about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/azure/ai/ml/entities/_builders/do_while.py
blob: ecfd51caeabb7b9b5196ae6de93e6c1e2ea928ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
import logging
from typing import Any, Dict, Optional, Union

from typing_extensions import Literal

from azure.ai.ml._schema.pipeline.control_flow_job import DoWhileSchema
from azure.ai.ml.constants._component import DO_WHILE_MAX_ITERATION, ControlFlowType
from azure.ai.ml.entities._job.job_limits import DoWhileJobLimits
from azure.ai.ml.entities._job.pipeline._io import InputOutputBase, NodeInput, NodeOutput
from azure.ai.ml.entities._job.pipeline.pipeline_job import PipelineJob
from azure.ai.ml.entities._validation import MutableValidationResult

from .._util import load_from_dict, validate_attribute_type
from .base_node import BaseNode
from .control_flow_node import LoopNode
from .pipeline import Pipeline

module_logger = logging.getLogger(__name__)


class DoWhile(LoopNode):
    """Do-while loop node in the pipeline job. By specifying the loop body and loop termination condition in this class,
    a job-level do while loop can be implemented. It will be initialized when calling dsl.do_while or when loading the
    pipeline yml containing do_while node. Please do not manually initialize this class.

    :param body: Pipeline job for the do-while loop body.
    :type body: ~azure.ai.ml.entities._builders.pipeline.Pipeline
    :param condition: Boolean type control output of body as do-while loop condition.
    :type condition: ~azure.ai.ml.entities.Output
    :param mapping: Output-Input mapping for each round of the do-while loop.
        Key is the last round output of the body. Value is the input port for the current body.
    :type mapping: dict[Union[str, ~azure.ai.ml.entities.Output],
        Union[str, ~azure.ai.ml.entities.Input, list]]
    :param limits: Limits in running the do-while node.
    :type limits: Union[dict, ~azure.ai.ml.entities._job.job_limits.DoWhileJobLimits]
    :raises ValidationError: If the initialization parameters are not of valid types.
    """

    def __init__(
        self,
        *,
        body: Union[Pipeline, BaseNode],
        condition: Optional[Union[str, NodeInput, NodeOutput]],
        mapping: Dict,
        limits: Optional[Union[dict, DoWhileJobLimits]] = None,
        **kwargs: Any,
    ) -> None:
        # validate init params are valid type
        validate_attribute_type(attrs_to_check=locals(), attr_type_map=self._attr_type_map())

        kwargs.pop("type", None)
        super(DoWhile, self).__init__(
            type=ControlFlowType.DO_WHILE,
            body=body,
            **kwargs,
        )

        # init mark for _AttrDict
        self._init = True
        self._mapping = mapping or {}
        self._condition = condition
        self._limits = limits
        self._init = False

    @property
    def mapping(self) -> Dict:
        """Get the output-input mapping for each round of the do-while loop.

        :return: Output-Input mapping for each round of the do-while loop.
        :rtype: dict[Union[str, ~azure.ai.ml.entities.Output],
            Union[str, ~azure.ai.ml.entities.Input, list]]
        """
        return self._mapping

    @property
    def condition(self) -> Optional[Union[str, NodeInput, NodeOutput]]:
        """Get the boolean type control output of the body as the do-while loop condition.

        :return: Control output of the body as the do-while loop condition.
        :rtype: ~azure.ai.ml.entities.Output
        """
        return self._condition

    @property
    def limits(self) -> Union[Dict, DoWhileJobLimits, None]:
        """Get the limits in running the do-while node.

        :return: Limits in running the do-while node.
        :rtype: Union[dict, ~azure.ai.ml.entities._job.job_limits.DoWhileJobLimits]
        """
        return self._limits

    @classmethod
    def _attr_type_map(cls) -> dict:
        return {
            **super(DoWhile, cls)._attr_type_map(),
            "mapping": dict,
            "limits": (dict, DoWhileJobLimits),
        }

    @classmethod
    def _load_from_dict(cls, data: Dict, context: Dict, additional_message: str, **kwargs: Any) -> "DoWhile":
        loaded_data = load_from_dict(DoWhileSchema, data, context, additional_message, **kwargs)

        return cls(**loaded_data)

    @classmethod
    def _get_port_obj(
        cls, body: BaseNode, port_name: str, is_input: bool = True, validate_port: bool = True
    ) -> Union[str, NodeInput, NodeOutput]:
        if is_input:
            port = body.inputs.get(port_name, None)
        else:
            port = body.outputs.get(port_name, None)
        if port is None:
            if validate_port:
                raise cls._create_validation_error(
                    message=f"Cannot find {port_name} in do_while loop body {'inputs' if is_input else 'outputs'}.",
                    no_personal_data_message=f"Miss port in do_while loop body {'inputs' if is_input else 'outputs'}.",
                )
            return port_name

        res: Union[str, NodeInput, NodeOutput] = port
        return res

    @classmethod
    def _create_instance_from_schema_dict(
        cls, pipeline_jobs: Dict[str, BaseNode], loaded_data: Dict, validate_port: bool = True
    ) -> "DoWhile":
        """Create a do_while instance from schema parsed dict.

        :param pipeline_jobs: The pipeline jobs
        :type pipeline_jobs: Dict[str, BaseNode]
        :param loaded_data: The loaded data
        :type loaded_data: Dict
        :param validate_port: Whether to raise if inputs/outputs are not present. Defaults to True
        :type validate_port: bool
        :return: The DoWhile node
        :rtype: DoWhile
        """

        # Get body object from pipeline job list.
        body_name = cls._get_data_binding_expression_value(loaded_data.pop("body"), regex=r"\{\{.*\.jobs\.(.*)\}\}")
        body = cls._get_body_from_pipeline_jobs(pipeline_jobs, body_name)

        # Convert mapping key-vault to input/output object
        mapping = {}
        for k, v in loaded_data.pop("mapping", {}).items():
            output_name = cls._get_data_binding_expression_value(k, regex=r"\{\{.*\.%s\.outputs\.(.*)\}\}" % body_name)
            input_names = v if isinstance(v, list) else [v]
            input_names = [
                cls._get_data_binding_expression_value(item, regex=r"\{\{.*\.%s\.inputs\.(.*)\}\}" % body_name)
                for item in input_names
            ]
            mapping[output_name] = [cls._get_port_obj(body, item, validate_port=validate_port) for item in input_names]

        limits = loaded_data.pop("limits", None)

        if "condition" in loaded_data:
            # Convert condition to output object
            condition_name = cls._get_data_binding_expression_value(
                loaded_data.pop("condition"), regex=r"\{\{.*\.%s\.outputs\.(.*)\}\}" % body_name
            )
            condition_value = cls._get_port_obj(body, condition_name, is_input=False, validate_port=validate_port)
        else:
            condition_value = None

        do_while_instance = DoWhile(
            body=body,
            mapping=mapping,
            condition=condition_value,
            **loaded_data,
        )
        do_while_instance.set_limits(**limits)

        return do_while_instance

    @classmethod
    def _create_schema_for_validation(cls, context: Any) -> DoWhileSchema:
        return DoWhileSchema(context=context)

    @classmethod
    def _from_rest_object(cls, obj: dict, pipeline_jobs: dict) -> "DoWhile":
        # pylint: disable=protected-access

        obj = BaseNode._from_rest_object_to_init_params(obj)
        return cls._create_instance_from_schema_dict(pipeline_jobs, obj, validate_port=False)

    def set_limits(
        self,
        *,
        max_iteration_count: int,
        # pylint: disable=unused-argument
        **kwargs: Any,
    ) -> None:
        """
        Set the maximum iteration count for the do-while job.

        The range of the iteration count is (0, 1000].

        :keyword max_iteration_count: The maximum iteration count for the do-while job.
        :paramtype max_iteration_count: int
        """
        if isinstance(self.limits, DoWhileJobLimits):
            self.limits._max_iteration_count = max_iteration_count  # pylint: disable=protected-access
        else:
            self._limits = DoWhileJobLimits(max_iteration_count=max_iteration_count)

    def _customized_validate(self) -> MutableValidationResult:
        validation_result = self._validate_loop_condition()
        validation_result.merge_with(self._validate_body())
        validation_result.merge_with(self._validate_do_while_limit())
        validation_result.merge_with(self._validate_body_output_mapping())
        return validation_result

    def _validate_port(
        self,
        port: Union[str, NodeInput, NodeOutput],
        node_ports: Dict[str, Union[NodeInput, NodeOutput]],
        port_type: Literal["input", "output"],
        yaml_path: str,
    ) -> MutableValidationResult:
        """Validate input/output port is exist in the dowhile body.

        :param port: Either:
          * The name of an input or output
          * An input object
          * An output object
        :type port: Union[str, NodeInput, NodeOutput],
        :param node_ports: The node input/outputs
        :type node_ports: Union[Dict[str, Union[NodeInput, NodeOutput]]]
        :param port_type: The port type
        :type port_type: Literal["input", "output"],
        :param yaml_path: The yaml path
        :type yaml_path: str,
        :return: The validation result
        :rtype: MutableValidationResult
        """
        validation_result = self._create_empty_validation_result()
        if isinstance(port, str):
            port_obj = node_ports.get(port, None)
        else:
            port_obj = port
        if (
            port_obj is not None
            and port_obj._owner is not None  # pylint: disable=protected-access
            and not isinstance(port_obj._owner, PipelineJob)  # pylint: disable=protected-access
            and port_obj._owner._instance_id != self.body._instance_id  # pylint: disable=protected-access
        ):
            # Check the port owner is dowhile body.
            validation_result.append_error(
                yaml_path=yaml_path,
                message=(
                    f"{port_obj._port_name} is the {port_type} of {port_obj._owner.name}, "  # pylint: disable=protected-access
                    f"dowhile only accept {port_type} of the body: {self.body.name}."
                ),
            )
        elif port_obj is None or port_obj._port_name not in node_ports:  # pylint: disable=protected-access
            # Check port is exist in dowhile body.
            validation_result.append_error(
                yaml_path=yaml_path,
                message=(
                    f"The {port_type} of mapping {port_obj._port_name if port_obj else port} does not "  # pylint: disable=protected-access
                    f"exist in {self.body.name} {port_type}, existing {port_type}: {node_ports.keys()}"
                ),
            )
        return validation_result

    def _validate_loop_condition(self) -> MutableValidationResult:
        # pylint: disable=protected-access
        validation_result = self._create_empty_validation_result()
        if self.condition is not None:
            # Check condition exists in dowhile body.
            validation_result.merge_with(
                self._validate_port(self.condition, self.body.outputs, port_type="output", yaml_path="condition")
            )
            if validation_result.passed:
                # Check condition is a control output.
                condition_name = self.condition if isinstance(self.condition, str) else self.condition._port_name
                if not self.body._outputs[condition_name]._is_primitive_type:
                    validation_result.append_error(
                        yaml_path="condition",
                        message=(
                            f"{condition_name} is not a control output and is not primitive type. "
                            "The condition of dowhile must be the control output or primitive type of the body."
                        ),
                    )
        return validation_result

    def _validate_do_while_limit(self) -> MutableValidationResult:
        validation_result = self._create_empty_validation_result()
        if isinstance(self.limits, DoWhileJobLimits):
            if not self.limits or self.limits.max_iteration_count is None:
                return validation_result
            if isinstance(self.limits.max_iteration_count, InputOutputBase):
                validation_result.append_error(
                    yaml_path="limit.max_iteration_count",
                    message="The max iteration count cannot be linked with an primitive type input.",
                )
            elif self.limits.max_iteration_count > DO_WHILE_MAX_ITERATION or self.limits.max_iteration_count < 0:
                validation_result.append_error(
                    yaml_path="limit.max_iteration_count",
                    message=f"The max iteration count cannot be less than 0 or larger than {DO_WHILE_MAX_ITERATION}.",
                )
        return validation_result

    def _validate_body_output_mapping(self) -> MutableValidationResult:
        # pylint disable=protected-access
        validation_result = self._create_empty_validation_result()
        if not isinstance(self.mapping, dict):
            validation_result.append_error(
                yaml_path="mapping", message=f"Mapping expects a dict type but passes in a {type(self.mapping)} type."
            )
        else:
            # Record the mapping relationship between input and output
            input_output_mapping: Dict = {}
            # Validate mapping input&output should come from while body
            for output, inputs in self.mapping.items():
                # pylint: disable=protected-access
                output_name = output if isinstance(output, str) else output._port_name
                validate_results = self._validate_port(
                    output, self.body.outputs, port_type="output", yaml_path="mapping"
                )
                if validate_results.passed:
                    is_primitive_output = self.body._outputs[output_name]._is_primitive_type
                    inputs = inputs if isinstance(inputs, list) else [inputs]
                    for item in inputs:
                        input_validate_results = self._validate_port(
                            item, self.body.inputs, port_type="input", yaml_path="mapping"
                        )
                        validation_result.merge_with(input_validate_results)
                        # pylint: disable=protected-access
                        input_name = item if isinstance(item, str) else item._port_name
                        input_output_mapping[input_name] = input_output_mapping.get(input_name, []) + [output_name]
                        is_primitive_type = self.body._inputs[input_name]._meta._is_primitive_type

                        if input_validate_results.passed and not is_primitive_output and is_primitive_type:
                            validate_results.append_error(
                                yaml_path="mapping",
                                message=(
                                    f"{output_name} is a non-primitive type output and {input_name} "
                                    "is a primitive input. Non-primitive type output cannot be connected "
                                    "to an a primitive type input."
                                ),
                            )

                validation_result.merge_with(validate_results)
            # Validate whether input is linked to multiple outputs
            for _input, outputs in input_output_mapping.items():
                if len(outputs) > 1:
                    validation_result.append_error(
                        yaml_path="mapping", message=f"Input {_input} has been linked to multiple outputs {outputs}."
                    )
        return validation_result