aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/deepdiff/diff.py
blob: d84ecc7e80d7f61131fc81ca4f9a7f346c23688c (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
#!/usr/bin/env python

# In order to run the docstrings:
# python3 -m deepdiff.diff
# You might need to run it many times since dictionaries come in different orders
# every time you run the docstrings.
# However the docstring expects it in a specific order in order to pass!
import difflib
import logging
import types
import datetime
from enum import Enum
from copy import deepcopy
from math import isclose as is_close
from typing import List, Dict, Callable, Union, Any, Pattern, Tuple, Optional, Set, FrozenSet, TYPE_CHECKING, Protocol
from collections.abc import Mapping, Iterable, Sequence
from collections import defaultdict
from inspect import getmembers
from itertools import zip_longest
from functools import lru_cache
from deepdiff.helper import (strings, bytes_type, numbers, uuids, ListItemRemovedOrAdded, notpresent,
                             IndexedHash, unprocessed, add_to_frozen_set, basic_types,
                             convert_item_or_items_into_set_else_none, get_type,
                             convert_item_or_items_into_compiled_regexes_else_none,
                             type_is_subclass_of_type_group, type_in_type_group, get_doc,
                             number_to_string, datetime_normalize, KEY_TO_VAL_STR, booleans,
                             np_ndarray, np_floating, get_numpy_ndarray_rows, RepeatedTimer,
                             TEXT_VIEW, TREE_VIEW, DELTA_VIEW, detailed__dict__, add_root_to_paths,
                             np, get_truncate_datetime, dict_, CannotCompare, ENUM_INCLUDE_KEYS,
                             PydanticBaseModel, Opcode, SetOrdered, ipranges)
from deepdiff.serialization import SerializationMixin
from deepdiff.distance import DistanceMixin, logarithmic_similarity
from deepdiff.model import (
    RemapDict, ResultDict, TextResult, TreeResult, DiffLevel,
    DictRelationship, AttributeRelationship, REPORT_KEYS,
    SubscriptableIterableRelationship, NonSubscriptableIterableRelationship,
    SetRelationship, NumpyArrayRelationship, CUSTOM_FIELD,
    FORCE_DEFAULT,
)
from deepdiff.deephash import DeepHash, combine_hashes_lists
from deepdiff.base import Base
from deepdiff.lfucache import LFUCache, DummyLFU

if TYPE_CHECKING:
    from pytz.tzinfo import BaseTzInfo


logger = logging.getLogger(__name__)

MAX_PASSES_REACHED_MSG = (
    'DeepDiff has reached the max number of passes of {}. '
    'You can possibly get more accurate results by increasing the max_passes parameter.')

MAX_DIFFS_REACHED_MSG = (
    'DeepDiff has reached the max number of diffs of {}. '
    'You can possibly get more accurate results by increasing the max_diffs parameter.')


notpresent_indexed = IndexedHash(indexes=[0], item=notpresent)

doc = get_doc('diff_doc.rst')


PROGRESS_MSG = "DeepDiff {} seconds in progress. Pass #{}, Diff #{}"


def _report_progress(_stats, progress_logger, duration):
    """
    Report the progress every few seconds.
    """
    progress_logger(PROGRESS_MSG.format(duration, _stats[PASSES_COUNT], _stats[DIFF_COUNT]))


DISTANCE_CACHE_HIT_COUNT = 'DISTANCE CACHE HIT COUNT'
DIFF_COUNT = 'DIFF COUNT'
PASSES_COUNT = 'PASSES COUNT'
MAX_PASS_LIMIT_REACHED = 'MAX PASS LIMIT REACHED'
MAX_DIFF_LIMIT_REACHED = 'MAX DIFF LIMIT REACHED'
DISTANCE_CACHE_ENABLED = 'DISTANCE CACHE ENABLED'
PREVIOUS_DIFF_COUNT = 'PREVIOUS DIFF COUNT'
PREVIOUS_DISTANCE_CACHE_HIT_COUNT = 'PREVIOUS DISTANCE CACHE HIT COUNT'
CANT_FIND_NUMPY_MSG = 'Unable to import numpy. This must be a bug in DeepDiff since a numpy array is detected.'
INVALID_VIEW_MSG = 'The only valid values for the view parameter are text and tree. But {} was passed.'
CUTOFF_RANGE_ERROR_MSG = 'cutoff_distance_for_pairs needs to be a positive float max 1.'
VERBOSE_LEVEL_RANGE_MSG = 'verbose_level should be 0, 1, or 2.'
PURGE_LEVEL_RANGE_MSG = 'cache_purge_level should be 0, 1, or 2.'
_ENABLE_CACHE_EVERY_X_DIFF = '_ENABLE_CACHE_EVERY_X_DIFF'

model_fields_set = frozenset(["model_fields_set"])


# What is the threshold to consider 2 items to be pairs. Only used when ignore_order = True.
CUTOFF_DISTANCE_FOR_PAIRS_DEFAULT = 0.3

# What is the threshold to calculate pairs of items between 2 iterables.
# For example 2 iterables that have nothing in common, do not need their pairs to be calculated.
CUTOFF_INTERSECTION_FOR_PAIRS_DEFAULT = 0.7

DEEPHASH_PARAM_KEYS = (
    'exclude_types',
    'exclude_paths',
    'include_paths',
    'exclude_regex_paths',
    'hasher',
    'significant_digits',
    'number_format_notation',
    'ignore_string_type_changes',
    'ignore_numeric_type_changes',
    'use_enum_value',
    'ignore_type_in_groups',
    'ignore_type_subclasses',
    'ignore_string_case',
    'exclude_obj_callback',
    'ignore_private_variables',
    'encodings',
    'ignore_encoding_errors',
    'default_timezone',
    'custom_operators',
)


class DeepDiffProtocol(Protocol):
    t1: Any
    t2: Any
    cutoff_distance_for_pairs: float
    use_log_scale: bool
    log_scale_similarity_threshold: float
    view: str



class DeepDiff(ResultDict, SerializationMixin, DistanceMixin, DeepDiffProtocol, Base):
    __doc__ = doc

    CACHE_AUTO_ADJUST_THRESHOLD = 0.25

    def __init__(self,
                 t1: Any,
                 t2: Any,
                 _original_type=None,
                 cache_purge_level: int=1,
                 cache_size: int=0,
                 cache_tuning_sample_size: int=0,
                 custom_operators: Optional[List[Any]] =None,
                 cutoff_distance_for_pairs: float=CUTOFF_DISTANCE_FOR_PAIRS_DEFAULT,
                 cutoff_intersection_for_pairs: float=CUTOFF_INTERSECTION_FOR_PAIRS_DEFAULT,
                 default_timezone:Union[datetime.timezone, "BaseTzInfo"]=datetime.timezone.utc,
                 encodings: Optional[List[str]]=None,
                 exclude_obj_callback: Optional[Callable]=None,
                 exclude_obj_callback_strict: Optional[Callable]=None,
                 exclude_paths: Union[str, List[str], Set[str], FrozenSet[str], None]=None,
                 exclude_regex_paths: Union[str, List[str], Pattern[str], List[Pattern[str]], None]=None,
                 exclude_types: Optional[List[Any]]=None,
                 get_deep_distance: bool=False,
                 group_by: Union[str, Tuple[str, str], None]=None,
                 group_by_sort_key: Union[str, Callable, None]=None,
                 hasher: Optional[Callable]=None,
                 hashes: Optional[Dict]=None,
                 ignore_encoding_errors: bool=False,
                 ignore_nan_inequality: bool=False,
                 ignore_numeric_type_changes: bool=False,
                 ignore_order: bool=False,
                 ignore_order_func: Optional[Callable]=None,
                 ignore_private_variables: bool=True,
                 ignore_string_case: bool=False,
                 ignore_string_type_changes: bool=False,
                 ignore_type_in_groups: Optional[List[Tuple]]=None,
                 ignore_type_subclasses: bool=False,
                 include_obj_callback: Optional[Callable]=None,
                 include_obj_callback_strict: Optional[Callable]=None,
                 include_paths: Union[str, List[str], None]=None,
                 iterable_compare_func: Optional[Callable]=None,
                 log_frequency_in_sec: int=0,
                 log_scale_similarity_threshold: float=0.1,
                 log_stacktrace: bool=False,
                 math_epsilon: Optional[float]=None,
                 max_diffs: Optional[int]=None,
                 max_passes: int=10000000,
                 number_format_notation: str="f",
                 number_to_string_func: Optional[Callable]=None,
                 progress_logger: Callable=logger.info,
                 report_repetition: bool=False,
                 significant_digits: Optional[int]=None,
                 threshold_to_diff_deeper: float = 0.33,
                 truncate_datetime: Optional[str]=None,
                 use_enum_value: bool=False,
                 use_log_scale: bool=False,
                 verbose_level: int=1,
                 view: str=TEXT_VIEW,
                 zip_ordered_iterables: bool=False,
                 _parameters=None,
                 _shared_parameters=None,
                 **kwargs):
        super().__init__()
        if kwargs:
            raise ValueError((
                "The following parameter(s) are not valid: %s\n"
                "The valid parameters are ignore_order, report_repetition, significant_digits, "
                "number_format_notation, exclude_paths, include_paths, exclude_types, exclude_regex_paths, ignore_type_in_groups, "
                "ignore_string_type_changes, ignore_numeric_type_changes, ignore_type_subclasses, truncate_datetime, "
                "ignore_private_variables, ignore_nan_inequality, number_to_string_func, verbose_level, "
                "view, hasher, hashes, max_passes, max_diffs, zip_ordered_iterables, "
                "cutoff_distance_for_pairs, cutoff_intersection_for_pairs, log_frequency_in_sec, cache_size, "
                "cache_tuning_sample_size, get_deep_distance, group_by, group_by_sort_key, cache_purge_level, log_stacktrace,"
                "math_epsilon, iterable_compare_func, use_enum_value, _original_type, threshold_to_diff_deeper, default_timezone "
                "ignore_order_func, custom_operators, encodings, ignore_encoding_errors, use_log_scale, log_scale_similarity_threshold "
                "_parameters and _shared_parameters.") % ', '.join(kwargs.keys()))

        if _parameters:
            self.__dict__.update(_parameters)
        else:
            self.custom_operators = custom_operators or []
            self.ignore_order = ignore_order

            self.ignore_order_func = ignore_order_func

            ignore_type_in_groups = ignore_type_in_groups or []
            if numbers == ignore_type_in_groups or numbers in ignore_type_in_groups:
                ignore_numeric_type_changes = True
            self.ignore_numeric_type_changes = ignore_numeric_type_changes
            if strings == ignore_type_in_groups or strings in ignore_type_in_groups:
                ignore_string_type_changes = True
            self.use_enum_value = use_enum_value
            self.log_scale_similarity_threshold = log_scale_similarity_threshold
            self.use_log_scale = use_log_scale
            self.default_timezone = default_timezone
            self.log_stacktrace = log_stacktrace
            self.threshold_to_diff_deeper = threshold_to_diff_deeper
            self.ignore_string_type_changes = ignore_string_type_changes
            self.ignore_type_in_groups = self.get_ignore_types_in_groups(
                ignore_type_in_groups=ignore_type_in_groups,
                ignore_string_type_changes=ignore_string_type_changes,
                ignore_numeric_type_changes=ignore_numeric_type_changes,
                ignore_type_subclasses=ignore_type_subclasses)
            self.report_repetition = report_repetition
            self.exclude_paths = add_root_to_paths(convert_item_or_items_into_set_else_none(exclude_paths))
            self.include_paths = add_root_to_paths(convert_item_or_items_into_set_else_none(include_paths))
            self.exclude_regex_paths = convert_item_or_items_into_compiled_regexes_else_none(exclude_regex_paths)
            self.exclude_types = set(exclude_types) if exclude_types else None
            self.exclude_types_tuple = tuple(exclude_types) if exclude_types else None  # we need tuple for checking isinstance
            self.ignore_type_subclasses = ignore_type_subclasses
            self.type_check_func = type_in_type_group if ignore_type_subclasses else type_is_subclass_of_type_group
            self.ignore_string_case = ignore_string_case
            self.exclude_obj_callback = exclude_obj_callback
            self.exclude_obj_callback_strict = exclude_obj_callback_strict
            self.include_obj_callback = include_obj_callback
            self.include_obj_callback_strict = include_obj_callback_strict
            self.number_to_string = number_to_string_func or number_to_string
            self.iterable_compare_func = iterable_compare_func
            self.zip_ordered_iterables = zip_ordered_iterables
            self.ignore_private_variables = ignore_private_variables
            self.ignore_nan_inequality = ignore_nan_inequality
            self.hasher = hasher
            self.cache_tuning_sample_size = cache_tuning_sample_size
            self.group_by = group_by
            if callable(group_by_sort_key):
                self.group_by_sort_key = group_by_sort_key
            elif group_by_sort_key:
                def _group_by_sort_key(x):
                    return x[group_by_sort_key]
                self.group_by_sort_key = _group_by_sort_key
            else:
                self.group_by_sort_key = None
            self.encodings = encodings
            self.ignore_encoding_errors = ignore_encoding_errors

            self.significant_digits = self.get_significant_digits(significant_digits, ignore_numeric_type_changes)
            self.math_epsilon = math_epsilon
            if self.math_epsilon is not None and self.ignore_order:
                logger.warning("math_epsilon in conjunction with ignore_order=True is only used for flat object comparisons. Custom math_epsilon will not have an effect when comparing nested objects.")
            self.truncate_datetime = get_truncate_datetime(truncate_datetime)
            self.number_format_notation = number_format_notation
            if verbose_level in {0, 1, 2}:
                self.verbose_level = verbose_level
            else:
                raise ValueError(VERBOSE_LEVEL_RANGE_MSG)
            if cache_purge_level not in {0, 1, 2}:
                raise ValueError(PURGE_LEVEL_RANGE_MSG)
            self.view = view
            # Setting up the cache for dynamic programming. One dictionary per instance of root of DeepDiff running.
            self.max_passes = max_passes
            self.max_diffs = max_diffs
            self.cutoff_distance_for_pairs = float(cutoff_distance_for_pairs)
            self.cutoff_intersection_for_pairs = float(cutoff_intersection_for_pairs)
            if self.cutoff_distance_for_pairs < 0 or self.cutoff_distance_for_pairs > 1:
                raise ValueError(CUTOFF_RANGE_ERROR_MSG)
            # _Parameters are the clean _parameters to initialize DeepDiff with so we avoid all the above
            # cleaning functionalities when running DeepDiff recursively.
            # However DeepHash has its own set of _parameters that are slightly different than DeepDIff.
            # DeepDiff _parameters are transformed to DeepHash _parameters via _get_deephash_params method.
            self.progress_logger = progress_logger
            self.cache_size = cache_size
            _parameters = self.__dict__.copy()
            _parameters['group_by'] = None  # overwriting since these parameters will be passed on to other passes.
            if log_stacktrace:
                self.log_err = logger.exception
            else:
                self.log_err = logger.error

        # Non-Root
        if _shared_parameters:
            self.is_root = False
            self._shared_parameters = _shared_parameters
            self.__dict__.update(_shared_parameters)
            # We are in some pass other than root
            progress_timer = None
        # Root
        else:
            self.is_root = True
            # Caching the DeepDiff results for dynamic programming
            self._distance_cache = LFUCache(cache_size) if cache_size else DummyLFU()
            self._stats = {
                PASSES_COUNT: 0,
                DIFF_COUNT: 0,
                DISTANCE_CACHE_HIT_COUNT: 0,
                PREVIOUS_DIFF_COUNT: 0,
                PREVIOUS_DISTANCE_CACHE_HIT_COUNT: 0,
                MAX_PASS_LIMIT_REACHED: False,
                MAX_DIFF_LIMIT_REACHED: False,
                DISTANCE_CACHE_ENABLED: bool(cache_size),
            }
            self.hashes = dict_() if hashes is None else hashes
            self._numpy_paths = dict_()  # if _numpy_paths is None else _numpy_paths
            self._shared_parameters = {
                'hashes': self.hashes,
                '_stats': self._stats,
                '_distance_cache': self._distance_cache,
                '_numpy_paths': self._numpy_paths,
                _ENABLE_CACHE_EVERY_X_DIFF: self.cache_tuning_sample_size * 10,
            }
            if log_frequency_in_sec:
                # Creating a progress log reporter that runs in a separate thread every log_frequency_in_sec seconds.
                progress_timer = RepeatedTimer(log_frequency_in_sec, _report_progress, self._stats, progress_logger)
            else:
                progress_timer = None

        self._parameters = _parameters
        self.deephash_parameters = self._get_deephash_params()
        self.tree = TreeResult()
        self._iterable_opcodes = {}
        if group_by and self.is_root:
            try:
                original_t1 = t1
                t1 = self._group_iterable_to_dict(t1, group_by, item_name='t1')
            except (KeyError, ValueError):
                pass
            else:
                try:
                    t2 = self._group_iterable_to_dict(t2, group_by, item_name='t2')
                except (KeyError, ValueError):
                    t1 = original_t1

        self.t1 = t1
        self.t2 = t2

        try:
            root = DiffLevel(t1, t2, verbose_level=self.verbose_level)
            # _original_type is only used to pass the original type of the data. Currently only used for numpy arrays.
            # The reason is that we convert the numpy array to python list and then later for distance calculations
            # we convert only the the last dimension of it into numpy arrays.
            self._diff(root, parents_ids=frozenset({id(t1)}), _original_type=_original_type)

            if get_deep_distance and view in {TEXT_VIEW, TREE_VIEW}:
                self.tree['deep_distance'] = self._get_rough_distance()

            self.tree.remove_empty_keys()
            view_results = self._get_view_results(self.view)
            self.update(view_results)
        finally:
            if self.is_root:
                if cache_purge_level:
                    del self._distance_cache
                    del self.hashes
                del self._shared_parameters
                del self._parameters
                for key in (PREVIOUS_DIFF_COUNT, PREVIOUS_DISTANCE_CACHE_HIT_COUNT,
                            DISTANCE_CACHE_ENABLED):
                    del self._stats[key]
                if progress_timer:
                    duration = progress_timer.stop()
                    self._stats['DURATION SEC'] = duration
                    logger.info('stats {}'.format(self.get_stats()))
                if cache_purge_level == 2:
                    self.__dict__.clear()

    def _get_deephash_params(self):
        result = {key: self._parameters[key] for key in DEEPHASH_PARAM_KEYS}
        result['ignore_repetition'] = not self.report_repetition
        result['number_to_string_func'] = self.number_to_string
        return result

    def _report_result(self, report_type, change_level, local_tree=None):
        """
        Add a detected change to the reference-style result dictionary.
        report_type will be added to level.
        (We'll create the text-style report from there later.)
        :param report_type: A well defined string key describing the type of change.
                            Examples: "set_item_added", "values_changed"
        :param change_level: A DiffLevel object describing the objects in question in their
                       before-change and after-change object structure.

        :local_tree: None
        """

        if not self._skip_this(change_level):
            change_level.report_type = report_type
            tree = self.tree if local_tree is None else local_tree
            tree[report_type].add(change_level)

    def custom_report_result(self, report_type, level, extra_info=None):
        """
        Add a detected change to the reference-style result dictionary.
        report_type will be added to level.
        (We'll create the text-style report from there later.)
        :param report_type: A well defined string key describing the type of change.
                            Examples: "set_item_added", "values_changed"
        :param parent: A DiffLevel object describing the objects in question in their
                       before-change and after-change object structure.
        :param extra_info: A dict that describe this result
        :rtype: None
        """

        if not self._skip_this(level):
            level.report_type = report_type
            level.additional[CUSTOM_FIELD] = extra_info
            self.tree[report_type].add(level)

    @staticmethod
    def _dict_from_slots(object):
        def unmangle(attribute):
            if attribute.startswith('__') and attribute != '__weakref__':
                return '_{type}{attribute}'.format(
                    type=type(object).__name__,
                    attribute=attribute
                )
            return attribute

        all_slots = []

        if isinstance(object, type):
            mro = object.__mro__  # pragma: no cover. I have not been able to write a test for this case. But we still check for it.
        else:
            mro = object.__class__.__mro__

        for type_in_mro in mro:
            slots = getattr(type_in_mro, '__slots__', None)
            if slots:
                if isinstance(slots, strings):
                    all_slots.append(slots)
                else:
                    all_slots.extend(slots)

        return {i: getattr(object, key) for i in all_slots if hasattr(object, key := unmangle(i))}

    def _diff_enum(self, level, parents_ids=frozenset(), local_tree=None):
        t1 = detailed__dict__(level.t1, include_keys=ENUM_INCLUDE_KEYS)
        t2 = detailed__dict__(level.t2, include_keys=ENUM_INCLUDE_KEYS)

        self._diff_dict(
            level,
            parents_ids,
            print_as_attribute=True,
            override=True,
            override_t1=t1,
            override_t2=t2,
            local_tree=local_tree,
        )

    def _diff_obj(self, level, parents_ids=frozenset(), is_namedtuple=False, local_tree=None, is_pydantic_object=False):
        """Difference of 2 objects"""
        processing_error = False
        try:
            if is_namedtuple:
                t1 = level.t1._asdict()
                t2 = level.t2._asdict()
            elif is_pydantic_object:
                t1 = detailed__dict__(level.t1, ignore_private_variables=self.ignore_private_variables, ignore_keys=model_fields_set)
                t2 = detailed__dict__(level.t2, ignore_private_variables=self.ignore_private_variables, ignore_keys=model_fields_set)
            elif all('__dict__' in dir(t) for t in level):
                t1 = detailed__dict__(level.t1, ignore_private_variables=self.ignore_private_variables)
                t2 = detailed__dict__(level.t2, ignore_private_variables=self.ignore_private_variables)
            elif all('__slots__' in dir(t) for t in level):
                t1 = self._dict_from_slots(level.t1)
                t2 = self._dict_from_slots(level.t2)
            else:
                t1 = {k: v for k, v in getmembers(level.t1) if not callable(v)}
                t2 = {k: v for k, v in getmembers(level.t2) if not callable(v)}
        except AttributeError:
            processing_error = True
        if processing_error is True:
            self._report_result('unprocessed', level, local_tree=local_tree)
            return

        self._diff_dict(
            level,
            parents_ids,
            print_as_attribute=True,
            override=True,
            override_t1=t1,
            override_t2=t2,
            local_tree=local_tree,
        )

    def _skip_this(self, level):
        """
        Check whether this comparison should be skipped because one of the objects to compare meets exclusion criteria.
        :rtype: bool
        """
        level_path = level.path()
        skip = False
        if self.exclude_paths and level_path in self.exclude_paths:
            skip = True
        if self.include_paths and level_path != 'root':
            if level_path not in self.include_paths:
                skip = True
                for prefix in self.include_paths:
                    if prefix in level_path or level_path in prefix:
                        skip = False
                        break
        elif self.exclude_regex_paths and any(
                [exclude_regex_path.search(level_path) for exclude_regex_path in self.exclude_regex_paths]):
            skip = True
        elif self.exclude_types_tuple and \
                (isinstance(level.t1, self.exclude_types_tuple) or isinstance(level.t2, self.exclude_types_tuple)):
            skip = True
        elif self.exclude_obj_callback and \
                (self.exclude_obj_callback(level.t1, level_path) or self.exclude_obj_callback(level.t2, level_path)):
            skip = True
        elif self.exclude_obj_callback_strict and \
                (self.exclude_obj_callback_strict(level.t1, level_path) and
                 self.exclude_obj_callback_strict(level.t2, level_path)):
            skip = True
        elif self.include_obj_callback and level_path != 'root':
            skip = True
            if (self.include_obj_callback(level.t1, level_path) or self.include_obj_callback(level.t2, level_path)):
                skip = False
        elif self.include_obj_callback_strict and level_path != 'root':
            skip = True
            if (self.include_obj_callback_strict(level.t1, level_path) and
                    self.include_obj_callback_strict(level.t2, level_path)):
                skip = False

        return skip

    def _skip_this_key(self, level, key):
        # if include_paths is not set, than treet every path as included
        if self.include_paths is None:
            return False
        if "{}['{}']".format(level.path(), key) in self.include_paths:
            return False
        if level.path() in self.include_paths:
            # matches e.g. level+key root['foo']['bar']['veg'] include_paths ["root['foo']['bar']"]
            return False
        for prefix in self.include_paths:
            if "{}['{}']".format(level.path(), key) in prefix:
                # matches as long the prefix is longer than this object key
                # eg.: level+key root['foo']['bar'] matches prefix root['foo']['bar'] from include paths
                #      level+key root['foo'] matches prefix root['foo']['bar'] from include_paths
                #      level+key root['foo']['bar'] DOES NOT match root['foo'] from include_paths This needs to be handled afterwards
                return False
        # check if a higher level is included as a whole (=without any sublevels specified)
        # matches e.g. level+key root['foo']['bar']['veg'] include_paths ["root['foo']"]
        # but does not match, if it is level+key root['foo']['bar']['veg'] include_paths ["root['foo']['bar']['fruits']"]
        up = level.up
        while up is not None:
            if up.path() in self.include_paths:
                return False
            up = up.up
        return True

    def _get_clean_to_keys_mapping(self, keys, level):
        """
        Get a dictionary of cleaned value of keys to the keys themselves.
        This is mainly used to transform the keys when the type changes of keys should be ignored.

        TODO: needs also some key conversion for groups of types other than the built-in strings and numbers.
        """
        result = dict_()
        for key in keys:
            if self.ignore_string_type_changes and isinstance(key, bytes):
                clean_key = key.decode('utf-8')
            elif self.use_enum_value and isinstance(key, Enum):
                clean_key = key.value
            elif isinstance(key, numbers):
                type_ = "number" if self.ignore_numeric_type_changes else key.__class__.__name__
                clean_key = self.number_to_string(key, significant_digits=self.significant_digits,
                                                  number_format_notation=self.number_format_notation)
                clean_key = KEY_TO_VAL_STR.format(type_, clean_key)
            else:
                clean_key = key
            if self.ignore_string_case and isinstance(clean_key, str):
                clean_key = clean_key.lower()
            if clean_key in result:
                logger.warning(('{} and {} in {} become the same key when ignore_numeric_type_changes'
                                'or ignore_numeric_type_changes are set to be true.').format(
                                    key, result[clean_key], level.path()))
            else:
                result[clean_key] = key
        return result

    def _diff_dict(
        self,
        level,
        parents_ids=frozenset([]),
        print_as_attribute=False,
        override=False,
        override_t1=None,
        override_t2=None,
        local_tree=None,
    ):
        """Difference of 2 dictionaries"""
        if override:
            # for special stuff like custom objects and named tuples we receive preprocessed t1 and t2
            # but must not spoil the chain (=level) with it
            t1 = override_t1
            t2 = override_t2
        else:
            t1 = level.t1
            t2 = level.t2

        if print_as_attribute:
            item_added_key = "attribute_added"
            item_removed_key = "attribute_removed"
            rel_class = AttributeRelationship
        else:
            item_added_key = "dictionary_item_added"
            item_removed_key = "dictionary_item_removed"
            rel_class = DictRelationship

        if self.ignore_private_variables:
            t1_keys = SetOrdered([key for key in t1 if not(isinstance(key, str) and key.startswith('__')) and not self._skip_this_key(level, key)])
            t2_keys = SetOrdered([key for key in t2 if not(isinstance(key, str) and key.startswith('__')) and not self._skip_this_key(level, key)])
        else:
            t1_keys = SetOrdered([key for key in t1 if not self._skip_this_key(level, key)])
            t2_keys = SetOrdered([key for key in t2 if not self._skip_this_key(level, key)])
        if self.ignore_string_type_changes or self.ignore_numeric_type_changes or self.ignore_string_case:
            t1_clean_to_keys = self._get_clean_to_keys_mapping(keys=t1_keys, level=level)
            t2_clean_to_keys = self._get_clean_to_keys_mapping(keys=t2_keys, level=level)
            t1_keys = SetOrdered(t1_clean_to_keys.keys())
            t2_keys = SetOrdered(t2_clean_to_keys.keys())
        else:
            t1_clean_to_keys = t2_clean_to_keys = None

        t_keys_intersect = t2_keys & t1_keys
        t_keys_added = t2_keys - t_keys_intersect
        t_keys_removed = t1_keys - t_keys_intersect

        if self.threshold_to_diff_deeper:
            if self.exclude_paths:
                t_keys_union = {f"{level.path()}[{repr(key)}]" for key in (t2_keys | t1_keys)}
                t_keys_union -= self.exclude_paths
                t_keys_union_len = len(t_keys_union)
            else:
                t_keys_union_len = len(t2_keys | t1_keys)
            if t_keys_union_len > 1 and len(t_keys_intersect) / t_keys_union_len < self.threshold_to_diff_deeper:
                self._report_result('values_changed', level, local_tree=local_tree)
                return

        for key in t_keys_added:
            if self._count_diff() is StopIteration:
                return

            key = t2_clean_to_keys[key] if t2_clean_to_keys else key
            change_level = level.branch_deeper(
                notpresent,
                t2[key],
                child_relationship_class=rel_class,
                child_relationship_param=key,
                child_relationship_param2=key,
            )
            self._report_result(item_added_key, change_level, local_tree=local_tree)

        for key in t_keys_removed:
            if self._count_diff() is StopIteration:
                return  # pragma: no cover. This is already covered for addition.

            key = t1_clean_to_keys[key] if t1_clean_to_keys else key
            change_level = level.branch_deeper(
                t1[key],
                notpresent,
                child_relationship_class=rel_class,
                child_relationship_param=key,
                child_relationship_param2=key,
            )
            self._report_result(item_removed_key, change_level, local_tree=local_tree)

        for key in t_keys_intersect:  # key present in both dicts - need to compare values
            if self._count_diff() is StopIteration:
                return  # pragma: no cover. This is already covered for addition.

            key1 = t1_clean_to_keys[key] if t1_clean_to_keys else key
            key2 = t2_clean_to_keys[key] if t2_clean_to_keys else key
            item_id = id(t1[key1])
            if parents_ids and item_id in parents_ids:
                continue
            parents_ids_added = add_to_frozen_set(parents_ids, item_id)

            # Go one level deeper
            next_level = level.branch_deeper(
                t1[key1],
                t2[key2],
                child_relationship_class=rel_class,
                child_relationship_param=key,
                child_relationship_param2=key,
                )
            self._diff(next_level, parents_ids_added, local_tree=local_tree)

    def _diff_set(self, level, local_tree=None):
        """Difference of sets"""
        t1_hashtable = self._create_hashtable(level, 't1')
        t2_hashtable = self._create_hashtable(level, 't2')

        t1_hashes = set(t1_hashtable.keys())
        t2_hashes = set(t2_hashtable.keys())

        hashes_added = t2_hashes - t1_hashes
        hashes_removed = t1_hashes - t2_hashes

        items_added = [t2_hashtable[i].item for i in hashes_added]
        items_removed = [t1_hashtable[i].item for i in hashes_removed]

        for item in items_added:
            if self._count_diff() is StopIteration:
                return  # pragma: no cover. This is already covered for addition.

            change_level = level.branch_deeper(
                notpresent, item, child_relationship_class=SetRelationship)
            self._report_result('set_item_added', change_level, local_tree=local_tree)

        for item in items_removed:
            if self._count_diff() is StopIteration:
                return  # pragma: no cover. This is already covered for addition.

            change_level = level.branch_deeper(
                item, notpresent, child_relationship_class=SetRelationship)
            self._report_result('set_item_removed', change_level, local_tree=local_tree)

    @staticmethod
    def _iterables_subscriptable(t1, t2):
        try:
            if getattr(t1, '__getitem__') and getattr(t2, '__getitem__'):
                return True
            else:  # pragma: no cover
                return False  # should never happen
        except AttributeError:
            return False

    def _diff_iterable(self, level, parents_ids=frozenset(), _original_type=None, local_tree=None):
        """Difference of iterables"""
        if (self.ignore_order_func and self.ignore_order_func(level)) or self.ignore_order:
            self._diff_iterable_with_deephash(level, parents_ids, _original_type=_original_type, local_tree=local_tree)
        else:
            self._diff_iterable_in_order(level, parents_ids, _original_type=_original_type, local_tree=local_tree)

    def _compare_in_order(
        self, level,
        t1_from_index=None, t1_to_index=None,
        t2_from_index=None, t2_to_index=None
    ) -> List[Tuple[Tuple[int, int], Tuple[Any, Any]]]:
        """
        Default compare if `iterable_compare_func` is not provided.
        This will compare in sequence order.
        """
        if t1_from_index is None:
            return [((i, i), (x, y)) for i, (x, y) in enumerate(
                zip_longest(
                    level.t1, level.t2, fillvalue=ListItemRemovedOrAdded))]
        else:
            t1_chunk = level.t1[t1_from_index:t1_to_index]
            t2_chunk = level.t2[t2_from_index:t2_to_index]
            return [((i + t1_from_index, i + t2_from_index), (x, y)) for i, (x, y) in enumerate(
                zip_longest(
                    t1_chunk, t2_chunk, fillvalue=ListItemRemovedOrAdded))]

    def _get_matching_pairs(
        self, level,
        t1_from_index=None, t1_to_index=None,
        t2_from_index=None, t2_to_index=None
    ) -> List[Tuple[Tuple[int, int], Tuple[Any, Any]]]:
        """
        Given a level get matching pairs. This returns list of two tuples in the form:
        [
          (t1 index, t2 index), (t1 item, t2 item)
        ]

        This will compare using the passed in `iterable_compare_func` if available.
        Default it to compare in order
        """

        if self.iterable_compare_func is None:
            # Match in order if there is no compare function provided
            return self._compare_in_order(
                level,
                t1_from_index=t1_from_index, t1_to_index=t1_to_index,
                t2_from_index=t2_from_index, t2_to_index=t2_to_index,
            )
        try:
            matches = []
            y_matched = set()
            y_index_matched = set()
            for i, x in enumerate(level.t1):
                x_found = False
                for j, y in enumerate(level.t2):

                    if(j in y_index_matched):
                        # This ensures a one-to-one relationship of matches from t1 to t2.
                        # If y this index in t2 has already been matched to another x
                        # it cannot have another match, so just continue.
                        continue

                    if(self.iterable_compare_func(x, y, level)):
                        deep_hash = DeepHash(y,
                                             hashes=self.hashes,
                                             apply_hash=True,
                                             **self.deephash_parameters,
                                             )
                        y_index_matched.add(j)
                        y_matched.add(deep_hash[y])
                        matches.append(((i, j), (x, y)))
                        x_found = True
                        break

                if(not x_found):
                    matches.append(((i, -1), (x, ListItemRemovedOrAdded)))
            for j, y in enumerate(level.t2):

                deep_hash = DeepHash(y,
                                     hashes=self.hashes,
                                     apply_hash=True,
                                     **self.deephash_parameters,
                                     )
                if(deep_hash[y] not in y_matched):
                    matches.append(((-1, j), (ListItemRemovedOrAdded, y)))
            return matches
        except CannotCompare:
            return self._compare_in_order(
                level,
                t1_from_index=t1_from_index, t1_to_index=t1_to_index,
                t2_from_index=t2_from_index, t2_to_index=t2_to_index
            )

    def _diff_iterable_in_order(self, level, parents_ids=frozenset(), _original_type=None, local_tree=None):
        # We're handling both subscriptable and non-subscriptable iterables. Which one is it?
        subscriptable = self._iterables_subscriptable(level.t1, level.t2)
        if subscriptable:
            child_relationship_class = SubscriptableIterableRelationship
        else:
            child_relationship_class = NonSubscriptableIterableRelationship

        if (
            not self.zip_ordered_iterables
            and isinstance(level.t1, Sequence)
            and isinstance(level.t2, Sequence)
            and self._all_values_basic_hashable(level.t1)
            and self._all_values_basic_hashable(level.t2)
            and self.iterable_compare_func is None
        ):
            local_tree_pass = TreeResult()
            opcodes_with_values = self._diff_ordered_iterable_by_difflib(
                level,
                parents_ids=parents_ids,
                _original_type=_original_type,
                child_relationship_class=child_relationship_class,
                local_tree=local_tree_pass,
            )
            # Sometimes DeepDiff's old iterable diff does a better job than DeepDiff
            if len(local_tree_pass) > 1:
                local_tree_pass2 = TreeResult()
                self._diff_by_forming_pairs_and_comparing_one_by_one(
                    level,
                    parents_ids=parents_ids,
                    _original_type=_original_type,
                    child_relationship_class=child_relationship_class,
                    local_tree=local_tree_pass2,
                )
                if len(local_tree_pass) >= len(local_tree_pass2):
                    local_tree_pass = local_tree_pass2
                else:
                    self._iterable_opcodes[level.path(force=FORCE_DEFAULT)] = opcodes_with_values
            for report_type, levels in local_tree_pass.items():
                if levels:
                    self.tree[report_type] |= levels
        else:
            self._diff_by_forming_pairs_and_comparing_one_by_one(
                level,
                parents_ids=parents_ids,
                _original_type=_original_type,
                child_relationship_class=child_relationship_class,
                local_tree=local_tree,
            )

    def _all_values_basic_hashable(self, iterable):
        """
        Are all items basic hashable types?
        Or there are custom types too?
        """

    # We don't want to exhaust a generator
        if isinstance(iterable, types.GeneratorType):
            return False
        for item in iterable:
            if not isinstance(item, basic_types):
                return False
        return True

    def _diff_by_forming_pairs_and_comparing_one_by_one(
        self, level, local_tree, parents_ids=frozenset(),
        _original_type=None, child_relationship_class=None,
        t1_from_index=None, t1_to_index=None,
        t2_from_index=None, t2_to_index=None,
    ):
        for (i, j), (x, y) in self._get_matching_pairs(
            level, 
            t1_from_index=t1_from_index, t1_to_index=t1_to_index,
            t2_from_index=t2_from_index, t2_to_index=t2_to_index
        ):
            if self._count_diff() is StopIteration:
                return  # pragma: no cover. This is already covered for addition.

            reference_param1 = i
            reference_param2 = j
            if y is ListItemRemovedOrAdded:  # item removed completely
                change_level = level.branch_deeper(
                    x,
                    notpresent,
                    child_relationship_class=child_relationship_class,
                    child_relationship_param=reference_param1,
                    child_relationship_param2=reference_param2,
                    )
                self._report_result('iterable_item_removed', change_level, local_tree=local_tree)

            elif x is ListItemRemovedOrAdded:  # new item added
                change_level = level.branch_deeper(
                    notpresent,
                    y,
                    child_relationship_class=child_relationship_class,
                    child_relationship_param=reference_param1,
                    child_relationship_param2=reference_param2,
                    )
                self._report_result('iterable_item_added', change_level, local_tree=local_tree)

            else:  # check if item value has changed
                if (i != j and ((x == y) or self.iterable_compare_func)):
                    # Item moved
                    change_level = level.branch_deeper(
                        x,
                        y,
                        child_relationship_class=child_relationship_class,
                        child_relationship_param=reference_param1,
                        child_relationship_param2=reference_param2
                    )
                    self._report_result('iterable_item_moved', change_level, local_tree=local_tree)

                    if self.iterable_compare_func:
                        # Intentionally setting j as the first child relationship param in cases of a moved item.
                        # If the item was moved using an iterable_compare_func then we want to make sure that the index
                        # is relative to t2.
                        reference_param1 = j
                        reference_param2 = i
                    else:
                        continue

                item_id = id(x)
                if parents_ids and item_id in parents_ids:
                    continue
                parents_ids_added = add_to_frozen_set(parents_ids, item_id)

                # Go one level deeper
                next_level = level.branch_deeper(
                    x,
                    y,
                    child_relationship_class=child_relationship_class,
                    child_relationship_param=reference_param1,
                    child_relationship_param2=reference_param2
                )
                self._diff(next_level, parents_ids_added, local_tree=local_tree)

    def _diff_ordered_iterable_by_difflib(
        self, level, local_tree, parents_ids=frozenset(), _original_type=None, child_relationship_class=None,
    ):

        seq = difflib.SequenceMatcher(isjunk=None, a=level.t1, b=level.t2, autojunk=False)

        opcodes = seq.get_opcodes()
        opcodes_with_values = []

        # TODO: this logic should be revisted so we detect reverse operations
        # like when a replacement happens at index X and a reverse replacement happens at index Y
        # in those cases we have a "iterable_item_moved" operation.
        for tag, t1_from_index, t1_to_index, t2_from_index, t2_to_index in opcodes:
            if tag == 'equal':
                opcodes_with_values.append(Opcode(
                    tag, t1_from_index, t1_to_index, t2_from_index, t2_to_index,
                ))
                continue
            # print('{:7}   t1[{}:{}] --> t2[{}:{}] {!r:>8} --> {!r}'.format(
            #     tag, t1_from_index, t1_to_index, t2_from_index, t2_to_index, level.t1[t1_from_index:t1_to_index], level.t2[t2_from_index:t2_to_index]))

            opcodes_with_values.append(Opcode(
                tag, t1_from_index, t1_to_index, t2_from_index, t2_to_index,
                old_values = level.t1[t1_from_index: t1_to_index],
                new_values = level.t2[t2_from_index: t2_to_index],
            ))

            if tag == 'replace':
                self._diff_by_forming_pairs_and_comparing_one_by_one(
                    level, local_tree=local_tree, parents_ids=parents_ids,
                    _original_type=_original_type, child_relationship_class=child_relationship_class,
                    t1_from_index=t1_from_index, t1_to_index=t1_to_index,
                    t2_from_index=t2_from_index, t2_to_index=t2_to_index,
                )
            elif tag == 'delete':
                for index, x in enumerate(level.t1[t1_from_index:t1_to_index]):
                    change_level = level.branch_deeper(
                        x,
                        notpresent,
                        child_relationship_class=child_relationship_class,
                        child_relationship_param=index + t1_from_index,
                        child_relationship_param2=index + t1_from_index,
                    )
                    self._report_result('iterable_item_removed', change_level, local_tree=local_tree)
            elif tag == 'insert':
                for index, y in enumerate(level.t2[t2_from_index:t2_to_index]):
                    change_level = level.branch_deeper(
                        notpresent,
                        y,
                        child_relationship_class=child_relationship_class,
                        child_relationship_param=index + t2_from_index,
                        child_relationship_param2=index + t2_from_index,
                    )
                    self._report_result('iterable_item_added', change_level, local_tree=local_tree)
        return opcodes_with_values


    def _diff_str(self, level, local_tree=None):
        """Compare strings"""
        if self.ignore_string_case:
            level.t1 = level.t1.lower()
            level.t2 = level.t2.lower()

        if type(level.t1) == type(level.t2) and level.t1 == level.t2:  # NOQA
            return

        # do we add a diff for convenience?
        do_diff = True
        t1_str = level.t1
        t2_str = level.t2

        if isinstance(level.t1, bytes_type):
            try:
                t1_str = level.t1.decode('ascii')
            except UnicodeDecodeError:
                do_diff = False

        if isinstance(level.t2, bytes_type):
            try:
                t2_str = level.t2.decode('ascii')
            except UnicodeDecodeError:
                do_diff = False

        if isinstance(level.t1, Enum):
            t1_str = level.t1.value

        if isinstance(level.t2, Enum):
            t2_str = level.t2.value

        if t1_str == t2_str:
            return

        if do_diff:
            if '\n' in t1_str or isinstance(t2_str, str) and '\n' in t2_str:
                diff = difflib.unified_diff(
                    t1_str.splitlines(), t2_str.splitlines(), lineterm='')
                diff = list(diff)
                if diff:
                    level.additional['diff'] = '\n'.join(diff)

        self._report_result('values_changed', level, local_tree=local_tree)

    def _diff_tuple(self, level, parents_ids, local_tree=None):
        # Checking to see if it has _fields. Which probably means it is a named
        # tuple.
        try:
            level.t1._asdict
        # It must be a normal tuple
        except AttributeError:
            self._diff_iterable(level, parents_ids, local_tree=local_tree)
        # We assume it is a namedtuple then
        else:
            self._diff_obj(level, parents_ids, is_namedtuple=True, local_tree=local_tree)

    def _add_hash(self, hashes, item_hash, item, i):
        if item_hash in hashes:
            hashes[item_hash].indexes.append(i)
        else:
            hashes[item_hash] = IndexedHash(indexes=[i], item=item)

    def _create_hashtable(self, level, t):
        """Create hashtable of {item_hash: (indexes, item)}"""
        obj = getattr(level, t)

        local_hashes = dict_()
        for (i, item) in enumerate(obj):
            try:
                parent = "{}[{}]".format(level.path(), i)
                # Note: in the DeepDiff we only calculate the hash of items when we have to.
                # So self.hashes does not include hashes of all objects in t1 and t2.
                # It only includes the ones needed when comparing iterables.
                # The self.hashes dictionary gets shared between different runs of DeepHash
                # So that any object that is already calculated to have a hash is not re-calculated.
                deep_hash = DeepHash(
                    item,
                    hashes=self.hashes,
                    parent=parent,
                    apply_hash=True,
                    **self.deephash_parameters,
                 )
            except UnicodeDecodeError as err:
                err.reason = f"Can not produce a hash for {level.path()}: {err.reason}"
                raise
            except NotImplementedError:
                raise
            # except Exception as e:  # pragma: no cover
            #     logger.error("Can not produce a hash for %s."
            #                  "Not counting this object.\n %s" %
            #                  (level.path(), e))
            else:
                try:
                    item_hash = deep_hash[item]
                except KeyError:
                    pass
                else:
                    if item_hash is unprocessed:  # pragma: no cover
                        self.log_err("Item %s was not processed while hashing "
                                       "thus not counting this object." %
                                       level.path())
                    else:
                        self._add_hash(hashes=local_hashes, item_hash=item_hash, item=item, i=i)

        # Also we hash the iterables themselves too so that we can later create cache keys from those hashes.
        DeepHash(
            obj,
            hashes=self.hashes,
            parent=level.path(),
            apply_hash=True,
            **self.deephash_parameters,
        )
        return local_hashes

    @staticmethod
    @lru_cache(maxsize=2028)
    def _get_distance_cache_key(added_hash, removed_hash):
        key1, key2 = (added_hash, removed_hash) if added_hash > removed_hash else (removed_hash, added_hash)
        if isinstance(key1, int):
            # If the hash function produces integers we convert them to hex values.
            # This was used when the default hash function was Murmur3 128bit which produces integers.
            key1 = hex(key1).encode('utf-8')
            key2 = hex(key2).encode('utf-8')
        elif isinstance(key1, str):
            key1 = key1.encode('utf-8')
            key2 = key2.encode('utf-8')
        return key1 + b'--' + key2 + b'dc'

    def _get_rough_distance_of_hashed_objs(
            self, added_hash, removed_hash, added_hash_obj, removed_hash_obj, _original_type=None):
        # We need the rough distance between the 2 objects to see if they qualify to be pairs or not
        _distance = cache_key = None
        if self._stats[DISTANCE_CACHE_ENABLED]:
            cache_key = self._get_distance_cache_key(added_hash, removed_hash)
            if cache_key in self._distance_cache:
                self._stats[DISTANCE_CACHE_HIT_COUNT] += 1
                _distance = self._distance_cache.get(cache_key)
        if _distance is None:
            # We can only cache the rough distance and not the actual diff result for reuse.
            # The reason is that we have modified the parameters explicitly so they are different and can't
            # be used for diff reporting
            diff = DeepDiff(
                removed_hash_obj.item, added_hash_obj.item,
                _parameters=self._parameters,
                _shared_parameters=self._shared_parameters,
                view=DELTA_VIEW,
                _original_type=_original_type,
                iterable_compare_func=self.iterable_compare_func,
            )
            _distance = diff._get_rough_distance()
            if cache_key and self._stats[DISTANCE_CACHE_ENABLED]:
                self._distance_cache.set(cache_key, value=_distance)
        return _distance

    def _get_most_in_common_pairs_in_iterables(
            self, hashes_added, hashes_removed, t1_hashtable, t2_hashtable, parents_ids, _original_type):
        """
        Get the closest pairs between items that are removed and items that are added.

        returns a dictionary of hashes that are closest to each other.
        The dictionary is going to be symmetrical so any key will be a value too and otherwise.

        Note that due to the current reporting structure in DeepDiff, we don't compare an item that
        was added to an item that is in both t1 and t2.

        For example

        [{1, 2}, {4, 5, 6}]
        [{1, 2}, {1, 2, 3}]

        is only compared between {4, 5, 6} and {1, 2, 3} even though technically {1, 2, 3} is
        just one item different than {1, 2}

        Perhaps in future we can have a report key that is item duplicated and modified instead of just added.
        """
        cache_key = None
        if self._stats[DISTANCE_CACHE_ENABLED]:
            cache_key = combine_hashes_lists(items=[hashes_added, hashes_removed], prefix='pairs_cache')
            if cache_key in self._distance_cache:
                return self._distance_cache.get(cache_key).copy()

        # A dictionary of hashes to distances and each distance to an ordered set of hashes.
        # It tells us about the distance of each object from other objects.
        # And the objects with the same distances are grouped together in an ordered set.
        # It also includes a "max" key that is just the value of the biggest current distance in the
        # most_in_common_pairs dictionary.
        def defaultdict_orderedset():
            return defaultdict(SetOrdered)
        most_in_common_pairs = defaultdict(defaultdict_orderedset)
        pairs = dict_()

        pre_calced_distances = None
        if hashes_added and hashes_removed and np and len(hashes_added) > 1 and len(hashes_removed) > 1:
            # pre-calculates distances ONLY for 1D arrays whether an _original_type
            # was explicitly passed or a homogeneous array is detected.
            # Numpy is needed for this optimization.
            pre_calced_distances = self._precalculate_numpy_arrays_distance(
                hashes_added, hashes_removed, t1_hashtable, t2_hashtable, _original_type)

        if hashes_added and hashes_removed \
                and self.iterable_compare_func \
                and len(hashes_added) > 0 and len(hashes_removed) > 0:
            pre_calced_distances = self._precalculate_distance_by_custom_compare_func(
                hashes_added, hashes_removed, t1_hashtable, t2_hashtable, _original_type)

        for added_hash in hashes_added:
            for removed_hash in hashes_removed:
                added_hash_obj = t2_hashtable[added_hash]
                removed_hash_obj = t1_hashtable[removed_hash]

                # Loop is detected
                if id(removed_hash_obj.item) in parents_ids:
                    continue

                _distance = None
                if pre_calced_distances:
                    _distance = pre_calced_distances.get("{}--{}".format(added_hash, removed_hash))
                if _distance is None:
                    _distance = self._get_rough_distance_of_hashed_objs(
                        added_hash, removed_hash, added_hash_obj, removed_hash_obj, _original_type)
                # Left for future debugging
                # print(f'{Fore.RED}distance of {added_hash_obj.item} and {removed_hash_obj.item}: {_distance}{Style.RESET_ALL}')
                # Discard potential pairs that are too far.
                if _distance >= self.cutoff_distance_for_pairs:
                    continue
                pairs_of_item = most_in_common_pairs[added_hash]
                pairs_of_item[_distance].add(removed_hash)
        used_to_hashes = set()

        distances_to_from_hashes = defaultdict(SetOrdered)
        for from_hash, distances_to_to_hashes in most_in_common_pairs.items():
            # del distances_to_to_hashes['max']
            for dist in distances_to_to_hashes:
                distances_to_from_hashes[dist].add(from_hash)

        for dist in sorted(distances_to_from_hashes.keys()):
            from_hashes = distances_to_from_hashes[dist]
            while from_hashes:
                from_hash = from_hashes.pop()
                if from_hash not in used_to_hashes:
                    to_hashes = most_in_common_pairs[from_hash][dist]
                    while to_hashes:
                        to_hash = to_hashes.pop()
                        if to_hash not in used_to_hashes:
                            used_to_hashes.add(from_hash)
                            used_to_hashes.add(to_hash)
                            # Left for future debugging:
                            # print(f'{bcolors.FAIL}Adding {t2_hashtable[from_hash].item} as a pairs of {t1_hashtable[to_hash].item} with distance of {dist}{bcolors.ENDC}')
                            pairs[from_hash] = to_hash

        inverse_pairs = {v: k for k, v in pairs.items()}
        pairs.update(inverse_pairs)
        if cache_key and self._stats[DISTANCE_CACHE_ENABLED]:
            self._distance_cache.set(cache_key, value=pairs)
        return pairs.copy()

    def _diff_iterable_with_deephash(self, level, parents_ids, _original_type=None, local_tree=None):
        """Diff of hashable or unhashable iterables. Only used when ignoring the order."""

        full_t1_hashtable = self._create_hashtable(level, 't1')
        full_t2_hashtable = self._create_hashtable(level, 't2')
        t1_hashes = SetOrdered(full_t1_hashtable.keys())
        t2_hashes = SetOrdered(full_t2_hashtable.keys())
        hashes_added = t2_hashes - t1_hashes
        hashes_removed = t1_hashes - t2_hashes

        # Deciding whether to calculate pairs or not.
        if (len(hashes_added) + len(hashes_removed)) / (len(full_t1_hashtable) + len(full_t2_hashtable) + 1) > self.cutoff_intersection_for_pairs:
            get_pairs = False
        else:
            get_pairs = True

        # reduce the size of hashtables
        if self.report_repetition:
            t1_hashtable = full_t1_hashtable
            t2_hashtable = full_t2_hashtable
        else:
            t1_hashtable = {k: v for k, v in full_t1_hashtable.items() if k in hashes_removed}
            t2_hashtable = {k: v for k, v in full_t2_hashtable.items() if k in hashes_added}
        if self._stats[PASSES_COUNT] < self.max_passes and get_pairs:
            self._stats[PASSES_COUNT] += 1
            pairs = self._get_most_in_common_pairs_in_iterables(
                hashes_added, hashes_removed, t1_hashtable, t2_hashtable, parents_ids, _original_type)
        elif get_pairs:
            if not self._stats[MAX_PASS_LIMIT_REACHED]:
                self._stats[MAX_PASS_LIMIT_REACHED] = True
                logger.warning(MAX_PASSES_REACHED_MSG.format(self.max_passes))
            pairs = dict_()
        else:
            pairs = dict_()

        def get_other_pair(hash_value, in_t1=True):
            """
            Gets the other paired indexed hash item to the hash_value in the pairs dictionary
            in_t1: are we looking for the other pair in t1 or t2?
            """
            if in_t1:
                hashtable = t1_hashtable
                the_other_hashes = hashes_removed
            else:
                hashtable = t2_hashtable
                the_other_hashes = hashes_added
            other = pairs.pop(hash_value, notpresent)
            if other is notpresent:
                other = notpresent_indexed
            else:
                # The pairs are symmetrical.
                # removing the other direction of pair
                # so it does not get used.
                del pairs[other]
                the_other_hashes.remove(other)
                other = hashtable[other]
            return other

        if self.report_repetition:
            for hash_value in hashes_added:
                if self._count_diff() is StopIteration:
                    return  # pragma: no cover. This is already covered for addition (when report_repetition=False).
                other = get_other_pair(hash_value)
                item_id = id(other.item)
                indexes = t2_hashtable[hash_value].indexes if other.item is notpresent else other.indexes
                # When we report repetitions, we want the child_relationship_param2 only if there is no repetition.
                # Because when there is a repetition, we report it in a different way (iterable_items_added_at_indexes for example).
                # When there is no repetition, we want child_relationship_param2 so that we report the "new_path" correctly.
                if len(t2_hashtable[hash_value].indexes) == 1:
                    index2 = t2_hashtable[hash_value].indexes[0]
                else:
                    index2 = None
                for i in indexes:
                    change_level = level.branch_deeper(
                        other.item,
                        t2_hashtable[hash_value].item,
                        child_relationship_class=SubscriptableIterableRelationship,
                        child_relationship_param=i,
                        child_relationship_param2=index2,
                    )
                    if other.item is notpresent:
                        self._report_result('iterable_item_added', change_level, local_tree=local_tree)
                    else:
                        parents_ids_added = add_to_frozen_set(parents_ids, item_id)
                        self._diff(change_level, parents_ids_added, local_tree=local_tree)
            for hash_value in hashes_removed:
                if self._count_diff() is StopIteration:
                    return  # pragma: no cover. This is already covered for addition.
                other = get_other_pair(hash_value, in_t1=False)
                item_id = id(other.item)
                # When we report repetitions, we want the child_relationship_param2 only if there is no repetition.
                # Because when there is a repetition, we report it in a different way (iterable_items_added_at_indexes for example).
                # When there is no repetition, we want child_relationship_param2 so that we report the "new_path" correctly.
                if other.item is notpresent or len(other.indexes > 1):
                    index2 = None
                else:
                    index2 = other.indexes[0]
                for i in t1_hashtable[hash_value].indexes:
                    change_level = level.branch_deeper(
                        t1_hashtable[hash_value].item,
                        other.item,
                        child_relationship_class=SubscriptableIterableRelationship,
                        child_relationship_param=i,
                        child_relationship_param2=index2,
                    )
                    if other.item is notpresent:
                        self._report_result('iterable_item_removed', change_level, local_tree=local_tree)
                    else:
                        # I was not able to make a test case for the following 2 lines since the cases end up
                        # getting resolved above in the hashes_added calcs. However I am leaving these 2 lines
                        # in case things change in future.
                        parents_ids_added = add_to_frozen_set(parents_ids, item_id)  # pragma: no cover.
                        self._diff(change_level, parents_ids_added, local_tree=local_tree)  # pragma: no cover.

            items_intersect = t2_hashes.intersection(t1_hashes)

            for hash_value in items_intersect:
                t1_indexes = t1_hashtable[hash_value].indexes
                t2_indexes = t2_hashtable[hash_value].indexes
                t1_indexes_len = len(t1_indexes)
                t2_indexes_len = len(t2_indexes)
                if t1_indexes_len != t2_indexes_len:  # this is a repetition change!
                    # create "change" entry, keep current level untouched to handle further changes
                    repetition_change_level = level.branch_deeper(
                        t1_hashtable[hash_value].item,
                        t2_hashtable[hash_value].item,  # nb: those are equal!
                        child_relationship_class=SubscriptableIterableRelationship,
                        child_relationship_param=t1_hashtable[hash_value]
                        .indexes[0])
                    repetition_change_level.additional['repetition'] = RemapDict(
                        old_repeat=t1_indexes_len,
                        new_repeat=t2_indexes_len,
                        old_indexes=t1_indexes,
                        new_indexes=t2_indexes)
                    self._report_result('repetition_change',
                                        repetition_change_level, local_tree=local_tree)

        else:
            for hash_value in hashes_added:
                if self._count_diff() is StopIteration:
                    return
                other = get_other_pair(hash_value)
                item_id = id(other.item)
                index = t2_hashtable[hash_value].indexes[0] if other.item is notpresent else other.indexes[0]
                index2 = t2_hashtable[hash_value].indexes[0]
                change_level = level.branch_deeper(
                    other.item,
                    t2_hashtable[hash_value].item,
                    child_relationship_class=SubscriptableIterableRelationship,
                    child_relationship_param=index,
                    child_relationship_param2=index2,
                )
                if other.item is notpresent:
                    self._report_result('iterable_item_added', change_level, local_tree=local_tree)
                else:
                    parents_ids_added = add_to_frozen_set(parents_ids, item_id)
                    self._diff(change_level, parents_ids_added, local_tree=local_tree)

            for hash_value in hashes_removed:
                if self._count_diff() is StopIteration:
                    return  # pragma: no cover. This is already covered for addition.
                other = get_other_pair(hash_value, in_t1=False)
                item_id = id(other.item)
                index = t1_hashtable[hash_value].indexes[0]
                index2 = t1_hashtable[hash_value].indexes[0] if other.item is notpresent else other.indexes[0]
                change_level = level.branch_deeper(
                    t1_hashtable[hash_value].item,
                    other.item,
                    child_relationship_class=SubscriptableIterableRelationship,
                    child_relationship_param=index,
                    child_relationship_param2=index2,
                )
                if other.item is notpresent:
                    self._report_result('iterable_item_removed', change_level, local_tree=local_tree)
                else:
                    # Just like the case when report_repetition = True, these lines never run currently.
                    # However they will stay here in case things change in future.
                    parents_ids_added = add_to_frozen_set(parents_ids, item_id)  # pragma: no cover.
                    self._diff(change_level, parents_ids_added, local_tree=local_tree)  # pragma: no cover.

    def _diff_booleans(self, level, local_tree=None):
        if level.t1 != level.t2:
            self._report_result('values_changed', level, local_tree=local_tree)

    def _diff_numbers(self, level, local_tree=None, report_type_change=True):
        """Diff Numbers"""
        if report_type_change:
            t1_type = "number" if self.ignore_numeric_type_changes else level.t1.__class__.__name__
            t2_type = "number" if self.ignore_numeric_type_changes else level.t2.__class__.__name__
        else:
            t1_type = t2_type = ''

        if self.use_log_scale:
            if not logarithmic_similarity(level.t1, level.t2, threshold=self.log_scale_similarity_threshold):
                self._report_result('values_changed', level, local_tree=local_tree)
        elif self.math_epsilon is not None:
            if not is_close(level.t1, level.t2, abs_tol=self.math_epsilon):
                self._report_result('values_changed', level, local_tree=local_tree)
        elif self.significant_digits is None:
            if level.t1 != level.t2:
                self._report_result('values_changed', level, local_tree=local_tree)
        else:
            # Bernhard10: I use string formatting for comparison, to be consistent with usecases where
            # data is read from files that were previously written from python and
            # to be consistent with on-screen representation of numbers.
            # Other options would be abs(t1-t2)<10**-self.significant_digits
            # or math.is_close (python3.5+)
            # Note that abs(3.25-3.251) = 0.0009999999999998899 < 0.001
            # Note also that "{:.3f}".format(1.1135) = 1.113, but "{:.3f}".format(1.11351) = 1.114
            # For Decimals, format seems to round 2.5 to 2 and 3.5 to 4 (to closest even number)
            t1_s = self.number_to_string(level.t1,
                                         significant_digits=self.significant_digits,
                                         number_format_notation=self.number_format_notation)
            t2_s = self.number_to_string(level.t2,
                                         significant_digits=self.significant_digits,
                                         number_format_notation=self.number_format_notation)

            t1_s = KEY_TO_VAL_STR.format(t1_type, t1_s)
            t2_s = KEY_TO_VAL_STR.format(t2_type, t2_s)
            if t1_s != t2_s:
                self._report_result('values_changed', level, local_tree=local_tree)

    def _diff_ipranges(self, level, local_tree=None):
        """Diff IP ranges"""
        if str(level.t1) != str(level.t2):
            self._report_result('values_changed', level, local_tree=local_tree)

    def _diff_datetime(self, level, local_tree=None):
        """Diff DateTimes"""
        level.t1 = datetime_normalize(self.truncate_datetime, level.t1, default_timezone=self.default_timezone)
        level.t2 = datetime_normalize(self.truncate_datetime, level.t2, default_timezone=self.default_timezone)

        if level.t1 != level.t2:
            self._report_result('values_changed', level, local_tree=local_tree)

    def _diff_time(self, level, local_tree=None):
        """Diff DateTimes"""
        if self.truncate_datetime:
            level.t1 = datetime_normalize(self.truncate_datetime, level.t1, default_timezone=self.default_timezone)
            level.t2 = datetime_normalize(self.truncate_datetime, level.t2, default_timezone=self.default_timezone)

        if level.t1 != level.t2:
            self._report_result('values_changed', level, local_tree=local_tree)

    def _diff_uuids(self, level, local_tree=None):
        """Diff UUIDs"""
        if level.t1.int != level.t2.int:
            self._report_result('values_changed', level, local_tree=local_tree)

    def _diff_numpy_array(self, level, parents_ids=frozenset(), local_tree=None):
        """Diff numpy arrays"""
        if level.path() not in self._numpy_paths:
            self._numpy_paths[level.path()] = get_type(level.t2).__name__
        if np is None:
            # This line should never be run. If it is ever called means the type check detected a numpy array
            # which means numpy module needs to be available. So np can't be None.
            raise ImportError(CANT_FIND_NUMPY_MSG)  # pragma: no cover

        if (self.ignore_order_func and not self.ignore_order_func(level)) or not self.ignore_order:
            # fast checks
            if self.significant_digits is None:
                if np.array_equal(level.t1, level.t2, equal_nan=self.ignore_nan_inequality):
                    return  # all good
            else:
                try:
                    np.testing.assert_almost_equal(level.t1, level.t2, decimal=self.significant_digits)
                except TypeError:
                    np.array_equal(level.t1, level.t2, equal_nan=self.ignore_nan_inequality)
                except AssertionError:
                    pass    # do detailed checking below
                else:
                    return  # all good

        # compare array meta-data
        _original_type = level.t1.dtype
        if level.t1.shape != level.t2.shape:
            # arrays are converted to python lists so that certain features of DeepDiff can apply on them easier.
            # They will be converted back to Numpy at their final dimension.
            level.t1 = level.t1.tolist()
            level.t2 = level.t2.tolist()
            self._diff_iterable(level, parents_ids, _original_type=_original_type, local_tree=local_tree)
        else:
            # metadata same -- the difference is in the content
            shape = level.t1.shape
            dimensions = len(shape)
            if dimensions == 1:
                self._diff_iterable(level, parents_ids, _original_type=_original_type, local_tree=local_tree)
            elif (self.ignore_order_func and self.ignore_order_func(level)) or self.ignore_order:
                # arrays are converted to python lists so that certain features of DeepDiff can apply on them easier.
                # They will be converted back to Numpy at their final dimension.
                level.t1 = level.t1.tolist()
                level.t2 = level.t2.tolist()
                self._diff_iterable_with_deephash(level, parents_ids, _original_type=_original_type, local_tree=local_tree)
            else:
                for (t1_path, t1_row), (t2_path, t2_row) in zip(
                        get_numpy_ndarray_rows(level.t1, shape),
                        get_numpy_ndarray_rows(level.t2, shape)):

                    new_level = level.branch_deeper(
                        t1_row,
                        t2_row,
                        child_relationship_class=NumpyArrayRelationship,
                        child_relationship_param=t1_path,
                        child_relationship_param2=t2_path,
                    )

                    self._diff_iterable_in_order(new_level, parents_ids, _original_type=_original_type, local_tree=local_tree)

    def _diff_types(self, level, local_tree=None):
        """Diff types"""
        level.report_type = 'type_changes'
        self._report_result('type_changes', level, local_tree=local_tree)

    def _count_diff(self):
        if (self.max_diffs is not None and self._stats[DIFF_COUNT] > self.max_diffs):
            if not self._stats[MAX_DIFF_LIMIT_REACHED]:
                self._stats[MAX_DIFF_LIMIT_REACHED] = True
                logger.warning(MAX_DIFFS_REACHED_MSG.format(self.max_diffs))
            return StopIteration
        self._stats[DIFF_COUNT] += 1
        if self.cache_size and self.cache_tuning_sample_size:
            self._auto_tune_cache()

    def _auto_tune_cache(self):
        take_sample = (self._stats[DIFF_COUNT] % self.cache_tuning_sample_size == 0)
        if self.cache_tuning_sample_size:
            if self._stats[DISTANCE_CACHE_ENABLED]:
                if take_sample:
                    self._auto_off_cache()
            # Turn on the cache once in a while
            elif self._stats[DIFF_COUNT] % self._shared_parameters[_ENABLE_CACHE_EVERY_X_DIFF] == 0:
                self.progress_logger('Re-enabling the distance and level caches.')
                # decreasing the sampling frequency
                self._shared_parameters[_ENABLE_CACHE_EVERY_X_DIFF] *= 10
                self._stats[DISTANCE_CACHE_ENABLED] = True
        if take_sample:
            for key in (PREVIOUS_DIFF_COUNT, PREVIOUS_DISTANCE_CACHE_HIT_COUNT):
                self._stats[key] = self._stats[key[9:]]

    def _auto_off_cache(self):
        """
        Auto adjust the cache based on the usage
        """
        if self._stats[DISTANCE_CACHE_ENABLED]:
            angle = (self._stats[DISTANCE_CACHE_HIT_COUNT] - self._stats['PREVIOUS {}'.format(DISTANCE_CACHE_HIT_COUNT)]) / (self._stats[DIFF_COUNT] - self._stats[PREVIOUS_DIFF_COUNT])
            if angle < self.CACHE_AUTO_ADJUST_THRESHOLD:
                self._stats[DISTANCE_CACHE_ENABLED] = False
                self.progress_logger('Due to minimal cache hits, {} is disabled.'.format('distance cache'))

    def _use_custom_operator(self, level):
        """
        For each level we check all custom operators.
        If any one of them was a match for the level, we run the diff of the operator.
        If the operator returned True, the operator must have decided these objects should not
        be compared anymore. It might have already reported their results.
        In that case the report will appear in the final results of this diff.
        Otherwise basically the 2 objects in the level are being omitted from the results.
        """

        for operator in self.custom_operators:
            if operator.match(level):
                prevent_default = operator.give_up_diffing(level=level, diff_instance=self)
                if prevent_default:
                    return True

        return False

    def _diff(self, level, parents_ids=frozenset(), _original_type=None, local_tree=None):
        """
        The main diff method

        **parameters**

        level: the tree level or tree node
        parents_ids: the ids of all the parent objects in the tree from the current node.
        _original_type: If the objects had an original type that was different than what currently exists in the level.t1 and t2
        """
        if self._count_diff() is StopIteration:
            return

        if self._use_custom_operator(level):
            return

        if level.t1 is level.t2:
            return

        if self._skip_this(level):
            return

        report_type_change = True
        if get_type(level.t1) != get_type(level.t2):
            for type_group in self.ignore_type_in_groups:
                if self.type_check_func(level.t1, type_group) and self.type_check_func(level.t2, type_group):
                    report_type_change = False
                    break
            if self.use_enum_value and isinstance(level.t1, Enum):
                level.t1 = level.t1.value
                report_type_change = False
            if self.use_enum_value and isinstance(level.t2, Enum):
                level.t2 = level.t2.value
                report_type_change = False
            if report_type_change:
                self._diff_types(level, local_tree=local_tree)
                return
            # This is an edge case where t1=None or t2=None and None is in the ignore type group.
            if level.t1 is None or level.t2 is None:
                self._report_result('values_changed', level, local_tree=local_tree)
                return

        if self.ignore_nan_inequality and isinstance(level.t1, (float, np_floating)) and str(level.t1) == str(level.t2) == 'nan':
            return

        if isinstance(level.t1, booleans):
            self._diff_booleans(level, local_tree=local_tree)

        elif isinstance(level.t1, strings):
            self._diff_str(level, local_tree=local_tree)

        elif isinstance(level.t1, datetime.datetime):
            self._diff_datetime(level, local_tree=local_tree)

        elif isinstance(level.t1, ipranges):
            self._diff_ipranges(level, local_tree=local_tree)

        elif isinstance(level.t1, (datetime.date, datetime.timedelta, datetime.time)):
            self._diff_time(level, local_tree=local_tree)

        elif isinstance(level.t1, uuids):
            self._diff_uuids(level, local_tree=local_tree)

        elif isinstance(level.t1, numbers):
            self._diff_numbers(level, local_tree=local_tree, report_type_change=report_type_change)

        elif isinstance(level.t1, Mapping):
            self._diff_dict(level, parents_ids, local_tree=local_tree)

        elif isinstance(level.t1, tuple):
            self._diff_tuple(level, parents_ids, local_tree=local_tree)

        elif isinstance(level.t1, (set, frozenset, SetOrdered)):
            self._diff_set(level, local_tree=local_tree)

        elif isinstance(level.t1, np_ndarray):
            self._diff_numpy_array(level, parents_ids, local_tree=local_tree)

        elif isinstance(level.t1, PydanticBaseModel):
            self._diff_obj(level, parents_ids, local_tree=local_tree, is_pydantic_object=True)

        elif isinstance(level.t1, Iterable):
            self._diff_iterable(level, parents_ids, _original_type=_original_type, local_tree=local_tree)

        elif isinstance(level.t1, Enum):
            self._diff_enum(level, parents_ids, local_tree=local_tree)

        else:
            self._diff_obj(level, parents_ids)

    def _get_view_results(self, view):
        """
        Get the results based on the view
        """
        result = self.tree
        if not self.report_repetition:  # and self.is_root:
            result.mutual_add_removes_to_become_value_changes()
        if view == TREE_VIEW:
            pass
        elif view == TEXT_VIEW:
            result = TextResult(tree_results=self.tree, verbose_level=self.verbose_level)
            result.remove_empty_keys()
        elif view == DELTA_VIEW:
            result = self._to_delta_dict(report_repetition_required=False)
        else:
            raise ValueError(INVALID_VIEW_MSG.format(view))
        return result

    @staticmethod
    def _get_key_for_group_by(row, group_by, item_name):
        try:
            return row.pop(group_by)
        except KeyError:
            logger.error("Unable to group {} by {}. The key is missing in {}".format(item_name, group_by, row))
            raise

    def _group_iterable_to_dict(self, item, group_by, item_name):
        """
        Convert a list of dictionaries into a dictionary of dictionaries
        where the key is the value of the group_by key in each dictionary.
        """
        group_by_level2 = None
        if isinstance(group_by, (list, tuple)):
            group_by_level1 = group_by[0]
            if len(group_by) > 1:
                group_by_level2 = group_by[1]
        else:
            group_by_level1 = group_by
        if isinstance(item, Iterable) and not isinstance(item, Mapping):
            result = {}
            item_copy = deepcopy(item)
            for row in item_copy:
                if isinstance(row, Mapping):
                    key1 = self._get_key_for_group_by(row, group_by_level1, item_name)
                    if group_by_level2:
                        key2 = self._get_key_for_group_by(row, group_by_level2, item_name)
                        if key1 not in result:
                            result[key1] = {}
                        if self.group_by_sort_key:
                            if key2 not in result[key1]:
                                result[key1][key2] = []
                            result_key1_key2 = result[key1][key2]
                            if row not in result_key1_key2:
                                result_key1_key2.append(row)
                        else:
                            result[key1][key2] = row
                    else:
                        if self.group_by_sort_key:
                            if key1 not in result:
                                result[key1] = []
                            if row not in result[key1]:
                                result[key1].append(row)
                        else:
                            result[key1] = row
                else:
                    msg = "Unable to group {} by {} since the item {} is not a dictionary.".format(item_name, group_by_level1, row)
                    logger.error(msg)
                    raise ValueError(msg)
            if self.group_by_sort_key:
                if group_by_level2:
                    for key1, row1 in result.items():
                        for key2, row in row1.items():
                            row.sort(key=self.group_by_sort_key)
                else:
                    for key, row in result.items():
                        row.sort(key=self.group_by_sort_key)
            return result
        msg = "Unable to group {} by {}".format(item_name, group_by)
        logger.error(msg)
        raise ValueError(msg)

    def get_stats(self):
        """
        Get some stats on internals of the DeepDiff run.
        """
        return self._stats

    @property
    def affected_paths(self):
        """
        Get the list of paths that were affected.
        Whether a value was changed or they were added or removed.

        Example
            >>> t1 = {1: 1, 2: 2, 3: [3], 4: 4}
            >>> t2 = {1: 1, 2: 4, 3: [3, 4], 5: 5, 6: 6}
            >>> ddiff = DeepDiff(t1, t2)
            >>> ddiff
            >>> pprint(ddiff, indent=4)
            {   'dictionary_item_added': [root[5], root[6]],
                'dictionary_item_removed': [root[4]],
                'iterable_item_added': {'root[3][1]': 4},
                'values_changed': {'root[2]': {'new_value': 4, 'old_value': 2}}}
            >>> ddiff.affected_paths
            SetOrdered(['root[3][1]', 'root[4]', 'root[5]', 'root[6]', 'root[2]'])
            >>> ddiff.affected_root_keys
            SetOrdered([3, 4, 5, 6, 2])

        """
        result = SetOrdered()
        for key in REPORT_KEYS:
            value = self.get(key)
            if value:
                if isinstance(value, SetOrdered):
                    result |= value
                else:
                    result |= SetOrdered(value.keys())
        return result

    @property
    def affected_root_keys(self):
        """
        Get the list of root keys that were affected.
        Whether a value was changed or they were added or removed.

        Example
            >>> t1 = {1: 1, 2: 2, 3: [3], 4: 4}
            >>> t2 = {1: 1, 2: 4, 3: [3, 4], 5: 5, 6: 6}
            >>> ddiff = DeepDiff(t1, t2)
            >>> ddiff
            >>> pprint(ddiff, indent=4)
            {   'dictionary_item_added': [root[5], root[6]],
                'dictionary_item_removed': [root[4]],
                'iterable_item_added': {'root[3][1]': 4},
                'values_changed': {'root[2]': {'new_value': 4, 'old_value': 2}}}
            >>> ddiff.affected_paths
            SetOrdered(['root[3][1]', 'root[4]', 'root[5]', 'root[6]', 'root[2]'])
            >>> ddiff.affected_root_keys
            SetOrdered([3, 4, 5, 6, 2])
        """
        result = SetOrdered()
        for key in REPORT_KEYS:
            value = self.tree.get(key)
            if value:
                if isinstance(value, SetOrdered):
                    values_list = value
                else:
                    values_list = value.keys()
                for item in values_list:
                    root_key = item.get_root_key()
                    if root_key is not notpresent:
                        result.add(root_key)
        return result


if __name__ == "__main__":  # pragma: no cover
    import doctest
    doctest.testmod()