio, format='PNG')
    mime_type = 'image/png'
  else:
    img.save(bytesio, format='JPEG')
    mime_type = 'image/jpeg'
  bytesio.seek(0)
  data = bytesio.read()
  return types.Blob(mime_type=mime_type, data=data)


PartType = Union[types.Part, types.PartDict, str, PIL.Image.Image]


def t_part(client: _api_client.ApiClient, part: PartType) -> types.Part:
  if not part:
    raise ValueError('content part is required.')
  if isinstance(part, str):
    return types.Part(text=part)
  if isinstance(part, PIL.Image.Image):
    return types.Part(inline_data=pil_to_blob(part))
  if isinstance(part, types.File):
    if not part.uri or not part.mime_type:
      raise ValueError('file uri and mime_type are required.')
    return types.Part.from_uri(part.uri, part.mime_type)
  else:
    return part


def t_parts(
    client: _api_client.ApiClient, parts: Union[list, PartType]
) -> list[types.Part]:
  if parts is None:
    raise ValueError('content parts are required.')
  if isinstance(parts, list):
    return [t_part(client, part) for part in parts]
  else:
    return [t_part(client, parts)]


def t_image_predictions(
    client: _api_client.ApiClient,
    predictions: Optional[Iterable[Mapping[str, Any]]],
) -> list[types.GeneratedImage]:
  if not predictions:
    return None
  images = []
  for prediction in predictions:
    if prediction.get('image'):
      images.append(
          types.GeneratedImage(
              image=types.Image(
                  gcs_uri=prediction['image']['gcsUri'],
                  image_bytes=prediction['image']['imageBytes'],
              )
          )
      )
  return images


ContentType = Union[types.Content, types.ContentDict, PartType]


def t_content(
    client: _api_client.ApiClient,
    content: ContentType,
):
  if not content:
    raise ValueError('content is required.')
  if isinstance(content, types.Content):
    return content
  if isinstance(content, dict):
    return types.Content.model_validate(content)
  return types.Content(role='user', parts=t_parts(client, content))


def t_contents_for_embed(
    client: _api_client.ApiClient,
    contents: Union[list[types.Content], list[types.ContentDict], ContentType],
):
  if client.vertexai and isinstance(contents, list):
    # TODO: Assert that only text is supported.
    return [t_content(client, content).parts[0].text for content in contents]
  elif client.vertexai:
    return [t_content(client, contents).parts[0].text]
  elif isinstance(contents, list):
    return [t_content(client, content) for content in contents]
  else:
    return [t_content(client, contents)]


def t_contents(
    client: _api_client.ApiClient,
    contents: Union[list[types.Content], list[types.ContentDict], ContentType],
):
  if not contents:
    raise ValueError('contents are required.')
  if isinstance(contents, list):
    return [t_content(client, content) for content in contents]
  else:
    return [t_content(client, contents)]


def process_schema(
    data: dict[str, Any], client: Optional[_api_client.ApiClient] = None
):
  if isinstance(data, dict):
    # Iterate over a copy of keys to allow deletion
    for key in list(data.keys()):
      # Only delete 'title'for the Gemini API
      if client and not client.vertexai and key == 'title':
        del data[key]
      else:
        process_schema(data[key], client)
  elif isinstance(data, list):
    for item in data:
      process_schema(item, client)

  return data


def _build_schema(fname: str, fields_dict: dict[str, Any]) -> dict[str, Any]:
  parameters = pydantic.create_model(fname, **fields_dict).model_json_schema()
  defs = parameters.pop('$defs', {})

  for _, value in defs.items():
    unpack_defs(value, defs)

  unpack_defs(parameters, defs)
  return parameters['properties']['dummy']


def unpack_defs(schema: dict[str, Any], defs: dict[str, Any]):
  """Unpacks the $defs values in the schema generated by pydantic so they can be understood by the API.

  Example of a schema before and after unpacking:
    Before:

    `schema`

    {'properties': {
        'dummy': {
            'items': {
                '$ref': '#/$defs/CountryInfo'
            },
            'title': 'Dummy',
            'type': 'array'
            }
        },
        'required': ['dummy'],
        'title': 'dummy',
        'type': 'object'}

    `defs`

    {'CountryInfo': {'properties': {'continent': {'title': 'Continent', 'type':
    'string'}, 'gdp': {'title': 'Gdp', 'type': 'integer'}}, 'required':
    ['continent', 'gdp'], 'title': 'CountryInfo', 'type': 'object'}}

    After:

    `schema`
    {'properties': {
        'continent': {'title': 'Continent', 'type': 'string'},
        'gdp': {'title': 'Gdp', 'type': 'integer'}
      },
      'required': ['continent', 'gdp'],
      'title': 'CountryInfo',
      'type': 'object'
    }
  """
  properties = schema.get('properties', None)
  if properties is None:
    return

  for name, value in properties.items():
    ref_key = value.get('$ref', None)
    if ref_key is not None:
      ref = defs[ref_key.split('defs/')[-1]]
      unpack_defs(ref, defs)
      properties[name] = ref
      continue

    anyof = value.get('anyOf', None)
    if anyof is not None:
      for i, atype in enumerate(anyof):
        ref_key = atype.get('$ref', None)
        if ref_key is not None:
          ref = defs[ref_key.split('defs/')[-1]]
          unpack_defs(ref, defs)
          anyof[i] = ref
      continue

    items = value.get('items', None)
    if items is not None:
      ref_key = items.get('$ref', None)
      if ref_key is not None:
        ref = defs[ref_key.split('defs/')[-1]]
        unpack_defs(ref, defs)
        value['items'] = ref
        continue


def t_schema(
    client: _api_client.ApiClient, origin: Union[types.SchemaUnionDict, Any]
) -> Optional[types.Schema]:
  if not origin:
    return None
  if isinstance(origin, dict):
    return process_schema(origin, client)
  if isinstance(origin, types.Schema):
    if dict(origin) == dict(types.Schema()):
      # response_schema value was coerced to an empty Schema instance because it did not adhere to the Schema field annotation
      raise ValueError(f'Unsupported schema type.')
    schema = process_schema(origin.model_dump(exclude_unset=True), client)
    return types.Schema.model_validate(schema)
  if isinstance(origin, GenericAlias):
    if origin.__origin__ is list:
      if isinstance(origin.__args__[0], typing.types.UnionType):
        raise ValueError(f'Unsupported schema type: GenericAlias {origin}')
      if issubclass(origin.__args__[0], pydantic.BaseModel):
        # Handle cases where response schema is `list[pydantic.BaseModel]`
        list_schema = _build_schema(
            'dummy', {'dummy': (origin, pydantic.Field())}
        )
        list_schema = process_schema(list_schema, client)
        return types.Schema.model_validate(list_schema)
    raise ValueError(f'Unsupported schema type: GenericAlias {origin}')
  if issubclass(origin, pydantic.BaseModel):
    schema = process_schema(origin.model_json_schema(), client)
    return types.Schema.model_validate(schema)
  raise ValueError(f'Unsupported schema type: {origin}')


def t_speech_config(
    _: _api_client.ApiClient, origin: Union[types.SpeechConfigUnionDict, Any]
) -> Optional[types.SpeechConfig]:
  if not origin:
    return None
  if isinstance(origin, types.SpeechConfig):
    return origin
  if isinstance(origin, str):
    return types.SpeechConfig(
        voice_config=types.VoiceConfig(
            prebuilt_voice_config=types.PrebuiltVoiceConfig(voice_name=origin)
        )
    )
  if (
      isinstance(origin, dict)
      and 'voice_config' in origin
      and 'prebuilt_voice_config' in origin['voice_config']
  ):
    return types.SpeechConfig(
        voice_config=types.VoiceConfig(
            prebuilt_voice_config=types.PrebuiltVoiceConfig(
                voice_name=origin['voice_config']['prebuilt_voice_config'].get(
                    'voice_name'
                )
            )
        )
    )
  raise ValueError(f'Unsupported speechConfig type: {type(origin)}')


def t_tool(client: _api_client.ApiClient, origin) -> types.Tool:
  if not origin:
    return None
  if inspect.isfunction(origin) or inspect.ismethod(origin):
    return types.Tool(
        function_declarations=[
            types.FunctionDeclaration.from_callable(client, origin)
        ]
    )
  else:
    return origin


# Only support functions now.
def t_tools(
    client: _api_client.ApiClient, origin: list[Any]
) -> list[types.Tool]:
  if not origin:
    return []
  function_tool = types.Tool(function_declarations=[])
  tools = []
  for tool in origin:
    transformed_tool = t_tool(client, tool)
    # All functions should be merged into one tool.
    if transformed_tool.function_declarations:
      function_tool.function_declarations += (
          transformed_tool.function_declarations
      )
    else:
      tools.append(transformed_tool)
  if function_tool.function_declarations:
    tools.append(function_tool)
  return tools


def t_cached_content_name(client: _api_client.ApiClient, name: str):
  return _resource_name(client, name, collection_identifier='cachedContents')


def t_batch_job_source(client: _api_client.ApiClient, src: str):
  if src.startswith('gs://'):
    return types.BatchJobSource(
        format='jsonl',
        gcs_uri=[src],
    )
  elif src.startswith('bq://'):
    return types.BatchJobSource(
        format='bigquery',
        bigquery_uri=src,
    )
  else:
    raise ValueError(f'Unsupported source: {src}')


def t_batch_job_destination(client: _api_client.ApiClient, dest: str):
  if dest.startswith('gs://'):
    return types.BatchJobDestination(
        format='jsonl',
        gcs_uri=dest,
    )
  elif dest.startswith('bq://'):
    return types.BatchJobDestination(
        format='bigquery',
        bigquery_uri=dest,
    )
  else:
    raise ValueError(f'Unsupported destination: {dest}')


def t_batch_job_name(client: _api_client.ApiClient, name: str):
  if not client.vertexai:
    return name

  pattern = r'^projects/[^/]+/locations/[^/]+/batchPredictionJobs/[^/]+$'
  if re.match(pattern, name):
    return name.split('/')[-1]
  elif name.isdigit():
    return name
  else:
    raise ValueError(f'Invalid batch job name: {name}.')


LRO_POLLING_INITIAL_DELAY_SECONDS = 1.0
LRO_POLLING_MAXIMUM_DELAY_SECONDS = 20.0
LRO_POLLING_TIMEOUT_SECONDS = 900.0
LRO_POLLING_MULTIPLIER = 1.5


def t_resolve_operation(api_client: _api_client.ApiClient, struct: dict):
  if (name := struct.get('name')) and '/operations/' in name:
    operation: dict[str, Any] = struct
    total_seconds = 0.0
    delay_seconds = LRO_POLLING_INITIAL_DELAY_SECONDS
    while operation.get('done') != True:
      if total_seconds > LRO_POLLING_TIMEOUT_SECONDS:
        raise RuntimeError(f'Operation {name} timed out.\n{operation}')
      # TODO(b/374433890): Replace with LRO module once it's available.
      operation: dict[str, Any] = api_client.request(
          http_method='GET', path=name, request_dict={}
      )
      time.sleep(delay_seconds)
      total_seconds += total_seconds
      # Exponential backoff
      delay_seconds = min(
          delay_seconds * LRO_POLLING_MULTIPLIER,
          LRO_POLLING_MAXIMUM_DELAY_SECONDS,
      )
    if error := operation.get('error'):
      raise RuntimeError(
          f'Operation {name} failed with error: {error}.\n{operation}'
      )
    return operation.get('response')
  else:
    return struct


def t_file_name(
    api_client: _api_client.ApiClient, name: Union[str, types.File]
):
  # Remove the files/ prefix since it's added to the url path.
  if isinstance(name, types.File):
    name = name.name

  if name is None:
    raise ValueError('File name is required.')

  if name.startswith('https://'):
    suffix = name.split('files/')[1]
    match = re.match('[a-z0-9]+', suffix)
    if match is None:
      raise ValueError(f'Could not extract file name from URI: {name}')
    name = match.group(0)
  elif name.startswith('files/'):
    name = name.split('files/')[1]

  return name


def t_tuning_job_status(
    api_client: _api_client.ApiClient, status: str
) -> types.JobState:
  if status == 'STATE_UNSPECIFIED':
    return 'JOB_STATE_UNSPECIFIED'
  elif status == 'CREATING':
    return 'JOB_STATE_RUNNING'
  elif status == 'ACTIVE':
    return 'JOB_STATE_SUCCEEDED'
  elif status == 'FAILED':
    return 'JOB_STATE_FAILED'
  else:
    return status


# Some fields don't accept url safe base64 encoding.
# We shouldn't use this transformer if the backend adhere to Cloud Type
# format https://cloud.google.com/docs/discovery/type-format.
# TODO(b/389133914,b/390320301): Remove the hack after backend fix the issue.
def t_bytes(api_client: _api_client.ApiClient, data: bytes) -> str:
  if not isinstance(data, bytes):
    return data
  return base64.b64encode(data).decode('ascii')