aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/azure_monitor_opentelemetry_exporter-1.0.0b35.dist-info/METADATA
blob: de4378d22ccdd39181b60ee18c7829a0fc847399 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
Metadata-Version: 2.1
Name: azure-monitor-opentelemetry-exporter
Version: 1.0.0b35
Summary: Microsoft Azure Monitor Opentelemetry Exporter Client Library for Python
Home-page: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-opentelemetry-exporter
Author: Microsoft Corporation
Author-email: ascl@microsoft.com
License: MIT License
Keywords: azure,azure sdk
Classifier: Development Status :: 4 - Beta
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: License :: OSI Approved :: MIT License
Requires-Python: >=3.8
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: azure-core <2.0.0,>=1.28.0
Requires-Dist: fixedint ==0.1.6
Requires-Dist: msrest >=0.6.10
Requires-Dist: opentelemetry-api ~=1.26
Requires-Dist: opentelemetry-sdk ~=1.26
Requires-Dist: psutil <7,>=5.9

# Microsoft OpenTelemetry exporter for Azure Monitor

The exporter for Azure Monitor allows Python applications to export data from the OpenTelemetry SDK to Azure Monitor. The exporter is intended for users who require advanced configuration or have more complicated telemetry needs that require all of distributed tracing, logging and metrics. If you have simpler configuration requirements, we recommend using the [Azure Monitor OpenTelemetry Distro](https://learn.microsoft.com/azure/azure-monitor/app/opentelemetry-enable?tabs=python) instead for a simpler one-line setup.

Prior to using this SDK, please read and understand [Data Collection Basics](https://learn.microsoft.com/azure/azure-monitor/app/opentelemetry-overview?tabs=python), especially the section on [telemetry types](https://learn.microsoft.com/azure/azure-monitor/app/opentelemetry-overview?tabs=python#telemetry-types). OpenTelemetry terminology differs from Application Insights terminology so it is important to understand the way the telemetry types map to each other.

[Source code](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-opentelemetry-exporter) | [Package (PyPi)][pypi] | [API reference documentation][api_docs] | [Product documentation][product_docs] | [Samples][exporter_samples] | [Changelog](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-opentelemetry-exporter/CHANGELOG.md)

## Getting started

### Install the package

Install the Microsoft OpenTelemetry exporter for Azure Monitor with [pip][pip]:

```Bash
pip install azure-monitor-opentelemetry-exporter --pre
```

### Prerequisites

To use this package, you must have:

* Azure subscription - [Create a free account][azure_sub]
* Azure Monitor - [How to use application insights][application_insights_namespace]
* OpenTelemetry SDK - [OpenTelemetry SDK for Python][ot_sdk_python]
* Python 3.8 or later - [Install Python][python]

### Instantiate the client

Interaction with Azure monitor exporter starts with an instance of the `AzureMonitorTraceExporter` class for distributed tracing, `AzureMonitorLogExporter` for logging and `AzureMonitorMetricExporter` for metrics. You will need a **connection_string** to instantiate the object.
Please find the samples linked below for demonstration as to how to construct the exporter using a connection string.

#### Logging (experimental)

NOTE: The logging signal for the `AzureMonitorLogExporter` is currently in an EXPERIMENTAL state. Possible breaking changes may ensue in the future.

```python
from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
exporter = AzureMonitorLogExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
```

#### Metrics

```python
from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter
exporter = AzureMonitorMetricExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
```

#### Tracing

```python
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter
exporter = AzureMonitorTraceExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
```

You can also instantiate the exporter directly via the constructor. In this case, the connection string will be automatically populated from the `APPLICATIONINSIGHTS_CONNECTION_STRING` environment variable.

```python
from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
exporter = AzureMonitorLogExporter()
```

```python
from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter
exporter = AzureMonitorMetricExporter()
```

```python
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter
exporter = AzureMonitorTraceExporter()
```

## Key concepts

Some of the key concepts for the Azure monitor exporter include:

* [OpenTelemetry][opentelemetry_spec]: OpenTelemetry is a set of libraries used to collect and export telemetry data (metrics, logs, and traces) for analysis in order to understand your software's performance and behavior.

* [Instrumentation][instrumentation_library]: The ability to call the OpenTelemetry API directly by any application is facilitated by instrumentation. A library that enables OpenTelemetry observability for another library is called an instrumentation Library.

* [Log][log_concept]: Log refers to capturing of logging, exception and events.

* [LogRecord][log_record]: Represents a log record emitted from a supported logging library.

* [Logger][logger]: Converts a `LogRecord` into a readable `LogData`, and will be pushed through the SDK to be exported.

* [Logger Provider][logger_provider]: Provides a `Logger` for the given instrumentation library.

* [LogRecordProcessor][log_record_processor]: Interface to hook the log record emitting action.

* [LoggingHandler][logging_handler]: A handler class which writes logging records in OpenTelemetry format from the standard Python `logging` library.

* [AzureMonitorLogExporter][log_reference]: This is the class that is initialized to send logging related telemetry to Azure Monitor.

* [Metric][metric_concept]: `Metric` refers to recording raw measurements with predefined aggregation and sets of attributes for a period in time.

* [Measurement][measurement]: Represents a data point recorded at a point in time.

* [Instrument][instrument]: Instruments are used to report `Measurement`s.

* [Meter][meter]: The `Meter` is responsible for creating `Instruments`.

* [Meter Provider][meter_provider]: Provides a `Meter` for the given instrumentation library.

* [Metric Reader][metric_reader]: An SDK implementation object that provides the common configurable aspects of the OpenTelemetry Metrics SDK such as collection, flushing and shutdown.

* [AzureMonitorMetricExporter][metric_reference]: This is the class that is initialized to send metric related telemetry to Azure Monitor.

* [Trace][trace_concept]: Trace refers to distributed tracing. A distributed trace is a set of events, triggered as a result of a single logical operation, consolidated across various components of an application. In particular, a Trace can be thought of as a directed acyclic graph (DAG) of Spans, where the edges between Spans are defined as parent/child relationship.

* [Span][span]: Represents a single operation within a `Trace`. Can be nested to form a trace tree. Each trace contains a root span, which typically describes the entire operation and, optionally, one ore more sub-spans for its sub-operations.

* [Tracer][tracer]: Responsible for creating `Span`s.

* [Tracer Provider][tracer_provider]: Provides a `Tracer` for use by the given instrumentation library.

* [Span Processor][span_processor]: A span processor allows hooks for SDK's `Span` start and end method invocations. Follow the link for more information.

* [AzureMonitorTraceExporter][trace_reference]: This is the class that is initialized to send tracing related telemetry to Azure Monitor.

* [Sampling][sampler_ref]: Sampling is a mechanism to control the noise and overhead introduced by OpenTelemetry by reducing the number of samples of traces collected and sent to the backend.

* ApplicationInsightsSampler: Application Insights specific sampler used for consistent sampling across Application Insights SDKs and OpenTelemetry-based SDKs sending data to Application Insights. This sampler MUST be used whenever `AzureMonitorTraceExporter` is used.

For more information about these resources, see [What is Azure Monitor?][product_docs].

## Configuration

All configuration options can be passed through the constructors of exporters through `kwargs`. Below is a list of configurable options.

* `connection_string`: The connection string used for your Application Insights resource.
* `disable_offline_storage`: Boolean value to determine whether to disable storing failed telemetry records for retry. Defaults to `False`.
* `storage_directory`: Storage directory in which to store retry files. Defaults to `<tempfile.gettempdir()>/Microsoft/AzureMonitor/opentelemetry-python-<your-instrumentation-key>`.
* `credential`: Token credential, such as ManagedIdentityCredential or ClientSecretCredential, used for [Azure Active Directory (AAD) authentication][aad_for_ai_docs]. Defaults to None. See [samples][exporter_samples] for examples.

## Examples

### Logging (experimental)

NOTE: The logging signal for the `AzureMonitorLogExporter` is currently in an EXPERIMENTAL state. Possible breaking changes may ensue in the future.

The following sections provide several code snippets covering some of the most common tasks, including:

* [Exporting a log record](#export-hello-world-log)
* [Exporting correlated log record](#export-correlated-log)
* [Exporting log record with custom properties](#export-custom-properties-log)
* [Exporting an exceptions log record](#export-exceptions-log)

Review the [OpenTelemetry Logging SDK][ot_logging_sdk] to learn how to use OpenTelemetry components to collect logs.

When integrating the `AzureMonitorLogExporter`, it's **strongly advised to utilize a named logger** rather
than the root logger.
This recommendation stems from the exporter's dependency on `azure-core` for constructing and dispatching requests.
Since `azure-core` itself uses a Python logger, attaching the handler to the root logger would
inadvertently capture and export these internal log messages as well.
This triggers a recursive loop of logging and exporting, leading to an unnecessary proliferation of log data.
To avoid this, configure a named logger for your application's logging needs or set up your logging handler to filter out logs originating from the SDK library.

#### Export Hello World Log

```python
"""
An example to show an application using Opentelemetry logging sdk. Logging calls to the standard Python
logging library are tracked and telemetry is exported to application insights with the AzureMonitorLogExporter.
"""
import os
import logging

from opentelemetry._logs import set_logger_provider
from opentelemetry.sdk._logs import (
    LoggerProvider,
    LoggingHandler,
)
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor

from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter

logger_provider = LoggerProvider()
set_logger_provider(logger_provider)

exporter = AzureMonitorLogExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)

logger_provider.add_log_record_processor(BatchLogRecordProcessor(exporter))

# Attach LoggingHandler to namespaced logger
handler = LoggingHandler()
logger = logging.getLogger(__name__)
logger.addHandler(handler)
logger.setLevel(logging.NOTSET)

logger.warning("Hello World!")

# Telemetry records are flushed automatically upon application exit
# If you would like to flush records manually yourself, you can call force_flush()
logger_provider.force_flush()
```

#### Export Correlated Log

```python
"""
An example showing how to include context correlation information in logging telemetry.
"""
import os
import logging

from opentelemetry import trace
from opentelemetry._logs import set_logger_provider
from opentelemetry.sdk._logs import (
    LoggerProvider,
    LoggingHandler,
)
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.sdk.trace import TracerProvider

from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter

trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)
logger_provider = LoggerProvider()
set_logger_provider(logger_provider)

exporter = AzureMonitorLogExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)

logger_provider.add_log_record_processor(BatchLogRecordProcessor(exporter))

# Attach LoggingHandler to namespaced logger
handler = LoggingHandler()
logger = logging.getLogger(__name__)
logger.addHandler(handler)
logger.setLevel(logging.NOTSET)

logger.info("INFO: Outside of span")
with tracer.start_as_current_span("foo"):
    logger.warning("WARNING: Inside of span")
logger.error("ERROR: After span")
```

#### Export Custom Properties Log

```python
"""
An example showing how to add custom properties to logging telemetry.
"""
import os
import logging

from opentelemetry._logs import set_logger_provider
from opentelemetry.sdk._logs import (
    LoggerProvider,
    LoggingHandler,
)
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor

from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter

logger_provider = LoggerProvider()
set_logger_provider(logger_provider)

exporter = AzureMonitorLogExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)

logger_provider.add_log_record_processor(BatchLogRecordProcessor(exporter))

# Attach LoggingHandler to namespaced logger
handler = LoggingHandler()
logger = logging.getLogger(__name__)
logger.addHandler(handler)
logger.setLevel(logging.NOTSET)

# Custom properties
logger.debug("DEBUG: Debug with properties", extra={"debug": "true"})
```

#### Export Exceptions Log

```python
"""
An example showing how to export exception telemetry using the AzureMonitorLogExporter.
"""
import os
import logging

from opentelemetry._logs import (
    get_logger_provider,
    set_logger_provider,
)
from opentelemetry.sdk._logs import (
    LoggerProvider,
    LoggingHandler,
)
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor

from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter

set_logger_provider(LoggerProvider())
exporter = AzureMonitorLogExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
get_logger_provider().add_log_record_processor(BatchLogRecordProcessor(exporter))

# Attach LoggingHandler to namespaced logger
handler = LoggingHandler()
logger = logging.getLogger(__name__)
logger.addHandler(handler)
logger.setLevel(logging.NOTSET)

# The following code will generate two pieces of exception telemetry
# that are identical in nature
try:
    val = 1 / 0
    print(val)
except ZeroDivisionError:
    logger.exception("Error: Division by zero")

try:
    val = 1 / 0
    print(val)
except ZeroDivisionError:
    logger.error("Error: Division by zero", stack_info=True, exc_info=True)
```

### Metrics

The following sections provide several code snippets covering some of the most common tasks, including:

* [Using different metric instruments](#metric-instrument-usage)
* [Customizing outputted metrics with views](#metric-custom-views)
* [Recording instruments with attributes](#metric-record-attributes)

Review the [OpenTelemetry Metrics SDK][ot_metrics_sdk] to learn how to use OpenTelemetry components to collect metrics.

#### Metric instrument usage

```python
"""
An example to show an application using all instruments in the OpenTelemetry SDK. Metrics created
and recorded using the sdk are tracked and telemetry is exported to application insights with the
AzureMonitorMetricsExporter.
"""
import os
from typing import Iterable

from opentelemetry import metrics
from opentelemetry.metrics import CallbackOptions, Observation
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader

from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter

exporter = AzureMonitorMetricExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
reader = PeriodicExportingMetricReader(exporter, export_interval_millis=5000)
metrics.set_meter_provider(MeterProvider(metric_readers=[reader]))

# Create a namespaced meter
meter = metrics.get_meter_provider().get_meter("sample")

# Callback functions for observable instruments
def observable_counter_func(options: CallbackOptions) -> Iterable[Observation]:
    yield Observation(1, {})


def observable_up_down_counter_func(
    options: CallbackOptions,
) -> Iterable[Observation]:
    yield Observation(-10, {})


def observable_gauge_func(options: CallbackOptions) -> Iterable[Observation]:
    yield Observation(9, {})

# Counter
counter = meter.create_counter("counter")
counter.add(1)

# Async Counter
observable_counter = meter.create_observable_counter(
    "observable_counter", [observable_counter_func]
)

# UpDownCounter
up_down_counter = meter.create_up_down_counter("up_down_counter")
up_down_counter.add(1)
up_down_counter.add(-5)

# Async UpDownCounter
observable_up_down_counter = meter.create_observable_up_down_counter(
    "observable_up_down_counter", [observable_up_down_counter_func]
)

# Histogram
histogram = meter.create_histogram("histogram")
histogram.record(99.9)

# Async Gauge
gauge = meter.create_observable_gauge("gauge", [observable_gauge_func])

# Upon application exit, one last collection is made and telemetry records are
# flushed automatically. # If you would like to flush records manually yourself,
# you can call force_flush()
meter_provider.force_flush()
```

#### Metric custom views

```python
"""
This example shows how to customize the metrics that are output by the SDK using Views. Metrics created
and recorded using the sdk are tracked and telemetry is exported to application insights with the
AzureMonitorMetricsExporter.
"""
import os

from opentelemetry import metrics
from opentelemetry.sdk.metrics import Counter, MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from opentelemetry.sdk.metrics.view import View

from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter

exporter = AzureMonitorMetricExporter.from_connection_string(
    os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
# Create a view matching the counter instrument `my.counter`
# and configure the new name `my.counter.total` for the result metrics stream
change_metric_name_view = View(
    instrument_type=Counter,
    instrument_name="my.counter",
    name="my.counter.total",
)

reader = PeriodicExportingMetricReader(exporter, export_interval_millis=5000)
provider = MeterProvider(
    metric_readers=[
        reader,
    ],
    views=[
        change_metric_name_view,
    ],
)
metrics.set_meter_provider(provider)

meter = metrics.get_meter_provider().get_meter("view-name-change")
my_counter = meter.create_counter("my.counter")
my_counter.add(100)

```

More examples with the metrics `Views` SDK can be found [here](https://github.com/open-telemetry/opentelemetry-python/tree/main/docs/examples/metrics/views).

#### Metric record attributes

```python
"""
An example to show an application using different attributes with instruments in the OpenTelemetry SDK.
Metrics created and recorded using the sdk are tracked and telemetry is exported to application insights
with the AzureMonitorMetricsExporter.
"""
import os

from opentelemetry import metrics
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader

from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter

exporter = AzureMonitorMetricExporter.from_connection_string(
    os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
reader = PeriodicExportingMetricReader(exporter, export_interval_millis=5000)
metrics.set_meter_provider(MeterProvider(metric_readers=[reader]))

attribute_set1 = {
    "key1": "val1"
}
attribute_set2 = {
    "key2": "val2"
}
large_attribute_set = {}
for i in range(20):
    key = "key{}".format(i)
    val = "val{}".format(i)
    large_attribute_set[key] = val

meter = metrics.get_meter_provider().get_meter("sample")

# Counter
counter = meter.create_counter("attr1_counter")
counter.add(1, attribute_set1)

# Counter2
counter2 = meter.create_counter("attr2_counter")
counter2.add(10, attribute_set1)
counter2.add(30, attribute_set2)

# Counter3
counter3 = meter.create_counter("large_attr_counter")
counter3.add(100, attribute_set1)
counter3.add(200, large_attribute_set)

```

### Tracing

The following sections provide several code snippets covering some of the most common tasks, including:

* [Exporting a custom span](#export-hello-world-trace)
* [Using an instrumentation to track a library](#instrumentation-with-requests-library)
* [Enabling sampling to limit the amount of telemetry sent](#enabling-sampling)

Review the [OpenTelemetry Tracing SDK][ot_tracing_sdk] to learn how to use OpenTelemetry components to collect logs.

#### Export Hello World Trace

```python
"""
An example to show an application using Opentelemetry tracing api and sdk. Custom dependencies are
tracked via spans and telemetry is exported to application insights with the AzureMonitorTraceExporter.
"""
import os
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter

tracer_provider = TracerProvider()
trace.set_tracer_provider(tracer_provider)
tracer = trace.get_tracer(__name__)
# This is the exporter that sends data to Application Insights
exporter = AzureMonitorTraceExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
span_processor = BatchSpanProcessor(exporter)
trace.get_tracer_provider().add_span_processor(span_processor)

with tracer.start_as_current_span("hello"):
    print("Hello, World!")

# Telemetry records are flushed automatically upon application exit
# If you would like to flush records manually yourself, you can call force_flush()
tracer_provider.force_flush()
```

#### Instrumentation with requests library

OpenTelemetry also supports several instrumentations which allows to instrument with third party libraries.

For a list of instrumentations available in OpenTelemetry, visit the contrib [documentation](https://opentelemetry-python-contrib.readthedocs.io/en/latest/).

This example shows how to instrument with the [requests](https://pypi.org/project/requests/) library.

* Install the requests instrumentation package using pip install opentelemetry-instrumentation-requests.

```python
"""
An example to show an application instrumented with the OpenTelemetry requests instrumentation.
Calls made with the requests library will be automatically tracked and telemetry is exported to 
application insights with the AzureMonitorTraceExporter.
See more info on the requests instrumentation here:
https://github.com/open-telemetry/opentelemetry-python-contrib/tree/main/instrumentation/opentelemetry-instrumentation-requests
"""
import os
import requests
from opentelemetry import trace
from opentelemetry.instrumentation.requests import RequestsInstrumentor
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter

# This line causes your calls made with the requests library to be tracked.
RequestsInstrumentor().instrument()

trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)
exporter = AzureMonitorTraceExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
span_processor = BatchSpanProcessor(exporter)
trace.get_tracer_provider().add_span_processor(span_processor)

# This request will be traced
response = requests.get(url="https://azure.microsoft.com/")
```

#### Enabling sampling

You can enable sampling to limit the amount of telemetry records you receive. In order to enable correct sampling in Application Insights, use the `ApplicationInsightsSampler` as shown below.

```python
"""
An example to show an application using the ApplicationInsightsSampler to enable sampling for your telemetry.
Specify a sampling rate for the sampler to limit the amount of telemetry records you receive. Custom dependencies
 are tracked via spans and telemetry is exported to application insights with the AzureMonitorTraceExporter.
"""
import os
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from azure.monitor.opentelemetry.exporter import (
    ApplicationInsightsSampler,
    AzureMonitorTraceExporter,
)

# Sampler expects a sample rate of between 0 and 1 inclusive
# A rate of 0.75 means approximately 75% of your telemetry will be sent
sampler = ApplicationInsightsSampler(0.75)
trace.set_tracer_provider(TracerProvider(sampler=sampler))
tracer = trace.get_tracer(__name__)
exporter = AzureMonitorTraceExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
span_processor = BatchSpanProcessor(exporter)
trace.get_tracer_provider().add_span_processor(span_processor)

for i in range(100):
    # Approximately 25% of these spans should be sampled out
    with tracer.start_as_current_span("hello"):
        print("Hello, World!")
```

## Flush/shutdown behavior

For all applications set up with OpenTelemetry SDK and Azure Monitor exporters, telemetry is flushed automatically upon application exit. Note that this does not include when application ends abruptly or crashes due to uncaught exception.

## Troubleshooting

The exporter raises exceptions defined in [Azure Core](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md#azure-core-library-exceptions).

## Next steps

### More sample code

Please find further examples in the [samples][exporter_samples] directory demonstrating common scenarios.

### Additional documentation

For more extensive documentation on the Azure Monitor service, see the [Azure Monitor documentation][product_docs] on learn.microsoft.com.

For detailed overview of OpenTelemetry, visit their [overview](https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/overview.md) page.

For the official OpenTelemetry Python documentation and how to enable other telemetry scenarios, visit the official OpenTelemetry [website](https://opentelemetry.io/docs/instrumentation/python/).

For more information on the Azure Monitor OpenTelemetry Distro, which is a bundle of useful, pre-assembled components (one of them being this current package) that enable telemetry scenarios with Azure Monitor, visit the [README](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-opentelemetry).

## Contributing

This project welcomes contributions and suggestions.  Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.

<!-- LINKS -->
[aad_for_ai_docs]: https://learn.microsoft.com/azure/azure-monitor/app/azure-ad-authentication?tabs=python
[api_docs]: https://azure.github.io/azure-sdk-for-python/monitor.html#azure-monitor-opentelemetry-exporter
[exporter_samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-opentelemetry-exporter/samples
[product_docs]: https://learn.microsoft.com/azure/azure-monitor/overview
[azure_sub]: https://azure.microsoft.com/free/
[pip]: https://pypi.org/project/pip/
[pypi]: https://pypi.org/project/azure-monitor-opentelemetry-exporter/
[python]: https://www.python.org/downloads/
[ot_sdk_python]: https://github.com/open-telemetry/opentelemetry-python
[application_insights_namespace]: https://learn.microsoft.com/azure/azure-monitor/app/app-insights-overview#how-do-i-use-application-insights
[opentelemetry_spec]: https://opentelemetry.io/
[instrumentation_library]: https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/overview.md#instrumentation-libraries
[log_concept]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/overview.md#log-signal
[log_record]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html#opentelemetry.sdk._logs.LogRecord
[logger]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html#opentelemetry.sdk._logs.Logger
[logger_provider]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html#opentelemetry.sdk._logs.LoggerProvider
[log_record_processor]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html#opentelemetry.sdk._logs.LogRecordProcessor
[logging_handler]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html#opentelemetry.sdk._logs.LoggingHandler
[log_reference]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-opentelemetry-exporter/azure/monitor/opentelemetry/exporter/export/logs/_exporter.py
[ot_logging_sdk]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/_logs.html
[metric_concept]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/overview.md#metric-signal
[measurement]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#measurement
[instrument]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#instrument
[meter]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#meter
[meter_provider]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#meterprovider
[metric_reader]:https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#metricreader
[metric_reference]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-opentelemetry-exporter/azure/monitor/opentelemetry/exporter/export/metrics/_exporter.py
[ot_metrics_sdk]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/metrics.html
[trace_concept]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/overview.md#tracing-signal
[span]: https://opentelemetry-python.readthedocs.io/en/latest/api/trace.html?highlight=TracerProvider#opentelemetry.trace.Span
[tracer]: https://opentelemetry-python.readthedocs.io/en/latest/api/trace.html?highlight=TracerProvider#opentelemetry.trace.Tracer
[tracer_provider]: https://opentelemetry-python.readthedocs.io/en/latest/api/trace.html?highlight=TracerProvider#opentelemetry.trace.TracerProvider
[span_processor]: https://opentelemetry-python.readthedocs.io/en/latest/_modules/opentelemetry/sdk/trace.html?highlight=SpanProcessor#
[trace_reference]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-opentelemetry-exporter/azure/monitor/opentelemetry/exporter/export/trace/_exporter.py
[ot_tracing_sdk]: https://opentelemetry-python.readthedocs.io/en/latest/sdk/trace.html
[sampler_ref]: https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/trace/sdk.md#sampling