1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
|
# pylint: disable=too-many-lines
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) Python Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
# pylint: disable=useless-super-delegation
import datetime
from typing import Any, Dict, List, Literal, Mapping, Optional, TYPE_CHECKING, Union, overload
from .. import _model_base
from .._model_base import rest_discriminator, rest_field
from ._enums import ChatRole
if TYPE_CHECKING:
from .. import models as _models
class ContentItem(_model_base.Model):
"""An abstract representation of a structured content item within a chat message.
You probably want to use the sub-classes and not this class directly. Known sub-classes are:
ImageContentItem, AudioContentItem, TextContentItem
:ivar type: The discriminated object type. Required. Default value is None.
:vartype type: str
"""
__mapping__: Dict[str, _model_base.Model] = {}
type: str = rest_discriminator(name="type")
"""The discriminated object type. Required. Default value is None."""
@overload
def __init__(
self,
*,
type: str,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class AudioContentItem(ContentItem, discriminator="input_audio"):
"""A structured chat content item containing an audio content.
:ivar type: The discriminated object type: always 'input_audio' for this type. Required.
Default value is "input_audio".
:vartype type: str
:ivar input_audio: The details of the input audio. Required.
:vartype input_audio: ~azure.ai.inference.models.InputAudio
"""
type: Literal["input_audio"] = rest_discriminator(name="type") # type: ignore
"""The discriminated object type: always 'input_audio' for this type. Required. Default value is
\"input_audio\"."""
input_audio: "_models.InputAudio" = rest_field()
"""The details of the input audio. Required."""
@overload
def __init__(
self,
*,
input_audio: "_models.InputAudio",
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, type="input_audio", **kwargs)
class ChatChoice(_model_base.Model):
"""The representation of a single prompt completion as part of an overall chat completions
request.
Generally, ``n`` choices are generated per provided prompt with a default value of 1.
Token limits and other settings may limit the number of choices generated.
:ivar index: The ordered index associated with this chat completions choice. Required.
:vartype index: int
:ivar finish_reason: The reason that this chat completions choice completed its generated.
Required. Known values are: "stop", "length", "content_filter", and "tool_calls".
:vartype finish_reason: str or ~azure.ai.inference.models.CompletionsFinishReason
:ivar message: The chat message for a given chat completions prompt. Required.
:vartype message: ~azure.ai.inference.models.ChatResponseMessage
"""
index: int = rest_field()
"""The ordered index associated with this chat completions choice. Required."""
finish_reason: Union[str, "_models.CompletionsFinishReason"] = rest_field()
"""The reason that this chat completions choice completed its generated. Required. Known values
are: \"stop\", \"length\", \"content_filter\", and \"tool_calls\"."""
message: "_models.ChatResponseMessage" = rest_field()
"""The chat message for a given chat completions prompt. Required."""
@overload
def __init__(
self,
*,
index: int,
finish_reason: Union[str, "_models.CompletionsFinishReason"],
message: "_models.ChatResponseMessage",
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class ChatCompletions(_model_base.Model):
"""Representation of the response data from a chat completions request.
Completions support a wide variety of tasks and generate text that continues from or
"completes"
provided prompt data.
:ivar id: A unique identifier associated with this chat completions response. Required.
:vartype id: str
:ivar created: The first timestamp associated with generation activity for this completions
response,
represented as seconds since the beginning of the Unix epoch of 00:00 on 1 Jan 1970. Required.
:vartype created: ~datetime.datetime
:ivar model: The model used for the chat completion. Required.
:vartype model: str
:ivar choices: The collection of completions choices associated with this completions response.
Generally, ``n`` choices are generated per provided prompt with a default value of 1.
Token limits and other settings may limit the number of choices generated. Required.
:vartype choices: list[~azure.ai.inference.models.ChatChoice]
:ivar usage: Usage information for tokens processed and generated as part of this completions
operation. Required.
:vartype usage: ~azure.ai.inference.models.CompletionsUsage
"""
id: str = rest_field()
"""A unique identifier associated with this chat completions response. Required."""
created: datetime.datetime = rest_field(format="unix-timestamp")
"""The first timestamp associated with generation activity for this completions response,
represented as seconds since the beginning of the Unix epoch of 00:00 on 1 Jan 1970. Required."""
model: str = rest_field()
"""The model used for the chat completion. Required."""
choices: List["_models.ChatChoice"] = rest_field()
"""The collection of completions choices associated with this completions response.
Generally, ``n`` choices are generated per provided prompt with a default value of 1.
Token limits and other settings may limit the number of choices generated. Required."""
usage: "_models.CompletionsUsage" = rest_field()
"""Usage information for tokens processed and generated as part of this completions operation.
Required."""
@overload
def __init__(
self,
*,
id: str, # pylint: disable=redefined-builtin
created: datetime.datetime,
model: str,
choices: List["_models.ChatChoice"],
usage: "_models.CompletionsUsage",
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class ChatCompletionsNamedToolChoice(_model_base.Model):
"""A tool selection of a specific, named function tool that will limit chat completions to using
the named function.
:ivar type: The type of the tool. Currently, only ``function`` is supported. Required. Default
value is "function".
:vartype type: str
:ivar function: The function that should be called. Required.
:vartype function: ~azure.ai.inference.models.ChatCompletionsNamedToolChoiceFunction
"""
type: Literal["function"] = rest_field()
"""The type of the tool. Currently, only ``function`` is supported. Required. Default value is
\"function\"."""
function: "_models.ChatCompletionsNamedToolChoiceFunction" = rest_field()
"""The function that should be called. Required."""
@overload
def __init__(
self,
*,
function: "_models.ChatCompletionsNamedToolChoiceFunction",
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.type: Literal["function"] = "function"
class ChatCompletionsNamedToolChoiceFunction(_model_base.Model):
"""A tool selection of a specific, named function tool that will limit chat completions to using
the named function.
:ivar name: The name of the function that should be called. Required.
:vartype name: str
"""
name: str = rest_field()
"""The name of the function that should be called. Required."""
@overload
def __init__(
self,
*,
name: str,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class ChatCompletionsResponseFormat(_model_base.Model):
"""Represents the format that the model must output. Use this to enable JSON mode instead of the
default text mode.
Note that to enable JSON mode, some AI models may also require you to instruct the model to
produce JSON
via a system or user message.
You probably want to use the sub-classes and not this class directly. Known sub-classes are:
ChatCompletionsResponseFormatJsonObject, ChatCompletionsResponseFormatJsonSchema,
ChatCompletionsResponseFormatText
:ivar type: The response format type to use for chat completions. Required. Default value is
None.
:vartype type: str
"""
__mapping__: Dict[str, _model_base.Model] = {}
type: str = rest_discriminator(name="type")
"""The response format type to use for chat completions. Required. Default value is None."""
@overload
def __init__(
self,
*,
type: str,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class ChatCompletionsResponseFormatJsonObject(ChatCompletionsResponseFormat, discriminator="json_object"):
"""A response format for Chat Completions that restricts responses to emitting valid JSON objects.
Note that to enable JSON mode, some AI models may also require you to instruct the model to
produce JSON
via a system or user message.
:ivar type: Response format type: always 'json_object' for this object. Required. Default value
is "json_object".
:vartype type: str
"""
type: Literal["json_object"] = rest_discriminator(name="type") # type: ignore
"""Response format type: always 'json_object' for this object. Required. Default value is
\"json_object\"."""
@overload
def __init__(
self,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, type="json_object", **kwargs)
class ChatCompletionsResponseFormatJsonSchema(ChatCompletionsResponseFormat, discriminator="json_schema"):
"""A response format for Chat Completions that restricts responses to emitting valid JSON objects,
with a
JSON schema specified by the caller.
:ivar type: The type of response format being defined: ``json_schema``. Required. Default value
is "json_schema".
:vartype type: str
:ivar json_schema: The definition of the required JSON schema in the response, and associated
metadata. Required.
:vartype json_schema: ~azure.ai.inference.models.JsonSchemaFormat
"""
type: Literal["json_schema"] = rest_discriminator(name="type") # type: ignore
"""The type of response format being defined: ``json_schema``. Required. Default value is
\"json_schema\"."""
json_schema: "_models.JsonSchemaFormat" = rest_field()
"""The definition of the required JSON schema in the response, and associated metadata. Required."""
@overload
def __init__(
self,
*,
json_schema: "_models.JsonSchemaFormat",
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, type="json_schema", **kwargs)
class ChatCompletionsResponseFormatText(ChatCompletionsResponseFormat, discriminator="text"):
"""A response format for Chat Completions that emits text responses. This is the default response
format.
:ivar type: Response format type: always 'text' for this object. Required. Default value is
"text".
:vartype type: str
"""
type: Literal["text"] = rest_discriminator(name="type") # type: ignore
"""Response format type: always 'text' for this object. Required. Default value is \"text\"."""
@overload
def __init__(
self,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, type="text", **kwargs)
class ChatCompletionsToolCall(_model_base.Model):
"""A function tool call requested by the AI model.
:ivar id: The ID of the tool call. Required.
:vartype id: str
:ivar type: The type of tool call. Currently, only ``function`` is supported. Required. Default
value is "function".
:vartype type: str
:ivar function: The details of the function call requested by the AI model. Required.
:vartype function: ~azure.ai.inference.models.FunctionCall
"""
id: str = rest_field()
"""The ID of the tool call. Required."""
type: Literal["function"] = rest_field()
"""The type of tool call. Currently, only ``function`` is supported. Required. Default value is
\"function\"."""
function: "_models.FunctionCall" = rest_field()
"""The details of the function call requested by the AI model. Required."""
@overload
def __init__(
self,
*,
id: str, # pylint: disable=redefined-builtin
function: "_models.FunctionCall",
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.type: Literal["function"] = "function"
class ChatCompletionsToolDefinition(_model_base.Model):
"""The definition of a chat completions tool that can call a function.
:ivar type: The type of the tool. Currently, only ``function`` is supported. Required. Default
value is "function".
:vartype type: str
:ivar function: The function definition details for the function tool. Required.
:vartype function: ~azure.ai.inference.models.FunctionDefinition
"""
type: Literal["function"] = rest_field()
"""The type of the tool. Currently, only ``function`` is supported. Required. Default value is
\"function\"."""
function: "_models.FunctionDefinition" = rest_field()
"""The function definition details for the function tool. Required."""
@overload
def __init__(
self,
*,
function: "_models.FunctionDefinition",
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.type: Literal["function"] = "function"
class ChatRequestMessage(_model_base.Model):
"""An abstract representation of a chat message as provided in a request.
You probably want to use the sub-classes and not this class directly. Known sub-classes are:
ChatRequestAssistantMessage, ChatRequestDeveloperMessage, ChatRequestSystemMessage,
ChatRequestToolMessage, ChatRequestUserMessage
:ivar role: The chat role associated with this message. Required. Known values are: "system",
"user", "assistant", "tool", and "developer".
:vartype role: str or ~azure.ai.inference.models.ChatRole
"""
__mapping__: Dict[str, _model_base.Model] = {}
role: str = rest_discriminator(name="role")
"""The chat role associated with this message. Required. Known values are: \"system\", \"user\",
\"assistant\", \"tool\", and \"developer\"."""
@overload
def __init__(
self,
*,
role: str,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class ChatRequestAssistantMessage(ChatRequestMessage, discriminator="assistant"):
"""A request chat message representing response or action from the assistant.
:ivar role: The chat role associated with this message, which is always 'assistant' for
assistant messages. Required. The role that provides responses to system-instructed,
user-prompted input.
:vartype role: str or ~azure.ai.inference.models.ASSISTANT
:ivar content: The content of the message.
:vartype content: str
:ivar tool_calls: The tool calls that must be resolved and have their outputs appended to
subsequent input messages for the chat
completions request to resolve as configured.
:vartype tool_calls: list[~azure.ai.inference.models.ChatCompletionsToolCall]
"""
role: Literal[ChatRole.ASSISTANT] = rest_discriminator(name="role") # type: ignore
"""The chat role associated with this message, which is always 'assistant' for assistant messages.
Required. The role that provides responses to system-instructed, user-prompted input."""
content: Optional[str] = rest_field()
"""The content of the message."""
tool_calls: Optional[List["_models.ChatCompletionsToolCall"]] = rest_field()
"""The tool calls that must be resolved and have their outputs appended to subsequent input
messages for the chat
completions request to resolve as configured."""
@overload
def __init__(
self,
*,
content: Optional[str] = None,
tool_calls: Optional[List["_models.ChatCompletionsToolCall"]] = None,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, role=ChatRole.ASSISTANT, **kwargs)
class ChatRequestDeveloperMessage(ChatRequestMessage, discriminator="developer"):
"""A request chat message containing system instructions that influence how the model will
generate a chat completions
response. Some AI models support a developer message instead of a system message.
:ivar role: The chat role associated with this message, which is always 'developer' for
developer messages. Required. The role that instructs or sets the behavior of the assistant.
Some AI models support this role instead of the 'system' role.
:vartype role: str or ~azure.ai.inference.models.DEVELOPER
:ivar content: The contents of the developer message. Required.
:vartype content: str
"""
role: Literal[ChatRole.DEVELOPER] = rest_discriminator(name="role") # type: ignore
"""The chat role associated with this message, which is always 'developer' for developer messages.
Required. The role that instructs or sets the behavior of the assistant. Some AI models support
this role instead of the 'system' role."""
content: str = rest_field()
"""The contents of the developer message. Required."""
@overload
def __init__(
self,
*,
content: str,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, role=ChatRole.DEVELOPER, **kwargs)
class ChatRequestSystemMessage(ChatRequestMessage, discriminator="system"):
"""A request chat message containing system instructions that influence how the model will
generate a chat completions
response.
:ivar role: The chat role associated with this message, which is always 'system' for system
messages. Required. The role that instructs or sets the behavior of the assistant.
:vartype role: str or ~azure.ai.inference.models.SYSTEM
:ivar content: The contents of the system message. Required.
:vartype content: str
"""
role: Literal[ChatRole.SYSTEM] = rest_discriminator(name="role") # type: ignore
"""The chat role associated with this message, which is always 'system' for system messages.
Required. The role that instructs or sets the behavior of the assistant."""
content: str = rest_field()
"""The contents of the system message. Required."""
@overload
def __init__(
self,
*,
content: str,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, role=ChatRole.SYSTEM, **kwargs)
class ChatRequestToolMessage(ChatRequestMessage, discriminator="tool"):
"""A request chat message representing requested output from a configured tool.
:ivar role: The chat role associated with this message, which is always 'tool' for tool
messages. Required. The role that represents extension tool activity within a chat completions
operation.
:vartype role: str or ~azure.ai.inference.models.TOOL
:ivar content: The content of the message.
:vartype content: str
:ivar tool_call_id: The ID of the tool call resolved by the provided content. Required.
:vartype tool_call_id: str
"""
role: Literal[ChatRole.TOOL] = rest_discriminator(name="role") # type: ignore
"""The chat role associated with this message, which is always 'tool' for tool messages. Required.
The role that represents extension tool activity within a chat completions operation."""
content: Optional[str] = rest_field()
"""The content of the message."""
tool_call_id: str = rest_field()
"""The ID of the tool call resolved by the provided content. Required."""
@overload
def __init__(
self,
*,
tool_call_id: str,
content: Optional[str] = None,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, role=ChatRole.TOOL, **kwargs)
class ChatRequestUserMessage(ChatRequestMessage, discriminator="user"):
"""A request chat message representing user input to the assistant.
:ivar role: The chat role associated with this message, which is always 'user' for user
messages. Required. The role that provides input for chat completions.
:vartype role: str or ~azure.ai.inference.models.USER
:ivar content: The contents of the user message, with available input types varying by selected
model. Required. Is either a str type or a [ContentItem] type.
:vartype content: str or list[~azure.ai.inference.models.ContentItem]
"""
role: Literal[ChatRole.USER] = rest_discriminator(name="role") # type: ignore
"""The chat role associated with this message, which is always 'user' for user messages. Required.
The role that provides input for chat completions."""
content: Union["str", List["_models.ContentItem"]] = rest_field()
"""The contents of the user message, with available input types varying by selected model.
Required. Is either a str type or a [ContentItem] type."""
@overload
def __init__(
self,
*,
content: Union[str, List["_models.ContentItem"]],
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, role=ChatRole.USER, **kwargs)
class ChatResponseMessage(_model_base.Model):
"""A representation of a chat message as received in a response.
:ivar role: The chat role associated with the message. Required. Known values are: "system",
"user", "assistant", "tool", and "developer".
:vartype role: str or ~azure.ai.inference.models.ChatRole
:ivar content: The content of the message. Required.
:vartype content: str
:ivar tool_calls: The tool calls that must be resolved and have their outputs appended to
subsequent input messages for the chat
completions request to resolve as configured.
:vartype tool_calls: list[~azure.ai.inference.models.ChatCompletionsToolCall]
"""
role: Union[str, "_models.ChatRole"] = rest_field()
"""The chat role associated with the message. Required. Known values are: \"system\", \"user\",
\"assistant\", \"tool\", and \"developer\"."""
content: str = rest_field()
"""The content of the message. Required."""
tool_calls: Optional[List["_models.ChatCompletionsToolCall"]] = rest_field()
"""The tool calls that must be resolved and have their outputs appended to subsequent input
messages for the chat
completions request to resolve as configured."""
@overload
def __init__(
self,
*,
role: Union[str, "_models.ChatRole"],
content: str,
tool_calls: Optional[List["_models.ChatCompletionsToolCall"]] = None,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class CompletionsUsage(_model_base.Model):
"""Representation of the token counts processed for a completions request.
Counts consider all tokens across prompts, choices, choice alternates, best_of generations, and
other consumers.
:ivar completion_tokens: The number of tokens generated across all completions emissions.
Required.
:vartype completion_tokens: int
:ivar prompt_tokens: The number of tokens in the provided prompts for the completions request.
Required.
:vartype prompt_tokens: int
:ivar total_tokens: The total number of tokens processed for the completions request and
response. Required.
:vartype total_tokens: int
"""
completion_tokens: int = rest_field()
"""The number of tokens generated across all completions emissions. Required."""
prompt_tokens: int = rest_field()
"""The number of tokens in the provided prompts for the completions request. Required."""
total_tokens: int = rest_field()
"""The total number of tokens processed for the completions request and response. Required."""
@overload
def __init__(
self,
*,
completion_tokens: int,
prompt_tokens: int,
total_tokens: int,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class EmbeddingItem(_model_base.Model):
"""Representation of a single embeddings relatedness comparison.
:ivar embedding: List of embedding values for the input prompt. These represent a measurement
of the
vector-based relatedness of the provided input. Or a base64 encoded string of the embedding
vector. Required. Is either a str type or a [float] type.
:vartype embedding: str or list[float]
:ivar index: Index of the prompt to which the EmbeddingItem corresponds. Required.
:vartype index: int
"""
embedding: Union["str", List[float]] = rest_field()
"""List of embedding values for the input prompt. These represent a measurement of the
vector-based relatedness of the provided input. Or a base64 encoded string of the embedding
vector. Required. Is either a str type or a [float] type."""
index: int = rest_field()
"""Index of the prompt to which the EmbeddingItem corresponds. Required."""
@overload
def __init__(
self,
*,
embedding: Union[str, List[float]],
index: int,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class EmbeddingsResult(_model_base.Model):
"""Representation of the response data from an embeddings request.
Embeddings measure the relatedness of text strings and are commonly used for search,
clustering,
recommendations, and other similar scenarios.
:ivar id: Unique identifier for the embeddings result. Required.
:vartype id: str
:ivar data: Embedding values for the prompts submitted in the request. Required.
:vartype data: list[~azure.ai.inference.models.EmbeddingItem]
:ivar usage: Usage counts for tokens input using the embeddings API. Required.
:vartype usage: ~azure.ai.inference.models.EmbeddingsUsage
:ivar model: The model ID used to generate this result. Required.
:vartype model: str
"""
id: str = rest_field()
"""Unique identifier for the embeddings result. Required."""
data: List["_models.EmbeddingItem"] = rest_field()
"""Embedding values for the prompts submitted in the request. Required."""
usage: "_models.EmbeddingsUsage" = rest_field()
"""Usage counts for tokens input using the embeddings API. Required."""
model: str = rest_field()
"""The model ID used to generate this result. Required."""
@overload
def __init__(
self,
*,
id: str, # pylint: disable=redefined-builtin
data: List["_models.EmbeddingItem"],
usage: "_models.EmbeddingsUsage",
model: str,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class EmbeddingsUsage(_model_base.Model):
"""Measurement of the amount of tokens used in this request and response.
:ivar prompt_tokens: Number of tokens in the request. Required.
:vartype prompt_tokens: int
:ivar total_tokens: Total number of tokens transacted in this request/response. Should equal
the
number of tokens in the request. Required.
:vartype total_tokens: int
"""
prompt_tokens: int = rest_field()
"""Number of tokens in the request. Required."""
total_tokens: int = rest_field()
"""Total number of tokens transacted in this request/response. Should equal the
number of tokens in the request. Required."""
@overload
def __init__(
self,
*,
prompt_tokens: int,
total_tokens: int,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class FunctionCall(_model_base.Model):
"""The name and arguments of a function that should be called, as generated by the model.
:ivar name: The name of the function to call. Required.
:vartype name: str
:ivar arguments: The arguments to call the function with, as generated by the model in JSON
format.
Note that the model does not always generate valid JSON, and may hallucinate parameters
not defined by your function schema. Validate the arguments in your code before calling
your function. Required.
:vartype arguments: str
"""
name: str = rest_field()
"""The name of the function to call. Required."""
arguments: str = rest_field()
"""The arguments to call the function with, as generated by the model in JSON format.
Note that the model does not always generate valid JSON, and may hallucinate parameters
not defined by your function schema. Validate the arguments in your code before calling
your function. Required."""
@overload
def __init__(
self,
*,
name: str,
arguments: str,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class FunctionDefinition(_model_base.Model):
"""The definition of a caller-specified function that chat completions may invoke in response to
matching user input.
:ivar name: The name of the function to be called. Required.
:vartype name: str
:ivar description: A description of what the function does. The model will use this description
when selecting the function and
interpreting its parameters.
:vartype description: str
:ivar parameters: The parameters the function accepts, described as a JSON Schema object.
:vartype parameters: any
"""
name: str = rest_field()
"""The name of the function to be called. Required."""
description: Optional[str] = rest_field()
"""A description of what the function does. The model will use this description when selecting the
function and
interpreting its parameters."""
parameters: Optional[Any] = rest_field()
"""The parameters the function accepts, described as a JSON Schema object."""
@overload
def __init__(
self,
*,
name: str,
description: Optional[str] = None,
parameters: Optional[Any] = None,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class ImageContentItem(ContentItem, discriminator="image_url"):
"""A structured chat content item containing an image reference.
:ivar type: The discriminated object type: always 'image_url' for this type. Required. Default
value is "image_url".
:vartype type: str
:ivar image_url: An internet location, which must be accessible to the model,from which the
image may be retrieved. Required.
:vartype image_url: ~azure.ai.inference.models.ImageUrl
"""
type: Literal["image_url"] = rest_discriminator(name="type") # type: ignore
"""The discriminated object type: always 'image_url' for this type. Required. Default value is
\"image_url\"."""
image_url: "_models.ImageUrl" = rest_field()
"""An internet location, which must be accessible to the model,from which the image may be
retrieved. Required."""
@overload
def __init__(
self,
*,
image_url: "_models.ImageUrl",
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, type="image_url", **kwargs)
class ImageEmbeddingInput(_model_base.Model):
"""Represents an image with optional text.
:ivar image: The input image encoded in base64 string as a data URL. Example:
``data:image/{format};base64,{data}``. Required.
:vartype image: str
:ivar text: Optional. The text input to feed into the model (like DINO, CLIP).
Returns a 422 error if the model doesn't support the value or parameter.
:vartype text: str
"""
image: str = rest_field()
"""The input image encoded in base64 string as a data URL. Example:
``data:image/{format};base64,{data}``. Required."""
text: Optional[str] = rest_field()
"""Optional. The text input to feed into the model (like DINO, CLIP).
Returns a 422 error if the model doesn't support the value or parameter."""
@overload
def __init__(
self,
*,
image: str,
text: Optional[str] = None,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class ImageUrl(_model_base.Model):
"""An internet location from which the model may retrieve an image.
:ivar url: The URL of the image. Required.
:vartype url: str
:ivar detail: The evaluation quality setting to use, which controls relative prioritization of
speed, token consumption, and
accuracy. Known values are: "auto", "low", and "high".
:vartype detail: str or ~azure.ai.inference.models.ImageDetailLevel
"""
url: str = rest_field()
"""The URL of the image. Required."""
detail: Optional[Union[str, "_models.ImageDetailLevel"]] = rest_field()
"""The evaluation quality setting to use, which controls relative prioritization of speed, token
consumption, and
accuracy. Known values are: \"auto\", \"low\", and \"high\"."""
@overload
def __init__(
self,
*,
url: str,
detail: Optional[Union[str, "_models.ImageDetailLevel"]] = None,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class InputAudio(_model_base.Model):
"""The details of an audio chat message content part.
:ivar data: Base64 encoded audio data. Required.
:vartype data: str
:ivar format: The audio format of the audio content. Required. Known values are: "wav" and
"mp3".
:vartype format: str or ~azure.ai.inference.models.AudioContentFormat
"""
data: str = rest_field()
"""Base64 encoded audio data. Required."""
format: Union[str, "_models.AudioContentFormat"] = rest_field()
"""The audio format of the audio content. Required. Known values are: \"wav\" and \"mp3\"."""
@overload
def __init__(
self,
*,
data: str,
format: Union[str, "_models.AudioContentFormat"],
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class JsonSchemaFormat(_model_base.Model):
"""Defines the response format for chat completions as JSON with a given schema.
The AI model will need to adhere to this schema when generating completions.
:ivar name: A name that labels this JSON schema. Must be a-z, A-Z, 0-9, or contain underscores
and dashes, with a maximum length of 64. Required.
:vartype name: str
:ivar schema: The definition of the JSON schema. See
https://json-schema.org/overview/what-is-jsonschema.
Note that AI models usually only support a subset of the keywords defined by JSON schema.
Consult your AI model documentation to determine what is supported. Required.
:vartype schema: dict[str, any]
:ivar description: A description of the response format, used by the AI model to determine how
to generate responses in this format.
:vartype description: str
:ivar strict: If set to true, the service will error out if the provided JSON schema contains
keywords
not supported by the AI model. An example of such keyword may be ``maxLength`` for JSON type
``string``.
If false, and the provided JSON schema contains keywords not supported by the AI model,
the AI model will not error out. Instead it will ignore the unsupported keywords.
:vartype strict: bool
"""
name: str = rest_field()
"""A name that labels this JSON schema. Must be a-z, A-Z, 0-9, or contain underscores and dashes,
with a maximum length of 64. Required."""
schema: Dict[str, Any] = rest_field()
"""The definition of the JSON schema. See https://json-schema.org/overview/what-is-jsonschema.
Note that AI models usually only support a subset of the keywords defined by JSON schema.
Consult your AI model documentation to determine what is supported. Required."""
description: Optional[str] = rest_field()
"""A description of the response format, used by the AI model to determine how to generate
responses in this format."""
strict: Optional[bool] = rest_field()
"""If set to true, the service will error out if the provided JSON schema contains keywords
not supported by the AI model. An example of such keyword may be ``maxLength`` for JSON type
``string``.
If false, and the provided JSON schema contains keywords not supported by the AI model,
the AI model will not error out. Instead it will ignore the unsupported keywords."""
@overload
def __init__(
self,
*,
name: str,
schema: Dict[str, Any],
description: Optional[str] = None,
strict: Optional[bool] = None,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class ModelInfo(_model_base.Model):
"""Represents some basic information about the AI model.
:ivar model_name: The name of the AI model. For example: ``Phi21``. Required.
:vartype model_name: str
:ivar model_type: The type of the AI model. A Unique identifier for the profile. Required.
Known values are: "embeddings", "image_generation", "text_generation", "image_embeddings",
"audio_generation", and "chat_completion".
:vartype model_type: str or ~azure.ai.inference.models.ModelType
:ivar model_provider_name: The model provider name. For example: ``Microsoft Research``.
Required.
:vartype model_provider_name: str
"""
model_name: str = rest_field()
"""The name of the AI model. For example: ``Phi21``. Required."""
model_type: Union[str, "_models.ModelType"] = rest_field()
"""The type of the AI model. A Unique identifier for the profile. Required. Known values are:
\"embeddings\", \"image_generation\", \"text_generation\", \"image_embeddings\",
\"audio_generation\", and \"chat_completion\"."""
model_provider_name: str = rest_field()
"""The model provider name. For example: ``Microsoft Research``. Required."""
@overload
def __init__(
self,
*,
model_name: str,
model_type: Union[str, "_models.ModelType"],
model_provider_name: str,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class StreamingChatChoiceUpdate(_model_base.Model):
"""Represents an update to a single prompt completion when the service is streaming updates
using Server Sent Events (SSE).
Generally, ``n`` choices are generated per provided prompt with a default value of 1.
Token limits and other settings may limit the number of choices generated.
:ivar index: The ordered index associated with this chat completions choice. Required.
:vartype index: int
:ivar finish_reason: The reason that this chat completions choice completed its generated.
Required. Known values are: "stop", "length", "content_filter", and "tool_calls".
:vartype finish_reason: str or ~azure.ai.inference.models.CompletionsFinishReason
:ivar delta: An update to the chat message for a given chat completions prompt. Required.
:vartype delta: ~azure.ai.inference.models.StreamingChatResponseMessageUpdate
"""
index: int = rest_field()
"""The ordered index associated with this chat completions choice. Required."""
finish_reason: Union[str, "_models.CompletionsFinishReason"] = rest_field()
"""The reason that this chat completions choice completed its generated. Required. Known values
are: \"stop\", \"length\", \"content_filter\", and \"tool_calls\"."""
delta: "_models.StreamingChatResponseMessageUpdate" = rest_field()
"""An update to the chat message for a given chat completions prompt. Required."""
@overload
def __init__(
self,
*,
index: int,
finish_reason: Union[str, "_models.CompletionsFinishReason"],
delta: "_models.StreamingChatResponseMessageUpdate",
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class StreamingChatCompletionsUpdate(_model_base.Model):
"""Represents a response update to a chat completions request, when the service is streaming
updates
using Server Sent Events (SSE).
Completions support a wide variety of tasks and generate text that continues from or
"completes"
provided prompt data.
:ivar id: A unique identifier associated with this chat completions response. Required.
:vartype id: str
:ivar created: The first timestamp associated with generation activity for this completions
response,
represented as seconds since the beginning of the Unix epoch of 00:00 on 1 Jan 1970. Required.
:vartype created: ~datetime.datetime
:ivar model: The model used for the chat completion. Required.
:vartype model: str
:ivar choices: An update to the collection of completion choices associated with this
completions response.
Generally, ``n`` choices are generated per provided prompt with a default value of 1.
Token limits and other settings may limit the number of choices generated. Required.
:vartype choices: list[~azure.ai.inference.models.StreamingChatChoiceUpdate]
:ivar usage: Usage information for tokens processed and generated as part of this completions
operation.
:vartype usage: ~azure.ai.inference.models.CompletionsUsage
"""
id: str = rest_field()
"""A unique identifier associated with this chat completions response. Required."""
created: datetime.datetime = rest_field(format="unix-timestamp")
"""The first timestamp associated with generation activity for this completions response,
represented as seconds since the beginning of the Unix epoch of 00:00 on 1 Jan 1970. Required."""
model: str = rest_field()
"""The model used for the chat completion. Required."""
choices: List["_models.StreamingChatChoiceUpdate"] = rest_field()
"""An update to the collection of completion choices associated with this completions response.
Generally, ``n`` choices are generated per provided prompt with a default value of 1.
Token limits and other settings may limit the number of choices generated. Required."""
usage: Optional["_models.CompletionsUsage"] = rest_field()
"""Usage information for tokens processed and generated as part of this completions operation."""
@overload
def __init__(
self,
*,
id: str, # pylint: disable=redefined-builtin
created: datetime.datetime,
model: str,
choices: List["_models.StreamingChatChoiceUpdate"],
usage: Optional["_models.CompletionsUsage"] = None,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class StreamingChatResponseMessageUpdate(_model_base.Model):
"""A representation of a chat message update as received in a streaming response.
:ivar role: The chat role associated with the message. If present, should always be
'assistant'. Known values are: "system", "user", "assistant", "tool", and "developer".
:vartype role: str or ~azure.ai.inference.models.ChatRole
:ivar content: The content of the message.
:vartype content: str
:ivar tool_calls: The tool calls that must be resolved and have their outputs appended to
subsequent input messages for the chat
completions request to resolve as configured.
:vartype tool_calls: list[~azure.ai.inference.models.StreamingChatResponseToolCallUpdate]
"""
role: Optional[Union[str, "_models.ChatRole"]] = rest_field()
"""The chat role associated with the message. If present, should always be 'assistant'. Known
values are: \"system\", \"user\", \"assistant\", \"tool\", and \"developer\"."""
content: Optional[str] = rest_field()
"""The content of the message."""
tool_calls: Optional[List["_models.StreamingChatResponseToolCallUpdate"]] = rest_field()
"""The tool calls that must be resolved and have their outputs appended to subsequent input
messages for the chat
completions request to resolve as configured."""
@overload
def __init__(
self,
*,
role: Optional[Union[str, "_models.ChatRole"]] = None,
content: Optional[str] = None,
tool_calls: Optional[List["_models.StreamingChatResponseToolCallUpdate"]] = None,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class StreamingChatResponseToolCallUpdate(_model_base.Model):
"""An update to the function tool call information requested by the AI model.
:ivar id: The ID of the tool call. Required.
:vartype id: str
:ivar function: Updates to the function call requested by the AI model. Required.
:vartype function: ~azure.ai.inference.models.FunctionCall
"""
id: str = rest_field()
"""The ID of the tool call. Required."""
function: "_models.FunctionCall" = rest_field()
"""Updates to the function call requested by the AI model. Required."""
@overload
def __init__(
self,
*,
id: str, # pylint: disable=redefined-builtin
function: "_models.FunctionCall",
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class TextContentItem(ContentItem, discriminator="text"):
"""A structured chat content item containing plain text.
:ivar type: The discriminated object type: always 'text' for this type. Required. Default value
is "text".
:vartype type: str
:ivar text: The content of the message. Required.
:vartype text: str
"""
type: Literal["text"] = rest_discriminator(name="type") # type: ignore
"""The discriminated object type: always 'text' for this type. Required. Default value is
\"text\"."""
text: str = rest_field()
"""The content of the message. Required."""
@overload
def __init__(
self,
*,
text: str,
) -> None: ...
@overload
def __init__(self, mapping: Mapping[str, Any]) -> None:
"""
:param mapping: raw JSON to initialize the model.
:type mapping: Mapping[str, Any]
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, type="text", **kwargs)
|