1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
# mypy: disable-error-code="assignment"
# pylint: disable=R,docstring-missing-param,docstring-missing-return,docstring-missing-rtype,dangerous-default-value,redefined-outer-name,unused-wildcard-import,wildcard-import,raise-missing-from
import traceback
from pathlib import Path
from typing import Any, Dict, List, Union
from ._tracer import trace
from ._invoker import InvokerFactory
from ._core import (
ModelSettings,
Prompty,
PropertySettings,
TemplateSettings,
param_hoisting,
)
from ._utils import (
load_global_config,
load_prompty,
)
from ._renderers import *
from ._parsers import *
@trace(description="Create a headless prompty object for programmatic use.")
def headless(
api: str,
content: Union[str, List[str], dict],
configuration: Dict[str, Any] = {},
parameters: Dict[str, Any] = {},
connection: str = "default",
) -> Prompty:
"""Create a headless prompty object for programmatic use.
Parameters
----------
api : str
The API to use for the model
content : Union[str, List[str], dict]
The content to process
configuration : Dict[str, Any], optional
The configuration to use, by default {}
parameters : Dict[str, Any], optional
The parameters to use, by default {}
connection : str, optional
The connection to use, by default "default"
Returns
-------
Prompty
The headless prompty object
Example
-------
>>> import prompty
>>> p = prompty.headless(
api="embedding",
configuration={"type": "azure", "azure_deployment": "text-embedding-ada-002"},
content="hello world",
)
>>> emb = prompty.execute(p)
"""
# get caller's path (to get relative path for prompty.json)
caller = Path(traceback.extract_stack()[-2].filename)
templateSettings = TemplateSettings(type="NOOP", parser="NOOP")
modelSettings = ModelSettings(
api=api,
configuration=Prompty.normalize(
param_hoisting(configuration, load_global_config(caller.parent, connection)),
caller.parent,
),
parameters=parameters,
)
return Prompty(model=modelSettings, template=templateSettings, content=content)
def _load_raw_prompty(attributes: dict, content: str, p: Path, global_config: dict):
if "model" not in attributes:
attributes["model"] = {}
if "configuration" not in attributes["model"]:
attributes["model"]["configuration"] = global_config
else:
attributes["model"]["configuration"] = param_hoisting(
attributes["model"]["configuration"],
global_config,
)
# pull model settings out of attributes
try:
model = ModelSettings(**attributes.pop("model"))
except Exception as e:
raise ValueError(f"Error in model settings: {e}")
# pull template settings
try:
if "template" in attributes:
t = attributes.pop("template")
if isinstance(t, dict):
template = TemplateSettings(**t)
# has to be a string denoting the type
else:
template = TemplateSettings(type=t, parser="prompty")
else:
template = TemplateSettings(type="mustache", parser="prompty")
except Exception as e:
raise ValueError(f"Error in template loader: {e}")
# formalize inputs and outputs
if "inputs" in attributes:
try:
inputs = {k: PropertySettings(**v) for (k, v) in attributes.pop("inputs").items()}
except Exception as e:
raise ValueError(f"Error in inputs: {e}")
else:
inputs = {}
if "outputs" in attributes:
try:
outputs = {k: PropertySettings(**v) for (k, v) in attributes.pop("outputs").items()}
except Exception as e:
raise ValueError(f"Error in outputs: {e}")
else:
outputs = {}
prompty = Prompty(
**attributes,
model=model,
inputs=inputs,
outputs=outputs,
template=template,
content=content,
file=p,
)
return prompty
@trace(description="Load a prompty file.")
def load(prompty_file: Union[str, Path], configuration: str = "default") -> Prompty:
"""Load a prompty file.
Parameters
----------
prompty_file : Union[str, Path]
The path to the prompty file
configuration : str, optional
The configuration to use, by default "default"
Returns
-------
Prompty
The loaded prompty object
Example
-------
>>> import prompty
>>> p = prompty.load("prompts/basic.prompty")
>>> print(p)
"""
p = Path(prompty_file)
if not p.is_absolute():
# get caller's path (take into account trace frame)
caller = Path(traceback.extract_stack()[-3].filename)
p = Path(caller.parent / p).resolve().absolute()
# load dictionary from prompty file
matter = load_prompty(p)
attributes = matter["attributes"]
content = matter["body"]
# normalize attribute dictionary resolve keys and files
attributes = Prompty.normalize(attributes, p.parent)
# load global configuration
global_config = Prompty.normalize(load_global_config(p.parent, configuration), p.parent)
prompty = _load_raw_prompty(attributes, content, p, global_config)
# recursive loading of base prompty
if "base" in attributes:
# load the base prompty from the same directory as the current prompty
base = load(p.parent / attributes["base"])
prompty = Prompty.hoist_base_prompty(prompty, base)
return prompty
@trace(description="Prepare the inputs for the prompt.")
def prepare(
prompt: Prompty,
inputs: Dict[str, Any] = {},
):
"""Prepare the inputs for the prompt.
Parameters
----------
prompt : Prompty
The prompty object
inputs : Dict[str, Any], optional
The inputs to the prompt, by default {}
Returns
-------
dict
The prepared and hidrated template shaped to the LLM model
Example
-------
>>> import prompty
>>> p = prompty.load("prompts/basic.prompty")
>>> inputs = {"name": "John Doe"}
>>> content = prompty.prepare(p, inputs)
"""
inputs = param_hoisting(inputs, prompt.sample)
render = InvokerFactory.run_renderer(prompt, inputs, prompt.content)
result = InvokerFactory.run_parser(prompt, render)
return result
@trace(description="Prepare the inputs for the prompt.")
async def prepare_async(
prompt: Prompty,
inputs: Dict[str, Any] = {},
):
"""Prepare the inputs for the prompt.
Parameters
----------
prompt : Prompty
The prompty object
inputs : Dict[str, Any], optional
The inputs to the prompt, by default {}
Returns
-------
dict
The prepared and hidrated template shaped to the LLM model
Example
-------
>>> import prompty
>>> p = prompty.load("prompts/basic.prompty")
>>> inputs = {"name": "John Doe"}
>>> content = await prompty.prepare_async(p, inputs)
"""
inputs = param_hoisting(inputs, prompt.sample)
render = await InvokerFactory.run_renderer_async(prompt, inputs, prompt.content)
result = await InvokerFactory.run_parser_async(prompt, render)
return result
@trace(description="Run the prepared Prompty content against the model.")
def run(
prompt: Prompty,
content: Union[dict, list, str],
configuration: Dict[str, Any] = {},
parameters: Dict[str, Any] = {},
raw: bool = False,
):
"""Run the prepared Prompty content.
Parameters
----------
prompt : Prompty
The prompty object
content : Union[dict, list, str]
The content to process
configuration : Dict[str, Any], optional
The configuration to use, by default {}
parameters : Dict[str, Any], optional
The parameters to use, by default {}
raw : bool, optional
Whether to skip processing, by default False
Returns
-------
Any
The result of the prompt
Example
-------
>>> import prompty
>>> p = prompty.load("prompts/basic.prompty")
>>> inputs = {"name": "John Doe"}
>>> content = prompty.prepare(p, inputs)
>>> result = prompty.run(p, content)
"""
if configuration != {}:
prompt.model.configuration = param_hoisting(configuration, prompt.model.configuration)
if parameters != {}:
prompt.model.parameters = param_hoisting(parameters, prompt.model.parameters)
result = InvokerFactory.run_executor(prompt, content)
if not raw:
result = InvokerFactory.run_processor(prompt, result)
return result
@trace(description="Run the prepared Prompty content against the model.")
async def run_async(
prompt: Prompty,
content: Union[dict, list, str],
configuration: Dict[str, Any] = {},
parameters: Dict[str, Any] = {},
raw: bool = False,
):
"""Run the prepared Prompty content.
Parameters
----------
prompt : Prompty
The prompty object
content : Union[dict, list, str]
The content to process
configuration : Dict[str, Any], optional
The configuration to use, by default {}
parameters : Dict[str, Any], optional
The parameters to use, by default {}
raw : bool, optional
Whether to skip processing, by default False
Returns
-------
Any
The result of the prompt
Example
-------
>>> import prompty
>>> p = prompty.load("prompts/basic.prompty")
>>> inputs = {"name": "John Doe"}
>>> content = await prompty.prepare_async(p, inputs)
>>> result = await prompty.run_async(p, content)
"""
if configuration != {}:
prompt.model.configuration = param_hoisting(configuration, prompt.model.configuration)
if parameters != {}:
prompt.model.parameters = param_hoisting(parameters, prompt.model.parameters)
result = await InvokerFactory.run_executor_async(prompt, content)
if not raw:
result = await InvokerFactory.run_processor_async(prompt, result)
return result
@trace(description="Execute a prompty")
def execute(
prompt: Union[str, Prompty],
configuration: Dict[str, Any] = {},
parameters: Dict[str, Any] = {},
inputs: Dict[str, Any] = {},
raw: bool = False,
config_name: str = "default",
):
"""Execute a prompty.
Parameters
----------
prompt : Union[str, Prompty]
The prompty object or path to the prompty file
configuration : Dict[str, Any], optional
The configuration to use, by default {}
parameters : Dict[str, Any], optional
The parameters to use, by default {}
inputs : Dict[str, Any], optional
The inputs to the prompt, by default {}
raw : bool, optional
Whether to skip processing, by default False
connection : str, optional
The connection to use, by default "default"
Returns
-------
Any
The result of the prompt
Example
-------
>>> import prompty
>>> inputs = {"name": "John Doe"}
>>> result = prompty.execute("prompts/basic.prompty", inputs=inputs)
"""
if isinstance(prompt, str):
path = Path(prompt)
if not path.is_absolute():
# get caller's path (take into account trace frame)
caller = Path(traceback.extract_stack()[-3].filename)
path = Path(caller.parent / path).resolve().absolute()
prompt = load(path, config_name)
# prepare content
content = prepare(prompt, inputs)
# run LLM model
result = run(prompt, content, configuration, parameters, raw)
return result
|