aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/azure/ai/ml/entities/_component/command_component.py
blob: 9bdcd3d1e6569aecdb3ae1017354c263187496bc (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
import os
from typing import Any, Dict, List, Optional, Union, cast

from marshmallow import Schema

from azure.ai.ml._schema.component.command_component import CommandComponentSchema
from azure.ai.ml.constants._common import COMPONENT_TYPE
from azure.ai.ml.constants._component import NodeType
from azure.ai.ml.entities._assets import Environment
from azure.ai.ml.entities._job.distribution import (
    DistributionConfiguration,
    MpiDistribution,
    PyTorchDistribution,
    RayDistribution,
    TensorFlowDistribution,
)
from azure.ai.ml.entities._job.job_resource_configuration import JobResourceConfiguration
from azure.ai.ml.entities._job.parameterized_command import ParameterizedCommand
from azure.ai.ml.exceptions import ErrorCategory, ErrorTarget, ValidationException

from ..._restclient.v2022_10_01.models import ComponentVersion
from ..._schema import PathAwareSchema
from ..._utils.utils import get_all_data_binding_expressions, parse_args_description_from_docstring
from .._util import convert_ordered_dict_to_dict, validate_attribute_type
from .._validation import MutableValidationResult
from ._additional_includes import AdditionalIncludesMixin
from .component import Component

# pylint: disable=protected-access


class CommandComponent(Component, ParameterizedCommand, AdditionalIncludesMixin):
    """Command component version, used to define a Command Component or Job.

    :keyword name: The name of the Command job or component.
    :paramtype name: Optional[str]
    :keyword version: The version of the Command job or component.
    :paramtype version: Optional[str]
    :keyword description: The description of the component. Defaults to None.
    :paramtype description: Optional[str]
    :keyword tags: Tag dictionary. Tags can be added, removed, and updated. Defaults to None.
    :paramtype tags: Optional[dict]
    :keyword display_name: The display name of the component.
    :paramtype display_name: Optional[str]
    :keyword command: The command to be executed.
    :paramtype command: Optional[str]
    :keyword code: The source code to run the job. Can be a local path or "http:", "https:", or "azureml:" url pointing
        to a remote location.
    :type code: Optional[str]
    :keyword environment: The environment that the job will run in.
    :paramtype environment: Optional[Union[str, ~azure.ai.ml.entities.Environment]]
    :keyword distribution: The configuration for distributed jobs. Defaults to None.
    :paramtype distribution: Optional[Union[~azure.ai.ml.PyTorchDistribution, ~azure.ai.ml.MpiDistribution,
        ~azure.ai.ml.TensorFlowDistribution, ~azure.ai.ml.RayDistribution]]
    :keyword resources: The compute resource configuration for the command.
    :paramtype resources: Optional[~azure.ai.ml.entities.JobResourceConfiguration]
    :keyword inputs: A mapping of input names to input data sources used in the job. Defaults to None.
    :paramtype inputs: Optional[dict[str, Union[
        ~azure.ai.ml.Input,
        str,
        bool,
        int,
        float,
        Enum,
        ]]]
    :keyword outputs: A mapping of output names to output data sources used in the job. Defaults to None.
    :paramtype outputs: Optional[dict[str, Union[str, ~azure.ai.ml.Output]]]
    :keyword instance_count: The number of instances or nodes to be used by the compute target. Defaults to 1.
    :paramtype instance_count: Optional[int]
    :keyword is_deterministic: Specifies whether the Command will return the same output given the same input.
        Defaults to True. When True, if a Command (component) is deterministic and has been run before in the
        current workspace with the same input and settings, it will reuse results from a previous submitted job
        when used as a node or step in a pipeline. In that scenario, no compute resources will be used.
    :paramtype is_deterministic: Optional[bool]
    :keyword additional_includes: A list of shared additional files to be included in the component. Defaults to None.
    :paramtype additional_includes: Optional[List[str]]
    :keyword properties: The job property dictionary. Defaults to None.
    :paramtype properties: Optional[dict[str, str]]
    :raises ~azure.ai.ml.exceptions.ValidationException: Raised if CommandComponent cannot be successfully validated.
        Details will be provided in the error message.

    .. admonition:: Example:

        .. literalinclude:: ../samples/ml_samples_command_configurations.py
            :start-after: [START command_component_definition]
            :end-before: [END command_component_definition]
            :language: python
            :dedent: 8
            :caption: Creating a CommandComponent.
    """

    def __init__(
        self,
        *,
        name: Optional[str] = None,
        version: Optional[str] = None,
        description: Optional[str] = None,
        tags: Optional[Dict] = None,
        display_name: Optional[str] = None,
        command: Optional[str] = None,
        code: Optional[Union[str, os.PathLike]] = None,
        environment: Optional[Union[str, Environment]] = None,
        distribution: Optional[
            Union[
                Dict,
                MpiDistribution,
                TensorFlowDistribution,
                PyTorchDistribution,
                RayDistribution,
                DistributionConfiguration,
            ]
        ] = None,
        resources: Optional[JobResourceConfiguration] = None,
        inputs: Optional[Dict] = None,
        outputs: Optional[Dict] = None,
        instance_count: Optional[int] = None,  # promoted property from resources.instance_count
        is_deterministic: bool = True,
        additional_includes: Optional[List] = None,
        properties: Optional[Dict] = None,
        **kwargs: Any,
    ) -> None:
        # validate init params are valid type
        validate_attribute_type(attrs_to_check=locals(), attr_type_map=self._attr_type_map())

        kwargs[COMPONENT_TYPE] = NodeType.COMMAND

        # Component backend doesn't support environment_variables yet,
        # this is to support the case of CommandComponent being the trial of
        # a SweepJob, where environment_variables is stored as part of trial
        environment_variables = kwargs.pop("environment_variables", None)
        super().__init__(
            name=name,
            version=version,
            description=description,
            tags=tags,
            display_name=display_name,
            inputs=inputs,
            outputs=outputs,
            is_deterministic=is_deterministic,
            properties=properties,
            **kwargs,
        )

        # No validation on value passed here because in pipeline job, required code&environment maybe absent
        # and fill in later with job defaults.
        self.command = command
        self.code = code
        self.environment_variables = environment_variables
        self.environment = environment
        self.resources = resources  # type: ignore[assignment]
        self.distribution = distribution

        # check mutual exclusivity of promoted properties
        if self.resources is not None and instance_count is not None:
            msg = "instance_count and resources are mutually exclusive"
            raise ValidationException(
                message=msg,
                target=ErrorTarget.COMPONENT,
                no_personal_data_message=msg,
                error_category=ErrorCategory.USER_ERROR,
            )
        self.instance_count = instance_count
        self.additional_includes = additional_includes or []

    def _to_ordered_dict_for_yaml_dump(self) -> Dict:
        """Dump the component content into a sorted yaml string.

        :return: The ordered dict
        :rtype: Dict
        """

        obj: dict = super()._to_ordered_dict_for_yaml_dump()
        # dict dumped base on schema will transfer code to an absolute path, while we want to keep its original value
        if self.code and isinstance(self.code, str):
            obj["code"] = self.code
        return obj

    @property
    def instance_count(self) -> Optional[int]:
        """The number of instances or nodes to be used by the compute target.

        :return: The number of instances or nodes.
        :rtype: int
        """
        return self.resources.instance_count if self.resources and not isinstance(self.resources, dict) else None

    @instance_count.setter
    def instance_count(self, value: int) -> None:
        """Sets the number of instances or nodes to be used by the compute target.

        :param value: The number of instances of nodes to be used by the compute target. Defaults to 1.
        :type value: int
        """
        if not value:
            return
        if not self.resources:
            self.resources = JobResourceConfiguration(instance_count=value)
        else:
            if not isinstance(self.resources, dict):
                self.resources.instance_count = value

    @classmethod
    def _attr_type_map(cls) -> dict:
        return {
            "environment": (str, Environment),
            "environment_variables": dict,
            "resources": (dict, JobResourceConfiguration),
            "code": (str, os.PathLike),
        }

    def _to_dict(self) -> Dict:
        return cast(
            dict, convert_ordered_dict_to_dict({**self._other_parameter, **super(CommandComponent, self)._to_dict()})
        )

    @classmethod
    def _from_rest_object_to_init_params(cls, obj: ComponentVersion) -> Dict:
        # put it here as distribution is shared by some components, e.g. command
        distribution = obj.properties.component_spec.pop("distribution", None)
        init_kwargs: dict = super()._from_rest_object_to_init_params(obj)
        if distribution:
            init_kwargs["distribution"] = DistributionConfiguration._from_rest_object(distribution)
        return init_kwargs

    def _get_environment_id(self) -> Union[str, None]:
        # Return environment id of environment
        # handle case when environment is defined inline
        if isinstance(self.environment, Environment):
            _id: Optional[str] = self.environment.id
            return _id
        return self.environment

    # region SchemaValidatableMixin
    @classmethod
    def _create_schema_for_validation(cls, context: Any) -> Union[PathAwareSchema, Schema]:
        return CommandComponentSchema(context=context)

    def _customized_validate(self) -> MutableValidationResult:
        validation_result = super(CommandComponent, self)._customized_validate()
        self._append_diagnostics_and_check_if_origin_code_reliable_for_local_path_validation(validation_result)
        validation_result.merge_with(self._validate_command())
        validation_result.merge_with(self._validate_early_available_output())
        return validation_result

    def _validate_command(self) -> MutableValidationResult:
        validation_result = self._create_empty_validation_result()
        # command
        if self.command:
            invalid_expressions = []
            for data_binding_expression in get_all_data_binding_expressions(self.command, is_singular=False):
                if not self._is_valid_data_binding_expression(data_binding_expression):
                    invalid_expressions.append(data_binding_expression)

            if invalid_expressions:
                validation_result.append_error(
                    yaml_path="command",
                    message="Invalid data binding expression: {}".format(", ".join(invalid_expressions)),
                )
        return validation_result

    def _validate_early_available_output(self) -> MutableValidationResult:
        validation_result = self._create_empty_validation_result()
        for name, output in self.outputs.items():
            if output.early_available is True and output._is_primitive_type is not True:
                msg = (
                    f"Early available output {name!r} requires output is primitive type, "
                    f"got {output._is_primitive_type!r}."
                )
                validation_result.append_error(message=msg, yaml_path=f"outputs.{name}")
        return validation_result

    def _is_valid_data_binding_expression(self, data_binding_expression: str) -> bool:
        current_obj: Any = self
        for item in data_binding_expression.split("."):
            if hasattr(current_obj, item):
                current_obj = getattr(current_obj, item)
            else:
                try:
                    current_obj = current_obj[item]
                except Exception:  # pylint: disable=W0718
                    return False
        return True

    # endregion

    @classmethod
    def _parse_args_description_from_docstring(cls, docstring: str) -> Dict:
        res: dict = parse_args_description_from_docstring(docstring)
        return res

    def __str__(self) -> str:
        try:
            toYaml: str = self._to_yaml()
            return toYaml
        except BaseException:  # pylint: disable=W0718
            toStr: str = super(CommandComponent, self).__str__()
            return toStr