blob: 45e13332ebc8015da987f90555144a591681c51b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
from typing import Optional
from azure.ai.ml._restclient.v2023_08_01_preview.models import Objective as RestObjective
from azure.ai.ml.entities._mixins import RestTranslatableMixin
class Objective(RestTranslatableMixin):
"""Optimization objective.
:param goal: Defines supported metric goals for hyperparameter tuning. Accepted values
are: "minimize", "maximize".
:type goal: str
:param primary_metric: The name of the metric to optimize.
:type primary_metric: str
.. admonition:: Example:
.. literalinclude:: ../samples/ml_samples_sweep_configurations.py
:start-after: [START configure_sweep_job_bayesian_sampling_algorithm]
:end-before: [END configure_sweep_job_bayesian_sampling_algorithm]
:language: python
:dedent: 8
:caption: Assigning an objective to a SweepJob.
"""
def __init__(self, goal: Optional[str], primary_metric: Optional[str] = None) -> None:
"""Optimization objective.
:param goal: Defines supported metric goals for hyperparameter tuning. Acceptable values
are: "minimize" or "maximize".
:type goal: str
:param primary_metric: The name of the metric to optimize.
:type primary_metric: str
"""
if goal is not None:
self.goal = goal.lower()
self.primary_metric = primary_metric
def _to_rest_object(self) -> RestObjective:
return RestObjective(
goal=self.goal,
primary_metric=self.primary_metric,
)
@classmethod
def _from_rest_object(cls, obj: RestObjective) -> Optional["Objective"]:
if not obj:
return None
return cls(goal=obj.goal, primary_metric=obj.primary_metric)
|