1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
# type: ignore
import asyncio
import json
import logging
from abc import ABC, abstractmethod
from datetime import datetime
from json import JSONDecodeError
from typing import Any, AsyncGenerator, Optional, Type
from pydantic import BaseModel
from core.base.abstractions import (
GenerationConfig,
LLMChatCompletion,
Message,
)
from core.base.providers import CompletionProvider, DatabaseProvider
from .base import Tool, ToolResult
logger = logging.getLogger()
class Conversation:
def __init__(self):
self.messages: list[Message] = []
self._lock = asyncio.Lock()
async def add_message(self, message):
async with self._lock:
self.messages.append(message)
async def get_messages(self) -> list[dict[str, Any]]:
async with self._lock:
return [
{**msg.model_dump(exclude_none=True), "role": str(msg.role)}
for msg in self.messages
]
# TODO - Move agents to provider pattern
class AgentConfig(BaseModel):
rag_rag_agent_static_prompt: str = "static_rag_agent"
rag_agent_dynamic_prompt: str = "dynamic_reasoning_rag_agent_prompted"
stream: bool = False
include_tools: bool = True
max_iterations: int = 10
@classmethod
def create(cls: Type["AgentConfig"], **kwargs: Any) -> "AgentConfig":
base_args = cls.model_fields.keys()
filtered_kwargs = {
k: v if v != "None" else None
for k, v in kwargs.items()
if k in base_args
}
return cls(**filtered_kwargs) # type: ignore
class Agent(ABC):
def __init__(
self,
llm_provider: CompletionProvider,
database_provider: DatabaseProvider,
config: AgentConfig,
rag_generation_config: GenerationConfig,
):
self.llm_provider = llm_provider
self.database_provider: DatabaseProvider = database_provider
self.config = config
self.conversation = Conversation()
self._completed = False
self._tools: list[Tool] = []
self.tool_calls: list[dict] = []
self.rag_generation_config = rag_generation_config
self._register_tools()
@abstractmethod
def _register_tools(self):
pass
async def _setup(
self, system_instruction: Optional[str] = None, *args, **kwargs
):
await self.conversation.add_message(
Message(
role="system",
content=system_instruction
or (
await self.database_provider.prompts_handler.get_cached_prompt(
self.config.rag_rag_agent_static_prompt,
inputs={
"date": str(datetime.now().strftime("%m/%d/%Y"))
},
)
+ f"\n Note,you only have {self.config.max_iterations} iterations or tool calls to reach a conclusion before your operation terminates."
),
)
)
@property
def tools(self) -> list[Tool]:
return self._tools
@tools.setter
def tools(self, tools: list[Tool]):
self._tools = tools
@abstractmethod
async def arun(
self,
system_instruction: Optional[str] = None,
messages: Optional[list[Message]] = None,
*args,
**kwargs,
) -> list[LLMChatCompletion] | AsyncGenerator[LLMChatCompletion, None]:
pass
@abstractmethod
async def process_llm_response(
self,
response: Any,
*args,
**kwargs,
) -> None | AsyncGenerator[str, None]:
pass
async def execute_tool(self, tool_name: str, *args, **kwargs) -> str:
if tool := next((t for t in self.tools if t.name == tool_name), None):
return await tool.results_function(*args, **kwargs)
else:
return f"Error: Tool {tool_name} not found."
def get_generation_config(
self, last_message: dict, stream: bool = False
) -> GenerationConfig:
if (
last_message["role"] in ["tool", "function"]
and last_message["content"] != ""
and "ollama" in self.rag_generation_config.model
or not self.config.include_tools
):
return GenerationConfig(
**self.rag_generation_config.model_dump(
exclude={"functions", "tools", "stream"}
),
stream=stream,
)
return GenerationConfig(
**self.rag_generation_config.model_dump(
exclude={"functions", "tools", "stream"}
),
# FIXME: Use tools instead of functions
# TODO - Investigate why `tools` fails with OpenAI+LiteLLM
tools=(
[
{
"function": {
"name": tool.name,
"description": tool.description,
"parameters": tool.parameters,
},
"type": "function",
"name": tool.name,
}
for tool in self.tools
]
if self.tools
else None
),
stream=stream,
)
async def handle_function_or_tool_call(
self,
function_name: str,
function_arguments: str,
tool_id: Optional[str] = None,
save_messages: bool = True,
*args,
**kwargs,
) -> ToolResult:
logger.debug(
f"Calling function: {function_name}, args: {function_arguments}, tool_id: {tool_id}"
)
if tool := next(
(t for t in self.tools if t.name == function_name), None
):
try:
function_args = json.loads(function_arguments)
except JSONDecodeError as e:
error_message = f"Calling the requested tool '{function_name}' with arguments {function_arguments} failed with `JSONDecodeError`."
if save_messages:
await self.conversation.add_message(
Message(
role="tool" if tool_id else "function",
content=error_message,
name=function_name,
tool_call_id=tool_id,
)
)
# raise R2RException(
# message=f"Error parsing function arguments: {e}, agent likely produced invalid tool inputs.",
# status_code=400,
# )
merged_kwargs = {**kwargs, **function_args}
try:
raw_result = await tool.results_function(
*args, **merged_kwargs
)
llm_formatted_result = tool.llm_format_function(raw_result)
except Exception as e:
raw_result = f"Calling the requested tool '{function_name}' with arguments {function_arguments} failed with an exception: {e}."
logger.error(raw_result)
llm_formatted_result = raw_result
tool_result = ToolResult(
raw_result=raw_result,
llm_formatted_result=llm_formatted_result,
)
if tool.stream_function:
tool_result.stream_result = tool.stream_function(raw_result)
if save_messages:
await self.conversation.add_message(
Message(
role="tool" if tool_id else "function",
content=str(tool_result.llm_formatted_result),
name=function_name,
tool_call_id=tool_id,
)
)
# HACK - to fix issues with claude thinking + tool use [https://github.com/anthropics/anthropic-cookbook/blob/main/extended_thinking/extended_thinking_with_tool_use.ipynb]
if self.rag_generation_config.extended_thinking:
await self.conversation.add_message(
Message(
role="user",
content="Continue...",
)
)
self.tool_calls.append(
{
"name": function_name,
"args": function_arguments,
}
)
return tool_result
# TODO - Move agents to provider pattern
class RAGAgentConfig(AgentConfig):
rag_rag_agent_static_prompt: str = "static_rag_agent"
rag_agent_dynamic_prompt: str = "dynamic_reasoning_rag_agent_prompted"
stream: bool = False
include_tools: bool = True
max_iterations: int = 10
# tools: list[str] = [] # HACK - unused variable.
# Default RAG tools
rag_tools: list[str] = [
"search_file_descriptions",
"search_file_knowledge",
"get_file_content",
]
# Default Research tools
research_tools: list[str] = [
"rag",
"reasoning",
# DISABLED by default
"critique",
"python_executor",
]
@classmethod
def create(cls: Type["AgentConfig"], **kwargs: Any) -> "AgentConfig":
base_args = cls.model_fields.keys()
filtered_kwargs = {
k: v if v != "None" else None
for k, v in kwargs.items()
if k in base_args
}
filtered_kwargs["tools"] = kwargs.get("tools", None) or kwargs.get(
"tool_names", None
)
return cls(**filtered_kwargs) # type: ignore
|