1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
|
# pylint: disable=too-many-lines
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""Customize generated code here.
Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
"""
import json
import logging
import sys
from io import IOBase
from typing import Any, Dict, Union, IO, List, Literal, Optional, overload, Type, TYPE_CHECKING, AsyncIterable
from azure.core.pipeline import PipelineResponse
from azure.core.credentials import AzureKeyCredential
from azure.core.tracing.decorator_async import distributed_trace_async
from azure.core.utils import case_insensitive_dict
from azure.core.exceptions import (
ClientAuthenticationError,
HttpResponseError,
map_error,
ResourceExistsError,
ResourceNotFoundError,
ResourceNotModifiedError,
)
from .. import models as _models
from .._model_base import SdkJSONEncoder, _deserialize
from ._client import ChatCompletionsClient as ChatCompletionsClientGenerated
from ._client import EmbeddingsClient as EmbeddingsClientGenerated
from ._client import ImageEmbeddingsClient as ImageEmbeddingsClientGenerated
from .._operations._operations import (
build_chat_completions_complete_request,
build_embeddings_embed_request,
build_image_embeddings_embed_request,
)
from .._patch import _get_internal_response_format
if TYPE_CHECKING:
# pylint: disable=unused-import,ungrouped-imports
from azure.core.credentials_async import AsyncTokenCredential
if sys.version_info >= (3, 9):
from collections.abc import MutableMapping
else:
from typing import MutableMapping # type: ignore # pylint: disable=ungrouped-imports
JSON = MutableMapping[str, Any] # pylint: disable=unsubscriptable-object
_Unset: Any = object()
_LOGGER = logging.getLogger(__name__)
async def load_client(
endpoint: str, credential: Union[AzureKeyCredential, "AsyncTokenCredential"], **kwargs: Any
) -> Union["ChatCompletionsClient", "EmbeddingsClient", "ImageEmbeddingsClient"]:
"""
Load a client from a given endpoint URL. The method makes a REST API call to the `/info` route
on the given endpoint, to determine the model type and therefore which client to instantiate.
This method will only work when using Serverless API or Managed Compute endpoint.
It will not work for GitHub Models endpoint or Azure OpenAI endpoint.
Keyword arguments are passed through to the client constructor (you can set keywords such as
`api_version`, `user_agent`, `logging_enable` etc. on the client constructor).
:param endpoint: Service endpoint URL for AI model inference. Required.
:type endpoint: str
:param credential: Credential used to authenticate requests to the service. Is either a
AzureKeyCredential type or a AsyncTokenCredential type. Required.
:type credential: ~azure.core.credentials.AzureKeyCredential or
~azure.core.credentials_async.AsyncTokenCredential
:return: The appropriate asynchronous client associated with the given endpoint
:rtype: ~azure.ai.inference.aio.ChatCompletionsClient or ~azure.ai.inference.aio.EmbeddingsClient
or ~azure.ai.inference.aio.ImageEmbeddingsClient
:raises ~azure.core.exceptions.HttpResponseError:
"""
async with ChatCompletionsClient(
endpoint, credential, **kwargs
) as client: # Pick any of the clients, it does not matter.
try:
model_info = await client.get_model_info() # type: ignore
except ResourceNotFoundError as error:
error.message = (
"`load_client` function does not work on this endpoint (`/info` route not supported). "
"Please construct one of the clients (e.g. `ChatCompletionsClient`) directly."
)
raise error
_LOGGER.info("model_info=%s", model_info)
if not model_info.model_type:
raise ValueError(
"The AI model information is missing a value for `model type`. Cannot create an appropriate client."
)
# TODO: Remove "completions", "chat-comletions" and "embedding" once Mistral Large and Cohere fixes their model type
if model_info.model_type in (
_models.ModelType.CHAT_COMPLETION,
"chat_completions",
"chat",
"completion",
"chat-completion",
"chat-completions",
"chat completion",
"chat completions",
):
chat_completion_client = ChatCompletionsClient(endpoint, credential, **kwargs)
chat_completion_client._model_info = ( # pylint: disable=protected-access,attribute-defined-outside-init
model_info
)
return chat_completion_client
if model_info.model_type in (
_models.ModelType.EMBEDDINGS,
"embedding",
"text_embedding",
"text-embeddings",
"text embedding",
"text embeddings",
):
embedding_client = EmbeddingsClient(endpoint, credential, **kwargs)
embedding_client._model_info = model_info # pylint: disable=protected-access,attribute-defined-outside-init
return embedding_client
if model_info.model_type in (
_models.ModelType.IMAGE_EMBEDDINGS,
"image_embedding",
"image-embeddings",
"image-embedding",
"image embedding",
"image embeddings",
):
image_embedding_client = ImageEmbeddingsClient(endpoint, credential, **kwargs)
image_embedding_client._model_info = ( # pylint: disable=protected-access,attribute-defined-outside-init
model_info
)
return image_embedding_client
raise ValueError(f"No client available to support AI model type `{model_info.model_type}`")
class ChatCompletionsClient(ChatCompletionsClientGenerated): # pylint: disable=too-many-instance-attributes
"""ChatCompletionsClient.
:param endpoint: Service endpoint URL for AI model inference. Required.
:type endpoint: str
:param credential: Credential used to authenticate requests to the service. Is either a
AzureKeyCredential type or a AsyncTokenCredential type. Required.
:type credential: ~azure.core.credentials.AzureKeyCredential or
~azure.core.credentials_async.AsyncTokenCredential
:keyword frequency_penalty: A value that influences the probability of generated tokens
appearing based on their cumulative frequency in generated text.
Positive values will make tokens less likely to appear as their frequency increases and
decrease the likelihood of the model repeating the same statements verbatim.
Supported range is [-2, 2].
Default value is None.
:paramtype frequency_penalty: float
:keyword presence_penalty: A value that influences the probability of generated tokens
appearing based on their existing
presence in generated text.
Positive values will make tokens less likely to appear when they already exist and increase
the model's likelihood to output new topics.
Supported range is [-2, 2].
Default value is None.
:paramtype presence_penalty: float
:keyword temperature: The sampling temperature to use that controls the apparent creativity of
generated completions.
Higher values will make output more random while lower values will make results more focused
and deterministic.
It is not recommended to modify temperature and top_p for the same completions request as the
interaction of these two settings is difficult to predict.
Supported range is [0, 1].
Default value is None.
:paramtype temperature: float
:keyword top_p: An alternative to sampling with temperature called nucleus sampling. This value
causes the
model to consider the results of tokens with the provided probability mass. As an example, a
value of 0.15 will cause only the tokens comprising the top 15% of probability mass to be
considered.
It is not recommended to modify temperature and top_p for the same completions request as the
interaction of these two settings is difficult to predict.
Supported range is [0, 1].
Default value is None.
:paramtype top_p: float
:keyword max_tokens: The maximum number of tokens to generate. Default value is None.
:paramtype max_tokens: int
:keyword response_format: The format that the AI model must output. AI chat completions models typically output
unformatted text by default. This is equivalent to setting "text" as the response_format.
To output JSON format, without adhering to any schema, set to "json_object".
To output JSON format adhering to a provided schema, set this to an object of the class
~azure.ai.inference.models.JsonSchemaFormat. Default value is None.
:paramtype response_format: Union[Literal['text', 'json_object'], ~azure.ai.inference.models.JsonSchemaFormat]
:keyword stop: A collection of textual sequences that will end completions generation. Default
value is None.
:paramtype stop: list[str]
:keyword tools: The available tool definitions that the chat completions request can use,
including caller-defined functions. Default value is None.
:paramtype tools: list[~azure.ai.inference.models.ChatCompletionsToolDefinition]
:keyword tool_choice: If specified, the model will configure which of the provided tools it can
use for the chat completions response. Is either a Union[str,
"_models.ChatCompletionsToolChoicePreset"] type or a ChatCompletionsNamedToolChoice type.
Default value is None.
:paramtype tool_choice: str or ~azure.ai.inference.models.ChatCompletionsToolChoicePreset or
~azure.ai.inference.models.ChatCompletionsNamedToolChoice
:keyword seed: If specified, the system will make a best effort to sample deterministically
such that repeated requests with the
same seed and parameters should return the same result. Determinism is not guaranteed.
Default value is None.
:paramtype seed: int
:keyword model: ID of the specific AI model to use, if more than one model is available on the
endpoint. Default value is None.
:paramtype model: str
:keyword model_extras: Additional, model-specific parameters that are not in the
standard request payload. They will be added as-is to the root of the JSON in the request body.
How the service handles these extra parameters depends on the value of the
``extra-parameters`` request header. Default value is None.
:paramtype model_extras: dict[str, Any]
:keyword api_version: The API version to use for this operation. Default value is
"2024-05-01-preview". Note that overriding this default value may result in unsupported
behavior.
:paramtype api_version: str
"""
def __init__(
self,
endpoint: str,
credential: Union[AzureKeyCredential, "AsyncTokenCredential"],
*,
frequency_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
max_tokens: Optional[int] = None,
response_format: Optional[Union[Literal["text", "json_object"], _models.JsonSchemaFormat]] = None,
stop: Optional[List[str]] = None,
tools: Optional[List[_models.ChatCompletionsToolDefinition]] = None,
tool_choice: Optional[
Union[str, _models.ChatCompletionsToolChoicePreset, _models.ChatCompletionsNamedToolChoice]
] = None,
seed: Optional[int] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
self._model_info: Optional[_models.ModelInfo] = None
# Store default chat completions settings, to be applied in all future service calls
# unless overridden by arguments in the `complete` method.
self._frequency_penalty = frequency_penalty
self._presence_penalty = presence_penalty
self._temperature = temperature
self._top_p = top_p
self._max_tokens = max_tokens
self._internal_response_format = _get_internal_response_format(response_format)
self._stop = stop
self._tools = tools
self._tool_choice = tool_choice
self._seed = seed
self._model = model
self._model_extras = model_extras
# For Key auth, we need to send these two auth HTTP request headers simultaneously:
# 1. "Authorization: Bearer <key>"
# 2. "api-key: <key>"
# This is because Serverless API, Managed Compute and GitHub endpoints support the first header,
# and Azure OpenAI and the new Unified Inference endpoints support the second header.
# The first header will be taken care of by auto-generated code.
# The second one is added here.
if isinstance(credential, AzureKeyCredential):
headers = kwargs.pop("headers", {})
if "api-key" not in headers:
headers["api-key"] = credential.key
kwargs["headers"] = headers
super().__init__(endpoint, credential, **kwargs)
@overload
async def complete(
self,
*,
messages: List[_models.ChatRequestMessage],
stream: Literal[False] = False,
frequency_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
max_tokens: Optional[int] = None,
response_format: Optional[Union[Literal["text", "json_object"], _models.JsonSchemaFormat]] = None,
stop: Optional[List[str]] = None,
tools: Optional[List[_models.ChatCompletionsToolDefinition]] = None,
tool_choice: Optional[
Union[str, _models.ChatCompletionsToolChoicePreset, _models.ChatCompletionsNamedToolChoice]
] = None,
seed: Optional[int] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> _models.ChatCompletions: ...
@overload
async def complete(
self,
*,
messages: List[_models.ChatRequestMessage],
stream: Literal[True],
frequency_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
max_tokens: Optional[int] = None,
response_format: Optional[Union[Literal["text", "json_object"], _models.JsonSchemaFormat]] = None,
stop: Optional[List[str]] = None,
tools: Optional[List[_models.ChatCompletionsToolDefinition]] = None,
tool_choice: Optional[
Union[str, _models.ChatCompletionsToolChoicePreset, _models.ChatCompletionsNamedToolChoice]
] = None,
seed: Optional[int] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AsyncIterable[_models.StreamingChatCompletionsUpdate]: ...
@overload
async def complete(
self,
*,
messages: List[_models.ChatRequestMessage],
stream: Optional[bool] = None,
frequency_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
max_tokens: Optional[int] = None,
response_format: Optional[Union[Literal["text", "json_object"], _models.JsonSchemaFormat]] = None,
stop: Optional[List[str]] = None,
tools: Optional[List[_models.ChatCompletionsToolDefinition]] = None,
tool_choice: Optional[
Union[str, _models.ChatCompletionsToolChoicePreset, _models.ChatCompletionsNamedToolChoice]
] = None,
seed: Optional[int] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Union[AsyncIterable[_models.StreamingChatCompletionsUpdate], _models.ChatCompletions]:
# pylint: disable=line-too-long
"""Gets chat completions for the provided chat messages.
Completions support a wide variety of tasks and generate text that continues from or
"completes" provided prompt data. The method makes a REST API call to the `/chat/completions` route
on the given endpoint.
When using this method with `stream=True`, the response is streamed
back to the client. Iterate over the resulting StreamingChatCompletions
object to get content updates as they arrive. By default, the response is a ChatCompletions object
(non-streaming).
:keyword messages: The collection of context messages associated with this chat completions
request.
Typical usage begins with a chat message for the System role that provides instructions for
the behavior of the assistant, followed by alternating messages between the User and
Assistant roles. Required.
:paramtype messages: list[~azure.ai.inference.models.ChatRequestMessage]
:keyword stream: A value indicating whether chat completions should be streamed for this request.
Default value is False. If streaming is enabled, the response will be a StreamingChatCompletions.
Otherwise the response will be a ChatCompletions.
:paramtype stream: bool
:keyword frequency_penalty: A value that influences the probability of generated tokens
appearing based on their cumulative frequency in generated text.
Positive values will make tokens less likely to appear as their frequency increases and
decrease the likelihood of the model repeating the same statements verbatim.
Supported range is [-2, 2].
Default value is None.
:paramtype frequency_penalty: float
:keyword presence_penalty: A value that influences the probability of generated tokens
appearing based on their existing
presence in generated text.
Positive values will make tokens less likely to appear when they already exist and increase
the model's likelihood to output new topics.
Supported range is [-2, 2].
Default value is None.
:paramtype presence_penalty: float
:keyword temperature: The sampling temperature to use that controls the apparent creativity of
generated completions.
Higher values will make output more random while lower values will make results more focused
and deterministic.
It is not recommended to modify temperature and top_p for the same completions request as the
interaction of these two settings is difficult to predict.
Supported range is [0, 1].
Default value is None.
:paramtype temperature: float
:keyword top_p: An alternative to sampling with temperature called nucleus sampling. This value
causes the
model to consider the results of tokens with the provided probability mass. As an example, a
value of 0.15 will cause only the tokens comprising the top 15% of probability mass to be
considered.
It is not recommended to modify temperature and top_p for the same completions request as the
interaction of these two settings is difficult to predict.
Supported range is [0, 1].
Default value is None.
:paramtype top_p: float
:keyword max_tokens: The maximum number of tokens to generate. Default value is None.
:paramtype max_tokens: int
:keyword response_format: The format that the AI model must output. AI chat completions models typically output
unformatted text by default. This is equivalent to setting "text" as the response_format.
To output JSON format, without adhering to any schema, set to "json_object".
To output JSON format adhering to a provided schema, set this to an object of the class
~azure.ai.inference.models.JsonSchemaFormat. Default value is None.
:paramtype response_format: Union[Literal['text', 'json_object'], ~azure.ai.inference.models.JsonSchemaFormat]
:keyword stop: A collection of textual sequences that will end completions generation. Default
value is None.
:paramtype stop: list[str]
:keyword tools: The available tool definitions that the chat completions request can use,
including caller-defined functions. Default value is None.
:paramtype tools: list[~azure.ai.inference.models.ChatCompletionsToolDefinition]
:keyword tool_choice: If specified, the model will configure which of the provided tools it can
use for the chat completions response. Is either a Union[str,
"_models.ChatCompletionsToolChoicePreset"] type or a ChatCompletionsNamedToolChoice type.
Default value is None.
:paramtype tool_choice: str or ~azure.ai.inference.models.ChatCompletionsToolChoicePreset or
~azure.ai.inference.models.ChatCompletionsNamedToolChoice
:keyword seed: If specified, the system will make a best effort to sample deterministically
such that repeated requests with the
same seed and parameters should return the same result. Determinism is not guaranteed.
Default value is None.
:paramtype seed: int
:keyword model: ID of the specific AI model to use, if more than one model is available on the
endpoint. Default value is None.
:paramtype model: str
:keyword model_extras: Additional, model-specific parameters that are not in the
standard request payload. They will be added as-is to the root of the JSON in the request body.
How the service handles these extra parameters depends on the value of the
``extra-parameters`` request header. Default value is None.
:paramtype model_extras: dict[str, Any]
:return: ChatCompletions for non-streaming, or AsyncIterable[StreamingChatCompletionsUpdate] for streaming.
:rtype: ~azure.ai.inference.models.ChatCompletions or ~azure.ai.inference.models.AsyncStreamingChatCompletions
:raises ~azure.core.exceptions.HttpResponseError:
"""
@overload
async def complete(
self,
body: JSON,
*,
content_type: str = "application/json",
**kwargs: Any,
) -> Union[AsyncIterable[_models.StreamingChatCompletionsUpdate], _models.ChatCompletions]:
# pylint: disable=line-too-long
"""Gets chat completions for the provided chat messages.
Completions support a wide variety of tasks and generate text that continues from or
"completes" provided prompt data.
:param body: An object of type MutableMapping[str, Any], such as a dictionary, that
specifies the full request payload. Required.
:type body: JSON
:keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
Default value is "application/json".
:paramtype content_type: str
:return: ChatCompletions for non-streaming, or AsyncIterable[StreamingChatCompletionsUpdate] for streaming.
:rtype: ~azure.ai.inference.models.ChatCompletions or ~azure.ai.inference.models.AsyncStreamingChatCompletions
:raises ~azure.core.exceptions.HttpResponseError:
"""
@overload
async def complete(
self,
body: IO[bytes],
*,
content_type: str = "application/json",
**kwargs: Any,
) -> Union[AsyncIterable[_models.StreamingChatCompletionsUpdate], _models.ChatCompletions]:
# pylint: disable=line-too-long
"""Gets chat completions for the provided chat messages.
Completions support a wide variety of tasks and generate text that continues from or
"completes" provided prompt data.
:param body: Specifies the full request payload. Required.
:type body: IO[bytes]
:keyword content_type: Body Parameter content-type. Content type parameter for binary body.
Default value is "application/json".
:paramtype content_type: str
:return: ChatCompletions for non-streaming, or AsyncIterable[StreamingChatCompletionsUpdate] for streaming.
:rtype: ~azure.ai.inference.models.ChatCompletions or ~azure.ai.inference.models.AsyncStreamingChatCompletions
:raises ~azure.core.exceptions.HttpResponseError:
"""
# pylint:disable=client-method-missing-tracing-decorator-async
async def complete(
self,
body: Union[JSON, IO[bytes]] = _Unset,
*,
messages: List[_models.ChatRequestMessage] = _Unset,
stream: Optional[bool] = None,
frequency_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
max_tokens: Optional[int] = None,
response_format: Optional[Union[Literal["text", "json_object"], _models.JsonSchemaFormat]] = None,
stop: Optional[List[str]] = None,
tools: Optional[List[_models.ChatCompletionsToolDefinition]] = None,
tool_choice: Optional[
Union[str, _models.ChatCompletionsToolChoicePreset, _models.ChatCompletionsNamedToolChoice]
] = None,
seed: Optional[int] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Union[AsyncIterable[_models.StreamingChatCompletionsUpdate], _models.ChatCompletions]:
# pylint: disable=line-too-long
# pylint: disable=too-many-locals
"""Gets chat completions for the provided chat messages.
Completions support a wide variety of tasks and generate text that continues from or
"completes" provided prompt data. When using this method with `stream=True`, the response is streamed
back to the client. Iterate over the resulting :class:`~azure.ai.inference.models.StreamingChatCompletions`
object to get content updates as they arrive.
:param body: Is either a MutableMapping[str, Any] type (like a dictionary) or a IO[bytes] type
that specifies the full request payload. Required.
:type body: JSON or IO[bytes]
:keyword messages: The collection of context messages associated with this chat completions
request.
Typical usage begins with a chat message for the System role that provides instructions for
the behavior of the assistant, followed by alternating messages between the User and
Assistant roles. Required.
:paramtype messages: list[~azure.ai.inference.models.ChatRequestMessage]
:keyword stream: A value indicating whether chat completions should be streamed for this request.
Default value is False. If streaming is enabled, the response will be a StreamingChatCompletions.
Otherwise the response will be a ChatCompletions.
:paramtype stream: bool
:keyword frequency_penalty: A value that influences the probability of generated tokens
appearing based on their cumulative frequency in generated text.
Positive values will make tokens less likely to appear as their frequency increases and
decrease the likelihood of the model repeating the same statements verbatim.
Supported range is [-2, 2].
Default value is None.
:paramtype frequency_penalty: float
:keyword presence_penalty: A value that influences the probability of generated tokens
appearing based on their existing
presence in generated text.
Positive values will make tokens less likely to appear when they already exist and increase
the model's likelihood to output new topics.
Supported range is [-2, 2].
Default value is None.
:paramtype presence_penalty: float
:keyword temperature: The sampling temperature to use that controls the apparent creativity of
generated completions.
Higher values will make output more random while lower values will make results more focused
and deterministic.
It is not recommended to modify temperature and top_p for the same completions request as the
interaction of these two settings is difficult to predict.
Supported range is [0, 1].
Default value is None.
:paramtype temperature: float
:keyword top_p: An alternative to sampling with temperature called nucleus sampling. This value
causes the
model to consider the results of tokens with the provided probability mass. As an example, a
value of 0.15 will cause only the tokens comprising the top 15% of probability mass to be
considered.
It is not recommended to modify temperature and top_p for the same completions request as the
interaction of these two settings is difficult to predict.
Supported range is [0, 1].
Default value is None.
:paramtype top_p: float
:keyword max_tokens: The maximum number of tokens to generate. Default value is None.
:paramtype max_tokens: int
:keyword response_format: The format that the AI model must output. AI chat completions models typically output
unformatted text by default. This is equivalent to setting "text" as the response_format.
To output JSON format, without adhering to any schema, set to "json_object".
To output JSON format adhering to a provided schema, set this to an object of the class
~azure.ai.inference.models.JsonSchemaFormat. Default value is None.
:paramtype response_format: Union[Literal['text', 'json_object'], ~azure.ai.inference.models.JsonSchemaFormat]
:keyword stop: A collection of textual sequences that will end completions generation. Default
value is None.
:paramtype stop: list[str]
:keyword tools: The available tool definitions that the chat completions request can use,
including caller-defined functions. Default value is None.
:paramtype tools: list[~azure.ai.inference.models.ChatCompletionsToolDefinition]
:keyword tool_choice: If specified, the model will configure which of the provided tools it can
use for the chat completions response. Is either a Union[str,
"_models.ChatCompletionsToolChoicePreset"] type or a ChatCompletionsNamedToolChoice type.
Default value is None.
:paramtype tool_choice: str or ~azure.ai.inference.models.ChatCompletionsToolChoicePreset or
~azure.ai.inference.models.ChatCompletionsNamedToolChoice
:keyword seed: If specified, the system will make a best effort to sample deterministically
such that repeated requests with the
same seed and parameters should return the same result. Determinism is not guaranteed.
Default value is None.
:paramtype seed: int
:keyword model: ID of the specific AI model to use, if more than one model is available on the
endpoint. Default value is None.
:paramtype model: str
:keyword model_extras: Additional, model-specific parameters that are not in the
standard request payload. They will be added as-is to the root of the JSON in the request body.
How the service handles these extra parameters depends on the value of the
``extra-parameters`` request header. Default value is None.
:paramtype model_extras: dict[str, Any]
:return: ChatCompletions for non-streaming, or AsyncIterable[StreamingChatCompletionsUpdate] for streaming.
:rtype: ~azure.ai.inference.models.ChatCompletions or ~azure.ai.inference.models.AsyncStreamingChatCompletions
:raises ~azure.core.exceptions.HttpResponseError:
"""
error_map = {
401: ClientAuthenticationError,
404: ResourceNotFoundError,
409: ResourceExistsError,
304: ResourceNotModifiedError,
}
error_map.update(kwargs.pop("error_map", {}) or {})
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = kwargs.pop("params", {}) or {}
_extra_parameters: Union[_models._enums.ExtraParameters, None] = None
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
internal_response_format = _get_internal_response_format(response_format)
if body is _Unset:
if messages is _Unset:
raise TypeError("missing required argument: messages")
body = {
"messages": messages,
"stream": stream,
"frequency_penalty": frequency_penalty if frequency_penalty is not None else self._frequency_penalty,
"max_tokens": max_tokens if max_tokens is not None else self._max_tokens,
"model": model if model is not None else self._model,
"presence_penalty": presence_penalty if presence_penalty is not None else self._presence_penalty,
"response_format": (
internal_response_format if internal_response_format is not None else self._internal_response_format
),
"seed": seed if seed is not None else self._seed,
"stop": stop if stop is not None else self._stop,
"temperature": temperature if temperature is not None else self._temperature,
"tool_choice": tool_choice if tool_choice is not None else self._tool_choice,
"tools": tools if tools is not None else self._tools,
"top_p": top_p if top_p is not None else self._top_p,
}
if model_extras is not None and bool(model_extras):
body.update(model_extras)
_extra_parameters = _models._enums.ExtraParameters.PASS_THROUGH # pylint: disable=protected-access
elif self._model_extras is not None and bool(self._model_extras):
body.update(self._model_extras)
_extra_parameters = _models._enums.ExtraParameters.PASS_THROUGH # pylint: disable=protected-access
body = {k: v for k, v in body.items() if v is not None}
elif isinstance(body, dict) and "stream" in body and isinstance(body["stream"], bool):
stream = body["stream"]
content_type = content_type or "application/json"
_content = None
if isinstance(body, (IOBase, bytes)):
_content = body
else:
_content = json.dumps(body, cls=SdkJSONEncoder, exclude_readonly=True) # type: ignore
_request = build_chat_completions_complete_request(
extra_params=_extra_parameters,
content_type=content_type,
api_version=self._config.api_version,
content=_content,
headers=_headers,
params=_params,
)
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True),
}
_request.url = self._client.format_url(_request.url, **path_format_arguments)
_stream = stream or False
pipeline_response: PipelineResponse = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access
_request, stream=_stream, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200]:
if _stream:
await response.read() # Load the body in memory and close the socket
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response)
if _stream:
return _models.AsyncStreamingChatCompletions(response)
return _deserialize(_models._patch.ChatCompletions, response.json()) # pylint: disable=protected-access
@distributed_trace_async
async def get_model_info(self, **kwargs: Any) -> _models.ModelInfo:
# pylint: disable=line-too-long
"""Returns information about the AI model.
The method makes a REST API call to the ``/info`` route on the given endpoint.
This method will only work when using Serverless API or Managed Compute endpoint.
It will not work for GitHub Models endpoint or Azure OpenAI endpoint.
:return: ModelInfo. The ModelInfo is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.ModelInfo
:raises ~azure.core.exceptions.HttpResponseError:
"""
if not self._model_info:
try:
self._model_info = await self._get_model_info(
**kwargs
) # pylint: disable=attribute-defined-outside-init
except ResourceNotFoundError as error:
error.message = "Model information is not available on this endpoint (`/info` route not supported)."
raise error
return self._model_info
def __str__(self) -> str:
# pylint: disable=client-method-name-no-double-underscore
return super().__str__() + f"\n{self._model_info}" if self._model_info else super().__str__()
class EmbeddingsClient(EmbeddingsClientGenerated):
"""EmbeddingsClient.
:param endpoint: Service endpoint URL for AI model inference. Required.
:type endpoint: str
:param credential: Credential used to authenticate requests to the service. Is either a
AzureKeyCredential type or a AsyncTokenCredential type. Required.
:type credential: ~azure.core.credentials.AzureKeyCredential or
~azure.core.credentials_async.AsyncTokenCredential
:keyword dimensions: Optional. The number of dimensions the resulting output embeddings should
have. Default value is None.
:paramtype dimensions: int
:keyword encoding_format: Optional. The desired format for the returned embeddings.
Known values are:
"base64", "binary", "float", "int8", "ubinary", and "uint8". Default value is None.
:paramtype encoding_format: str or ~azure.ai.inference.models.EmbeddingEncodingFormat
:keyword input_type: Optional. The type of the input. Known values are:
"text", "query", and "document". Default value is None.
:paramtype input_type: str or ~azure.ai.inference.models.EmbeddingInputType
:keyword model: ID of the specific AI model to use, if more than one model is available on the
endpoint. Default value is None.
:paramtype model: str
:keyword model_extras: Additional, model-specific parameters that are not in the
standard request payload. They will be added as-is to the root of the JSON in the request body.
How the service handles these extra parameters depends on the value of the
``extra-parameters`` request header. Default value is None.
:paramtype model_extras: dict[str, Any]
:keyword api_version: The API version to use for this operation. Default value is
"2024-05-01-preview". Note that overriding this default value may result in unsupported
behavior.
:paramtype api_version: str
"""
def __init__(
self,
endpoint: str,
credential: Union[AzureKeyCredential, "AsyncTokenCredential"],
*,
dimensions: Optional[int] = None,
encoding_format: Optional[Union[str, _models.EmbeddingEncodingFormat]] = None,
input_type: Optional[Union[str, _models.EmbeddingInputType]] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
self._model_info: Optional[_models.ModelInfo] = None
# Store default embeddings settings, to be applied in all future service calls
# unless overridden by arguments in the `embed` method.
self._dimensions = dimensions
self._encoding_format = encoding_format
self._input_type = input_type
self._model = model
self._model_extras = model_extras
# For Key auth, we need to send these two auth HTTP request headers simultaneously:
# 1. "Authorization: Bearer <key>"
# 2. "api-key: <key>"
# This is because Serverless API, Managed Compute and GitHub endpoints support the first header,
# and Azure OpenAI and the new Unified Inference endpoints support the second header.
# The first header will be taken care of by auto-generated code.
# The second one is added here.
if isinstance(credential, AzureKeyCredential):
headers = kwargs.pop("headers", {})
if "api-key" not in headers:
headers["api-key"] = credential.key
kwargs["headers"] = headers
super().__init__(endpoint, credential, **kwargs)
@overload
async def embed(
self,
*,
input: List[str],
dimensions: Optional[int] = None,
encoding_format: Optional[Union[str, _models.EmbeddingEncodingFormat]] = None,
input_type: Optional[Union[str, _models.EmbeddingInputType]] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> _models.EmbeddingsResult:
"""Return the embedding vectors for given text prompts.
The method makes a REST API call to the `/embeddings` route on the given endpoint.
:keyword input: Input text to embed, encoded as a string or array of tokens.
To embed multiple inputs in a single request, pass an array
of strings or array of token arrays. Required.
:paramtype input: list[str]
:keyword dimensions: Optional. The number of dimensions the resulting output embeddings should
have. Default value is None.
:paramtype dimensions: int
:keyword encoding_format: Optional. The desired format for the returned embeddings.
Known values are:
"base64", "binary", "float", "int8", "ubinary", and "uint8". Default value is None.
:paramtype encoding_format: str or ~azure.ai.inference.models.EmbeddingEncodingFormat
:keyword input_type: Optional. The type of the input. Known values are:
"text", "query", and "document". Default value is None.
:paramtype input_type: str or ~azure.ai.inference.models.EmbeddingInputType
:keyword model: ID of the specific AI model to use, if more than one model is available on the
endpoint. Default value is None.
:paramtype model: str
:keyword model_extras: Additional, model-specific parameters that are not in the
standard request payload. They will be added as-is to the root of the JSON in the request body.
How the service handles these extra parameters depends on the value of the
``extra-parameters`` request header. Default value is None.
:paramtype model_extras: dict[str, Any]
:return: EmbeddingsResult. The EmbeddingsResult is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.EmbeddingsResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
@overload
async def embed(
self,
body: JSON,
*,
content_type: str = "application/json",
**kwargs: Any,
) -> _models.EmbeddingsResult:
"""Return the embedding vectors for given text prompts.
The method makes a REST API call to the `/embeddings` route on the given endpoint.
:param body: An object of type MutableMapping[str, Any], such as a dictionary, that
specifies the full request payload. Required.
:type body: JSON
:keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
Default value is "application/json".
:paramtype content_type: str
:return: EmbeddingsResult. The EmbeddingsResult is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.EmbeddingsResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
@overload
async def embed(
self,
body: IO[bytes],
*,
content_type: str = "application/json",
**kwargs: Any,
) -> _models.EmbeddingsResult:
"""Return the embedding vectors for given text prompts.
The method makes a REST API call to the `/embeddings` route on the given endpoint.
:param body: Specifies the full request payload. Required.
:type body: IO[bytes]
:keyword content_type: Body Parameter content-type. Content type parameter for binary body.
Default value is "application/json".
:paramtype content_type: str
:return: EmbeddingsResult. The EmbeddingsResult is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.EmbeddingsResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
@distributed_trace_async
async def embed(
self,
body: Union[JSON, IO[bytes]] = _Unset,
*,
input: List[str] = _Unset,
dimensions: Optional[int] = None,
encoding_format: Optional[Union[str, _models.EmbeddingEncodingFormat]] = None,
input_type: Optional[Union[str, _models.EmbeddingInputType]] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> _models.EmbeddingsResult:
# pylint: disable=line-too-long
"""Return the embedding vectors for given text prompts.
The method makes a REST API call to the `/embeddings` route on the given endpoint.
:param body: Is either a MutableMapping[str, Any] type (like a dictionary) or a IO[bytes] type
that specifies the full request payload. Required.
:type body: JSON or IO[bytes]
:keyword input: Input text to embed, encoded as a string or array of tokens.
To embed multiple inputs in a single request, pass an array
of strings or array of token arrays. Required.
:paramtype input: list[str]
:keyword dimensions: Optional. The number of dimensions the resulting output embeddings should
have. Default value is None.
:paramtype dimensions: int
:keyword encoding_format: Optional. The desired format for the returned embeddings.
Known values are:
"base64", "binary", "float", "int8", "ubinary", and "uint8". Default value is None.
:paramtype encoding_format: str or ~azure.ai.inference.models.EmbeddingEncodingFormat
:keyword input_type: Optional. The type of the input. Known values are:
"text", "query", and "document". Default value is None.
:paramtype input_type: str or ~azure.ai.inference.models.EmbeddingInputType
:keyword model: ID of the specific AI model to use, if more than one model is available on the
endpoint. Default value is None.
:paramtype model: str
:keyword model_extras: Additional, model-specific parameters that are not in the
standard request payload. They will be added as-is to the root of the JSON in the request body.
How the service handles these extra parameters depends on the value of the
``extra-parameters`` request header. Default value is None.
:paramtype model_extras: dict[str, Any]
:return: EmbeddingsResult. The EmbeddingsResult is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.EmbeddingsResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
error_map: MutableMapping[int, Type[HttpResponseError]] = {
401: ClientAuthenticationError,
404: ResourceNotFoundError,
409: ResourceExistsError,
304: ResourceNotModifiedError,
}
error_map.update(kwargs.pop("error_map", {}) or {})
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = kwargs.pop("params", {}) or {}
_extra_parameters: Union[_models._enums.ExtraParameters, None] = None
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
if body is _Unset:
if input is _Unset:
raise TypeError("missing required argument: input")
body = {
"input": input,
"dimensions": dimensions if dimensions is not None else self._dimensions,
"encoding_format": encoding_format if encoding_format is not None else self._encoding_format,
"input_type": input_type if input_type is not None else self._input_type,
"model": model if model is not None else self._model,
}
if model_extras is not None and bool(model_extras):
body.update(model_extras)
_extra_parameters = _models._enums.ExtraParameters.PASS_THROUGH # pylint: disable=protected-access
elif self._model_extras is not None and bool(self._model_extras):
body.update(self._model_extras)
_extra_parameters = _models._enums.ExtraParameters.PASS_THROUGH # pylint: disable=protected-access
body = {k: v for k, v in body.items() if v is not None}
content_type = content_type or "application/json"
_content = None
if isinstance(body, (IOBase, bytes)):
_content = body
else:
_content = json.dumps(body, cls=SdkJSONEncoder, exclude_readonly=True) # type: ignore
_request = build_embeddings_embed_request(
extra_params=_extra_parameters,
content_type=content_type,
api_version=self._config.api_version,
content=_content,
headers=_headers,
params=_params,
)
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True),
}
_request.url = self._client.format_url(_request.url, **path_format_arguments)
_stream = kwargs.pop("stream", False)
pipeline_response: PipelineResponse = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access
_request, stream=_stream, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200]:
if _stream:
await response.read() # Load the body in memory and close the socket
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response)
if _stream:
deserialized = response.iter_bytes()
else:
deserialized = _deserialize(
_models._patch.EmbeddingsResult, response.json() # pylint: disable=protected-access
)
return deserialized # type: ignore
@distributed_trace_async
async def get_model_info(self, **kwargs: Any) -> _models.ModelInfo:
# pylint: disable=line-too-long
"""Returns information about the AI model.
The method makes a REST API call to the ``/info`` route on the given endpoint.
This method will only work when using Serverless API or Managed Compute endpoint.
It will not work for GitHub Models endpoint or Azure OpenAI endpoint.
:return: ModelInfo. The ModelInfo is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.ModelInfo
:raises ~azure.core.exceptions.HttpResponseError:
"""
if not self._model_info:
try:
self._model_info = await self._get_model_info(
**kwargs
) # pylint: disable=attribute-defined-outside-init
except ResourceNotFoundError as error:
error.message = "Model information is not available on this endpoint (`/info` route not supported)."
raise error
return self._model_info
def __str__(self) -> str:
# pylint: disable=client-method-name-no-double-underscore
return super().__str__() + f"\n{self._model_info}" if self._model_info else super().__str__()
class ImageEmbeddingsClient(ImageEmbeddingsClientGenerated):
"""ImageEmbeddingsClient.
:param endpoint: Service endpoint URL for AI model inference. Required.
:type endpoint: str
:param credential: Credential used to authenticate requests to the service. Is either a
AzureKeyCredential type or a AsyncTokenCredential type. Required.
:type credential: ~azure.core.credentials.AzureKeyCredential or
~azure.core.credentials_async.AsyncTokenCredential
:keyword dimensions: Optional. The number of dimensions the resulting output embeddings should
have. Default value is None.
:paramtype dimensions: int
:keyword encoding_format: Optional. The desired format for the returned embeddings.
Known values are:
"base64", "binary", "float", "int8", "ubinary", and "uint8". Default value is None.
:paramtype encoding_format: str or ~azure.ai.inference.models.EmbeddingEncodingFormat
:keyword input_type: Optional. The type of the input. Known values are:
"text", "query", and "document". Default value is None.
:paramtype input_type: str or ~azure.ai.inference.models.EmbeddingInputType
:keyword model: ID of the specific AI model to use, if more than one model is available on the
endpoint. Default value is None.
:paramtype model: str
:keyword model_extras: Additional, model-specific parameters that are not in the
standard request payload. They will be added as-is to the root of the JSON in the request body.
How the service handles these extra parameters depends on the value of the
``extra-parameters`` request header. Default value is None.
:paramtype model_extras: dict[str, Any]
:keyword api_version: The API version to use for this operation. Default value is
"2024-05-01-preview". Note that overriding this default value may result in unsupported
behavior.
:paramtype api_version: str
"""
def __init__(
self,
endpoint: str,
credential: Union[AzureKeyCredential, "AsyncTokenCredential"],
*,
dimensions: Optional[int] = None,
encoding_format: Optional[Union[str, _models.EmbeddingEncodingFormat]] = None,
input_type: Optional[Union[str, _models.EmbeddingInputType]] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
self._model_info: Optional[_models.ModelInfo] = None
# Store default embeddings settings, to be applied in all future service calls
# unless overridden by arguments in the `embed` method.
self._dimensions = dimensions
self._encoding_format = encoding_format
self._input_type = input_type
self._model = model
self._model_extras = model_extras
# For Key auth, we need to send these two auth HTTP request headers simultaneously:
# 1. "Authorization: Bearer <key>"
# 2. "api-key: <key>"
# This is because Serverless API, Managed Compute and GitHub endpoints support the first header,
# and Azure OpenAI and the new Unified Inference endpoints support the second header.
# The first header will be taken care of by auto-generated code.
# The second one is added here.
if isinstance(credential, AzureKeyCredential):
headers = kwargs.pop("headers", {})
if "api-key" not in headers:
headers["api-key"] = credential.key
kwargs["headers"] = headers
super().__init__(endpoint, credential, **kwargs)
@overload
async def embed(
self,
*,
input: List[_models.ImageEmbeddingInput],
dimensions: Optional[int] = None,
encoding_format: Optional[Union[str, _models.EmbeddingEncodingFormat]] = None,
input_type: Optional[Union[str, _models.EmbeddingInputType]] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> _models.EmbeddingsResult:
"""Return the embedding vectors for given images.
The method makes a REST API call to the `/images/embeddings` route on the given endpoint.
:keyword input: Input image to embed. To embed multiple inputs in a single request, pass an
array.
The input must not exceed the max input tokens for the model. Required.
:paramtype input: list[~azure.ai.inference.models.ImageEmbeddingInput]
:keyword dimensions: Optional. The number of dimensions the resulting output embeddings should
have. Default value is None.
:paramtype dimensions: int
:keyword encoding_format: Optional. The desired format for the returned embeddings.
Known values are:
"base64", "binary", "float", "int8", "ubinary", and "uint8". Default value is None.
:paramtype encoding_format: str or ~azure.ai.inference.models.EmbeddingEncodingFormat
:keyword input_type: Optional. Known values are:
"text", "query", and "document". Default value is None.
:paramtype input_type: str or ~azure.ai.inference.models.EmbeddingInputType
:keyword model: ID of the specific AI model to use, if more than one model is available on the
endpoint. Default value is None.
:paramtype model: str
:keyword model_extras: Additional, model-specific parameters that are not in the
standard request payload. They will be added as-is to the root of the JSON in the request body.
How the service handles these extra parameters depends on the value of the
``extra-parameters`` request header. Default value is None.
:paramtype model_extras: dict[str, Any]
:return: EmbeddingsResult. The EmbeddingsResult is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.EmbeddingsResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
@overload
async def embed(
self,
body: JSON,
*,
content_type: str = "application/json",
**kwargs: Any,
) -> _models.EmbeddingsResult:
"""Return the embedding vectors for given images.
The method makes a REST API call to the `/images/embeddings` route on the given endpoint.
:param body: An object of type MutableMapping[str, Any], such as a dictionary, that
specifies the full request payload. Required.
:type body: JSON
:keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
Default value is "application/json".
:paramtype content_type: str
:return: EmbeddingsResult. The EmbeddingsResult is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.EmbeddingsResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
@overload
async def embed(
self,
body: IO[bytes],
*,
content_type: str = "application/json",
**kwargs: Any,
) -> _models.EmbeddingsResult:
"""Return the embedding vectors for given images.
The method makes a REST API call to the `/images/embeddings` route on the given endpoint.
:param body: Specifies the full request payload. Required.
:type body: IO[bytes]
:keyword content_type: Body Parameter content-type. Content type parameter for binary body.
Default value is "application/json".
:paramtype content_type: str
:return: EmbeddingsResult. The EmbeddingsResult is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.EmbeddingsResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
@distributed_trace_async
async def embed(
self,
body: Union[JSON, IO[bytes]] = _Unset,
*,
input: List[_models.ImageEmbeddingInput] = _Unset,
dimensions: Optional[int] = None,
encoding_format: Optional[Union[str, _models.EmbeddingEncodingFormat]] = None,
input_type: Optional[Union[str, _models.EmbeddingInputType]] = None,
model: Optional[str] = None,
model_extras: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> _models.EmbeddingsResult:
# pylint: disable=line-too-long
"""Return the embedding vectors for given images.
The method makes a REST API call to the `/images/embeddings` route on the given endpoint.
:param body: Is either a MutableMapping[str, Any] type (like a dictionary) or a IO[bytes] type
that specifies the full request payload. Required.
:type body: JSON or IO[bytes]
:keyword input: Input image to embed. To embed multiple inputs in a single request, pass an
array.
The input must not exceed the max input tokens for the model. Required.
:paramtype input: list[~azure.ai.inference.models.ImageEmbeddingInput]
:keyword dimensions: Optional. The number of dimensions the resulting output embeddings should
have. Default value is None.
:paramtype dimensions: int
:keyword encoding_format: Optional. The desired format for the returned embeddings.
Known values are:
"base64", "binary", "float", "int8", "ubinary", and "uint8". Default value is None.
:paramtype encoding_format: str or ~azure.ai.inference.models.EmbeddingEncodingFormat
:keyword input_type: Optional. The type of the input. Known values are:
"text", "query", and "document". Default value is None.
:paramtype input_type: str or ~azure.ai.inference.models.EmbeddingInputType
:keyword model: ID of the specific AI model to use, if more than one model is available on the
endpoint. Default value is None.
:paramtype model: str
:keyword model_extras: Additional, model-specific parameters that are not in the
standard request payload. They will be added as-is to the root of the JSON in the request body.
How the service handles these extra parameters depends on the value of the
``extra-parameters`` request header. Default value is None.
:paramtype model_extras: dict[str, Any]
:return: EmbeddingsResult. The EmbeddingsResult is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.EmbeddingsResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
error_map: MutableMapping[int, Type[HttpResponseError]] = {
401: ClientAuthenticationError,
404: ResourceNotFoundError,
409: ResourceExistsError,
304: ResourceNotModifiedError,
}
error_map.update(kwargs.pop("error_map", {}) or {})
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = kwargs.pop("params", {}) or {}
_extra_parameters: Union[_models._enums.ExtraParameters, None] = None
content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
if body is _Unset:
if input is _Unset:
raise TypeError("missing required argument: input")
body = {
"input": input,
"dimensions": dimensions if dimensions is not None else self._dimensions,
"encoding_format": encoding_format if encoding_format is not None else self._encoding_format,
"input_type": input_type if input_type is not None else self._input_type,
"model": model if model is not None else self._model,
}
if model_extras is not None and bool(model_extras):
body.update(model_extras)
_extra_parameters = _models._enums.ExtraParameters.PASS_THROUGH # pylint: disable=protected-access
elif self._model_extras is not None and bool(self._model_extras):
body.update(self._model_extras)
_extra_parameters = _models._enums.ExtraParameters.PASS_THROUGH # pylint: disable=protected-access
body = {k: v for k, v in body.items() if v is not None}
content_type = content_type or "application/json"
_content = None
if isinstance(body, (IOBase, bytes)):
_content = body
else:
_content = json.dumps(body, cls=SdkJSONEncoder, exclude_readonly=True) # type: ignore
_request = build_image_embeddings_embed_request(
extra_params=_extra_parameters,
content_type=content_type,
api_version=self._config.api_version,
content=_content,
headers=_headers,
params=_params,
)
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True),
}
_request.url = self._client.format_url(_request.url, **path_format_arguments)
_stream = kwargs.pop("stream", False)
pipeline_response: PipelineResponse = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access
_request, stream=_stream, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200]:
if _stream:
await response.read() # Load the body in memory and close the socket
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response)
if _stream:
deserialized = response.iter_bytes()
else:
deserialized = _deserialize(
_models._patch.EmbeddingsResult, response.json() # pylint: disable=protected-access
)
return deserialized # type: ignore
@distributed_trace_async
async def get_model_info(self, **kwargs: Any) -> _models.ModelInfo:
# pylint: disable=line-too-long
"""Returns information about the AI model.
The method makes a REST API call to the ``/info`` route on the given endpoint.
This method will only work when using Serverless API or Managed Compute endpoint.
It will not work for GitHub Models endpoint or Azure OpenAI endpoint.
:return: ModelInfo. The ModelInfo is compatible with MutableMapping
:rtype: ~azure.ai.inference.models.ModelInfo
:raises ~azure.core.exceptions.HttpResponseError:
"""
if not self._model_info:
try:
self._model_info = await self._get_model_info(
**kwargs
) # pylint: disable=attribute-defined-outside-init
except ResourceNotFoundError as error:
error.message = "Model information is not available on this endpoint (`/info` route not supported)."
raise error
return self._model_info
def __str__(self) -> str:
# pylint: disable=client-method-name-no-double-underscore
return super().__str__() + f"\n{self._model_info}" if self._model_info else super().__str__()
__all__: List[str] = [
"load_client",
"ChatCompletionsClient",
"EmbeddingsClient",
"ImageEmbeddingsClient",
] # Add all objects you want publicly available to users at this package level
def patch_sdk():
"""Do not remove from this file.
`patch_sdk` is a last resort escape hatch that allows you to do customizations
you can't accomplish using the techniques described in
https://aka.ms/azsdk/python/dpcodegen/python/customize
"""
|