about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/azure/ai/ml/entities/_builders/parallel.py
blob: db1de79730c02e1ba0a11e476d5038e20ce689fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------

# pylint: disable=protected-access

import copy
import json
import logging
import os
import re
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Type, Union, cast

from marshmallow import INCLUDE, Schema

from azure.ai.ml._schema.core.fields import NestedField, UnionField
from azure.ai.ml._schema.job.identity import AMLTokenIdentitySchema, ManagedIdentitySchema, UserIdentitySchema
from azure.ai.ml.entities._credentials import (
    AmlTokenConfiguration,
    ManagedIdentityConfiguration,
    UserIdentityConfiguration,
    _BaseJobIdentityConfiguration,
)
from azure.ai.ml.entities._job.job import Job
from azure.ai.ml.entities._job.parallel.run_function import RunFunction
from azure.ai.ml.entities._job.pipeline._io import NodeOutput
from azure.ai.ml.exceptions import MlException

from ..._schema import PathAwareSchema
from ..._utils.utils import is_data_binding_expression
from ...constants._common import ARM_ID_PREFIX
from ...constants._component import NodeType
from .._component.component import Component
from .._component.flow import FlowComponent
from .._component.parallel_component import ParallelComponent
from .._inputs_outputs import Input, Output
from .._job.job_resource_configuration import JobResourceConfiguration
from .._job.parallel.parallel_job import ParallelJob
from .._job.parallel.parallel_task import ParallelTask
from .._job.parallel.retry_settings import RetrySettings
from .._job.pipeline._io import NodeWithGroupInputMixin
from .._util import convert_ordered_dict_to_dict, get_rest_dict_for_node_attrs, validate_attribute_type
from .base_node import BaseNode

module_logger = logging.getLogger(__name__)


class Parallel(BaseNode, NodeWithGroupInputMixin):  # pylint: disable=too-many-instance-attributes
    """Base class for parallel node, used for parallel component version consumption.

    You should not instantiate this class directly. Instead, you should
    create from builder function: parallel.

    :param component: Id or instance of the parallel component/job to be run for the step
    :type component: ~azure.ai.ml.entities._component.parallel_component.parallelComponent
    :param name: Name of the parallel
    :type name: str
    :param description: Description of the commad
    :type description: str
    :param tags: Tag dictionary. Tags can be added, removed, and updated
    :type tags: dict[str, str]
    :param properties: The job property dictionary
    :type properties: dict[str, str]
    :param display_name: Display name of the job
    :type display_name: str
    :param retry_settings: Parallel job run failed retry
    :type retry_settings: BatchRetrySettings
    :param logging_level: A string of the logging level name
    :type logging_level: str
    :param max_concurrency_per_instance: The max parallellism that each compute instance has
    :type max_concurrency_per_instance: int
    :param error_threshold: The number of item processing failures should be ignored
    :type error_threshold: int
    :param mini_batch_error_threshold: The number of mini batch processing failures should be ignored
    :type mini_batch_error_threshold: int
    :param task: The parallel task
    :type task: ParallelTask
    :param mini_batch_size: For FileDataset input, this field is the number of files
                            a user script can process in one run() call.
                            For TabularDataset input, this field is the approximate size of data
                            the user script can process in one run() call.
                            Example values are 1024, 1024KB, 10MB, and 1GB. (optional, default value is 10 files
                            for FileDataset and 1MB for TabularDataset.)
                            This value could be set through PipelineParameter
    :type mini_batch_size: str
    :param partition_keys: The keys used to partition dataset into mini-batches. If specified,
                           the data with the same key will be partitioned into the same mini-batch.
                           If both partition_keys and mini_batch_size are specified,
                           the partition keys will take effect.
                           The input(s) must be partitioned dataset(s),
                           and the partition_keys must be a subset of the keys of every input dataset for this to work.
    :keyword identity: The identity that the command job will use while running on compute.
    :paramtype identity: Optional[Union[
        dict[str, str],
        ~azure.ai.ml.entities.ManagedIdentityConfiguration,
        ~azure.ai.ml.entities.AmlTokenConfiguration,
        ~azure.ai.ml.entities.UserIdentityConfiguration]]
    :type partition_keys: List
    :param input_data: The input data
    :type input_data: str
    :param inputs: Inputs of the component/job
    :type inputs: dict
    :param outputs: Outputs of the component/job
    :type outputs: dict
    """

    # pylint: disable=too-many-statements
    def __init__(
        self,
        *,
        component: Union[ParallelComponent, str],
        compute: Optional[str] = None,
        inputs: Optional[Dict[str, Union[NodeOutput, Input, str, bool, int, float, Enum]]] = None,
        outputs: Optional[Dict[str, Union[str, Output, "Output"]]] = None,
        retry_settings: Optional[Union[RetrySettings, Dict[str, str]]] = None,
        logging_level: Optional[str] = None,
        max_concurrency_per_instance: Optional[int] = None,
        error_threshold: Optional[int] = None,
        mini_batch_error_threshold: Optional[int] = None,
        input_data: Optional[str] = None,
        task: Optional[Union[ParallelTask, RunFunction, Dict]] = None,
        partition_keys: Optional[List] = None,
        mini_batch_size: Optional[Union[str, int]] = None,
        resources: Optional[JobResourceConfiguration] = None,
        environment_variables: Optional[Dict] = None,
        identity: Optional[
            Union[ManagedIdentityConfiguration, AmlTokenConfiguration, UserIdentityConfiguration, Dict]
        ] = None,
        **kwargs: Any,
    ) -> None:
        # validate init params are valid type
        validate_attribute_type(attrs_to_check=locals(), attr_type_map=self._attr_type_map())
        kwargs.pop("type", None)

        if isinstance(component, FlowComponent):
            # make input definition fit actual inputs for flow component
            with component._inputs._fit_inputs(inputs):  # type: ignore[attr-defined]
                BaseNode.__init__(
                    self,
                    type=NodeType.PARALLEL,
                    component=component,
                    inputs=inputs,
                    outputs=outputs,
                    compute=compute,
                    **kwargs,
                )
        else:
            BaseNode.__init__(
                self,
                type=NodeType.PARALLEL,
                component=component,
                inputs=inputs,
                outputs=outputs,
                compute=compute,
                **kwargs,
            )
        # init mark for _AttrDict
        self._init = True

        self._task = task

        if (
            mini_batch_size is not None
            and not isinstance(mini_batch_size, int)
            and not is_data_binding_expression(mini_batch_size)
        ):
            """Convert str to int."""  # pylint: disable=pointless-string-statement
            pattern = re.compile(r"^\d+([kKmMgG][bB])*$")
            if not pattern.match(mini_batch_size):
                raise ValueError(r"Parameter mini_batch_size must follow regex rule ^\d+([kKmMgG][bB])*$")

            try:
                mini_batch_size = int(mini_batch_size)
            except ValueError as e:
                if not isinstance(mini_batch_size, int):
                    unit = mini_batch_size[-2:].lower()
                    if unit == "kb":
                        mini_batch_size = int(mini_batch_size[0:-2]) * 1024
                    elif unit == "mb":
                        mini_batch_size = int(mini_batch_size[0:-2]) * 1024 * 1024
                    elif unit == "gb":
                        mini_batch_size = int(mini_batch_size[0:-2]) * 1024 * 1024 * 1024
                    else:
                        raise ValueError("mini_batch_size unit must be kb, mb or gb") from e

        self.mini_batch_size = mini_batch_size
        self.partition_keys = partition_keys
        self.input_data = input_data
        self._retry_settings = retry_settings
        self.logging_level = logging_level
        self.max_concurrency_per_instance = max_concurrency_per_instance
        self.error_threshold = error_threshold
        self.mini_batch_error_threshold = mini_batch_error_threshold
        self._resources = resources
        self.environment_variables = {} if environment_variables is None else environment_variables
        self._identity = identity
        if isinstance(self.component, ParallelComponent):
            self.resources = cast(JobResourceConfiguration, self.resources) or cast(
                JobResourceConfiguration, copy.deepcopy(self.component.resources)
            )
            # TODO: Bug Item number: 2897665
            self.retry_settings = self.retry_settings or copy.deepcopy(self.component.retry_settings)  # type: ignore
            self.input_data = self.input_data or self.component.input_data
            self.max_concurrency_per_instance = (
                self.max_concurrency_per_instance or self.component.max_concurrency_per_instance
            )
            self.mini_batch_error_threshold = (
                self.mini_batch_error_threshold or self.component.mini_batch_error_threshold
            )
            self.mini_batch_size = self.mini_batch_size or self.component.mini_batch_size
            self.partition_keys = self.partition_keys or copy.deepcopy(self.component.partition_keys)

            if not self.task:
                self.task = self.component.task
                # task.code is based on self.component.base_path
                self._base_path = self.component.base_path

        self._init = False

    @classmethod
    def _get_supported_outputs_types(cls) -> Tuple:
        return str, Output

    @property
    def retry_settings(self) -> RetrySettings:
        """Get the retry settings for the parallel job.

        :return: The retry settings for the parallel job.
        :rtype: ~azure.ai.ml.entities._job.parallel.retry_settings.RetrySettings
        """
        return self._retry_settings  # type: ignore

    @retry_settings.setter
    def retry_settings(self, value: Union[RetrySettings, Dict]) -> None:
        """Set the retry settings for the parallel job.

        :param value: The retry settings for the parallel job.
        :type value: ~azure.ai.ml.entities._job.parallel.retry_settings.RetrySettings or dict
        """
        if isinstance(value, dict):
            value = RetrySettings(**value)
        self._retry_settings = value

    @property
    def resources(self) -> Optional[JobResourceConfiguration]:
        """Get the resource configuration for the parallel job.

        :return: The resource configuration for the parallel job.
        :rtype: ~azure.ai.ml.entities._job.job_resource_configuration.JobResourceConfiguration
        """
        return self._resources

    @resources.setter
    def resources(self, value: Union[JobResourceConfiguration, Dict]) -> None:
        """Set the resource configuration for the parallel job.

        :param value: The resource configuration for the parallel job.
        :type value: ~azure.ai.ml.entities._job.job_resource_configuration.JobResourceConfiguration or dict
        """
        if isinstance(value, dict):
            value = JobResourceConfiguration(**value)
        self._resources = value

    @property
    def identity(
        self,
    ) -> Optional[Union[ManagedIdentityConfiguration, AmlTokenConfiguration, UserIdentityConfiguration, Dict]]:
        """The identity that the job will use while running on compute.

        :return: The identity that the job will use while running on compute.
        :rtype: Optional[Union[~azure.ai.ml.ManagedIdentityConfiguration, ~azure.ai.ml.AmlTokenConfiguration,
            ~azure.ai.ml.UserIdentityConfiguration]]
        """
        return self._identity

    @identity.setter
    def identity(
        self,
        value: Union[Dict, ManagedIdentityConfiguration, AmlTokenConfiguration, UserIdentityConfiguration, None],
    ) -> None:
        """Sets the identity that the job will use while running on compute.

        :param value: The identity that the job will use while running on compute.
        :type value: Union[dict[str, str], ~azure.ai.ml.ManagedIdentityConfiguration,
            ~azure.ai.ml.AmlTokenConfiguration, ~azure.ai.ml.UserIdentityConfiguration]
        """
        if isinstance(value, dict):
            identity_schema = UnionField(
                [
                    NestedField(ManagedIdentitySchema, unknown=INCLUDE),
                    NestedField(AMLTokenIdentitySchema, unknown=INCLUDE),
                    NestedField(UserIdentitySchema, unknown=INCLUDE),
                ]
            )
            value = identity_schema._deserialize(value=value, attr=None, data=None)
        self._identity = value

    @property
    def component(self) -> Union[str, ParallelComponent]:
        """Get the component of the parallel job.

        :return: The component of the parallel job.
        :rtype: str or ~azure.ai.ml.entities._component.parallel_component.ParallelComponent
        """
        res: Union[str, ParallelComponent] = self._component
        return res

    @property
    def task(self) -> Optional[ParallelTask]:
        """Get the parallel task.

        :return: The parallel task.
        :rtype: ~azure.ai.ml.entities._job.parallel.parallel_task.ParallelTask
        """
        return self._task  # type: ignore

    @task.setter
    def task(self, value: Union[ParallelTask, Dict]) -> None:
        """Set the parallel task.

        :param value: The parallel task.
        :type value: ~azure.ai.ml.entities._job.parallel.parallel_task.ParallelTask or dict
        """
        # base path should be reset if task is set via sdk
        self._base_path: Optional[Union[str, os.PathLike]] = None
        if isinstance(value, dict):
            value = ParallelTask(**value)
        self._task = value

    def _set_base_path(self, base_path: Optional[Union[str, os.PathLike]]) -> None:
        if self._base_path:
            return
        super(Parallel, self)._set_base_path(base_path)

    def set_resources(
        self,
        *,
        instance_type: Optional[Union[str, List[str]]] = None,
        instance_count: Optional[int] = None,
        properties: Optional[Dict] = None,
        docker_args: Optional[str] = None,
        shm_size: Optional[str] = None,
        # pylint: disable=unused-argument
        **kwargs: Any,
    ) -> None:
        """Set the resources for the parallel job.

        :keyword instance_type: The instance type or a list of instance types used as supported by the compute target.
        :paramtype instance_type: Union[str, List[str]]
        :keyword instance_count: The number of instances or nodes used by the compute target.
        :paramtype instance_count: int
        :keyword properties: The property dictionary for the resources.
        :paramtype properties: dict
        :keyword docker_args: Extra arguments to pass to the Docker run command.
        :paramtype docker_args: str
        :keyword shm_size: Size of the Docker container's shared memory block.
        :paramtype shm_size: str
        """
        if self.resources is None:
            self.resources = JobResourceConfiguration()

        if instance_type is not None:
            self.resources.instance_type = instance_type
        if instance_count is not None:
            self.resources.instance_count = instance_count
        if properties is not None:
            self.resources.properties = properties
        if docker_args is not None:
            self.resources.docker_args = docker_args
        if shm_size is not None:
            self.resources.shm_size = shm_size

        # Save the resources to internal component as well, otherwise calling sweep() will loose the settings
        if isinstance(self.component, Component):
            self.component.resources = self.resources

    @classmethod
    def _attr_type_map(cls) -> dict:
        return {
            "component": (str, ParallelComponent, FlowComponent),
            "retry_settings": (dict, RetrySettings),
            "resources": (dict, JobResourceConfiguration),
            "task": (dict, ParallelTask),
            "logging_level": str,
            "max_concurrency_per_instance": (str, int),
            "error_threshold": (str, int),
            "mini_batch_error_threshold": (str, int),
            "environment_variables": dict,
        }

    def _to_job(self) -> ParallelJob:
        return ParallelJob(
            name=self.name,
            display_name=self.display_name,
            description=self.description,
            tags=self.tags,
            properties=self.properties,
            compute=self.compute,
            resources=self.resources,
            partition_keys=self.partition_keys,
            mini_batch_size=self.mini_batch_size,
            task=self.task,
            retry_settings=self.retry_settings,
            input_data=self.input_data,
            logging_level=self.logging_level,
            identity=self.identity,
            max_concurrency_per_instance=self.max_concurrency_per_instance,
            error_threshold=self.error_threshold,
            mini_batch_error_threshold=self.mini_batch_error_threshold,
            environment_variables=self.environment_variables,
            inputs=self._job_inputs,
            outputs=self._job_outputs,
        )

    def _parallel_attr_to_dict(self, attr: str, base_type: Type) -> dict:
        # Convert parallel attribute to dict
        rest_attr = {}
        parallel_attr = getattr(self, attr)
        if parallel_attr is not None:
            if isinstance(parallel_attr, base_type):
                rest_attr = parallel_attr._to_dict()
            elif isinstance(parallel_attr, dict):
                rest_attr = parallel_attr
            else:
                msg = f"Expecting {base_type} for {attr}, got {type(parallel_attr)} instead."
                raise MlException(message=msg, no_personal_data_message=msg)
        # TODO: Bug Item number: 2897665
        res: dict = convert_ordered_dict_to_dict(rest_attr)  # type: ignore
        return res

    @classmethod
    def _picked_fields_from_dict_to_rest_object(cls) -> List[str]:
        return [
            "type",
            "resources",
            "error_threshold",
            "mini_batch_error_threshold",
            "environment_variables",
            "max_concurrency_per_instance",
            "task",
            "input_data",
        ]

    def _to_rest_object(self, **kwargs: Any) -> dict:
        rest_obj: Dict = super(Parallel, self)._to_rest_object(**kwargs)
        rest_obj.update(
            convert_ordered_dict_to_dict(
                {
                    "componentId": self._get_component_id(),
                    "retry_settings": get_rest_dict_for_node_attrs(self.retry_settings),
                    "logging_level": self.logging_level,
                    "mini_batch_size": self.mini_batch_size,
                    "partition_keys": (
                        json.dumps(self.partition_keys) if self.partition_keys is not None else self.partition_keys
                    ),
                    "identity": get_rest_dict_for_node_attrs(self.identity),
                    "resources": get_rest_dict_for_node_attrs(self.resources),
                }
            )
        )
        return rest_obj

    @classmethod
    def _from_rest_object_to_init_params(cls, obj: dict) -> Dict:
        obj = super()._from_rest_object_to_init_params(obj)
        # retry_settings
        if "retry_settings" in obj and obj["retry_settings"]:
            obj["retry_settings"] = RetrySettings._from_dict(obj["retry_settings"])

        if "task" in obj and obj["task"]:
            obj["task"] = ParallelTask._from_dict(obj["task"])
            task_code = obj["task"].code
            task_env = obj["task"].environment
            # remove azureml: prefix in code and environment which is added in _to_rest_object
            if task_code and isinstance(task_code, str) and task_code.startswith(ARM_ID_PREFIX):
                obj["task"].code = task_code[len(ARM_ID_PREFIX) :]
            if task_env and isinstance(task_env, str) and task_env.startswith(ARM_ID_PREFIX):
                obj["task"].environment = task_env[len(ARM_ID_PREFIX) :]

        if "resources" in obj and obj["resources"]:
            obj["resources"] = JobResourceConfiguration._from_rest_object(obj["resources"])

        if "partition_keys" in obj and obj["partition_keys"]:
            obj["partition_keys"] = json.dumps(obj["partition_keys"])
        if "identity" in obj and obj["identity"]:
            obj["identity"] = _BaseJobIdentityConfiguration._from_rest_object(obj["identity"])
        return obj

    def _build_inputs(self) -> Dict:
        inputs = super(Parallel, self)._build_inputs()
        built_inputs = {}
        # Validate and remove non-specified inputs
        for key, value in inputs.items():
            if value is not None:
                built_inputs[key] = value
        return built_inputs

    @classmethod
    def _create_schema_for_validation(cls, context: Any) -> Union[PathAwareSchema, Schema]:
        from azure.ai.ml._schema.pipeline import ParallelSchema

        return ParallelSchema(context=context)

    # pylint: disable-next=docstring-missing-param
    def __call__(self, *args: Any, **kwargs: Any) -> "Parallel":
        """Call Parallel as a function will return a new instance each time.

        :return: A Parallel node
        :rtype: Parallel
        """
        if isinstance(self._component, Component):
            # call this to validate inputs
            node: Parallel = self._component(*args, **kwargs)
            # merge inputs
            for name, original_input in self.inputs.items():
                if name not in kwargs:
                    # use setattr here to make sure owner of input won't change
                    setattr(node.inputs, name, original_input._data)
                # get outputs
            for name, original_output in self.outputs.items():
                # use setattr here to make sure owner of input won't change
                if not isinstance(original_output, str):
                    setattr(node.outputs, name, original_output._data)
            self._refine_optional_inputs_with_no_value(node, kwargs)
            # set default values: compute, environment_variables, outputs
            node._name = self.name
            node.compute = self.compute
            node.tags = self.tags
            node.display_name = self.display_name
            node.mini_batch_size = self.mini_batch_size
            node.partition_keys = self.partition_keys
            node.logging_level = self.logging_level
            node.max_concurrency_per_instance = self.max_concurrency_per_instance
            node.error_threshold = self.error_threshold
            # deep copy for complex object
            node.retry_settings = copy.deepcopy(self.retry_settings)
            node.input_data = self.input_data
            node.task = copy.deepcopy(self.task)
            node._base_path = self.base_path
            node.resources = copy.deepcopy(self.resources)
            node.environment_variables = copy.deepcopy(self.environment_variables)
            node.identity = copy.deepcopy(self.identity)
            return node
        msg = f"Parallel can be called as a function only when referenced component is {type(Component)}, \
            currently got {self._component}."
        raise MlException(message=msg, no_personal_data_message=msg)

    @classmethod
    def _load_from_dict(cls, data: Dict, context: Dict, additional_message: str, **kwargs: Any) -> "Job":
        raise NotImplementedError()