aboutsummaryrefslogtreecommitdiff
path: root/gnqa/src
diff options
context:
space:
mode:
Diffstat (limited to 'gnqa/src')
-rw-r--r--gnqa/src/apis/__init__.py0
-rw-r--r--gnqa/src/apis/__pycache__/gnqaclient.cpython-310.pycbin0 -> 7862 bytes
-rw-r--r--gnqa/src/apis/__pycache__/process.cpython-310.pycbin0 -> 5151 bytes
-rw-r--r--gnqa/src/apis/__pycache__/resp.cpython-310.pycbin0 -> 2487 bytes
-rw-r--r--gnqa/src/apis/all_files.json11536
-rw-r--r--gnqa/src/apis/doc_ids.json1409
-rw-r--r--gnqa/src/apis/gnqaclient.py226
-rw-r--r--gnqa/src/apis/process.py152
-rw-r--r--gnqa/src/apis/resp.py75
-rw-r--r--gnqa/src/config.example11
-rw-r--r--gnqa/src/errors/__init__.py0
-rw-r--r--gnqa/src/errors/__pycache__/rag_err.cpython-310.pycbin0 -> 1998 bytes
-rw-r--r--gnqa/src/errors/rag_err.py62
-rwxr-xr-xgnqa/src/ingest_my_data.py72
-rw-r--r--gnqa/src/notebooks/Vanilla_RAG.ipynb743
-rw-r--r--gnqa/src/notebooks/parse_r2r_result.ipynb2186
-rwxr-xr-xgnqa/src/scripts/run_human_datasets.sh63
-rw-r--r--gnqa/src/study1/__init__.py0
-rw-r--r--gnqa/src/study1/parsejson.py63
-rw-r--r--gnqa/src/study1/parsejson_ratings.py106
-rw-r--r--gnqa/src/study1/ragas_fahamuRAG.py71
-rw-r--r--gnqa/src/study1/retrieve_context.py171
-rw-r--r--gnqa/src/study2/__init__.py0
-rw-r--r--gnqa/src/study2/create_dataset.py20
-rw-r--r--gnqa/src/study2/document_operations.py177
-rw-r--r--gnqa/src/study2/parse_r2r_result.py63
-rw-r--r--gnqa/src/study2/parsejson.py63
-rw-r--r--gnqa/src/study2/retrieve_context.py171
-rw-r--r--gnqa/src/study2/run_questions.py41
29 files changed, 17481 insertions, 0 deletions
diff --git a/gnqa/src/apis/__init__.py b/gnqa/src/apis/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/gnqa/src/apis/__init__.py
diff --git a/gnqa/src/apis/__pycache__/gnqaclient.cpython-310.pyc b/gnqa/src/apis/__pycache__/gnqaclient.cpython-310.pyc
new file mode 100644
index 00000000..2157a765
--- /dev/null
+++ b/gnqa/src/apis/__pycache__/gnqaclient.cpython-310.pyc
Binary files differ
diff --git a/gnqa/src/apis/__pycache__/process.cpython-310.pyc b/gnqa/src/apis/__pycache__/process.cpython-310.pyc
new file mode 100644
index 00000000..65779dac
--- /dev/null
+++ b/gnqa/src/apis/__pycache__/process.cpython-310.pyc
Binary files differ
diff --git a/gnqa/src/apis/__pycache__/resp.cpython-310.pyc b/gnqa/src/apis/__pycache__/resp.cpython-310.pyc
new file mode 100644
index 00000000..256f1a73
--- /dev/null
+++ b/gnqa/src/apis/__pycache__/resp.cpython-310.pyc
Binary files differ
diff --git a/gnqa/src/apis/all_files.json b/gnqa/src/apis/all_files.json
new file mode 100644
index 00000000..3c3c1eba
--- /dev/null
+++ b/gnqa/src/apis/all_files.json
@@ -0,0 +1,11536 @@
+{
+ "data": [
+ {
+ "filename": "2019 - Machine-learning to stratify diabetic patients using novel cardiac biomarkers and integrative genomics.pdf",
+ "id": "5d9d5e09-f80b-496a-b6b2-dfc7d7cf7f2b"
+ },
+ {
+ "filename": "2015 - The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children the TEDDY study.pdf",
+ "id": "733e85a8-8ba1-4aae-8ce0-8597faaeefc7"
+ },
+ {
+ "filename": "2003 - A functional polymorphism in the promoterenhancer region of the FOXP3Scurfin gene associated with type 1 diabetes.pdf",
+ "id": "7d331e2e-0bed-4d06-880f-f882c6d07214"
+ },
+ {
+ "filename": "2018 - Genome-wide association studies of albuminuria towards genetic stratification in diabetes.pdf",
+ "id": "2ad3a7ba-8f21-4a1d-a92d-a3b3c9aa02e0"
+ },
+ {
+ "filename": "2020 - Fine-tuning of Genome-Wide Polygenic Risk Scores and Prediction of Gestational Diabetes in South Asian Women.pdf",
+ "id": "a644f3d8-5b62-4416-b787-66c0de198beb"
+ },
+ {
+ "filename": "2001 Nadkarni BayesCausal Approach.txt",
+ "id": "713ad3a2-efa9-44af-8639-f4e67efc7001"
+ },
+ {
+ "filename": "2021 - Genomic Medicine in Diabetes Improving the Diagnostic Rate of Monogenic Diabetes.pdf",
+ "id": "7f5fa726-75d1-47c9-a6d7-dae36b0cb211"
+ },
+ {
+ "filename": "2022 -Tabbaa- Mouse pop genetics.pdf",
+ "id": "87e43e53-85e4-4ad6-8e5f-c6b5e3b99202"
+ },
+ {
+ "filename": "2019 - A genome wide association study implicates that the TTC39C gene is associated with diabetic maculopathy with decreased visual acuity.pdf",
+ "id": "8b086e53-79f4-498a-91e0-48f6217388d7"
+ },
+ {
+ "filename": "2013 - Mutations in the genes encoding the transcription factors Hepatocyte Nuclear Factor 1.pdf",
+ "id": "09218e05-177e-438a-9526-a7572ecfbf6a"
+ },
+ {
+ "filename": "2003 -WebQTL rapid exploratory analysis of gene_expression and genetic networks for brain and_behavior.txt",
+ "id": "152b2818-67d3-4041-a347-d1b355ca4ce8"
+ },
+ {
+ "filename": "2006 - Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes.pdf",
+ "id": "ccaaa580-3fb9-4b14-b048-42934a198adf"
+ },
+ {
+ "filename": "2022 -Yu- Sex Diff Key Genes Mouse.pdf",
+ "id": "9c8e07d4-2d6f-4e0b-8cf1-6920047554fa"
+ },
+ {
+ "filename": "2010 - High-throughput assessment of CpG site methylation for distinguishing between HCV-cirrhosis and HCV-associated hepatocellular carcinoma.pdf",
+ "id": "9b0c38a0-79b3-4680-b47a-177dfe307957"
+ },
+ {
+ "filename": "2003 - WebQTL rapid exploratory analysis of gene_expression and genetic networks for brain and_behavior.txt",
+ "id": "26abfbd2-7c02-4696-b208-039f8ec5a287"
+ },
+ {
+ "filename": "2010 - Gut Microbiota in Human Adults with Type 2 Diabetes.pdf",
+ "id": "b16d3c53-cf17-44cd-b1ec-ffd293e92ec5"
+ },
+ {
+ "filename": "2017 - Machine Learning and Data Mining Methods in Diabetes Research.pdf",
+ "id": "92eb0c69-5e98-41aa-9084-506e7f223b1a"
+ },
+ {
+ "filename": "2003 - webQtl Web-Based Complex Trait Analysis.txt",
+ "id": "b3e8c6d4-fc8b-4a1c-b6d8-7c0252101571"
+ },
+ {
+ "filename": "2001 -Manly- MapManagerQTX.pdf",
+ "id": "2bcad6d5-7514-4055-960a-23daee498bc4"
+ },
+ {
+ "filename": "2003 -Wang- WebQTL.pdf",
+ "id": "9161eaca-9841-4097-8dcd-4ea73ae81188"
+ },
+ {
+ "filename": "2003 -Williams- WebQTL_A_Tour_of_Transcriptional_Networks.pdf",
+ "id": "28aeee87-848c-472b-b501-d4bdec208554"
+ },
+ {
+ "filename": "2003 -chesler-Genetic inbred strains:pdf.pdf",
+ "id": "40942b18-1e6f-40c1-a610-aac94150808a"
+ },
+ {
+ "filename": "2004 -Chesler- WebQTL_rapid_exploratory_analysis_of_gen.pdf",
+ "id": "81230775-5deb-499d-97bc-aa17301583e1"
+ },
+ {
+ "filename": "2004 -Scott- P2p0r.pdf",
+ "id": "df96e60b-2d45-4386-b4b9-fffb936a1146"
+ },
+ {
+ "filename": "2005 -Bennett- Genetics_of_body_weight_in_the_LXS_recom.pdf",
+ "id": "ecfd1645-b4d8-4f60-9faa-b00d5537066b"
+ },
+ {
+ "filename": "2005 -Bystrykh- Uncovering_regulatory_pathways_that_affe.pdf",
+ "id": "4f2a7fac-7cfb-4a08-9587-60b9f10870f2"
+ },
+ {
+ "filename": "2005 -Chesler- WebQTL pain related phenotypes.pdf",
+ "id": "213ac463-1d1f-41c3-b136-d67b368f25c5"
+ },
+ {
+ "filename": "2005 -Chesler- geneexpression.pdf",
+ "id": "f079736d-7559-40fb-98dd-978f07136f22"
+ },
+ {
+ "filename": "2005 -Lariviere- QTL neuropathic mech allodynia.pdf",
+ "id": "052e6a72-41b6-49d3-b37d-eb6664b0afe8"
+ },
+ {
+ "filename": "2005 -Tao- Spinal density-93.pdf",
+ "id": "5a6ff51b-b429-47e4-8dc7-756e418cd3a6"
+ },
+ {
+ "filename": "2005 -Yeomans- Antihyperalgesic.pdf",
+ "id": "b7bfdfa6-8547-47b8-aef5-51316f351b60"
+ },
+ {
+ "filename": "2005 -galhardo- Cognitive impairment.pdf",
+ "id": "0e46a0b6-1005-49ad-ac3d-0e409e0d2027"
+ },
+ {
+ "filename": "2014 -Wei- Fluorosis Mice.pdf",
+ "id": "325ace7b-4d46-4119-a96b-076eb0c13832"
+ },
+ {
+ "filename": "2016 -Loos- BXDs Home cage.pdf",
+ "id": "bc2b855f-5177-4304-b142-bfceaa4a7b9f"
+ },
+ {
+ "filename": "2021 -Feng- Hierarchical regulation.pdf",
+ "id": "5b4350f1-779d-4763-a0e1-23008db25633"
+ },
+ {
+ "filename": "2021 -Mozhui- Epigenetic aging.pdf",
+ "id": "5b2055ca-65c0-49a5-a442-e4ea8d5e8efb"
+ },
+ {
+ "filename": "2021 -Potter-Dickey- Genetic Susceptibility.pdf",
+ "id": "2a75f967-c007-416c-a697-bf588de39272"
+ },
+ {
+ "filename": "2022 -Ashbrook- Genomic Basis Neurotoxic.pdf",
+ "id": "d125b837-65d0-4ab3-a608-6df832ae9eae"
+ },
+ {
+ "filename": "2022 -Bagley- Behavioral Phenotypes.pdf",
+ "id": "8cd05a43-557d-4347-8ce3-acaa40d12423"
+ },
+ {
+ "filename": "2022 -Baker- Effects BXD Mouse.pdf",
+ "id": "b7f409c2-5328-4bd5-94f5-cc7456252ef6"
+ },
+ {
+ "filename": "2022 -Batten- Guix.pdf",
+ "id": "e5bb942c-89a9-4fb8-a78d-1234bf486ba9"
+ },
+ {
+ "filename": "2022 -Batten- guix-gem5.pdf",
+ "id": "45392de6-e26e-453d-b0f6-4a0688816a3e"
+ },
+ {
+ "filename": "2022 -Bender- Inborn Errors.pdf",
+ "id": "6ca3f66a-4d54-4de8-b003-312a478c9fc1"
+ },
+ {
+ "filename": "2022 -Benegiamo- COX7A2L heart fitness.pdf",
+ "id": "2d5cbb59-5330-4915-99e8-327450aa0c86"
+ },
+ {
+ "filename": "2022 -Chanpaisaeng- Diet X Gene Interactions Control Femoral Bone Adaptation to Low Dietary Calcium.pdf",
+ "id": "e965439e-e3bb-4b0c-b483-61ee9b175d6c"
+ },
+ {
+ "filename": "2022 -Chunduri- Drugs Animal Models.pdf",
+ "id": "1a041a89-4da8-4ad5-b241-da36df917930"
+ },
+ {
+ "filename": "2022 -Dong- Beta-caryophyllene klotho.pdf",
+ "id": "6cb5f2c1-ad3f-4a94-ab85-16bacad9f87b"
+ },
+ {
+ "filename": "2022 -Feng- A hierarchical regulatory network ensures stable albumin transcription under various.pdf",
+ "id": "ebd922bc-a95d-40bc-91e2-d6034571f7f4"
+ },
+ {
+ "filename": "2022 -Gunturkun- GeneCup.pdf",
+ "id": "fcd522a5-43ad-413b-abd9-5e3c9ccaca9f"
+ },
+ {
+ "filename": "2022 -Hao- Integrative systems.pdf",
+ "id": "305eff75-5950-46fe-8be6-a6a143aa11cc"
+ },
+ {
+ "filename": "2015_GN_Diabetes.pdf",
+ "id": "38594391-2185-4636-9735-b7f92dc98981"
+ },
+ {
+ "filename": "2015_GN_Diabets_notheses.pdf",
+ "id": "9e828c9f-5e04-4df7-b6c3-92825634e603"
+ },
+ {
+ "filename": "2022 -Jia- Alzheimers disease pathways.pdf",
+ "id": "1f2060d9-353b-4de8-9172-edf15881f40f"
+ },
+ {
+ "filename": "2022 -Katashima- Neuromuscular circuit.pdf",
+ "id": "305bac54-2df3-420e-bf4e-9f9da6af53a3"
+ },
+ {
+ "filename": "2022 -Lima- Leptin et al.pdf",
+ "id": "5cf156b3-26c4-4a07-b561-82b7bb820f61"
+ },
+ {
+ "filename": "2022 -Liu- Quantitative proteomics approach reveals novel biomarkers and pathological.pdf",
+ "id": "b97b1f36-4944-4ab6-809f-de4b409462b3"
+ },
+ {
+ "filename": "2022 -Madadi- AI RNA.pdf",
+ "id": "4a3d7317-5e32-473d-8c97-ea6071200724"
+ },
+ {
+ "filename": "2022 -Neuner- Resilient Alzheimers.pdf",
+ "id": "64df9b7f-6b7a-490e-b24f-826e7bb9db2d"
+ },
+ {
+ "filename": "2022 -Restrepo- Predict impulsivity in children.pdf",
+ "id": "0929a93b-3aab-4904-8e1b-0c45ef7638ac"
+ },
+ {
+ "filename": "2022 -Senko- Hippocampal neurogenesis serum glucose.pdf",
+ "id": "d1547fa3-b174-489f-807e-12af3ff3da73"
+ },
+ {
+ "filename": "2023 -Dietrich- Striatum-specific re-entry.pdf",
+ "id": "72877628-70b1-4ca7-8503-08c36d5fec04"
+ },
+ {
+ "filename": "2003 - WebQTL rapid exploratory analysis of gene_expression and genetic networks for brain and_behavior.pdf",
+ "id": "d69e22cd-3bfd-43e1-b549-ca36adac1f92"
+ },
+ {
+ "filename": "2003_WebQTL_docs.pdf",
+ "id": "561145bb-7fe6-4941-9f02-5e6c73839100"
+ },
+ {
+ "filename": "2003 -Barnes- Bioinformatics_for_Geneticists.txt",
+ "id": "c12e853e-4f0d-48f9-93af-15db9ad2dfae"
+ },
+ {
+ "filename": "2003 -chesler-Genetic inbred strains:pdf.txt",
+ "id": "217ca05d-0628-416f-994b-825a051b7565"
+ },
+ {
+ "filename": "2004 - Genetic regulation of endotoxin induced.txt",
+ "id": "b95934dd-cce2-4f9f-b685-0a43abbb4c1b"
+ },
+ {
+ "filename": "2004 -Chesler- WebQTL_rapid_exploratory_analysis_of_gen.txt",
+ "id": "a29d8a64-30ac-4a7d-bd61-069f0b414963"
+ },
+ {
+ "filename": "2005 - A QTL resource and comparison tool for pigs PigQTLDB_Zhi-Liang Hu.txt",
+ "id": "8a708ac9-bc57-4291-98a4-84e57080cab4"
+ },
+ {
+ "filename": "2005 - Collagen IX A molecular candidate for the pathogenesis of osteoporosis and frail bone microarchitecture.txt",
+ "id": "33081049-88ed-43fa-9684-3986a50f9421"
+ },
+ {
+ "filename": "2005 - Ethanol-Responsive Brain Region Expression Networks.txt",
+ "id": "7713bd3a-4d0a-41f4-b378-43c271ee35b1"
+ },
+ {
+ "filename": "2005 - Gene Expression Differences in Mice.txt",
+ "id": "f8872efb-31cc-4c88-9ad3-277e752588f3"
+ },
+ {
+ "filename": "2005 - Genetic analysis of barrel field size in the first somatosensory area (SI) in inbred and recombinant inbred strains of mice.txt",
+ "id": "387dcae5-4287-487f-82a5-d4809c7d44cb"
+ },
+ {
+ "filename": "2005 - Genomics of the future Identification of quantitative trait loci in the mouse.txt",
+ "id": "0950746d-90b5-484d-853d-70026e85c9ce"
+ },
+ {
+ "filename": "2005 - Large conductance Ca2 -activated K+ channels are differentially distributed among IB4+ and IB4- rat DRG neurons.txt",
+ "id": "e3bc81a3-6cdb-42b1-a055-1df5b65a7538"
+ },
+ {
+ "filename": "2005 - Molecular characterization of mesocorticolimbic brain regions in DBA2J mice sensitized to the locomotor activating effects of ethanol.txt",
+ "id": "658a02ad-07d5-4f76-952f-5a4bc249448c"
+ },
+ {
+ "filename": "2005 - Part I Previous Research Track Record.txt",
+ "id": "58714c13-954b-46b3-bd0e-69ccadd9dc6a"
+ },
+ {
+ "filename": "2005 - Replication of Small Effect Quantitative Trait Loci for Behavioral Traits Facilitated by Estimation of Effect Size from Independent Cohorts.txt",
+ "id": "ff35f4c8-b78b-4dad-9aa8-1bb16479872d"
+ },
+ {
+ "filename": "2005 - Spinal cord postsynaptic density-93 protein contributes to the development of opioid tolerance and dependence.txt",
+ "id": "634fbbd1-bc7a-4d9d-aaf5-276a33f8811a"
+ },
+ {
+ "filename": "2005 - The_genetic_dissection_of_immune_respons.txt",
+ "id": "3565f684-6ff7-443e-894e-f1b2dff0dbf7"
+ },
+ {
+ "filename": "2005 -Alberts- Short-Oligonucleotide Arrays.txt",
+ "id": "19921792-5b31-4260-a78a-8da42746a861"
+ },
+ {
+ "filename": "2006 - An Integrated Approach to Mouse Functional Genomic Data.txt",
+ "id": "9e51c1b5-d7d4-4430-ac92-08fa3b2e9f42"
+ },
+ {
+ "filename": "2006 - Gene networks involved in drought stress response and tolerance.txt",
+ "id": "9e199fd8-c191-443a-88a1-eff59fafcaf1"
+ },
+ {
+ "filename": "2006 - Mouse bone marrow and peripheral blood erythroid cell counts are regulated by different autosomal genetic loci.txt",
+ "id": "e438b39a-1b0c-4fef-897f-119aa81a494f"
+ },
+ {
+ "filename": "2006 - Rodent models Utility for candidate gene studies in human attention-deficit hyperactivity disorder (ADHD).txt",
+ "id": "f459a8ed-b163-4ea0-a307-f186ec4350a5"
+ },
+ {
+ "filename": "2006 - VCU BBSI Summer Proposal 2006 Effects of Ethanol on Myelin Genes in the Prefrontal Cortex in Mice A Search for a Regulatory Network.txt",
+ "id": "16879e66-dec0-4d1f-9874-298e503aff7f"
+ },
+ {
+ "filename": "2007 - Bioinformatics_for_Genetices_MAZEN_SAEED.txt",
+ "id": "f35e02a1-3314-4663-913f-38a3fc072aa8"
+ },
+ {
+ "filename": "2007 - Equilibrative and concentrative transport mechanisms.txt",
+ "id": "ce983f99-5b2a-403a-b11a-dc2993a270f0"
+ },
+ {
+ "filename": "2007 - Integration of mouse phenome data resources.txt",
+ "id": "071b4686-f5c4-4759-a038-14d79a45dac7"
+ },
+ {
+ "filename": "2007 - Quantitative genetics of age-related retinal degeneration a second F1 intercross between the AJ and C57BL6 strains.txt",
+ "id": "8d8b0e6a-ed02-4e58-bd55-e5d6475b9798"
+ },
+ {
+ "filename": "2007 - eQTL Viewer visualizing how sequence variation affects genome-wide transcription.txt",
+ "id": "954e43d7-4261-403f-87bc-4c1ce1492cf5"
+ },
+ {
+ "filename": "2008 - Combining transcriptional profiling and genetic linkage analysis to uncover gene networks operating in hematopoietic stem cells and their progeny.txt",
+ "id": "c09fd192-82f3-4d35-b945-e20dd1a490d2"
+ },
+ {
+ "filename": "2008 - Fine Mapping of a Major QTL Influencing Morphine Preference in C57BL6 and DBA2 Mice Using Congenic Strains.txt",
+ "id": "47c1fa50-931b-4c4c-8cd7-097e3617b5eb"
+ },
+ {
+ "filename": "2008 - Genome-Wide Prediction of Functional Gene-Gene Interactions Inferred from Patterns of Genetic Differentiation in Mice and Men.txt",
+ "id": "46f190d1-f784-45cd-be09-d43a27ec4063"
+ },
+ {
+ "filename": "2008 - Microarray data analysis for SNP effects and inferring alternative splicing.txt",
+ "id": "dbfd0bc3-4632-4db8-b267-23b3c5fe02c9"
+ },
+ {
+ "filename": "2008 - THE_GENETIC_CONTRIBUTION_TO_HEART_RATE_AND_HEART_1.txt",
+ "id": "18047f55-9a4a-4360-afd1-fed7842da1ff"
+ },
+ {
+ "filename": "2008 -Kathiresan- Polymorphisms.txt",
+ "id": "c5ec777c-e093-4d81-baaf-7f1f214c1d80"
+ },
+ {
+ "filename": "2009 - Genetical Toxicogenomics in Drosophila Identifies Master Modulatory Loci that are Regulated by Developmental Exposure to Lead.txt",
+ "id": "06637833-6930-48b7-acfb-4a8278085ae1"
+ },
+ {
+ "filename": "2009 - Integrative genetics analysis of cartilage gene expression.txt",
+ "id": "ee3d69ed-92bf-4fa2-893b-7cbadc5fb1bc"
+ },
+ {
+ "filename": "2009 - Systems genetics analysis of iron regulation in the brain.txt",
+ "id": "4ef6ffae-703d-49c2-bfbb-5c6b39b704e7"
+ },
+ {
+ "filename": "2009 Agarwal Generanking.txt",
+ "id": "834c01b2-0ff9-4996-8b25-6a0e55a69073"
+ },
+ {
+ "filename": "2010 - Genetic regulatory network analysis for Myoc based on genetical genomics approach.txt",
+ "id": "0fdb6f0f-0278-425e-adf5-fee5e2784471"
+ },
+ {
+ "filename": "2010 - Identification of a Chr 11 quantitative trait locus that modulates proliferation in the rostral migratory stream of the adult mouse brain_.txt",
+ "id": "66fc5ee9-0126-431f-add0-819957499810"
+ },
+ {
+ "filename": "2010 - Systems Biology Approach to Identifying Host Interactive Pathways.txt",
+ "id": "29f5af5f-8dc7-4e53-b0fa-66d37317a3f4"
+ },
+ {
+ "filename": "2011 - Genome-Wide Association for Fear Conditioning in an Advanced Intercross Mouse Line.txt",
+ "id": "f79056d6-1bd4-4cd8-b395-4febd74b7a7b"
+ },
+ {
+ "filename": "2011 - Systems genetics analysis of mouse chondrocyte differentiation.txt",
+ "id": "3f87a135-cfa0-443c-a6ab-f875eb139bf7"
+ },
+ {
+ "filename": "2011 - Using animal models to disentangle the role of genetic, epigenetic, and environmental influences on behavioral outcomes associated with maternal anxiety and depression.txt",
+ "id": "af3ad242-afe4-43f5-9046-98388dd13177"
+ },
+ {
+ "filename": "2012 - A promoter polymorphism in the Per3 gene is associated with alcohol and stress response.txt",
+ "id": "ca55dc2b-7dc8-4ac4-8923-1b516eccdfb7"
+ },
+ {
+ "filename": "2017 - Identification of Padi2 as a novel angiogenesis-regulating gene.pdf",
+ "id": "eb390ef4-09f1-4760-910b-d99c76732d1d"
+ },
+ {
+ "filename": "2006 - Databases of free expression.txt",
+ "id": "f3940d40-0953-4653-8598-270c6ea13936"
+ },
+ {
+ "filename": "2006 - Genetic and Structural Analysis of the Basolateral Amygdala Complex .txt",
+ "id": "0f478bbe-0ce7-4cc3-82d7-d1be116f7ba7"
+ },
+ {
+ "filename": "2006 - Mouse genetic models in alcohol research.txt",
+ "id": "3485665e-4e33-481a-943e-d0fcb7c2f2ac"
+ },
+ {
+ "filename": "2006 - Selective expression of cholesterol metabolism genes in normal CD34+CD38− cells with a heterogeneous expression pattern in AML cells.txt",
+ "id": "6106ae32-b200-4e5d-8744-3a7c2266b705"
+ },
+ {
+ "filename": "2006 - β2-adrenergic receptor and UCP3 variants modulate the relationship between age and type 2 diabetes mellitus.txt",
+ "id": "da46d7f0-5a30-488e-8d8c-a65aa6955c17"
+ },
+ {
+ "filename": "2007 - Bioinformatics_for_Geneticists.txt",
+ "id": "fca531d0-d45b-495f-a02c-fbd437617b20"
+ },
+ {
+ "filename": "2007 - Expression of murine killer immunoglobulin-like receptor KIRL1 on CD1d-independent NK1.1+ T cells.txt",
+ "id": "d170b70f-5404-4823-b1c1-56679b488cb1"
+ },
+ {
+ "filename": "2007 - Latexin is a newly discovered regulator of hematopoietic stem cells.txt",
+ "id": "5e5149e0-7bb5-4ddb-831d-e963365e8ec5"
+ },
+ {
+ "filename": "2007 - Quantitative traits for the tail suspension test automation, optimization, and BXD RI mapping.txt",
+ "id": "12c7f00e-5c03-4a9f-860d-243514d2a177"
+ },
+ {
+ "filename": "2008 - (Infectious Disease) Karl A. Western (auth.), Vassil St. Georgiev PhD, Karl A. Western MD, John J. McGowan PhD (eds.) - National Institute of Allergy and Infectious Diseases, NIH_ Frontiers in Researc (3).txt",
+ "id": "ad14b0c4-2a38-411b-9bb1-cacf9203f29d"
+ },
+ {
+ "filename": "2008 - Comparing Quantitative Trait Loci.txt",
+ "id": "0265286c-7bac-4ae3-831c-5bf5a4f758c6"
+ },
+ {
+ "filename": "2008 - GENETIC REGULATION OF HEMATOPOIETIC STEM CELL AGING (3).txt",
+ "id": "489539fd-f7c5-44eb-bb58-5fc19d50a7cf"
+ },
+ {
+ "filename": "2008 - Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements.txt",
+ "id": "17cc0220-3d8d-4457-9349-93ffe80c47fc"
+ },
+ {
+ "filename": "2008 - NEIBank Genomics and bioinformatics resources for vision research.txt",
+ "id": "984b9a87-e487-4861-af85-14b2d4728d7b"
+ },
+ {
+ "filename": "2008 - The Diasporin Pathway a tumor progression-related transcriptional network that predicts breast cancer survival.txt",
+ "id": "c09a3b78-df92-4217-baed-fb3bf10811a0"
+ },
+ {
+ "filename": "2008 Kathiresan - Polymorphisms SNPs.txt",
+ "id": "8bda5c7d-b579-4d20-afcc-5a157520a7b3"
+ },
+ {
+ "filename": "2009 - Garland_and_Rose_Experimental_Evolution.txt",
+ "id": "606c59c5-5ae4-47e9-b3eb-58afa55669d1"
+ },
+ {
+ "filename": "2009 - Genetics of the hippocampal transcriptome in mouse a systematic survey and online neurogenomics resource.txt",
+ "id": "547ce63b-5178-45cb-ae07-12ae66aa2967"
+ },
+ {
+ "filename": "2009 - Intra- and inter-individual genetic differences in gene expression.txt",
+ "id": "914bb179-3c2c-4850-b2bd-61422794aaad"
+ },
+ {
+ "filename": "2009 - TGR5-mediated bile acid sensing controls glucose homeostasis.txt",
+ "id": "e4692dd1-e6c4-4e32-b5ed-6763a24cef56"
+ },
+ {
+ "filename": "2010 - Phenotype and Genetics of Progressive Sensorineural Hearing Loss (Snhl1) in the LXS Set of Recombinant Inbred Strains of Mice.txt",
+ "id": "4e1c3260-acfc-4351-be75-af54549d5e5c"
+ },
+ {
+ "filename": "2010 - Teaching Bioinformatics and Neuroinformatics by using Free Web-Based Tools.txt",
+ "id": "8aa01f11-fef5-4c53-a9af-969881ea1ebd"
+ },
+ {
+ "filename": "2010 -Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse.txt",
+ "id": "548164af-e753-4545-8324-3b95e9388ebe"
+ },
+ {
+ "filename": "2011 - Global exploratory analysis of massive neuroimaging collections using Microsoft Silverlight PivotViewer.txt",
+ "id": "4ecc2642-4690-4319-8926-f06292319ad5"
+ },
+ {
+ "filename": "2011 - Multigenic Control and Sex Bias in Host Susceptibility to Spore-Induced Pulmonary Anthrax in Mice.txt",
+ "id": "7af2f25c-82e7-481c-b842-d7f878e9d270"
+ },
+ {
+ "filename": "2011 - Prioritization and Association Analysis of Murine-Derived Candidate Genes in Anxiety-Spectrum Disorders.txt",
+ "id": "e74781c8-c332-4888-a2f2-7ff4089f7e8e"
+ },
+ {
+ "filename": "2012 - An Investigation Of Gene Networks Influenced By Low Dose Ionizing.txt",
+ "id": "d608e1a6-2bf1-4ad6-993d-453a328896a0"
+ },
+ {
+ "filename": "2006 - Analysis of metallothionein brain gene expression in relation to ethanol preference in mice using cosegregation and gene knockouts.txt",
+ "id": "da60a50d-4145-4393-87e3-63dbf443c76a"
+ },
+ {
+ "filename": "2006 - Design of microarray experiments for genetical genomics studies.txt",
+ "id": "34473d38-3ced-4656-9572-f21169bec735"
+ },
+ {
+ "filename": "2006 - Genetic characterization of a new set of recombinant inbred lines (LGXSM) formed from the intercross of SMJ and LGJ inbred mouse strains.txt",
+ "id": "7c7bd405-0749-46dd-b418-ed7289c64cb2"
+ },
+ {
+ "filename": "2006 - Natural variation and genetic covariance in adult hippocampal neurogenesis.txt",
+ "id": "9b3b1f72-2b99-45ce-b61b-b861fcf84604"
+ },
+ {
+ "filename": "2006 - Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades.txt",
+ "id": "f142a70e-ee38-4f02-9efe-9fb4649ab579"
+ },
+ {
+ "filename": "2006 -Beatty- Genomic regulation.txt",
+ "id": "e863f1a9-158e-491f-ba9b-39fc12415770"
+ },
+ {
+ "filename": "2007 - Genetic dissection of growth and obesity traits in a mouse congenic strain using transcript profiling and high density mapping.txt",
+ "id": "1b76f81c-6f01-4171-b2dc-f157b7d80e1c"
+ },
+ {
+ "filename": "2007 - Mesencephalic Dopamine Neuron Number and Tyrosine Hydroxylase Content Genetic Control and Candidate Genes.txt",
+ "id": "08723f33-aa4f-44ca-8a7c-45469c82284f"
+ },
+ {
+ "filename": "2007 - The 20th International Mammalian Genome Conference Meeting Report.txt",
+ "id": "f59ba250-917b-4f86-b840-6384c670488a"
+ },
+ {
+ "filename": "2008 - 1st INCF Workshop on Global Portal Services for Neuroscience.txt",
+ "id": "5e476588-dd36-4916-a09f-a3cfd255163e"
+ },
+ {
+ "filename": "2008 - Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders.txt",
+ "id": "0cffed01-3711-4c7f-94cf-6d32bc41ef66"
+ },
+ {
+ "filename": "2008 - Gene Expression Profiling.txt",
+ "id": "da485354-fcdc-49b8-9a41-0f673610156a"
+ },
+ {
+ "filename": "2008 - Genotype-phenotype relationships and the patterning of complex traits as exemplified in the mammalian dentition.txt",
+ "id": "f9d93e23-292c-44b3-8f27-dc1b4d6b494f"
+ },
+ {
+ "filename": "2008 - Of mice and men, periodic limb movements and iron how the human genome informs the mouse genome.txt",
+ "id": "9ea11e01-aa2a-4df8-b356-833fdfcb3d72"
+ },
+ {
+ "filename": "2008 - The role of 5-HT1A receptors in learning and memory.txt",
+ "id": "cb27f673-688c-4005-a4ad-214c93868491"
+ },
+ {
+ "filename": "2008 McCarthy gwas_review2.txt",
+ "id": "fcec7b5e-0770-4d81-a9f4-fae66bcd27d5"
+ },
+ {
+ "filename": "2009 - Gene expression in the mouse eye an online resource for genetics using 103 strains of mice.txt",
+ "id": "d3b364c4-bdd3-4c7c-8b3f-e27bd3460c37"
+ },
+ {
+ "filename": "2009 - Herding cats the sociology of data integration.txt",
+ "id": "d00416be-b990-4901-ad78-578ce7be0197"
+ },
+ {
+ "filename": "2009 - Modular Digital Course in Undergraduate Neuroscience Education (MDCUNE) a website offering free digital tools for neuroscience educators.txt",
+ "id": "bb5ed347-0f54-431a-a125-97b9d762b003"
+ },
+ {
+ "filename": "2009 - The INCF digital atlasing program report on digital atlasing standards in the rodent brain.txt",
+ "id": "2b4ff747-69e6-4fe6-8d09-ca4c9495f522"
+ },
+ {
+ "filename": "2010 - Exploring neuroanatomical and genetic influences on epileptogenesis utilizing the repeated flurothyl model in mice.txt",
+ "id": "8c1078c0-7979-4009-9ed4-99a5337709ae"
+ },
+ {
+ "filename": "2010 - Genetics and genomics of iron homeostasis in the brain.txt",
+ "id": "05fbfd9b-ce25-490e-87d1-1761b33a412d"
+ },
+ {
+ "filename": "2010 - Importance of genetic background for risk of relapse shown in altered prefrontal cortex gene expression during abstinence following chronic alcohol intoxication.txt",
+ "id": "a6a275f6-b001-41bc-837e-bcef30359f2f"
+ },
+ {
+ "filename": "2011 - Designing, performing, and interpreting a microarray-based gene expression study.txt",
+ "id": "3fb5c4ae-2498-4a98-91b2-061950df1f1e"
+ },
+ {
+ "filename": "2011 - Identifying Human Disease Genes through Cross-Species Gene Mapping of Evolutionary Conserved Processes.txt",
+ "id": "6b827d23-96be-47aa-98f9-2ad72a947e45"
+ },
+ {
+ "filename": "2011 - Novel Candidate Genes Associated with Hippocampal Oscillations.txt",
+ "id": "e13448fa-4108-4b72-9276-7cd1a6a19c21"
+ },
+ {
+ "filename": "2011 - Using the PhenoGen Website for “In Silico” Analysis of Morphine-Induced Analgesia Identifying Candidate Genes.txt",
+ "id": "756e6598-0823-4278-a6b5-75920b7cc621"
+ },
+ {
+ "filename": "2017 - Genetics and genomic.pdf",
+ "id": "855e497d-7305-4154-b395-283992ddc4d0"
+ },
+ {
+ "filename": "2006 - Evaluation of methods and applications for behavioural profiling of transgenic mice.txt",
+ "id": "b078162f-a48d-405b-b2cf-3559fc3338c8"
+ },
+ {
+ "filename": "2006 - Genetic susceptibility to radiation-induced acute myeloid leukaemia (r-AML).txt",
+ "id": "40cb25c4-e046-4275-8ba7-49a9773049f2"
+ },
+ {
+ "filename": "2006 - New aspects of statistical methods for missing data problems, with applications in bioinformatics and genetics.txt",
+ "id": "f67f291b-2ea5-4d78-9595-2cbbc35dc415"
+ },
+ {
+ "filename": "2006 - Statistical modeling of transcription regulation in eukaryotes.txt",
+ "id": "bc83a282-2722-47b1-8326-7780732b29d2"
+ },
+ {
+ "filename": "2006 -Fehr- Alcohol Clin Exp Res - 2006 -Fehr- The Syntaxin Binding Protein 1 Gene Stxbp1 Is a Candidate for an Ethanol.txt",
+ "id": "0109de12-a0cd-4d41-a310-8423d6b0441a"
+ },
+ {
+ "filename": "2007 - Classification of microarray data using gene networks.txt",
+ "id": "83dc0ef1-fd5d-4cf1-9311-ebaaa25a5e49"
+ },
+ {
+ "filename": "2007 - Genetic regulation of hypothalamic cocaine and amphetamine-regulated transcript (CART) in BxD inbred mice.txt",
+ "id": "b3c2189b-270c-4b4a-9d40-cdc0dceebd9e"
+ },
+ {
+ "filename": "2007 - Morphine effects on striatal transcriptome in mice.txt",
+ "id": "9d099959-b0d0-45b1-b2f7-0e30ad63d48e"
+ },
+ {
+ "filename": "2007 - The Pheno-Gen Informatics Website.txt",
+ "id": "81bb21fb-1ccf-4fa1-9a60-c3b12cb99634"
+ },
+ {
+ "filename": "2008 - A genome-wide panel of congenic mice reveals widespread epistasis of behavior quantitative trait loci.txt",
+ "id": "0de2ad4a-b7e3-484e-8778-5ea47e42a4e4"
+ },
+ {
+ "filename": "2008 - Cost-effective strategies for completing the interactome.txt",
+ "id": "d0edfb1d-cab7-4f2c-8640-ccc1e484df3c"
+ },
+ {
+ "filename": "2008 - Genetic Analysis of Posterior Medial Barrel Subfield Size.txt",
+ "id": "069247f3-7209-4dbb-85e3-e9f11e273812"
+ },
+ {
+ "filename": "2008 - High-resolution genetic mapping of mammalian motor activity levels in mice.txt",
+ "id": "dd878d66-c3af-4e2f-a6f8-9de6edc3dc60"
+ },
+ {
+ "filename": "2008 - Overexpression of Scg5 increases enzymatic activity of PCSK2 and is inversely correlated with body weight in congenic mice.txt",
+ "id": "b7f1f9b3-0ee0-40d8-ad3c-74b0b189d312"
+ },
+ {
+ "filename": "2008 - Towards systems genetic analyses in barley Integration of phenotypic, expression and genotype data into GeneNetwork.txt",
+ "id": "beb7a242-21fe-4a66-8b44-7f228c0d3640"
+ },
+ {
+ "filename": "2008_Modulation of voluntary ethanol consumption by Arrb2.txt",
+ "id": "8488ee18-ce6d-4a00-a97f-f4d2ec5d5175"
+ },
+ {
+ "filename": "2009 - Genes and Addictions.txt",
+ "id": "78b2381f-e66f-49a8-9dcb-8202b5fbe625"
+ },
+ {
+ "filename": "2009 - High‐throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains.txt",
+ "id": "550c099f-88d0-483f-865a-01ef7362e2be"
+ },
+ {
+ "filename": "2009 - Multiscale Genomic Analysis of the Corticolimbic System_ Uncoveri (1).txt",
+ "id": "835a094d-9c2b-4686-8725-d3c4123175b0"
+ },
+ {
+ "filename": "2010 - A Transposon in Comt Generates mRNA Variants and Causes Widespread Expression and Behavioral Differences among Mice.txt",
+ "id": "793e0349-bbb7-4edb-bc2d-778ac5e3ba49"
+ },
+ {
+ "filename": "2010 - Functional_characterization_of_tyrosine_phosphatas.txt",
+ "id": "a8ebda64-b29d-4889-8b87-5cbc0bec7909"
+ },
+ {
+ "filename": "2010 - Genome-wide analysis of transcriptional regulation in the murine liver.txt",
+ "id": "e7bc9d83-6c3b-405c-a552-29874b927860"
+ },
+ {
+ "filename": "2010 - Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.txt",
+ "id": "3c69df9d-414a-420b-a513-ca3860662d57"
+ },
+ {
+ "filename": "2010 - Systems genetics analyses predict a transcription role for P2P-R Molecular confirmation that P2P-R is a transcriptional co-repressor.txt",
+ "id": "79cc9995-ef16-4555-acef-6e0f28a2b5e8"
+ },
+ {
+ "filename": "2010 - Using expression genetics to study the neurobiology of ethanol and alcoholism.txt",
+ "id": "a8e16a9a-242b-492f-95f6-9e80a10e77cc"
+ },
+ {
+ "filename": "2011 - An Evolutionary Conserved Role for Anaplastic Lymphoma Kinase in Behavioral Responses to Ethanol.txt",
+ "id": "c22b0145-99a3-458b-a977-d1e926985ab7"
+ },
+ {
+ "filename": "2011 - Genetic Analysis of the Neurosteroid Deoxycorticosterone and Its Relation to Alcohol Phenotypes Identification of QTLs and Downstream Gene Regulation.txt",
+ "id": "18da99ad-f985-4aba-831e-35de60e36949"
+ },
+ {
+ "filename": "2017 - Genome-wide DNA methylation variation in maternal and cord blood of gestational diabetes population.pdf",
+ "id": "2223858e-6e3b-4257-9f6d-2c267b2397d9"
+ },
+ {
+ "filename": "2006 - Association between the Casein Kinase 1 Epsilon Gene Region and Subjective Response to D-Amphetamine.txt",
+ "id": "6e7686d2-6d27-465b-97c2-df53f9e62d84"
+ },
+ {
+ "filename": "2006 - Expression genetics and the phenotype revolution.txt",
+ "id": "89fdce49-cd76-446e-bc47-9484071f9d3e"
+ },
+ {
+ "filename": "2006 - Genomic regulation of natural variation in cortical and noncortical brain volume.txt",
+ "id": "cf380786-3792-4bb4-a7c9-59f59f071952"
+ },
+ {
+ "filename": "2006 - Nonparametric imputation of missing values for estimating equation based inference-a full report.txt",
+ "id": "9fd01f79-126c-4f95-8fe0-50391d763e53"
+ },
+ {
+ "filename": "2006 - Systems biology of circadian rhythms an outlook.txt",
+ "id": "0cff6ce0-2ccd-4ad0-b6fc-952c9157087a"
+ },
+ {
+ "filename": "2007 - Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains.txt",
+ "id": "c4097a2e-d5c7-4a9b-8b0a-51b868be7f24"
+ },
+ {
+ "filename": "2007 - Genome Level Analysis of Genetic Regulation.txt",
+ "id": "bbd1d762-faab-409d-9243-bc94023e16c0"
+ },
+ {
+ "filename": "2007 - Nf1 expression is dependent on strain background.txt",
+ "id": "6f7ca779-0421-49eb-bef8-73eb0d513c60"
+ },
+ {
+ "filename": "2007 - The genetic basis of variation in susceptibility to infection with Histoplasma capsulatum in the mouse.txt",
+ "id": "fef6662c-0378-4827-a142-f2898f8785ed"
+ },
+ {
+ "filename": "2008 - A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23ahl underlie the early onset, age-related hearing loss of DBA2J mice.txt",
+ "id": "8ff8d5ae-5981-484f-871c-b88c9208b5dc"
+ },
+ {
+ "filename": "2008 - DACE Differential Allelic Co-Expression test for estimating regulatory associations of SNP and biological pathway.txt",
+ "id": "82676ee9-4ea4-4233-835c-4a6ca96c90dd"
+ },
+ {
+ "filename": "2008 - Genetic Effects on Environmental Vulnerability to Disease Novartis Foundation Symposium 293.txt",
+ "id": "2a7da18e-3756-45c5-b18c-a2231685fefd"
+ },
+ {
+ "filename": "2008 - Insight into the genetics of hypertension, a core component of the metabolic syndrome.txt",
+ "id": "edbc01cb-82e1-4ee4-9e0a-124c15b0e0d8"
+ },
+ {
+ "filename": "2008 - Predicting Functional Impact of Coding and Non-Coding Single Nucleotide Polymorphisms.txt",
+ "id": "e074ba47-cd7a-4bb2-8bcb-9a15da69cc2d"
+ },
+ {
+ "filename": "2008 - Unraveling the molecular mechanisms of alcohol dependence.txt",
+ "id": "0b0e5343-4604-43ff-bc26-c87516dda690"
+ },
+ {
+ "filename": "2008_ModulationofethanolconsumptionbyArrb2.txt",
+ "id": "5e3ad5bb-135a-4980-b605-208101c3b315"
+ },
+ {
+ "filename": "2009 - Genetic Regulatory Network Analysis for App Based on Genetical Genomics Approach.txt",
+ "id": "6d98da1a-9964-4be7-bb67-47f829dcd2cf"
+ },
+ {
+ "filename": "2009 - Host Genetic Variation Affects Resistance to Infection with a Highly Pathogenic H5N1 Influenza A Virus in Mice.txt",
+ "id": "aeb0e120-750a-4bb4-b5c4-1a48705faf7c"
+ },
+ {
+ "filename": "2009 - Neuroscience in the era of functional genomics and systems biology.txt",
+ "id": "eef5a903-68f2-45d5-9a27-73e5b32aa644"
+ },
+ {
+ "filename": "2009 - To what extent is blood a reasonable surrogate for brain in gene expression studies estimation from mouse hippocampus and spleen.txt",
+ "id": "dc1a2dfd-5eb5-4854-bb1f-a0c3923485c7"
+ },
+ {
+ "filename": "2010 - Genetic Dissection of Dietary Restriction in Mice Supports the Metabolic Efficiency Model of Life Extension.txt",
+ "id": "e2eaa1f2-1a1c-42b7-ab7f-e69a0394f748"
+ },
+ {
+ "filename": "2010 - High-dimensional gene expression classification and genome-wide association studies of complex traits.txt",
+ "id": "2951c489-dbc2-4327-9c66-6179ed803dee"
+ },
+ {
+ "filename": "2010 - MBAT a scalable informatics system for unifying digital atlasing workflows.txt",
+ "id": "56d79cf3-50fc-4803-9c5c-6e5a8a04879b"
+ },
+ {
+ "filename": "2010 - Systems genetics, bioinformatics and eQTL mapping.txt",
+ "id": "de0aeb5f-dc8f-4629-b683-8c8ad3a42122"
+ },
+ {
+ "filename": "2011 - Annotating individual human genomes.txt",
+ "id": "ed5a72d3-dc17-4812-a188-01574dbe6aa6"
+ },
+ {
+ "filename": "2011 - Genetic Dissection of Behavioral Flexibility Reversal Learning_in Mice.txt",
+ "id": "26c6a28f-79d5-4f49-b0f4-df47acf79a8d"
+ },
+ {
+ "filename": "2011 - Genetic-based, differential susceptibility to paraquat neurotoxicity in mice.txt",
+ "id": "a4e2c0f5-be37-46de-87ad-83d7070aec69"
+ },
+ {
+ "filename": "2006 - Attentional performance of C57BL6 and DBA2 mice in the 5-choice serial reaction time task.txt",
+ "id": "8df298ea-4052-4a4a-bcd3-2e36818844f4"
+ },
+ {
+ "filename": "2006 - Expression profiling identifies novel candidate genes for ethanol sensitivity QTLs_.txt",
+ "id": "d9e0fe62-0bba-4c9f-a608-dca70a2454d4"
+ },
+ {
+ "filename": "2006 - Geometric morphometrics defines shape differences in the cortical area map of C57BL6J and DBA2J inbred mice.txt",
+ "id": "810a8c3f-5ec5-4ce8-9ad1-149ce98a573d"
+ },
+ {
+ "filename": "2006 - Online workbenches for neural network connections.txt",
+ "id": "045d0078-0ab3-46a6-bda9-84fca8e70f89"
+ },
+ {
+ "filename": "2006 - Systems genetic analysis of peripheral iron parameters in the mouse_.txt",
+ "id": "b70c4714-f3d2-4289-827b-d012611faadc"
+ },
+ {
+ "filename": "2006 -Olson- Genes Env and Dyslexia lecture.txt",
+ "id": "5166a577-fa2b-4aaa-8f37-1667346fd46a"
+ },
+ {
+ "filename": "2007 - Combinatorial genetic regulatory network analysis tools for high throughput transcriptomic data.txt",
+ "id": "eb90c74a-60f0-4485-b1b9-bb6665469828"
+ },
+ {
+ "filename": "2007 - Glutamate receptor metabotropic 7 is cis-regulated in the mouse brain and modulates alcohol drinking.txt",
+ "id": "c4000f65-4126-4cf5-b789-e23227f2e7d1"
+ },
+ {
+ "filename": "2007 - Prediction of transcription factor binding sites using genetical genomics methods.txt",
+ "id": "cb217bfd-395f-4a10-9465-a960585c46fe"
+ },
+ {
+ "filename": "2007 - The genetic contribution to heart rate and heart rate variability in quiescent mice.txt",
+ "id": "00d745b4-bdf2-4777-bf6d-2db43e39090b"
+ },
+ {
+ "filename": "2008 - Accurate_Discovery_of_Expression_Quantit.txt",
+ "id": "f6b1b144-8c2c-443b-a75f-46c0a0053747"
+ },
+ {
+ "filename": "2008 - Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling.txt",
+ "id": "acfbb3e9-6eeb-4541-bd1f-9f460de09958"
+ },
+ {
+ "filename": "2008 - Insights in the genetic architecture of impulsivity in mice.txt",
+ "id": "d6085c3a-6ade-499e-9fde-4c8ea682f20e"
+ },
+ {
+ "filename": "2008 - Regulation of TIP60 by ATF2 modulates ATM activation.txt",
+ "id": "8f8e3312-9697-44c3-9286-70fa9d381c9a"
+ },
+ {
+ "filename": "2008 - Using gene expression databases for classical trait QTL candidate gene discovery in the BXD recombinant inbred genetic reference population Mouse forebrain weight.txt",
+ "id": "1b31c086-dbd1-4b0d-8b51-c33b074b8e9d"
+ },
+ {
+ "filename": "2009 - A Common and Unstable Copy Number Variant Is Associated with Differences in Glo1 Expression and Anxiety-Like Behavior.txt",
+ "id": "b69858f3-885e-4f80-9e59-7c713c18aa10"
+ },
+ {
+ "filename": "2009 - Genetic architecture for hole-board behaviors across substantial time intervals in young, middle-aged and old mice.txt",
+ "id": "9ac0b7e7-6294-4cfb-97e3-e5a4546af324"
+ },
+ {
+ "filename": "2009 - Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice.txt",
+ "id": "febf219d-fe24-4612-9731-63b1b1631a0c"
+ },
+ {
+ "filename": "2009 - Processing Large-Scale, High-Dimension Genetic and Gene Expression Data.txt",
+ "id": "ce5142d1-5c02-4e8e-9ca5-0419389a33cd"
+ },
+ {
+ "filename": "2009 - Use of rat genomics for investigating the metabolic syndrome.txt",
+ "id": "f7eb4341-2ac1-46c2-aa53-f10df79fbaa8"
+ },
+ {
+ "filename": "2010 - Identification of Candidate Genes for Neuropathic Pain at the Pain1 Locus on Mouse Chromosome 15.txt",
+ "id": "63d1510a-403a-4210-8a59-02f84644e242"
+ },
+ {
+ "filename": "2010 - Strain Differences in Stress Responsivity Are Associated with Divergent Amygdala Gene Expression and Glutamate-Mediated Neuronal Excitability.txt",
+ "id": "b73879de-43a6-48b0-ad69-98afadbfb997"
+ },
+ {
+ "filename": "2010 - The NIF DISCO Framework Facilitating Automated Integration of Neuroscience Content on the Web.txt",
+ "id": "eb9f360b-8084-4749-a2e7-e9ae0f18bd08"
+ },
+ {
+ "filename": "2011 - CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability.txt",
+ "id": "a31cb6a7-34c4-45d4-9b4b-819122346ede"
+ },
+ {
+ "filename": "2011 - Genetic modulation of horizontal cell number in the mouse retina.txt",
+ "id": "c359caaa-2db5-474b-8c55-00a55522cb43"
+ },
+ {
+ "filename": "2011 - Independent genetic loci for sensorimotor gating and attentional performance in BXD recombinant inbred strains.txt",
+ "id": "27e062d0-d5ed-4ee9-8783-f22882284865"
+ },
+ {
+ "filename": "2011 - Peripheral reduction of β-amyloid is sufficient to reduce brain β-amyloid Implications for Alzheimer’s disease.txt",
+ "id": "a45d0b06-9da2-4864-8548-37867c322dca"
+ },
+ {
+ "filename": "2008 - Rutter_s child and adolescent psychiatry-Blackwell Pub (2008).txt",
+ "id": "956bd526-38a3-44c4-bdac-1cafb92100dd"
+ },
+ {
+ "filename": "2017 - Genome-wide association study of iron traits.pdf",
+ "id": "0358c20a-0b2f-42cc-81b1-10b61377695e"
+ },
+ {
+ "filename": "2006 - Extracting Gene Networks for Low-Dose Radiation Using Graph Theoretical Algorithms.txt",
+ "id": "f2027d4b-0be7-4b5b-98e1-c7bb91997948"
+ },
+ {
+ "filename": "2006 - ITGB3 shows genetic and expression interaction with SLC6A4.txt",
+ "id": "e112d62d-d8d7-4560-ae8e-caa4e66c3401"
+ },
+ {
+ "filename": "2006 - Population and systems genetics analyses of cortisol in pigs divergently selected for stress.txt",
+ "id": "c319cee1-8224-46ea-a27e-26a231f9d443"
+ },
+ {
+ "filename": "2006 - THE GENETIC REGULATION OF THE RESPONSE OF HEMATOPOIETIC STEM_PROG.txt",
+ "id": "db0459f8-6602-48d7-be9b-14863a88bbe1"
+ },
+ {
+ "filename": "2007 - A formal ontology of subcellular neuroanatomy.txt",
+ "id": "45d48c10-def5-4b02-bc91-0bc6983ce75d"
+ },
+ {
+ "filename": "2007 - Combining classical trait and microarray data to dissect transcriptional regulation a case study.txt",
+ "id": "abea3dd4-9492-4a2b-8904-b8052e384785"
+ },
+ {
+ "filename": "2007 - How to infer gene networks from expression profiles.txt",
+ "id": "026429a1-4a80-470a-88e9-985aa037605e"
+ },
+ {
+ "filename": "2007 - Prenatal nicotine exposure alters gene expression in a sexually dimorphic manner.txt",
+ "id": "dc5c135e-aef4-4653-9a21-c355766285ce"
+ },
+ {
+ "filename": "2007 - The_p47_GTPases_Iigp2_and_Irgb10_Regulate_Innate_I.txt",
+ "id": "4d7252b9-48d1-45f2-b891-c87a2a945c5b"
+ },
+ {
+ "filename": "2008 - Alcohol trait and transcriptional genomic analysis of C57BL6 substrains.txt",
+ "id": "890e3fd6-1482-43e9-891d-8598ae90baaa"
+ },
+ {
+ "filename": "2008 - Dynamic Visualization of Coexpression in Systems Genetics Data.txt",
+ "id": "660eeb26-fd19-4360-992f-13c499a17467"
+ },
+ {
+ "filename": "2008 - Genetic analysis reveals polygenic influences on iron, copper, and zinc in mouse hippocampus with neurobiological implications.txt",
+ "id": "e6029f9d-936f-411e-b55f-828a638e68d6"
+ },
+ {
+ "filename": "2008 - Integrative genetic analysis of alcohol dependence using the GeneNetwork Web resources.txt",
+ "id": "bec58804-181a-4683-8e51-0ec6d381da69"
+ },
+ {
+ "filename": "2011 - Deletion of alpha‐synuclein decreases impulsivity in mice.txt",
+ "id": "c43b0bae-6942-4b17-a598-1f92eec59251"
+ },
+ {
+ "filename": "2009 - Recent Advances in Genetics of the Spontaneously Hypertensive Rat.txt",
+ "id": "55a8d55f-a11f-4a60-86ca-c2ea62c4be45"
+ },
+ {
+ "filename": "2010 - XGAP a uniform and extensible data model and software platform for genotype and phenotype experiments.txt",
+ "id": "638b3811-7054-4788-a42d-2ccc7bfce1c7"
+ },
+ {
+ "filename": "2009 - Visual analytics for relationships in scientific data (1).txt",
+ "id": "621d8b0a-821b-45f8-ae91-aba0cdcdda10"
+ },
+ {
+ "filename": "2009 - Detection and interpretation of expression quantitative trait loci (eQTL).txt",
+ "id": "85ee9743-b34d-4d49-9017-d7d2e5d4b996"
+ },
+ {
+ "filename": "2010 - Human and laboratory rodent low response to alcohol Is better consilience possible.txt",
+ "id": "667f6bd2-ad5e-485a-a0e0-c065d6fea3e0"
+ },
+ {
+ "filename": "2011 - Genetic Analysis of Iron Deficiency Effects.txt",
+ "id": "d45fac79-891e-4890-b8d8-4e1a60edcd2f"
+ },
+ {
+ "filename": "2011 - Analysis of cognitive functions in recombinant inbred strains of rats produced by crossbreeding of SHR and BN Lx. lines.txt",
+ "id": "cfdda570-52c3-4a7f-a36a-0b8f55913130"
+ },
+ {
+ "filename": "2009 - Hybrid mice as genetic models of high alcohol consumption.txt",
+ "id": "99857e5b-0e73-4928-9ab2-eccadb50c2fd"
+ },
+ {
+ "filename": "2010 - Systems genetics analysis of molecular pathways underlying ethanol-induced behavioral phenotypes.txt",
+ "id": "7c055057-eb70-4df4-a8e2-66e90a8f174d"
+ },
+ {
+ "filename": "2010 - Genetic Variation and Brain Gene Expression in Rodent Models of Alcoholism Implications for medication development.txt",
+ "id": "59829328-fc8d-4007-8109-6d114368e6fc"
+ },
+ {
+ "filename": "2009 - Genetic dissection of the mouse brain using high-field magnetic resonance microscopy.txt",
+ "id": "0fafb156-8996-4942-8c90-a60dcf0dd8c9"
+ },
+ {
+ "filename": "2015 - The Convergence of Systems and Reductionist Approaches.txt",
+ "id": "e5090c99-ade7-48d3-8efe-d74bf4d5f334"
+ },
+ {
+ "filename": "2010 - A catalogue of reporting guidelines for health research.txt",
+ "id": "6cf55c68-43c4-4c0c-a10c-e1c8b80d478a"
+ },
+ {
+ "filename": "2008 - Interspecies comparisons of functional genetic variations and their implications in neuropsychiatry†.txt",
+ "id": "3711efc0-272d-4bac-b352-f77832cf624a"
+ },
+ {
+ "filename": "2011 - Discovery of novel pain genes using systems genetics.txt",
+ "id": "c17fc78e-eda6-499c-962b-3c91b2722c06"
+ },
+ {
+ "filename": "2010 - Semantic and Spatial Multi-Scale Information Models of the Nervous System.txt",
+ "id": "044124e5-5a8a-478a-a4a8-d0fce19a220e"
+ },
+ {
+ "filename": "2010 Ehrenreich Yeast Genetic Traits.txt",
+ "id": "9b830769-1d42-4dce-b529-4e07902c0743"
+ },
+ {
+ "filename": "2007 - QTL Mapping in Aging Systems.txt",
+ "id": "47c12133-5a30-45b9-bcb8-b96f00737f31"
+ },
+ {
+ "filename": "2008 - SGDI system for genomic data integration.txt",
+ "id": "e8b25f12-846b-4504-978c-8f27ebb889c9"
+ },
+ {
+ "filename": "2008 - Variation at candidate gene loci and their fuctional importance in rodent models of ethanol dependence.txt",
+ "id": "ef4e1724-4b21-48f4-8b6f-aa52c9949abe"
+ },
+ {
+ "filename": "2005 -galhardo- Cognitive impairment.txt",
+ "id": "e9d3c6a0-479f-4cc2-a0f5-a38c1dd3388d"
+ },
+ {
+ "filename": "2010 - The Genetics of Pain and Analgesia in Laboratory Animals.txt",
+ "id": "d333b766-b7e4-4ab5-96a8-50a8a1d805f1"
+ },
+ {
+ "filename": "2006 - Integrative strategies to identify candidate genes in rodent models of human alcoholism.txt",
+ "id": "92adc5ce-c0ec-4ae9-a671-8aa99942215e"
+ },
+ {
+ "filename": "2007 - A locus on distal Chromosome 10 affecting Age-Related Hearing Loss.txt",
+ "id": "694d4ca4-e464-4d99-997a-4f3daff5b618"
+ },
+ {
+ "filename": "2010 - Cross-species behavioural genetics A starting point for unravelling the neurobiology of human psychiatric disorders.txt",
+ "id": "dc920d9b-f538-460f-9ad8-7c82ea162567"
+ },
+ {
+ "filename": "2009 - Identification of Candidate Genes and Gene Networks Specifically Associated with Analgesic Tolerance to Morphine.txt",
+ "id": "f7a4ae8c-250f-45b5-94cb-15512485b726"
+ },
+ {
+ "filename": "2007 - Defining the dopamine transporter proteome by convergent biochemical and in silico analyses.txt",
+ "id": "a660c093-3ccd-4e57-8734-d25518d7c63a"
+ },
+ {
+ "filename": "2007 - Identifying genomic regulators of set-wise co-expression.txt",
+ "id": "cd11423a-8554-45f6-86c4-0fffd38cc09d"
+ },
+ {
+ "filename": "2010 - Genetic analysis of BDNF expression cliques and adult neurogenesis in the hippocampus.txt",
+ "id": "b2990ece-81f7-4411-b8cc-8941dd7c4ec4"
+ },
+ {
+ "filename": "2006 - From genetical genomics to systems genetics potential applications in quantitative genomics and animal breeding.txt",
+ "id": "1198b1b3-e492-4c2c-8809-2bbf7801c008"
+ },
+ {
+ "filename": "2006 - The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion.txt",
+ "id": "468beb66-8478-4044-852f-eb35017ff58a"
+ },
+ {
+ "filename": "2008 - Genetic control of experience‐dependent plasticity in the visual cortex.txt",
+ "id": "4ecc93d3-af5b-4646-b40d-b557377af0b1"
+ },
+ {
+ "filename": "2011 - Anxiety and fear in a cross of C57BL6J and DBA2J mice mapping overlapping and independent QTL for related traits_G. Sokoloff, C. C. Parker, J. E. Lim, .txt",
+ "id": "1660cbf6-a5ee-4e70-9150-7d18af284daf"
+ },
+ {
+ "filename": "2009 - eQTL analysis in mice and rats.txt",
+ "id": "78fd5c90-6189-498c-b22d-bc2a958af438"
+ },
+ {
+ "filename": "2008 - EGR An ethanol-related gene resource.txt",
+ "id": "b6b75130-2f12-4c2d-9a70-72af8f8bf9a8"
+ },
+ {
+ "filename": "2009 - Replication and Narrowing of Gene Expression Quantitative Trait Loci using Inbred Mice.txt",
+ "id": "f0bf9619-6bb9-41c7-9d2b-51d9b650d5b2"
+ },
+ {
+ "filename": "2009 - Genetic modulation of striatal volume by loci on Chrs 6 and 17 in BXD recombinant inbred mice.txt",
+ "id": "1fb6e4db-79c1-49c9-a358-3414f6a674da"
+ },
+ {
+ "filename": "2006 - Positional cloning of genes contributing to variability in nociceptive and analgesic phenotypes.txt",
+ "id": "53a0a196-385a-47ba-9509-0d4f4b157cbf"
+ },
+ {
+ "filename": "2010 - IMMUNOGLOBULIN HEAVY CHAIN VARIABLE REGION GENES CONTRIBUTE TO THE INDUCTION OF THYROID STIMULATING ANTIBODIES IN RECOMBINANT INBRED MICE.txt",
+ "id": "b9a57d38-9068-427e-a1d5-90e78dc9ed77"
+ },
+ {
+ "filename": "2009 - Empirical likelihood for estimating equations with missing values.txt",
+ "id": "337a247f-e444-4e64-8851-7055028f4eb9"
+ },
+ {
+ "filename": "2007 - Transcriptomics and the genetics of alcohol consumption in mice.txt",
+ "id": "ce9c656d-58a8-44ea-b4a4-36206f1177cf"
+ },
+ {
+ "filename": "2007 - Aging Hematopoietic Stem Cells Decline in Function and Exhibit Epigenetic Dysregulation.txt",
+ "id": "8cb01ffe-ccb5-46cc-be9f-cbc85d3a470b"
+ },
+ {
+ "filename": "2007 - Using quantitative trait loci analysis to select plants for altered radionuclide accumulation.txt",
+ "id": "e8397443-575a-4645-b161-59862203f7b4"
+ },
+ {
+ "filename": "2006 - Marker Assisted Backcrossing .txt",
+ "id": "e17b5b05-4676-4b3d-a625-74d453c342bd"
+ },
+ {
+ "filename": "2015 -Williams- Convergence.txt",
+ "id": "4b92915e-2b8c-4d82-a8a3-5beefb7b6335"
+ },
+ {
+ "filename": "2009 - Genetic pathways of Lyst and exfoliation syndrome.txt",
+ "id": "8236098f-5bfa-4dee-a2d5-27b627347a4d"
+ },
+ {
+ "filename": "2007 - Insights from spatially mapped gene expression.txt",
+ "id": "425aaeb9-f6db-42e8-8613-3878131421f6"
+ },
+ {
+ "filename": "2008 - Bioinformatics Analysis of Rat Muscle Microarray Gene Expression and Genetics of Pig Exterior Traits.txt",
+ "id": "8bb7e3b1-bdb0-4c54-a916-6424237616da"
+ },
+ {
+ "filename": "2005 -mcbride- Alcohol Effects CNS.txt",
+ "id": "4e9e4661-4312-47d1-ad0e-eb40ac674012"
+ },
+ {
+ "filename": "2011 - Cardiac physiologic and genetic predictors of hyperoxia-induced acute lung injury in mice.txt",
+ "id": "98e1aa99-f179-455d-9d0b-ab63d2bf19e6"
+ },
+ {
+ "filename": "2010 - Data-driven assessment of eQTL mapping methods.txt",
+ "id": "3278febd-171a-485d-bd6e-0cbb523d73ec"
+ },
+ {
+ "filename": "2008 - Exploiting Regulatory Variation to identify genes underlying quantitative resistance.txt",
+ "id": "34424b41-1c8b-4c76-8d37-883ab85a2758"
+ },
+ {
+ "filename": "2006 - Confirmation and Fine Mapping of Ethanol Sensitivity Quantitative Trait Loci, and Candidate Gene Testing in the LXS Recombinant Inbred Mice.txt",
+ "id": "f93a3518-76b8-4ef8-b3dd-d2131829ac97"
+ },
+ {
+ "filename": "2009 - Experimental_Evolution.txt",
+ "id": "a440a3fa-74e7-4fd8-8a7f-d0391300d6ed"
+ },
+ {
+ "filename": "2008 - Mapping Quantitative Trait Loci in Livestock Using Simple Regression Approach.txt",
+ "id": "16884a78-1aa3-4b33-9040-1bf417402139"
+ },
+ {
+ "filename": "2011 - EXPLOITING NATURAL AND INDUCED GENETIC VARIATION TO STUDY HEMATOPOIESIS.txt",
+ "id": "92fa8f50-2923-41a1-812b-32d931c71684"
+ },
+ {
+ "filename": "2009 - Identification of Quantitative Trait Loci in Alcoholism.txt",
+ "id": "9981a933-8fdf-4107-a6fd-3f9ef71f5d08"
+ },
+ {
+ "filename": "2007 - Quantitative Trait Loci Affecting Milk Yield and Protein Percentage in a Three-Country Brown Swiss Population.txt",
+ "id": "56b8ab20-983a-4f20-8272-c741372dd96d"
+ },
+ {
+ "filename": "2011 - A strong synergistic epistasis between FAM134B and TNFRSF19 on the susceptibility to vascular dementia.txt",
+ "id": "0b719412-fb10-44fb-8620-eb4118d1194b"
+ },
+ {
+ "filename": "2007 - Differential involvement of the dorsal hippocampus in passive avoidance in C57bl6J and DBA2J mice.txt",
+ "id": "3d1b9143-fd04-4b2c-b613-9fe2f9bad70a"
+ },
+ {
+ "filename": "2006 - Quantitative genetic analysis of brain copper and zinc in BXD recombinant inbred mice.txt",
+ "id": "3e0963bf-5926-4986-a4c2-a6a4afd8e3ea"
+ },
+ {
+ "filename": "2009 -Flint- GeneArch.txt",
+ "id": "90f040ec-ee91-4698-92cc-39fbc81f92dd"
+ },
+ {
+ "filename": "2006 - From_gene_to_behavior_and_back_again_new.txt",
+ "id": "c01dd79e-7dbb-40e1-b493-08f8e4fe05fc"
+ },
+ {
+ "filename": "2011 -The neuropeptide galanin and variants in the GalR1 gene are associated with nicotine dependence.txt",
+ "id": "e81206a2-0f93-4d28-a319-c17c3a9860ff"
+ },
+ {
+ "filename": "2011 - The genetic basis of adrenal gland weight and structure in BXD recombinant inbred mice.txt",
+ "id": "908b6626-4948-40c7-8255-f0f49855c100"
+ },
+ {
+ "filename": "2008 - Genetic dissection of quantitative trait locus for ethanol sensitivity in long‐and short‐sleep mice.txt",
+ "id": "3c1ac812-43c0-4e7e-bd71-7ba3a3a0f28b"
+ },
+ {
+ "filename": "2011 - Strain differences in seizure-induced cell death following pilocarpine-induced status epilepticus.txt",
+ "id": "07c2b888-b1b9-4f13-87c5-f33cb3c0e681"
+ },
+ {
+ "filename": "2009 - Sex-specific gene expression in the BXD mouse liver.txt",
+ "id": "e7a99e2b-a89f-4091-b6e0-c445fd4948bb"
+ },
+ {
+ "filename": "2006 - Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis.txt",
+ "id": "5f9977a0-90a1-4d17-a2ff-847ab1b33160"
+ },
+ {
+ "filename": "2010 - Genetic loci that affect aristolochic acid-induced nephrotoxicity in the mouse.txt",
+ "id": "5e5b18da-984c-415e-b2ce-e33b3c44b731"
+ },
+ {
+ "filename": "2007 - E science for Alzheimer Disease.txt",
+ "id": "5ada8004-7039-4c4a-bc5d-28c802c461a9"
+ },
+ {
+ "filename": "2009 - Genetic regulation of hematopoietic stem cells.txt",
+ "id": "d4cda573-c50b-47d3-8e37-c4d3cff0c503"
+ },
+ {
+ "filename": "2008 - Biotools for Determining the Genetics of Susceptibility to Infectious Diseases.txt",
+ "id": "7a7773ed-2548-4297-86ad-b7ce115448e0"
+ },
+ {
+ "filename": "2010 - Towards the integration of mouse databases - definition and implementation of solutions to two use-cases in mouse functional genomics.txt",
+ "id": "ed140f66-fbad-4fd7-8ae3-4d9cac4f63ac"
+ },
+ {
+ "filename": "2006 - A new module for on-line manipulation and display of molecular information in the brain architecture management system.txt",
+ "id": "0b7aefc6-ec2a-419f-b6e9-343c327a6ac9"
+ },
+ {
+ "filename": "2009 - Expression quantitative trait loci are highly sensitive to cellular differentiation state.txt",
+ "id": "ad7aa535-9bf7-421d-896f-5304841c6380"
+ },
+ {
+ "filename": "2007 - ZOOMING IN a new high‐resolution gene expression atlas of the brain.txt",
+ "id": "71470ebd-af41-416b-a7c9-fb6a5d450fab"
+ },
+ {
+ "filename": "2006 - Transcriptional Signatures of Cellular Plasticity in Mice Lacking the α1 Subunit of GABAA Receptors.txt",
+ "id": "d7e9efe9-041a-46e3-8fe1-d4b84943fc82"
+ },
+ {
+ "filename": "2009 - Systems genetics analysis of cancer susceptibility from mouse models to humans.txt",
+ "id": "299c7b2f-4a13-4891-a62b-36d429e960cb"
+ },
+ {
+ "filename": "2008 - Systems_genetics_can_provide_new_insight.txt",
+ "id": "19fe5592-288f-4af9-8300-5148b25dc063"
+ },
+ {
+ "filename": "2007 - Integrating physical and genetic maps from genomes to interaction networks.txt",
+ "id": "f95847dd-c216-4b47-9bb1-88b88221435a"
+ },
+ {
+ "filename": "2008 - Metabolic pathways of type 2 diabetes intersection of genetics, transcriptomics, and metabolite profiling.txt",
+ "id": "498913e1-6f2b-440f-add6-892d57c0ec37"
+ },
+ {
+ "filename": "2006 - Meta-analysis for microarray studies of the genetics of complex traits.txt",
+ "id": "027566e2-bdf0-438b-8104-8eb2b0b83730"
+ },
+ {
+ "filename": "2007 - Quantitative Trait Loci Linked to Thalamus.txt",
+ "id": "b3fed034-39e7-4cf7-9b10-54e24c5d08bf"
+ },
+ {
+ "filename": "2008 -Han- Comparing Quantitative Trait Loci.txt",
+ "id": "8ec43c84-e565-4b47-a07a-0ddd99da6728"
+ },
+ {
+ "filename": "2011 - Dissecting Genetic Networks Underlying Complex Phenotypes The Theoretical Framework.txt",
+ "id": "d8079209-0478-417b-ab45-d0e1e4f4dd7b"
+ },
+ {
+ "filename": "2011 - Genetical genomics approaches for systems genetics.txt",
+ "id": "07d409f4-91f9-4701-bb39-1421845a6321"
+ },
+ {
+ "filename": "2007 - An Informatics Approach to Systems Neurogenetics.txt",
+ "id": "47a15e69-dc83-452e-95d8-c605e61f43c0"
+ },
+ {
+ "filename": "2006 - Reply to “Normalization procedures and detection of linkage signal in genetical-genomics experiments”.txt",
+ "id": "d72cbfae-eed0-4c41-ae93-bb77a6e17e9b"
+ },
+ {
+ "filename": "2012 - Candidate genes in ocular dominance plasticity.txt",
+ "id": "b4713290-fd5b-4330-a8b1-7a341a9dc118"
+ },
+ {
+ "filename": "2010 - Evidence for Varied Aetiologies Regulating the Transmission of Prion Disease Implications for Understanding the Heritable Basis of Prion Incubation Times.txt",
+ "id": "44cd18d6-8e57-4c16-aefa-3d5167e4619c"
+ },
+ {
+ "filename": "2006 - Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia.txt",
+ "id": "9507b9ec-449e-4a79-8f04-f70d85273b74"
+ },
+ {
+ "filename": "2011 - Investigation of Genetic and Molecular Basis of Diabetic Nephropathy Susceptibility in Mice.txt",
+ "id": "785df64a-ebbf-4dca-94dd-0ae27f7ac815"
+ },
+ {
+ "filename": "2008 - Genetic factors influencing alcohol dependence.txt",
+ "id": "f2ee9988-3894-48ca-98b7-ad71a95e7552"
+ },
+ {
+ "filename": "2008 - Expression quantitative trait loci and genetic regulatory network analysis reveals that Gabra2 is involved in stress responses in the mouse.txt",
+ "id": "2270910e-ece1-4428-b64e-ea428bcc6925"
+ },
+ {
+ "filename": "2011 - Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection II. Genetic covariation and identification of Nos1 as linking candidate gene.txt",
+ "id": "0eeb744b-585c-449e-918e-ebaf167715e6"
+ },
+ {
+ "filename": "2009 -Identification of the UBP1 Locus as a Critical Blood Pressure Determinant Using a Combination of Mouse and Human Genetics.txt",
+ "id": "06852861-fe65-403c-b8ce-b655c67da477"
+ },
+ {
+ "filename": "2012 - Systems Biology Approaches to Nutrition.txt",
+ "id": "2e5ab0d5-7915-48e9-a444-d0e7c4ecff52"
+ },
+ {
+ "filename": "2017 - INTEGRATIVE ANALYSIS OF GENETIC, GENOMIC AND PHENOTYPIC DATA FOR ETHANOL BEHAVIORS A NETWORK-BASED PIPELINE FOR IDENTIFYING MECHANISMS AND POTENTIAL DRUG TARGETS.txt",
+ "id": "ba63ee7a-e039-4751-93c5-45271e412717"
+ },
+ {
+ "filename": "2013 - Genetic Dissection of Behavioral Quantitative Trait Loci for Substances of Abuse.txt",
+ "id": "61ae224f-b982-4461-a163-a1fd8da122a4"
+ },
+ {
+ "filename": "2016 - Integrating Multidimensional Data Sources to Identify Genes Regulating Complex Phenotypes.txt",
+ "id": "f9893afe-c0a2-4aaa-89a7-bb1b43819711"
+ },
+ {
+ "filename": "2011 - Genetic Regulatory Network Analysis for Rpe65 in the Eye of BXD Mice.txt",
+ "id": "2845fea0-7cf7-4bb8-915e-ff13c41f0176"
+ },
+ {
+ "filename": "2012 - Age-related changes of gene expression in the neocortex preliminary data on RNA-Seq of the transcriptome in three functionally distinct cortical areas.txt",
+ "id": "5677f7ee-d9b9-443f-b350-488e1b077007"
+ },
+ {
+ "filename": "2012 - Genetic and Genomic Web Resources for Research on Alcohol Use and Abuse.txt",
+ "id": "17ebe481-7ddc-4d73-a009-f83af638a480"
+ },
+ {
+ "filename": "2011 - Naturally Occurring Genetic Variability in Expression of Gsta4 is Associated with Differential Survival of Axotomized Rat Motoneurons.txt",
+ "id": "90ff8fd2-d24f-4df6-9ac8-75e38151740b"
+ },
+ {
+ "filename": "2017 - Analyses of differentially expressed genes after exposure to acute stress, acute ethanol, or a combination of both in mice.txt",
+ "id": "89ebb63a-7ed1-46f1-8fd1-075d1f0cf04b"
+ },
+ {
+ "filename": "2011 - HPNS seizure risk A role for the Golgi-associated retrograde protein complex.txt",
+ "id": "8db57089-05cb-4f1a-a873-e88217946e0d"
+ },
+ {
+ "filename": "2015 - Multipartite Graph Algorithms for the Analysis of Heterogeneous D (1).txt",
+ "id": "20ace138-7d46-40dd-9675-bffe0b90bef4"
+ },
+ {
+ "filename": "2016 - Sex Difference of the Efrg Expression.txt",
+ "id": "67d73645-5dcc-4220-9391-f6d81db6985c"
+ },
+ {
+ "filename": "2012 Flint -NIH- GWA.txt",
+ "id": "7a451204-390c-4ff2-8a1d-b4de62b73503"
+ },
+ {
+ "filename": "2014 - Neuregulin-3 in the Mouse Medial Prefrontal Cortex Regulates Impulsive Action.txt",
+ "id": "c3034036-4dab-4ac7-8857-56e6f1ca0837"
+ },
+ {
+ "filename": "2012 - Use of the Expanded Panel of BXD Mice Narrow QTL Regions in Ethanol-Induced Locomotor Activation and Motor Incoordination.txt",
+ "id": "a531a8b7-336e-4e30-8386-0d8ce16f028a"
+ },
+ {
+ "filename": "2014 - Genes Brain and Behavior - Ye - Quantitative trait loci mapping and gene network analysis implicate protocadherin‐15.txt",
+ "id": "9e36f49e-af4f-4c34-8588-52cf54a742f5"
+ },
+ {
+ "filename": "2014 - Impulsivity and comorbid traits a multi-step approach for finding putative responsible microRNAs in the amygdala.txt",
+ "id": "481b8001-d5cb-477e-8d9c-33d08d5084b2"
+ },
+ {
+ "filename": "2014 Xiao Gene Selection and Ranking.txt",
+ "id": "7c604451-0939-4030-b6dd-fa7dcc656d03"
+ },
+ {
+ "filename": "2012 - Biological Databases for Behavioral Neurobiology.txt",
+ "id": "b7ef2e02-5be5-4a76-b8d9-3f305e2982a3"
+ },
+ {
+ "filename": "2016 - Discoveries of Targets and Novel Agents for the Treatment of Ischemic Retinopathy and Neovascular Disease.txt",
+ "id": "e79a8d1d-0375-4fcd-8a96-0636707c1bfb"
+ },
+ {
+ "filename": "2013 - A locus on mouse Ch10 influences susceptibility to limbic seizure severity fine mapping and in silico candidate gene analysis.txt",
+ "id": "6c0cb891-3a28-4553-99ae-cf84020ef888"
+ },
+ {
+ "filename": "2015 - Bioinformatics Methods for Biochemical Pathways and System Biology Analysis_.txt",
+ "id": "3d7595c8-8632-40bc-8794-89746944cc6e"
+ },
+ {
+ "filename": "2016 - Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis.txt",
+ "id": "2c774a55-3077-4ad9-90c9-7c59bfae54dc"
+ },
+ {
+ "filename": "2013 - Pathways, Networks and Systems Medicine Conferences.txt",
+ "id": "2715e261-b26c-46d6-918f-c6aa47688f0c"
+ },
+ {
+ "filename": "2015 - Exploring multiple quantitative trait loci models of hepatic fibrosis in a mouse intercross.txt",
+ "id": "cf21b8d3-4a41-4b27-a21d-c5824a4acc1f"
+ },
+ {
+ "filename": "2014 - Systems biology and systems genetics — novel innovative approaches to study host–pathogen interactions during influenza infection☆_Author links open overlay panel.txt",
+ "id": "b0d842e7-4c04-449a-bcff-20e7bcbfef24"
+ },
+ {
+ "filename": "2016 - Genetic networks in mouse retinal ganglion cells.txt",
+ "id": "35e79c80-e59e-47ba-8f34-9c82e03a5a33"
+ },
+ {
+ "filename": "2014 - Quantitative trait loci mapping and gene network analysis implicate protocadherin‐15.txt",
+ "id": "cadf5405-2d07-4972-8b0f-0f97e00188a8"
+ },
+ {
+ "filename": "2012 - Development of a murine model for aerosolized ebolavirus infection using a panel of recombinant inbred mice.txt",
+ "id": "0b070626-11b0-4be4-bc50-126c1d31a10b"
+ },
+ {
+ "filename": "2012 - Systems genetic analysis of the effects of iron deficiency in mouse brain.txt",
+ "id": "b5c36c1e-458e-4009-818e-9c0c2ee23e45"
+ },
+ {
+ "filename": "2011 - Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures.txt",
+ "id": "9b2a48a0-f85e-4104-944f-0c47a3b03a9b"
+ },
+ {
+ "filename": "2015 - Mapping of genetic loci that modulate differential colonization by Escherichia coli O157H7 TUV86-2 in advanced recombinant inbred BXD mice.txt",
+ "id": "635bfd82-c2b7-4431-ae55-7cf1163c0e3e"
+ },
+ {
+ "filename": "2014 -Wei- Fluorosis Mice.txt",
+ "id": "1a97d83f-df75-4ac5-a8e1-b2eaac903c52"
+ },
+ {
+ "filename": "2011 - The age of the “ome” Genome, transcriptome and proteome data set collection and analysis.txt",
+ "id": "688ecd25-fdc4-424f-97b0-fe074647a8a5"
+ },
+ {
+ "filename": "2012 - Functional genomics research in aquaculture principles and general approaches.txt",
+ "id": "b04f2221-de28-4c4b-893e-9da982ff864c"
+ },
+ {
+ "filename": "2013 - Genetic Linkages for Thyroxine Released in Response to Thyrotropin Stimulation in Three Sets of Recombinant Inbred Mice Provide Evidence for Shared and Novel Genes Controlling Thyroid Function.txt",
+ "id": "8725811e-e1aa-4aaf-98ed-f6b4a295e1fe"
+ },
+ {
+ "filename": "2015 - Identification of quantitative trait loci influencing inflammation-mediated alveolar bone loss insights into polygenic inheritance of host–biofilm disequilibria in periodontitis.txt",
+ "id": "1fc0816f-fdc6-4c24-8585-b03ca5e003b6"
+ },
+ {
+ "filename": "2013 - Genome-Wide Gene Expression Profiles in Antioxidant Pathways and Their Potential Sex Differences and Connections to Vitamin C in Mice.txt",
+ "id": "78acf3c9-239e-45b4-951d-a08b92663ea8"
+ },
+ {
+ "filename": "2012 - Quantitative Trait Locus Mapping for Ethanol Teratogenesis in BXD Recombinant Inbred Mice.txt",
+ "id": "095349ec-5f83-42e4-a4a1-dcae2c7d464e"
+ },
+ {
+ "filename": "2013 - Glyoxalase 1 and its substrate methylglyoxal are novel regulators of seizure susceptibility.txt",
+ "id": "e2d9190f-cf34-4cfe-b4ee-bd5e0b748cc0"
+ },
+ {
+ "filename": "2011 - Quantitative and Qualitative Stem Rust Resistance Factors in Barley Are Associated with Transcriptional Suppression of Defense Regulons.txt",
+ "id": "cb30afe8-6efe-474b-b6b3-f73a9f5d33ee"
+ },
+ {
+ "filename": "2012 - Chloride intracellular channels modulate acute ethanol behaviors in Drosophila, Caenorhabditis elegans and mice.txt",
+ "id": "c3265667-d400-44d8-b8c6-2b74be34dbe1"
+ },
+ {
+ "filename": "2012 - Genetic and Molecular Network Analysis of Behavior.txt",
+ "id": "d2f9c5cf-835c-450a-bb42-a2454a99e058"
+ },
+ {
+ "filename": "2013 - Candidate gene association studies a comprehensive guide to useful in silicotools.txt",
+ "id": "a4e9db98-b007-49f5-bcbd-ce0f78cbff1f"
+ },
+ {
+ "filename": "2011 -Systems genetic analysis of multivariate response to iron deficiency in mice.txt",
+ "id": "c3226348-ab0d-4635-91f2-4ec85b431559"
+ },
+ {
+ "filename": "2015 - Are osteoporosis and hypertension part of the same aging process.txt",
+ "id": "c6170b29-248d-4fe8-abbb-3e77475b8543"
+ },
+ {
+ "filename": "2013 - Evaluation of heritable determinants of blood and brain serotonin homeostasis using.txt",
+ "id": "c04e1cdc-f962-4b37-a0e0-fa6021ec1f7a"
+ },
+ {
+ "filename": "2015 -Wilkinson- Nature - FAIR.txt",
+ "id": "25427546-14d3-426d-a087-bed025f7b752"
+ },
+ {
+ "filename": "2015 - Differential regional and cellular distribution of TFF3 peptide in the human brain.txt",
+ "id": "d9476207-1f53-4b08-b261-5c52ad191e08"
+ },
+ {
+ "filename": "2015 - TRPC3 channels critically regulate hippocampal excitability .txt",
+ "id": "002bbd9a-f6f8-454b-9c3e-c63e2229ec24"
+ },
+ {
+ "filename": "2013 - Deciphering molecular circuits from genetic variation.txt",
+ "id": "d1c44568-c447-404f-939d-4e7a4d11ffde"
+ },
+ {
+ "filename": "2011 - Genetic networks in the mouse retina Growth Associated Protein 43 and Phosphatase Tensin Homolog network.txt",
+ "id": "9588738f-b0d2-4b37-9554-f0699a66c4fb"
+ },
+ {
+ "filename": "2016 - A genetic screen identifies hypothalamic Fgf15 as a regulator of glucagon secretion.txt",
+ "id": "ae0831bd-6862-4a26-9288-e1c1bf1d2cc9"
+ },
+ {
+ "filename": "2017 - Precision Genetic and Genomic Medicine.pdf",
+ "id": "6f36586c-f060-4dec-ae9b-e30a25e1decd"
+ },
+ {
+ "filename": "2012 - QTLs for bone mineral density of femurs and tibias in recombinant inbred strains derived from C57BL6J and DBA2J inbred strains.txt",
+ "id": "cc4fd4f5-b5b8-419e-9631-2df633d53570"
+ },
+ {
+ "filename": "2011 - identifying-a-major-locus-that-regulates-spontaneous-arthritis-in-il-1ra-deficient-mice-and-analysis-of-potential-candidates.txt",
+ "id": "d4e871aa-bab3-4954-b109-3b521644a8d0"
+ },
+ {
+ "filename": "2016 - Differential Expression of Munc13-2 Produces Unique Synaptic Phenotypes in the Basolateral Amygdala of C57BL6J and DBA2J Mice.txt",
+ "id": "81e5290c-cf59-4c1c-888c-53e3299b5759"
+ },
+ {
+ "filename": "2011 - Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids.txt",
+ "id": "72428a91-4126-451c-a6b9-8d41ea11f6af"
+ },
+ {
+ "filename": "2015 - KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction.txt",
+ "id": "a9308129-c197-4737-bc2b-9046e3fb94d6"
+ },
+ {
+ "filename": "2012 - Advances in biotechnology and linking outputs to variation in complex traits Plant and Animal Genome meeting January 2012.txt",
+ "id": "5fc36313-6f0c-4bbe-8fb0-3977fdcbd829"
+ },
+ {
+ "filename": "2014 - Scoring the collective effects of SNPs association of minor alleles with complex traits in model organisms.txt",
+ "id": "081924f4-cdcc-4fce-9223-744c6ecffe4e"
+ },
+ {
+ "filename": "2013 - Host Genes and Resistance.txt",
+ "id": "581f83bc-3521-4cb3-ad3c-d905a90ecc29"
+ },
+ {
+ "filename": "2016 - Impact of genetic variation on synaptic protein levels in genetically diverse mice.txt",
+ "id": "a77f7391-6c27-4861-a0ac-72f0f2cdeb31"
+ },
+ {
+ "filename": "2012 Wu Ranking gene-drugs.txt",
+ "id": "610e17e0-933d-4cc8-a7cf-4bf89388a83d"
+ },
+ {
+ "filename": "2016 Chern DoubleML.txt",
+ "id": "91ceb0b1-5cb3-4c36-a3cd-d613e044962e"
+ },
+ {
+ "filename": "2015 - Systems genetics of behavior a prelude.txt",
+ "id": "8d7f6840-3de0-4e1f-952b-65443f15c58f"
+ },
+ {
+ "filename": "2014 - Genetic and informatic resources for multi-scale brain research.txt",
+ "id": "5fda998d-7b39-4c80-a9c1-272e9d9aa72b"
+ },
+ {
+ "filename": "2015 - Genetic variation in offspring indirectly influences the quality of maternal behaviour in mice.txt",
+ "id": "4d7120a6-a298-4d48-aa38-ee3474f7408f"
+ },
+ {
+ "filename": "2016 - QTL Mapping of Endocochlear Potential Differences between C57BL6J and BALBcJ mice.txt",
+ "id": "adc6d8db-4f67-4130-b5a2-3cc421d2af45"
+ },
+ {
+ "filename": "2015 - Variable impact of chronic stress on spatial learning and memory in BXD mice.txt",
+ "id": "58739762-ae96-4638-973e-4e6b45d36cae"
+ },
+ {
+ "filename": "2017 - Orbitofrontal Neuroadaptations and Cross-Species Synaptic Biomarkers in Heavy-Drinking Macaques.txt",
+ "id": "68ee5f38-46a1-4343-8af9-7746d89e8451"
+ },
+ {
+ "filename": "2013 - ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains.txt",
+ "id": "a6601776-d40f-4537-b0df-2bb48303c869"
+ },
+ {
+ "filename": "2011 - Measuring and Correlating Blood and Brain Gene Expression Levels Assays, Inbred Mouse Strain Comparisons, and Applications to Human Disease Assessment.txt",
+ "id": "93ae5769-8de9-45d4-8564-c35f624c7b28"
+ },
+ {
+ "filename": "2011 - Genetic regulation of Nrnx1 expression an integrative cross-species analysis of schizophrenia candidate genes.txt",
+ "id": "bd221ae3-3994-4fe2-b22d-b050b0d62bbf"
+ },
+ {
+ "filename": "2012 - Sex-specific modulation of gene expression networks in murine hypothalamus_.txt",
+ "id": "0bdb51db-25a9-48f5-95c5-8e0e9bd2c3b6"
+ },
+ {
+ "filename": "2012 - Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits.txt",
+ "id": "505c3e21-2afe-482e-9983-9b0131f154ce"
+ },
+ {
+ "filename": "2014 - Genetics of Gene Expression in CNS.txt",
+ "id": "368b800d-61fa-4617-ab6a-5eb31ff00030"
+ },
+ {
+ "filename": "2011 - Genomic loci and candidate genes underlying inflammatory nociception.txt",
+ "id": "9f834d4a-1e18-4c3d-a28e-2a1237d590d3"
+ },
+ {
+ "filename": "2017 - GeneNetwork a toolbox for systems genetics.txt",
+ "id": "43407486-b9c2-487b-b19c-b605c4d201c6"
+ },
+ {
+ "filename": "2016 - Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging.txt",
+ "id": "ba7e3b08-be65-474d-9c8a-d132b8168722"
+ },
+ {
+ "filename": "2012 - Host Genetics and Chlamydia Disease Prediction and Validation of Disease Severity Mechanisms.txt",
+ "id": "d40f3764-9b8c-4f20-9200-a5d14cb0cf02"
+ },
+ {
+ "filename": "2011 - The role of the Suprmam1 locus in responses to ionizing radiation and susceptibility to mammary tumors.txt",
+ "id": "174df7ed-e149-437b-9a06-03e5c8229151"
+ },
+ {
+ "filename": "2011 - Host genetic background and the innate inflammatory response of lung to influenza virus.txt",
+ "id": "e56c9675-5d7a-4845-adfc-42a6c4fbc806"
+ },
+ {
+ "filename": "2012 - The Genome Architecture of the Collaborative Cross Mouse Genetic Reference Population.txt",
+ "id": "989fa01e-aef3-4a47-81ef-d74767c73b95"
+ },
+ {
+ "filename": "2016 -Peters- Causal inference by using.txt",
+ "id": "99bb4b2a-6c1d-46d4-8165-2201bc1f0299"
+ },
+ {
+ "filename": "2012 - Effects of morphine on immediate-early gene expression in the striatum of C57BL6J and DBA2J mice.txt",
+ "id": "1d3f76c8-87f6-402c-a488-4f6266bb7c9c"
+ },
+ {
+ "filename": "2012 - A Novel QTL Underlying early onset, low frequency hearing loss .txt",
+ "id": "4c9c2f49-ce64-4d69-9f9f-d5bb2b985112"
+ },
+ {
+ "filename": "2012 - Genetic architecture supports mosaic brain evolution and independent brain–body size regulation_(1).txt",
+ "id": "8e69cfef-0bd4-4e7d-8e42-04c3c2ab2285"
+ },
+ {
+ "filename": "2012 - Genetic variation in hippocampal microRNA expression differences in C57BL6 J X DBA2 J (BXD) recombinant inbred mouse strains.txt",
+ "id": "42c24072-b7f5-4323-b992-ccef69eacf27"
+ },
+ {
+ "filename": "2014 - Pharmacogenetic analysis of captopril effects on blood pressure possible role of the Ednrb (endothelin receptor type B) candidate gene.txt",
+ "id": "64310cb2-e665-4a34-815d-633dc2be5f16"
+ },
+ {
+ "filename": "2016 - Genome_wide_association_study_of_behaviour.txt",
+ "id": "b7727a79-9619-4876-a65c-e0ec743306c3"
+ },
+ {
+ "filename": "2016 - Mouse and Human Genetic Analyses Associate Kalirin with Ventral Striatal Activation during Impulsivity and with Alcohol Misuse.txt",
+ "id": "0dd5f2bc-ac6b-4728-b42e-557b276702d6"
+ },
+ {
+ "filename": "2013 - Transcriptome analysis of Inbred Long Sleep and Inbred Short Sleep mice.txt",
+ "id": "41b8faf1-ee34-458b-8c99-48688b2dbcc9"
+ },
+ {
+ "filename": "2014 - Genetics of low spinal muscular atrophy carrier frequency in sub-Saharan Africa.txt",
+ "id": "f21523aa-0c42-49c3-b2c1-4b6732c5c57f"
+ },
+ {
+ "filename": "2013 - Genetic modulation of the iris transillumination defect a systems genetics analysis using the expanded family of BXD glaucoma strains.txt",
+ "id": "e70f7c61-1734-4048-8a79-382e9b381686"
+ },
+ {
+ "filename": "2015 - Inhibition of monoacylglycerol lipase reduces nicotine withdrawal.txt",
+ "id": "dc88f26d-1c44-486a-b61f-edcb10a42be8"
+ },
+ {
+ "filename": "2016 - Common genes regulate food and ethanol intake in Drosophila.txt",
+ "id": "a3541fba-f802-4e93-8274-1c2c8f58fb13"
+ },
+ {
+ "filename": "2016 - System genetic analysis of mechanisms underlying excessive alcohol consumption.txt",
+ "id": "64472bd6-af60-47c9-bfa4-3d6ea2b6cf8c"
+ },
+ {
+ "filename": "2015 - Tools for in-Silico Reconstruction and Visualization of Gene Regulatory Networks (GRN).txt",
+ "id": "c75fb144-ef57-4753-92cf-a654cbfd3079"
+ },
+ {
+ "filename": "2012 - Anatomic And Genetic Correlates Of The Endocochlear Potential In Recombinant Inbred Mice.txt",
+ "id": "b034070a-267b-428e-8d6b-bda2b1727b51"
+ },
+ {
+ "filename": "2011 - Systems Genetics Approaches for the Understanding of Complex Clinical and Molecular Traits.txt",
+ "id": "11850d95-80b2-47ca-9c49-a119cdf5fd33"
+ },
+ {
+ "filename": "2015 Williams - Convergence of Systems Complex Trait Analysis.txt",
+ "id": "aef0c2a6-b419-431d-973c-2fd8c8995357"
+ },
+ {
+ "filename": "2012 - Computational tools for discovery and interpretation of expression quantitative trait loci.txt",
+ "id": "3df1bffa-3d23-4b6b-9d59-6ef8b0001f48"
+ },
+ {
+ "filename": "2015 - GENI and GENI-ACT projects provide authentic undergraduate research experiences in genome analysis.txt",
+ "id": "1e9785fa-50e8-4673-b658-1e0832624b1f"
+ },
+ {
+ "filename": "2015 - Cell cycle gene expression networks discovered using systems biology Significance in carcinogenesis.txt",
+ "id": "d543e168-744d-44f5-82cc-c3c1a60ee5a7"
+ },
+ {
+ "filename": "2012 - Systems Genetics of the Lateral Septal Nucleus in Mouse.txt",
+ "id": "421e1acd-7273-4c4a-b280-b0e5a132cbab"
+ },
+ {
+ "filename": "2015 - Quantitative Trait Loci and Candidate Genes for Neutrophil Recruitment in Sterile Inflammation Mapped in AXB-BXA Recombinant Inbred Mice.txt",
+ "id": "d8d2d389-b374-41d1-9eb6-557c6c392b66"
+ },
+ {
+ "filename": "2013 - Pathogenesis and reversal of liver fibrosis Effects of genes and environment.txt",
+ "id": "b71befbe-2a20-434e-907e-0ae581373243"
+ },
+ {
+ "filename": "2012 - Networks Modulating the Retinal Response to Injury Insights from Microarrays, Expression Genetics, and Bioinformatics.txt",
+ "id": "638b711b-cdd9-4c0b-9884-0e450fa6ed31"
+ },
+ {
+ "filename": "2014 - A forward phenotypically driven unbiased genetic analysis of host genes that moderate herpes simplex virus virulence and stromal keratitis in mice.txt",
+ "id": "268c735a-5e56-4b7b-90c3-e5925917d9b7"
+ },
+ {
+ "filename": "2013 - The genetics of gene expression in complex mouse crosses as a tool to study the molecular underpinnings of behavior traits.txt",
+ "id": "b103d0bf-16ab-4e53-bb3b-7c2af3cfd9f6"
+ },
+ {
+ "filename": "2017 -Watanabe- FUMA.txt",
+ "id": "bd93e797-5d14-4c84-ba92-e9988d46f1f4"
+ },
+ {
+ "filename": "2016 - Social interactions and indirect genetic effects on complex juvenile and adult traits.txt",
+ "id": "0376df42-5df7-4966-8f0d-e254b86ae743"
+ },
+ {
+ "filename": "2017 - Dissecting the brown adipogenic regulatory network using integrative genomics.txt",
+ "id": "606ddac6-6250-4510-8896-f89dc9077edb"
+ },
+ {
+ "filename": "2012 - Recombinant inbred systems can advance research in behavioral ecology.txt",
+ "id": "6ed23619-350d-48e3-9e5f-ce831889b448"
+ },
+ {
+ "filename": "2017 - Initial genetic dissection of serum neuroactive steroids following chronic intermittent ethanol across BXD mouse strains.txt",
+ "id": "5e29f3d3-3602-4315-9390-5b218122e523"
+ },
+ {
+ "filename": "2011 -Aitman- Human Disease Research.txt",
+ "id": "14a9de52-cff1-4397-bb2c-8c2e34bb05bf"
+ },
+ {
+ "filename": "2014 - Identification of Candidate Resistance Genes against Rhynchosporium in Barley.txt",
+ "id": "f9f8f648-bd40-49e9-8aee-c341faa43290"
+ },
+ {
+ "filename": "2015 - A Systems-Genetics Analyses of Complex Phenotypes.txt",
+ "id": "40ebee6a-ba5a-4f21-86d1-78d421288687"
+ },
+ {
+ "filename": "2013 - Effects_of_age_and_strain_on_cell_prolif.txt",
+ "id": "70730cdd-f0c8-4835-8442-e8cdcb4cb5fa"
+ },
+ {
+ "filename": "2014 -Carroll- Phewas Analysis.txt",
+ "id": "e1d38edf-d807-49f6-b81f-da1d086c3136"
+ },
+ {
+ "filename": "2014 - Sox2 Regulates Cholinergic Amacrine Cell Positioning and Dendritic Stratification in the Retina.txt",
+ "id": "a516e1d9-bd3d-4d53-aa55-9ec98c38b8ab"
+ },
+ {
+ "filename": "2017 - Systems Phytohormone Responses to Mitochondrial Proteotoxic Stress.txt",
+ "id": "f880f290-4cc7-43f8-a7e6-788b072efd83"
+ },
+ {
+ "filename": "2015 - Genetic dissection of sleep homeostasis.txt",
+ "id": "6dbbf0bc-eea3-4930-be75-925410bc34ea"
+ },
+ {
+ "filename": "2016 -Parker- Nature -- Genome_wide_association_study_of_behavio.txt",
+ "id": "37aa1c77-b6ae-47f8-9fdb-80b0ef8b8810"
+ },
+ {
+ "filename": "2016 - MPTP neurotoxicity is highly concordant between the sexes among BXD recombinant inbred mouse strains.txt",
+ "id": "23f1c487-4011-4149-9e86-ce8f77c3687e"
+ },
+ {
+ "filename": "2016 - Epigenetic Patterns Modulate the Connection Between Developmental Dynamics of Parenting and Offspring Psychosocial Adjustment.txt",
+ "id": "2c086fa1-4fcd-4cbb-aec5-d42e352d567b"
+ },
+ {
+ "filename": "2013 - Genetic and environmental influences on alcohol behaviors Insight from the mouse transcriptome.txt",
+ "id": "d1abbca2-03a4-4a1f-8a17-c286e546f476"
+ },
+ {
+ "filename": "2016 - Genome-wide search followed by replication reveals genetic interaction of CD80 and ALOX5AP associated with systemic lupus erythematosus in Asian populations.txt",
+ "id": "70179190-ca31-4859-a181-34641564de59"
+ },
+ {
+ "filename": "2014 - Comparing genetic pathways variation of immunoinhibitory receptor LAIR-1 in murine vs human internal organs.txt",
+ "id": "fad6cdf2-6440-4fa3-a781-05c8ffa21db1"
+ },
+ {
+ "filename": "2014 - Metabolic Sensing in the Hypothalamus.txt",
+ "id": "3f15bf2e-985a-44fa-808c-b4432930a820"
+ },
+ {
+ "filename": "2015 - Screening and personalizing nootropic drugs and cognitive modulator regimens in silico.txt",
+ "id": "88bf3e0f-3251-4f63-99d3-32944b522a16"
+ },
+ {
+ "filename": "2014 - Genetic variation in the voltage-gated potassium channel genes KCNV2 and KCNV1 contributes to epilepsy susceptibility.txt",
+ "id": "a2f9bcc5-d7db-4efb-9c74-dc464337e32f"
+ },
+ {
+ "filename": "2012 - Systems genetic analysis of multivariate response to iron deficiency in mice.txt",
+ "id": "6d850ba3-9219-4250-b17f-7cf4867ca354"
+ },
+ {
+ "filename": "2017 - Medical genetics and genomic medicine in Turkey.pdf",
+ "id": "fc80e801-d9d7-4193-bbb8-6620883a85c4"
+ },
+ {
+ "filename": "2014 - Systems Genetics of Liver Fibrosis Identification of Fibrogenic and Expression Quantitative Trait Loci in the BXD Murine Reference Population.txt",
+ "id": "1219788a-2944-4948-a06a-f8e0297e3c3b"
+ },
+ {
+ "filename": "2013 - Systems genetics of hepatocellular damage in vivo and in vitro identification of a critical network on chromosome 11 in mouse.txt",
+ "id": "45ccb967-3a5e-4274-9009-e4fda677bba0"
+ },
+ {
+ "filename": "2012 - Teaching Neuroinformatics with an Emphasis on Quantitative Locus Anlaysis.txt",
+ "id": "54d63a0c-0a1f-4314-9dee-c996fbbbd7c6"
+ },
+ {
+ "filename": "2012 - Systems Genetics of Metabolism The Use of the BXD Murine Reference Panel for Multiscalar Integration of Traits.txt",
+ "id": "77cb22e8-dc82-44e9-a19c-82b666b6194a"
+ },
+ {
+ "filename": "2013 -Critical evaluation of transcription factor Atf2 as a candidate modulator of alcohol preference in mouse and human populations.txt",
+ "id": "28f42f39-c6a4-440b-b43a-017f622db6da"
+ },
+ {
+ "filename": "2012 - System Genetics Challenges and Strategies.txt",
+ "id": "1e363501-86fc-451e-88df-9a76dfecaedf"
+ },
+ {
+ "filename": "2012 - Genomic dissection and prioritizing of candidate genes of QTL for regulating spontaneous arthritis on chromosome 1 in mice deficient for interleukin-1 receptor antagonist.txt",
+ "id": "e8191a94-dd17-4c40-8afd-c9b7fb7266c9"
+ },
+ {
+ "filename": "2014 -Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders.txt",
+ "id": "98dfe1c7-3be6-427d-bf8f-749460667d4c"
+ },
+ {
+ "filename": "2014 - An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement.txt",
+ "id": "0760894c-d8de-4b3b-93fc-db0bb6d6ef8c"
+ },
+ {
+ "filename": "2014 - Identification of Srp9 as a febrile seizure susceptibility gene.txt",
+ "id": "2278b390-3cf6-4082-a956-7b06b6cc1286"
+ },
+ {
+ "filename": "2012 - Accelerating Discovery for Complex Neurological and Behavioral Disorders Through Systems Genetics and Integrative Genomics in the Laboratory Mouse.txt",
+ "id": "4de669b7-da76-42ef-a88a-afebf1e86734"
+ },
+ {
+ "filename": "2013 - Mitonuclear protein imbalance as a conserved longevity mechanism.txt",
+ "id": "6ee86c77-b359-45f1-bd54-b1cd9b260ae6"
+ },
+ {
+ "filename": "2012 - Genetic Regulation of Neuroinflammation After Infection and Injury.txt",
+ "id": "93820bc6-ee76-4e84-b0f1-de0d8ce9e365"
+ },
+ {
+ "filename": "2015 - Genetic Control of Survival and Weight Loss during Pneumonic Burk.txt",
+ "id": "8b4276be-c77e-4e80-a5bb-54e9ff75d2ba"
+ },
+ {
+ "filename": "2015 - Differences between Mice and Humans in Regulation and the Molecular Network of Collagen, Type III, Alpha-1 at the Gene Expression Level Obstacles that Translational Research Must Overcome.txt",
+ "id": "8604652e-2477-4552-8f43-f5f19e421df2"
+ },
+ {
+ "filename": "2012 - Overexpression of insulin like growth factor binding protein 5 reduces liver fibrosis in chronic cholangiopathy.txt",
+ "id": "8aadf051-0956-4a48-aefe-9bcd458afdbb"
+ },
+ {
+ "filename": "2014 - Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics.txt",
+ "id": "bb955075-4d64-49b8-97f1-e3d69ee90b45"
+ },
+ {
+ "filename": "2012 - Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex functional and mechanistic implications.txt",
+ "id": "2e0bbb7b-45cd-4208-b2f0-e229df86d8ff"
+ },
+ {
+ "filename": "2012 - Behavioral actions of alcohol phenotypic relations from multivariate analysis.txt",
+ "id": "47732768-0eee-41a7-8427-c216f53ade97"
+ },
+ {
+ "filename": "2017 - Systems genetics of liver fibrosis.txt",
+ "id": "ec378fcc-c1a6-46c9-9119-f26d9814e209"
+ },
+ {
+ "filename": "2012 - Treatment- and Population-Dependent Activity Patterns of Behavioral and Expression QTLs.txt",
+ "id": "b19b8482-6999-4274-b194-8a53ce5cb1e5"
+ },
+ {
+ "filename": "2012 - Measuring behavior of animal models faults and remedies.txt",
+ "id": "5f10ca6d-3a51-4401-a808-9a90b432ca16"
+ },
+ {
+ "filename": "2015 - Informatics resources for the Collaborative Cross and related mouse populations.txt",
+ "id": "ba1c6c7e-9355-413a-947c-0bae330b58ba"
+ },
+ {
+ "filename": "2013 - Evaluation of heritable determinants of blood and brain serotonin homeostasis using (1).txt",
+ "id": "fb3905fb-2f26-4fae-b278-f4540263c602"
+ },
+ {
+ "filename": "2015 - A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder.txt",
+ "id": "28defd12-1ab9-4579-8f30-9f049b6bc3a0"
+ },
+ {
+ "filename": "2015 - Multipronged approach to identify and validate a novel upstream regulator of Sncg.txt",
+ "id": "3671e038-5bb3-4e52-9ab5-550216223be5"
+ },
+ {
+ "filename": "2014 - Genetic variation within the Chrna7 gene modulates nicotine reward‐like phenotypes in mice.txt",
+ "id": "5ff7155e-a6c9-45c4-8e0f-e551dd3ec602"
+ },
+ {
+ "filename": "2014 - Cerebellar oxidative DNA damage and altered DNA methylation in the BTBR T+ tfJ mouse model of autism and similarities with human post mortem cerebellum.txt",
+ "id": "8f6e8785-25fe-44f6-89e6-7972b19a9608"
+ },
+ {
+ "filename": "2015 - Gene network of a phosphoglycerate mutase in muscle wasting in mice.txt",
+ "id": "138d4420-0dba-4bed-bf49-d91ad75f1e23"
+ },
+ {
+ "filename": "2017 - Post-genomic behavioral genetics From revolution to routine.txt",
+ "id": "cf1f67cf-e0f9-4de9-82d4-100f910d0763"
+ },
+ {
+ "filename": "2015 - A QTL on Chr 5 modifies hearing loss associated with the fascin-2 variant of DBA2J mice.txt",
+ "id": "3e95286d-e2f7-44e9-9178-9c5f44d65abb"
+ },
+ {
+ "filename": "2012 - Generating Embryonic Stem Cells from the Inbred Mouse Strain DBA2J, a Model of Glaucoma and Other Complex Diseases.txt",
+ "id": "08a6ce71-133e-426d-adfe-600ff52802a2"
+ },
+ {
+ "filename": "2015 - Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection.txt",
+ "id": "ae202e58-4233-4abe-9231-c17f802e8d61"
+ },
+ {
+ "filename": "2018 - Born to Cry A Genetic Dissection of Infant Vocalization.txt",
+ "id": "86b86235-b7a8-4dfc-be13-d119dc31b377"
+ },
+ {
+ "filename": "2012 - Complex control of GABA (A) receptor subunit mRNA expression variation, covariation, and genetic regulation.txt",
+ "id": "4a8b34bf-b6c6-4f71-b6f6-b6538001efdb"
+ },
+ {
+ "filename": "2015 - Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium.txt",
+ "id": "0a259da5-fb6d-4fe6-a06d-6e2e9e174184"
+ },
+ {
+ "filename": "2017 - Systems genetics of obesity.txt",
+ "id": "aff0a2a1-516d-4d97-a3a2-350d02652e9e"
+ },
+ {
+ "filename": "2015 - Constraint and divergence of global gene expression in the mammalian embryo.txt",
+ "id": "e7030862-fb3c-48cc-bbd1-e30ac5ed5864"
+ },
+ {
+ "filename": "2018 - Metanalysis of genome-wide association studies for panic disorder suggest pathways and mechanisms of pathogenesis.txt",
+ "id": "19aeec76-3ae4-4039-a887-407738ad4298"
+ },
+ {
+ "filename": "2016 Gene Re ranking.txt",
+ "id": "7fc7babc-51be-4358-bae4-ca1058c36da7"
+ },
+ {
+ "filename": "2013 - Impact of natural genetic variation on gene expression dynamics.txt",
+ "id": "30f22ded-c402-47b8-a92b-85b27ef45bb8"
+ },
+ {
+ "filename": "2016 - Genetic divergence in the transcriptional engram of chronic alcohol abuse A laser-capture RNA-seq study of the mouse mesocorticolimbic system.txt",
+ "id": "adfe9118-5dff-452a-9922-d782957267ea"
+ },
+ {
+ "filename": "2016 - Systems genetics of intravenous cocaine self-administration in the BXD recombinant inbred mouse panel.txt",
+ "id": "8c75f4ad-9116-4126-9729-5062aa6bc036"
+ },
+ {
+ "filename": "2017 - Genetic determinants of cholangiopathies Molecular and systems genetics.txt",
+ "id": "13036fc5-c31c-4d21-a5f0-5ddfe11663d2"
+ },
+ {
+ "filename": "2012 - Genetic regulation of adult hippocampal neurogenesis A systems genetics approach using BXD recombinant inbred mouse strains.txt",
+ "id": "8fb56fda-e1a2-4407-acb2-9a5983861202"
+ },
+ {
+ "filename": "2013 - Neural-Immune Interactions in Brain Function and Alcohol Related Disorders.txt",
+ "id": "69869501-1782-45bc-b66a-f8d9327c34b2"
+ },
+ {
+ "filename": "2014 - A candidate syntenic genetic locus is associated with voluntary exercise levels in mice and humans.txt",
+ "id": "919b4136-a032-4f86-83ee-959609c1fb73"
+ },
+ {
+ "filename": "2018 - Genome-wide association for testis weight in the diversity outbred mouse population.txt",
+ "id": "7729c4cc-b1e9-48b9-be61-5b8f08b05650"
+ },
+ {
+ "filename": "2014 - Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population.txt",
+ "id": "d5d41016-939f-46d7-8d9e-dce0a6f10182"
+ },
+ {
+ "filename": "2012 - The glyoxalase system regulates GABAA receptors and downstream behaviors.txt",
+ "id": "6d7c89b1-9634-45ec-873b-a19f1f82dc05"
+ },
+ {
+ "filename": "2014 - GWA of Sex Difference in Gene Expression Profiles of Bone Formations Using sfx Mice and BXD RI Strains.txt",
+ "id": "a0bfe92f-9abb-427e-9a6c-934f4cb68e1c"
+ },
+ {
+ "filename": "2012 - Distinct gene loci control the host response to influenza H1N1 virus infection in a time-dependent manner.txt",
+ "id": "40e01bf9-3d65-4ee4-a2d5-b8548fccf844"
+ },
+ {
+ "filename": "2014 - Survival Motor Neuron (SMN) Copy Number Distribution in Mali, West Africa.txt",
+ "id": "4262c15b-1bdf-4811-b15c-f5e4ef195f27"
+ },
+ {
+ "filename": "2015 - Systems genetic analysis of hippocampal neuroanatomy and spatial learning in mice.txt",
+ "id": "2a92d7b5-946c-4a22-a4b9-26e950b0f757"
+ },
+ {
+ "filename": "2012 - Genetic Control of a Central Pattern Generator_ Rhythmic Oromotor (1).txt",
+ "id": "c450262d-8736-4582-ac34-1c8b375b0140"
+ },
+ {
+ "filename": "2012 - P-381 - Genetic and Correlation Analysis of Spatial Learning of the rat Hxbbxh Recombinant Inbred Strains in the Carousel Maze, a Spatial Avoidance Paradigm.txt",
+ "id": "e3cb779e-af08-4de8-8dfc-1516ec35785a"
+ },
+ {
+ "filename": "2017 - Variable cardiac α-actin (Actc1) expression in early adult skeletal muscle correlates with promoter methylation.txt",
+ "id": "09c07844-b8d8-46a9-842e-eb9c16f2ab25"
+ },
+ {
+ "filename": "2014 - Analyzing_gene_expression_data_in_mice_w.txt",
+ "id": "1752ff08-bac2-4d6b-b86d-bcfc69e932c4"
+ },
+ {
+ "filename": "2018 - Effects of Genetic Background on Susceptibility and the Acceleration of Hearing Loss in Mice.txt",
+ "id": "e6fc60c2-8651-44d7-a4aa-b4090e2d59f2"
+ },
+ {
+ "filename": "2017 - Systems Genetics Analysis to Identify the Genetic Modulation of a Glaucoma-Associated Gene.txt",
+ "id": "130b4836-2fb1-432f-be62-c9d29dbd3b72"
+ },
+ {
+ "filename": "2016 - Sex difference in EGFR pathways in mouse kidney-potential impact on the immune system.txt",
+ "id": "aab09eb6-a95e-4258-b35f-b9fec7b0de5c"
+ },
+ {
+ "filename": "2012 - Genetic architecture supports mosaic brain evolution and independent brain–body size regulation_.txt",
+ "id": "16276556-20fb-41de-8a48-16eeba247ea7"
+ },
+ {
+ "filename": "2015 - A Chromosome 13 locus is associated with male-specific mortality in mice.txt",
+ "id": "43d5140a-ad39-438e-8ba6-76dd3c7c42bc"
+ },
+ {
+ "filename": "2012 - Congenic dissection of a major QTL for methamphetamine sensitivity implicates epistasis.txt",
+ "id": "ee092dcc-7ebf-4733-8f07-320ad2a02b40"
+ },
+ {
+ "filename": "2014 - Trps1 Differentially Modulates the Bone Mineral Density between Male and Female Mice and Its Polymorphism Associates with BMD Differently between Women.txt",
+ "id": "5ef1d2e1-67d2-4d12-b171-d2b1bb21887f"
+ },
+ {
+ "filename": "2017 - Complex Genetics of Behavior BXDs in the Automated Home-Cage.txt",
+ "id": "10402a43-f390-4b98-856e-da51d30e0f6b"
+ },
+ {
+ "filename": "2015 - Gene network of a phosphoglycerate mutase in muscle wasting in mice(1).txt",
+ "id": "8a41f556-cfd0-49f0-aae1-779ff89bf03f"
+ },
+ {
+ "filename": "2012 - Expression QTL and genetic regulatory network analysis of Col11a1.txt",
+ "id": "39fd5075-0277-4fe8-95c0-9142777f73c8"
+ },
+ {
+ "filename": "2016 - Joint mouse–human phenome-wide association to test gene function and disease risk.txt",
+ "id": "f9b2eeba-5f93-49c1-8828-311f0797d9e3"
+ },
+ {
+ "filename": "2016 - Genetic variation as a tool for identifying novel transducers of itch.txt",
+ "id": "639aca28-efd3-46d7-962e-32fe6b842ab6"
+ },
+ {
+ "filename": "2013 - The methylated-DNA binding protein MBD2 enhances NGFI-A (egr-1)-mediated transcriptional activation of the glucocorticoid receptor.txt",
+ "id": "f54c7e2f-f24b-429b-9155-6d7833aa43f2"
+ },
+ {
+ "filename": "2016 - A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors.txt",
+ "id": "c8021173-fee9-4029-aa3c-223a99c25d4a"
+ },
+ {
+ "filename": "2015 - Genomic analysis of allele-specific expression in the mouse liver.txt",
+ "id": "7ac007e5-35bf-4894-9856-67d182b0a32a"
+ },
+ {
+ "filename": "2014 - Limitation of Number of Strains and Persistence of False Positive Loci in QTL Mapping Using Recombinant Inbred Strains.txt",
+ "id": "d3cb3e50-af73-4320-a6c3-09400e99663e"
+ },
+ {
+ "filename": "2014 - Genome Wide Analysis of Sex Difference in Gene Expression Profiles.txt",
+ "id": "93bf860f-bcc5-4b0e-bad6-430a0599ceec"
+ },
+ {
+ "filename": "2013 - Effects of Glaucoma on Chrna6 Expression in the Retina.txt",
+ "id": "88f53bb9-0e45-412e-832e-3b11a8221657"
+ },
+ {
+ "filename": "2017 - Identification of quantitative trait loci associated with the susceptibility of mouse spermatozoa to cryopreservation.txt",
+ "id": "5bd8262b-b2cd-4098-a494-ede168941a9a"
+ },
+ {
+ "filename": "2014 - Sex-dependent genetic effects on immune responses to a parasitic nematode.txt",
+ "id": "08a01aae-9754-4eb1-a385-9fa446460c59"
+ },
+ {
+ "filename": "2013 - Expression of alcoholism-relevant genes in the liver are differently correlated to different parts of the brain.txt",
+ "id": "00df208f-bec0-4f4c-b941-76a92d1c5b6c"
+ },
+ {
+ "filename": "2016 -Loos- BXDs Home cage.txt",
+ "id": "8a325317-ac8d-4e4d-aede-8d83eae077c3"
+ },
+ {
+ "filename": "2015 - What animal models can tell us about glaucoma.txt",
+ "id": "dee36885-b2f4-4311-b70a-17e228034820"
+ },
+ {
+ "filename": "2014 - Sirt1 induction confers resistance to etoposide-induced genotoxic apoptosis in thyroid cancers.txt",
+ "id": "a1ddc50c-de3e-4938-8956-0b1eab6086b0"
+ },
+ {
+ "filename": "2012 - Systems genetics challenges and developing strategies.txt",
+ "id": "1161637c-7c9e-494a-b063-7f82280a78c7"
+ },
+ {
+ "filename": "2015 - Complement receptor 2 is up regulated in the spinal cord following nerve root injury and modulates the spinal cord response.txt",
+ "id": "1024c1ee-1f36-4f06-9ae1-cd231b51d602"
+ },
+ {
+ "filename": "2016 - Identification of quantitative trait loci regulating haematopoietic parameters in B6AKRF2 mice.txt",
+ "id": "075d395a-e68a-4457-914e-0da307ed112c"
+ },
+ {
+ "filename": "2014 - Unique genetic loci identified for emotional behavior in control and chronic stress conditions.txt",
+ "id": "c0d0b807-c671-4495-b874-8c315611b833"
+ },
+ {
+ "filename": "2014 - Genetic regulatory network analysis reveals that low density lipoprotein receptor-related protein 11 is involved in stress responses in mice.txt",
+ "id": "654458c3-6932-45c2-829d-389617a9f519"
+ },
+ {
+ "filename": "2012 - Sex-specific modulation of gene expression networks in murine hypothalamus_(1).txt",
+ "id": "7301ff9c-40bd-4943-8402-bceed40a117b"
+ },
+ {
+ "filename": "2016 - Systems genetic and pharmacological analysis identifies candidate genes underlying mechanosensation in the von Frey test.txt",
+ "id": "53246db3-48fc-4027-9b3c-33dfaeb2db68"
+ },
+ {
+ "filename": "2016 - POEM Identifying Joint Additive Effects on Regulatory Circuits.txt",
+ "id": "3f41ee30-86e5-437b-b7b2-4f4c5b9c1041"
+ },
+ {
+ "filename": "2014 - Effect of Fluorosis on Liver Cells of VC Deficient and Wild Type Mice.txt",
+ "id": "5f89ab63-e167-4d41-baec-50178d0e93d0"
+ },
+ {
+ "filename": "2015 - Linking traits based on their shared molecular mechanisms.txt",
+ "id": "8039b6dc-c179-43e9-a6ae-08b39d7840e3"
+ },
+ {
+ "filename": "2015 - Identification of candidate genes that underlie the QTL on chromosome 1 that mediates genetic differences in stress-ethanol interactions.txt",
+ "id": "14796b9d-f931-4ca5-9acc-0a5c9121d21d"
+ },
+ {
+ "filename": "2017 - Extraterritorial Heat Hyperalgesia in Mice Following Infraorbital Nerve Transection.txt",
+ "id": "0666777d-a2c5-40f5-b506-e78888b6b121"
+ },
+ {
+ "filename": "2013 - Genetic variability in the rat Aplec C-type lectin gene cluster regulates lymphocyte trafficking and motor neuron survival after traumatic nerve root injury.txt",
+ "id": "1f1c086b-a965-4f42-80db-95e678171b87"
+ },
+ {
+ "filename": "2016 - Coupling of LETM1 up-regulation with oxidative phosphorylation and platelet-derived growth factor receptor signaling via YAP1 transactivation.txt",
+ "id": "454c6361-2274-4d5e-93b5-c0391499a682"
+ },
+ {
+ "filename": "2012 A_Fast_Ranking_Algorithm_for_Predicting_Gene_Functions_in_Biomolecular_Networks.txt",
+ "id": "4edce587-031c-439a-903f-253cf62bd9f3"
+ },
+ {
+ "filename": "2013 - Genetic Dissection of Quantitative Trait Loci for Substances of A.txt",
+ "id": "024c0e0e-26ea-45ae-a9e5-3718ade3eca1"
+ },
+ {
+ "filename": "2013 - Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks.txt",
+ "id": "5405cdac-fb5d-4e14-9bb9-83bdbf8df8c9"
+ },
+ {
+ "filename": "2016 Bush PheWas.txt",
+ "id": "2b2d5893-7362-4881-a53a-55c2b01c0a26"
+ },
+ {
+ "filename": "2014 - Molecular pathways underpinning ethanol-induced neurodegeneration.txt",
+ "id": "667ac3eb-7d19-4359-98b7-e76871637910"
+ },
+ {
+ "filename": "2018 - Ethanol_s Effect on Coq7 Expression in the Hippocampus of Mice.txt",
+ "id": "2a03c53c-2bf7-4086-9b2d-b0fdba2d3cf6"
+ },
+ {
+ "filename": "2012 - Genetic, morphometric, and behavioral factors linked to the midsagittal area of the corpus callosum.txt",
+ "id": "22bc61de-d6e9-4704-b1d6-8945ed41b427"
+ },
+ {
+ "filename": "2016 - A Systems-Level Understanding of Cardiovascular Disease through Networks.txt",
+ "id": "9e26e81b-f443-4ac2-b5d2-6b19d05a968c"
+ },
+ {
+ "filename": "2017 - Offspring genes indirectly influence sibling and maternal behavioural strategies over resource share.txt",
+ "id": "57a57f72-7f93-46db-9388-72e4181666b4"
+ },
+ {
+ "filename": "2013 - Prospects for advancing defense to cereal rusts through genetical genomics.txt",
+ "id": "beb4fcfb-a920-470f-9c72-0e189e6b3fb0"
+ },
+ {
+ "filename": "2013 - Enhanced alcohol self-administration and reinstatement in a highly impulsive, inattentive recombinant inbred mouse strain.txt",
+ "id": "fe55705a-6827-4e08-841e-a72b7cfd9fdf"
+ },
+ {
+ "filename": "2015 - Genetic Variation in Renal Expression of Folate Receptor 1 (Folr1) Gene Predisposes Spontaneously Hypertensive Rats to Metabolic Syndrome.txt",
+ "id": "b1625eb7-f7be-4161-9a11-49aa39876337"
+ },
+ {
+ "filename": "2012 - Systems toxicology.txt",
+ "id": "0a3b2a6a-c894-4bd7-9c46-339a4fbf1f16"
+ },
+ {
+ "filename": "2017 - AHCODA-DB a data repository with web-based mining tools for the analysis of automated high-content mouse phenomics data.txt",
+ "id": "51efbb16-ba2b-43c2-8652-f84e91601cd5"
+ },
+ {
+ "filename": "2015 - The interface between genetics and psychology lessons from developmental dyslexia.txt",
+ "id": "8a35f162-6a46-4c52-870a-931c8d6a123f"
+ },
+ {
+ "filename": "2013 - Expression, covariation, and genetic regulation of miRNA Biogenesis genes in brain supports their role in addiction, psychiatric disorders, and disease.txt",
+ "id": "6cbdc6cc-ae54-41c7-ba18-8f7308d53a07"
+ },
+ {
+ "filename": "2012 - Identifying Gene Networks Underlying the Neurobiology of Ethanol and Alcoholism.txt",
+ "id": "f4e26cf0-d214-41bf-b392-9c63a903b0b8"
+ },
+ {
+ "filename": "2016 - Differential Potassium Channel Gene Regulation in BXD Mice Reveals Novel Targets for Pharmacogenetic Therapies to Reduce Heavy Alcohol Drinking.txt",
+ "id": "7ff645bd-dde4-4eac-a0a0-1c3469142fc2"
+ },
+ {
+ "filename": "2014 - On the Neurobiology of Physical Activity in Mice and Human.txt",
+ "id": "33814fad-d831-46f5-b41f-ff31626a82ca"
+ },
+ {
+ "filename": "2013 - A Crystallin Gene Network in the Mouse Retina.txt",
+ "id": "5e2ae646-2c4a-499c-a22a-6cb88c6fa49c"
+ },
+ {
+ "filename": "2015 - Biological network inference from microarray data, current solutions, and assessments.txt",
+ "id": "4892c8a4-05c9-405e-bbbe-cfcfead84683"
+ },
+ {
+ "filename": "2014 - Computational tools to aid the design and development of a genetic reference population.txt",
+ "id": "b16783a4-4380-4d4c-9f3e-f8264371f5b4"
+ },
+ {
+ "filename": "2015 Vins Causal process diagram.txt",
+ "id": "72540038-5deb-4d24-b932-f094615d9d60"
+ },
+ {
+ "filename": "2017 - Reconstructing the molecular function of genetic variation in regulatory networks.txt",
+ "id": "d09e59f1-14d1-4391-8419-90c6d6bc2fde"
+ },
+ {
+ "filename": "2014- A novel genetic locus linked to pro-inflammatory cytokines after virulent H5N1 virus infection in mice.txt",
+ "id": "083e1297-ba25-498f-b9e0-77089e04b049"
+ },
+ {
+ "filename": "2016 - Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease.txt",
+ "id": "65d16255-3edd-46fb-a100-2ab8ba6abcdd"
+ },
+ {
+ "filename": "2015 - PTPN21 exerts pro-neuronal survival .txt",
+ "id": "8b73f48b-0ecf-4d0a-93bc-b028b2725b89"
+ },
+ {
+ "filename": "2016 - Genetic expression analysis of E2F-associated phosphoprotein in stress responses in the mouse.txt",
+ "id": "5774f996-3411-4ae4-993e-8d54ade94dbf"
+ },
+ {
+ "filename": "2014 - Transcript co-variance with Nestin in two mouse genetic reference populations identifies Lef1 as a novel candidate regulator of neural precursor cell proliferation in the adult hippocampus.txt",
+ "id": "f92e167e-0375-45b7-9d91-f8a4d0e1fbba"
+ },
+ {
+ "filename": "2012 - The social life of neurons synaptic communication deficits as a common denominator of autism, schizophrenia and other cognitive disorders.txt",
+ "id": "0477b96a-60c8-4ed3-860b-d4cc34370872"
+ },
+ {
+ "filename": "2012 - Weighting by heritability for detection of quantitative trait loci with microarray estimates of gene expression.txt",
+ "id": "9df9dc0c-0286-4d62-b34a-b886b9ae305f"
+ },
+ {
+ "filename": "2014 - Genome Wide Analysis of Sex Difference in Gene Expression Profiles of Bone Formations Using sfx Mice and BXD RI Strains.txt",
+ "id": "7b278ba7-05ad-474a-992d-2493f7712927"
+ },
+ {
+ "filename": "2014 - Independent Genomic Control of Neuronal Number across Retinal Cell Types.txt",
+ "id": "57943aca-38a5-4030-bf34-c760f0e7f775"
+ },
+ {
+ "filename": "2013 - Elevated Expression of H19 and Igf2 in the Female Mouse Eye.txt",
+ "id": "1577c7cc-1c4a-45a8-8770-6638a924e6da"
+ },
+ {
+ "filename": "2015 - Functional Analysis of Genomic Variation and Impact on Molecular and Higher Order Phenotypes.txt",
+ "id": "77e6baa5-fc84-43f9-99b1-a37e37feb7df"
+ },
+ {
+ "filename": "2016 - Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers.txt",
+ "id": "f135bf11-96d4-4c0d-b058-7b97b3dbb388"
+ },
+ {
+ "filename": "2016 - The Genetic Architecture of Murine Glutathione Transferases.txt",
+ "id": "58479ce8-1153-46ae-b83a-606b446d55e2"
+ },
+ {
+ "filename": "2017 - Primer in Genetics and Genomics.pdf",
+ "id": "778e63d4-18ec-4c0d-a221-bddffd5335f6"
+ },
+ {
+ "filename": "2020 -Witty- CIGaussianLatentConfounding.txt",
+ "id": "3ce6e8a4-aaf9-40c5-9a0d-d2f4e41427bb"
+ },
+ {
+ "filename": "2022 - Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children.txt",
+ "id": "219dcc39-dac7-45a5-bc1d-c08a842e8c41"
+ },
+ {
+ "filename": "Alcohol Clin Exp Res - 2006 - Fehr - The Syntaxin Binding Protein 1 Gene Stxbp1 Is a Candidate for an Ethanol.txt",
+ "id": "52f88d2e-6e0b-47e7-99a5-fe6ff6ec4d64"
+ },
+ {
+ "filename": "2022 -Feng- A hierarchical regulatory network ensures stable albumin transcription under various.txt",
+ "id": "9d5d2c4d-9df1-48c8-a423-264dffa9425d"
+ },
+ {
+ "filename": "2018 - Genetic analysis of ATP13A2, PLA2G6 and FBXO7 in a cohort of Chinese patients with early-onset Parkinson’s disease.txt",
+ "id": "a9e1a04c-0651-4479-88e5-4a1afefcbb39"
+ },
+ {
+ "filename": "2019 - Systems genetics approaches to probe gene function.txt",
+ "id": "64886b4e-8599-4f61-84e6-9add7663a1b3"
+ },
+ {
+ "filename": "2020 - Serotonin regulates de novo lipogenesis in adipose tissues through serotonin receptor 2A.txt",
+ "id": "823584b3-e9c5-469e-a1dc-ce7f617bd2fa"
+ },
+ {
+ "filename": "2019 - A multi-omics digital research object for the genetics of sleep regulation.txt",
+ "id": "5410301d-afc6-4773-8e2c-272eb9079aa4"
+ },
+ {
+ "filename": "2016 -Zeng-generank.txt",
+ "id": "3bd3e2e0-926a-4dad-b06e-4dafe4ab4b86"
+ },
+ {
+ "filename": "2022 -Senko- Hippocampal neurogenesis serum glucose.txt",
+ "id": "f33db3ab-2c0c-46ce-a323-4d274e0da6e5"
+ },
+ {
+ "filename": "2021 -Mozhui- Epigenetic aging.txt",
+ "id": "2464a084-1a11-44eb-8bce-4b344de049ff"
+ },
+ {
+ "filename": "2017 - Systems genetics analysis of iron and its regulation in brain and periphery.txt",
+ "id": "44aca4d8-cd8b-4243-a79f-02a3884604c6"
+ },
+ {
+ "filename": "2016 - Genotyping by sequencing for identification and mapping of QTLs for bioenergy-related traits in sweet sorghum.txt",
+ "id": "eae7406a-efdd-46af-b2e2-7868ce150157"
+ },
+ {
+ "filename": "2016 - Mouse genome-wide association and systems genetics identifies Lhfp as a regulator of bone mass.txt",
+ "id": "75e0ffe8-7675-4e11-be3e-880bfeb3dabd"
+ },
+ {
+ "filename": "2022 - Mouse population genetics phenocopies heterogeneity of human Chd8 haploinsufficiency.txt",
+ "id": "166448b9-3757-4eab-bd31-c7d5d0d27042"
+ },
+ {
+ "filename": "2016 - Systems Genetics of Obesity.txt",
+ "id": "5a56fa6d-9e77-4b95-a836-04d0fa31ee2c"
+ },
+ {
+ "filename": "2021 - Interleukin-6 ablation does not alter morphofunctional heart characteristics but modulates physiological and inflammatory markers after strenuous exercise.txt",
+ "id": "ecf7c695-3cea-4d3a-a3b2-b99240d30bdb"
+ },
+ {
+ "filename": "2022 -Ashbrook- Genomic Basis Neurotoxic.txt",
+ "id": "443efea1-ffe7-446e-b2fb-37d8ec3cb74a"
+ },
+ {
+ "filename": "2019 - Genetic Influences on the Amount of Cell Death in the Neural Tube of BXD Mice Exposed to Acute Ethanol at Mid-Gestation.txt",
+ "id": "c0db7e62-2447-410c-8e5c-74bfd2f2edfb"
+ },
+ {
+ "filename": "2018 - A survey on machine learning approaches in gene expression classification in modelling computational diagnostic system for complex diseases.txt",
+ "id": "8ad87bba-091d-4a4a-b16a-ca1165217bf1"
+ },
+ {
+ "filename": "2017 - Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity.txt",
+ "id": "7765b4ff-6e66-427c-b580-5e825c9f18f7"
+ },
+ {
+ "filename": "2017 - Lef1-dependent hypothalamic neurogenesis inhibits anxiety.txt",
+ "id": "a7863e20-daee-45db-941e-e7ae5976569d"
+ },
+ {
+ "filename": "2018 - Interaction between leucine and palmitate catabolism in 3T3-L1 adipocytes and primary adipocytes from control and obese rats.txt",
+ "id": "158883bf-a56d-48bd-939b-8c081ff52e8c"
+ },
+ {
+ "filename": "2019 -Verma- PheWAS Phenotype Map.txt",
+ "id": "ae4fff82-4b74-4dff-bff2-6cf4bfaa06e4"
+ },
+ {
+ "filename": "2018 - Silencing the ACAT1 Gene in Human SH-SY5Y Neuroblastoma Cells Inhibits the Expression of Cyclo-Oxygenase 2 (COX2) and Reduces β-Amyloid-Induced Toxicity Due to Activation of Protein Kinase C (PKC) and ERK.txt",
+ "id": "f0373711-c50a-4272-84cb-a642925be2fe"
+ },
+ {
+ "filename": "2016 - Genetic Architecture of Group A Streptococcal Necrotizing Soft Tissue Infections in the Mouse.txt",
+ "id": "3d4d45fb-4f47-4d5d-8246-661b2f65bd9b"
+ },
+ {
+ "filename": "2020 - Gene network a continuously updated tool for systems genetics analyses.txt",
+ "id": "4049da4d-c7cf-4e30-9a21-c77609fad23d"
+ },
+ {
+ "filename": "2016-The genetic reference population “Collaborative Cross” is a powerful resource for genetic discoveries and understanding complex genetic traits_.txt",
+ "id": "94d145e0-73b7-4da4-a900-a117b5b58713"
+ },
+ {
+ "filename": "2018 - Data sets of eQTL loci, correlation analysis, and overlapped genes among gene sets that their expression levels are closely related to genes of Vegf family.txt",
+ "id": "d3d67989-3ee6-4956-84a6-d0b48bb421bc"
+ },
+ {
+ "filename": "2017 - The allostatic impact of chronic ethanol on gene expression A genetic analysis of chronic intermittent ethanol treatment in the BXD cohort.txt",
+ "id": "9497cd3a-8b36-46d3-be18-d9a6f4c36a27"
+ },
+ {
+ "filename": "2022 -Batten- guix-gem5.txt",
+ "id": "35931156-6164-4500-9972-b6541d6294e5"
+ },
+ {
+ "filename": "2017 - Genome wide association study of behavioral, physiological and gene expression traits in a multigenerational mouse intercross.txt",
+ "id": "f13924a4-cb88-45ed-a699-62b5009c0ba2"
+ },
+ {
+ "filename": "2016 - Systems proteomics of liver mitochondria function.txt",
+ "id": "7d866915-9d92-4401-8340-ffdef457debe"
+ },
+ {
+ "filename": "2021- Commonalities of optic nerve injury and glaucoma-induced neurodegeneration Insights from transcriptome-wide studies.txt",
+ "id": "6c545f35-f036-4e5f-8eed-19a8b048001b"
+ },
+ {
+ "filename": "2019 - Identifying gene function and module connections by the integration of multispecies expression compendia.txt",
+ "id": "746d211e-4a1a-4e6e-8404-3301767c363d"
+ },
+ {
+ "filename": "2017 - Precise network modeling of systems genetics data using the Bayesian network webserver.txt",
+ "id": "4edf9e5c-915d-4e38-b48f-2a0b82132bd0"
+ },
+ {
+ "filename": "2022 - Extreme Phenotypic Diversity in Operant Responding for an Intravenous Cocaine or Saline Infusion in the Hybrid Mouse Diversity Panel.txt",
+ "id": "91b62c02-3993-4d6e-bfb1-b2630326f078"
+ },
+ {
+ "filename": "2020 - Validation of Ninein as an Ethanol-related Quantitative Trait Gen.txt",
+ "id": "ba7ab85f-22bc-49d1-980c-70c221f6f7d6"
+ },
+ {
+ "filename": "2021 - Systems genetic analysis of binge‐like eating in a C57BL6J x DBA2J‐F2 cross.txt",
+ "id": "9d225f6f-e434-45a7-b199-f3a09eda1d04"
+ },
+ {
+ "filename": "2018 - Molecular Brain Adaptations to Ethanol_ Role of Glycogen Synthase (2).txt",
+ "id": "cbd9c023-f6ce-4aa1-863c-d11a905775fb"
+ },
+ {
+ "filename": "2022 - Genetic_dissection_of_glutathione_S_transferase.31.txt",
+ "id": "a4508fb3-c66b-4526-b2a2-a327505d085a"
+ },
+ {
+ "filename": "2019 - Diet modulates cecum bacterial diversity and physiological phenotypes across the BXD mouse genetic reference population.txt",
+ "id": "f6abed2a-3182-46be-aae6-97d99f08e73e"
+ },
+ {
+ "filename": "2021 - Associations Among Parental Caregiving Quality, Cannabinoid Receptor 1 Expression-Based Polygenic Scores, and Infant-Parent Attachment Evidence for Differential Genetic Susceptibility.txt",
+ "id": "c4110ad4-e33f-4bf2-8273-1cf483e34cb3"
+ },
+ {
+ "filename": "2018 - Genomic loci modulating retinal ganglion cell death following elevated IOP in the mouse.txt",
+ "id": "58cc5d33-4104-416a-9bd5-72c9b7d96b2e"
+ },
+ {
+ "filename": "2018 - Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models.txt",
+ "id": "fe558be3-948c-4475-abbc-eb1ea36ff756"
+ },
+ {
+ "filename": "2022 -Katashima- Neuromuscular circuit.txt",
+ "id": "cb97a779-ee2f-44b0-a06e-995a8c74183c"
+ },
+ {
+ "filename": "2020 - ChREBP downregulates SNAT2 amino acid transporter expression through interactions with SMRT in response to a high-carbohydrate diet.txt",
+ "id": "2b7de368-bca5-49a5-b5d1-3eafa3844021"
+ },
+ {
+ "filename": "2019 - The expanded BXD family of mice A cohort for experimental systems genetics and precision medicine.txt",
+ "id": "0ecf5586-f80d-4b5e-8687-5a0d92423597"
+ },
+ {
+ "filename": "Gao_Cui_TransferLeaningAndDisparityHealth_NatureComm_2020.txt",
+ "id": "87b8410d-4032-41e3-9924-8922056ed610"
+ },
+ {
+ "filename": "2020 - Identification of novel genetic variants associated with cardiorespiratory fitness.txt",
+ "id": "88dc3b00-055d-45f4-bdcb-1e7320770faf"
+ },
+ {
+ "filename": "2022 - Quantitative proteomics approach reveals novel biomarkers and pathological mechanism of keloid.txt",
+ "id": "d8bc6949-6ca0-409e-a07d-80a93957a755"
+ },
+ {
+ "filename": "2022 -Yu- Sex Diff Key Genes Mouse.txt",
+ "id": "cc6bb2d6-54f6-4445-aec0-b48319be0c10"
+ },
+ {
+ "filename": "2018 - Cohort Profile Genetics of Diabetes Audit.pdf",
+ "id": "c24fda05-46ed-4f50-9d20-e00f32ae956e"
+ },
+ {
+ "filename": "2018 - A computational biology approach of a genome-wide screen.pdf",
+ "id": "8fefe9b8-fa89-46ed-a8aa-69f2bb6bfa41"
+ },
+ {
+ "filename": "2021 - Integrative Analyses Reveal Tstd1 as a Potential Modulator of HDL Cholesterol and Mitochondrial Function in Mice.txt",
+ "id": "b314fea7-0af5-4f4c-b163-a4c6f129098d"
+ },
+ {
+ "filename": "2019 -Pearl- 7 Tools of CI.txt",
+ "id": "6e5525a1-476c-4668-833e-e32bdf437ac8"
+ },
+ {
+ "filename": "2017 - Systems genetic analysis in GeneNetwork.org.txt",
+ "id": "f041550e-5f2d-430e-8f46-15ebea6ca496"
+ },
+ {
+ "filename": "2020 - Gene network a completely updated tool for systems genetics analyses.txt",
+ "id": "7b1cecf5-a2b9-4bd9-b92b-9bd6b96ed93d"
+ },
+ {
+ "filename": "2023 -Keeley- Neurog2.txt",
+ "id": "2418ad89-9f7f-4f6f-b27b-a153c7a52d96"
+ },
+ {
+ "filename": "2022 - Translational approaches to understanding resilience to Alzheimer’s disease.txt",
+ "id": "80d2f19e-b859-47fb-ae51-428e562277db"
+ },
+ {
+ "filename": "2022 -Restrepo- Predict impulsivity in children.txt",
+ "id": "4f7b2e71-a1e9-4e5d-bd62-f6a3d00ff965"
+ },
+ {
+ "filename": "2021 -Feng- Hierarchical regulation.txt",
+ "id": "0e5c8923-7b94-43b0-9aa8-2b7d9736127d"
+ },
+ {
+ "filename": "2017 - Integrative functional genomics for systems genetics in GeneWeaver. org.txt",
+ "id": "fa8bba46-ce94-439a-a676-35187a3abcbf"
+ },
+ {
+ "filename": "2019 - Stress, Alcohol, and Hippocampal Genes.txt",
+ "id": "d685bfad-fa39-4755-80d5-df87c710431f"
+ },
+ {
+ "filename": "2022 - Beta-caryophyllene prevents the defects in trabecular bone caused by Vitamin D deficiency through pathways instated by increased expression of klotho.txt",
+ "id": "a1d01cac-c764-4845-9d6c-62b450a14163"
+ },
+ {
+ "filename": "2018 - Genetic Networks Activated by Blast Injury to the Eye.txt",
+ "id": "966adb02-82f2-4ae1-88f5-db129eb164d5"
+ },
+ {
+ "filename": "2022 - Leptin receptor co-expression gene network moderates the effect of early life adversity on eating behavior in children.txt",
+ "id": "56b668c7-f98e-49bd-ad50-00065465c8aa"
+ },
+ {
+ "filename": "2020 -Tan- DiabeticCardiomyopathy Rats.txt",
+ "id": "0951ba9d-bb8f-424b-b63f-16d94cb7166c"
+ },
+ {
+ "filename": "2020 - Quantitative trait locus mapping identifies Col4a6 as a novel regulator of striatal dopamine level and axonal branching in mice.txt",
+ "id": "847973c1-9025-443b-8497-1053bce38613"
+ },
+ {
+ "filename": "2019 - A cross-species systems genetics analysis links APBB1IP as a candidate for schizophrenia and prepulse inhibition.txt",
+ "id": "ee04d190-5b08-4b82-ad80-00287373b0a0"
+ },
+ {
+ "filename": "2018 - Animal models of obesity.pdf",
+ "id": "77daf125-3e88-41fe-92fd-71a9ce9c6671"
+ },
+ {
+ "filename": "2019 - Genetic Factors Mediate the Impact of Chronic Stress and Subsequent Response to Novel Acute Stress.txt",
+ "id": "e8a26549-f13b-4c3f-97b1-a33bcc8baa80"
+ },
+ {
+ "filename": "2018 - A Population-Guided Approach to Identify Genetic Modulators of TCDD-Elicited Toxicity.txt",
+ "id": "544c1b63-6935-4c16-a884-0671deaa0608"
+ },
+ {
+ "filename": "2022 -Dong- Beta-caryophyllene klotho.txt",
+ "id": "419fbc53-0941-4458-97d7-f20a32cf4894"
+ },
+ {
+ "filename": "2017 - Dissection of Z-disc myopalladin gene network involved in the development of restrictive cardiomyopathy using system genetics approach.txt",
+ "id": "a98d7249-5433-47b6-be74-2efbe581e0cb"
+ },
+ {
+ "filename": "2018 - Shaping vulnerability to addiction–the contribution of behavior, neural circuits and molecular mechanisms.txt",
+ "id": "a144ec66-3723-4a2c-a7ce-78b5ed66364b"
+ },
+ {
+ "filename": "2018 - Integrating genetic and gene co-expression analysis identifies gene networks involved in alcohol and stress responses.txt",
+ "id": "16cf4a95-88bc-405c-9959-ff758dd57b8c"
+ },
+ {
+ "filename": "2018 - A theoretical framework for interaction of nursing discipline.pdf",
+ "id": "8cf9bdbe-c528-4b4f-b9c6-7af49d680a92"
+ },
+ {
+ "filename": "2005 - Metabolic Syndrome A Comprehensive Perspective Based on Interactions Between Obesity Diabetes and Inflammation.pdf",
+ "id": "5812bd82-0c95-4386-8110-bfc45ca337ff"
+ },
+ {
+ "filename": "2018 - Deciphering signature of selection affecting beef quality traits.pdf",
+ "id": "2174033d-08a1-4cc8-a260-1414373a25a8"
+ },
+ {
+ "filename": "2017 - Susceptibility background for type 2 diabetes in eleven Mexican Indigenous populations HNF4A gene analysis.pdf",
+ "id": "d9564b3c-efac-42ae-8e15-bf962c0a7a3c"
+ },
+ {
+ "filename": "2019- Diagnosis and management of glycogen storage diseases type VI and IX_ a clinical practice resource of the American College of Medical Genetics and Genomics.pdf",
+ "id": "24266c97-fd9c-4629-abfe-e2be53d14879"
+ },
+ {
+ "filename": "2018 - CDKN2AB T2D Genome-Wide Association Study Risk.pdf",
+ "id": "66d544c8-d67c-45a0-8a88-e8196b94da8d"
+ },
+ {
+ "filename": "2013 - Gut metagenome in European women with normal, impaired and diabetic glucose control..pdf",
+ "id": "0e19bd5a-a6fa-4c02-b55f-14931725faee"
+ },
+ {
+ "filename": "2018 - An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function.txt",
+ "id": "af4c6e19-fafe-4178-a9eb-213991f344d6"
+ },
+ {
+ "filename": "2020- Genome-wide transcriptome architecture in a mouse model of Gulf War Illness.txt",
+ "id": "18d12255-3cc6-415b-bd30-ff94bb087813"
+ },
+ {
+ "filename": "2021 -Panigrahi- Survey Gene Select Strategies.txt",
+ "id": "851eacd0-9137-4f7b-9cdb-86ebf25f008d"
+ },
+ {
+ "filename": "2017 - Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility.txt",
+ "id": "33c07906-39ca-4241-a50c-ddc6e0ca5fd3"
+ },
+ {
+ "filename": "2022 - Diet X Gene Interactions Control Femoral Bone Adaptation to Low Dietary Calcium.txt",
+ "id": "fa054778-fe47-416f-828b-35b17e9064f3"
+ },
+ {
+ "filename": "2022 -Bagley- Behavioral Phenotypes.txt",
+ "id": "730b100f-26f5-4787-a18a-e3b68237f7c0"
+ },
+ {
+ "filename": "2019 - Systems genetics of sensation seeking.txt",
+ "id": "29d9fa5b-7b6e-4b59-899a-5e47bf657370"
+ },
+ {
+ "filename": "2019 - Genetic variability of T cell responses in hypersensitivity pneumonitis identified using the BXD genetic reference panel.txt",
+ "id": "02c7716c-71b5-4392-b204-811cbd264e81"
+ },
+ {
+ "filename": "2022 -Senko- System Genetics in the Rat HXB:BXH Family.txt",
+ "id": "1a08e48e-b18a-41c5-abc4-41c8c238bac5"
+ },
+ {
+ "filename": "2020 - A Multi-Omics Perspective of Quantitative Trait Loci in Precision Medicine.txt",
+ "id": "8d6b4c71-c766-4009-85c0-dbe0b5d3f39f"
+ },
+ {
+ "filename": "2020 - Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism.txt",
+ "id": "1b7b2ec6-5cf3-41c5-a5a0-06de2bf7212e"
+ },
+ {
+ "filename": "2018 - The Use of Recombinant Inbred Strains in Systems Genetics and Functional Analyses in Behavioral Pharmacology.txt",
+ "id": "2c7924d6-99d9-4b94-b855-72cbff6c199d"
+ },
+ {
+ "filename": "2019 - Association of Leukemia Target Genes Tet2, Bcl2, and Slc23a2 in Vitamin C Pathways.txt",
+ "id": "8cc4b750-4d64-4d36-8ed8-c8eb72d56990"
+ },
+ {
+ "filename": "2020 - GeneNetwork a toolbox for systems genetics.txt",
+ "id": "0e6c370f-b514-4551-b6ed-9cc72e6f6b75"
+ },
+ {
+ "filename": "2018 - Invited review Genetic and genomic_ xmltexbreak_ mouse models for livestock research.txt",
+ "id": "429abfc1-f628-48ff-bfe8-f7be6d1419a8"
+ },
+ {
+ "filename": "2022 -Gunturkun- GeneCup.txt",
+ "id": "fb63cb0e-844d-4630-9ae8-da798a89ad0e"
+ },
+ {
+ "filename": "2018 - Genetic differences in the behavioral organization of binge eating, conditioned food reward, and compulsive-like eating in C57BL6J and DBA2J strains.txt",
+ "id": "54147a26-a71a-4e11-8f95-334df4bac365"
+ },
+ {
+ "filename": "2021 - Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children.txt",
+ "id": "e091d263-6ffc-4ff0-bd1d-2a0c757b0f74"
+ },
+ {
+ "filename": "Breaking_news_thinking_may_be_bad_for_DN.txt",
+ "id": "e3552ba0-71c7-4050-80f9-d710ecbf9778"
+ },
+ {
+ "filename": "2022 - New Insights on Gene by Environmental Effects of Drugs of Abuse in Animal Models Using GN.txt",
+ "id": "d8993417-3a27-4000-b693-6cb4662b9f80"
+ },
+ {
+ "filename": "2018 - Ethical_Social_and_Legal_Consequences.pdf",
+ "id": "1907b52f-515b-447c-b7b3-0e37bf1ce8b7"
+ },
+ {
+ "filename": "2010 - Copy number variation at leptin receptor gene locus associated with metabolic traits and the risk of type 2 diabetes mellitus.pdf",
+ "id": "f38b812e-89b2-42f5-ba20-ce5fcf0c5faa"
+ },
+ {
+ "filename": "2018 - AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways.pdf",
+ "id": "526dec47-a420-4f2f-90d1-f1074dcfea33"
+ },
+ {
+ "filename": "2022 - A Framework for Promoting Diversity, Equity, and Inclusion in Genetics and Genomics Research.pdf",
+ "id": "64a4b18e-dc3c-439b-96bb-5ea79f693fd6"
+ },
+ {
+ "filename": "2017 - Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals.pdf",
+ "id": "0369cb1b-dfa7-4f81-b791-efefcfad2ea8"
+ },
+ {
+ "filename": "2017 - Targeted next-generation sequencing reveals MODY in up to 6.5_ of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry.pdf",
+ "id": "9fb37fb6-88b5-4819-87e1-78b0f93e2932"
+ },
+ {
+ "filename": "2022 - System Genetics in the Rat Family.txt",
+ "id": "efc6d914-13a6-488d-9cd2-db9d25202833"
+ },
+ {
+ "filename": "2018 - Genomic locus modulating corneal thickness in the mouse identifies POU6F2 as a potential risk of developing glaucoma.txt",
+ "id": "a63e5457-c23a-4429-8a17-e230c3c80053"
+ },
+ {
+ "filename": "2022 - A Novel quantitative trait locus.txt",
+ "id": "fc19faa4-77b2-4883-9529-8ed898b59a61"
+ },
+ {
+ "filename": "2021 - Systems genetic analysis of nicotine withdrawal deficits in hippocampus‐dependent learning.txt",
+ "id": "1dd221c6-72a9-4c5c-9061-5f2819178e62"
+ },
+ {
+ "filename": "2018 - _Genome-wide association for testis weight in the diversity outbred mouse population.txt",
+ "id": "23d6aba8-ca17-4606-9504-789b071c4923"
+ },
+ {
+ "filename": "2022 -Lima- Leptin et al.txt",
+ "id": "918b95e1-7947-4633-baa9-d81c24227fbf"
+ },
+ {
+ "filename": "2018 - Different Effect of Sox11 in Retinal Ganglion Cells Survival and Axon Regeneration.txt",
+ "id": "1867a302-3886-4b76-9124-31440e17cbd9"
+ },
+ {
+ "filename": "2020 - Cross-species analyses identify Dlgap2 as a regulator of age-related cognitive decline and Alzheimer’s dementia.txt",
+ "id": "ea036684-619d-4b82-9242-c0b220f2d8df"
+ },
+ {
+ "filename": "2020 - When research goes wrong the importance of clinical trials methodology.txt",
+ "id": "f7ea05c2-8ca9-4795-b8b5-3ac31bb10a70"
+ },
+ {
+ "filename": "2017 - The effect of alcohol on the differential expression of cluster of differentiation 14 gene, associated pathways, and genetic network.txt",
+ "id": "16f3eea1-c5f6-4948-83cc-2efa10437a11"
+ },
+ {
+ "filename": "2022 Atienza - PyBNesian Python Bayes Package.txt",
+ "id": "856a0466-521e-4240-a97f-a85e3426225c"
+ },
+ {
+ "filename": "2019 - Impact of Genetic Variation on Stress-Related Ethanol Consumption.txt",
+ "id": "06a8d056-096c-41aa-8159-4fe4a2de1d5e"
+ },
+ {
+ "filename": "2018 - Offspring genetic effects on maternal care.txt",
+ "id": "dcc71b11-5668-4274-9f35-d9b7f01695a2"
+ },
+ {
+ "filename": "2019 - Tlr4 participates in the responses of markers of apoptosis, inflammation, and ER stress to different acute exercise intensities in mice hearts.txt",
+ "id": "9c77964b-6adf-4557-b53c-58dcbb83f86b"
+ },
+ {
+ "filename": "Gyekis_Dissertation_July14.txt",
+ "id": "361eb08e-d0fa-40d4-8de8-db51a3398f0c"
+ },
+ {
+ "filename": "2022 -Bender- Inborn Errors.txt",
+ "id": "df0d61ac-395a-4a97-97dd-2d9fa16fd7b0"
+ },
+ {
+ "filename": "2020 - Identifying modifier genes for hypertrophic cardiomyopathy.txt",
+ "id": "ed937e0a-1b83-4400-9bb3-d61ef714a797"
+ },
+ {
+ "filename": "2019 - Different genetic mechanisms mediate spontaneous versus UVR-induced malignant melanoma.txt",
+ "id": "4cd75ea5-5e5a-44b7-95f7-93c9c9086a1e"
+ },
+ {
+ "filename": "2021 - Characterizing modifier genes of cardiac fibrosis phenotype in hypertrophic cardiomyopathy.txt",
+ "id": "90a19d89-daac-4de9-8213-d3047b1e4b65"
+ },
+ {
+ "filename": "2017 - Genetic variants in the receptor for advanced glycation end products.pdf",
+ "id": "3f5f72cd-f06f-4b4b-8868-c5317d3734d2"
+ },
+ {
+ "filename": "2006 - A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region..pdf",
+ "id": "078821a0-5fd5-4685-84a6-822a0da040ea"
+ },
+ {
+ "filename": "2017 - Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells.pdf",
+ "id": "2e5ec108-b76a-44bc-adfd-b769601749bb"
+ },
+ {
+ "filename": "2017 - Long read reference genome-free reconstruction of a full- length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis.pdf",
+ "id": "aac62bce-e0ed-48c1-b78e-845144597089"
+ },
+ {
+ "filename": "2018 - Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps.pdf",
+ "id": "91d6996a-319d-461e-ae78-3c64a70832cc"
+ },
+ {
+ "filename": "2017 - The Assimilation Model of modern human origins in light of current genetic and genomic knowledge.pdf",
+ "id": "7c8f49c8-7301-46bc-98e8-f3b0e8c43068"
+ },
+ {
+ "filename": "2019 - Cognitive and behavioral improvement in adults with fragile X syndrome treated with.pdf",
+ "id": "f3d226b6-665f-478f-943b-adc17aab7ce9"
+ },
+ {
+ "filename": "2019 - Discovery of early life stress interacting and sex-specific quantitative trait loci impacting cocaine responsiveness.txt",
+ "id": "fea5b928-83dd-4c4d-8f03-297865d583e3"
+ },
+ {
+ "filename": "2022 -Benegiamo- COX7A2L heart fitness.txt",
+ "id": "427e74a6-bd74-426a-b64b-31ac75678c22"
+ },
+ {
+ "filename": "2019 - Novel Genetic Loci Control L5 Vertebral Trabecular Bone and the Response to Low Calcium Intake in Growing BXD Recombinant Inbred Mice.txt",
+ "id": "aea132e7-4758-498a-aa24-d13446dd9a91"
+ },
+ {
+ "filename": "2022 - System genetics in the rat HXBBXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose.txt",
+ "id": "49231283-041c-4cc7-b0f2-edf76c580c38"
+ },
+ {
+ "filename": "2022 - Genomic Basis for Individual Differences in Susceptibility to the Neurotoxic Effects of Diese Exhaust .txt",
+ "id": "a1c91fbe-9f6c-45fe-af9a-46c162d340ed"
+ },
+ {
+ "filename": "2020 - Development of a tissue augmented Bayesian model for expression quantitative trait loci analysis.txt",
+ "id": "5bddecdf-df80-4c19-9422-bb6cb286d5a1"
+ },
+ {
+ "filename": "2020 -Biological Nitrogen Potential (BNP) A New Methodology to Estimate Nitrogen Transformations During Anaerobic Digestion of Organic Substrates.txt",
+ "id": "a4d42abc-67da-4bd6-ad55-5a1a41d9f812"
+ },
+ {
+ "filename": "2018 - Reduced complexity cross design for behavioral genetics.txt",
+ "id": "516cc395-4e7c-4371-9444-24edb56a7233"
+ },
+ {
+ "filename": "2021 - Therapy Strategy of CD47 in Diffuse Large B-Cell Lymphoma (DLBCL).txt",
+ "id": "5a6808e5-fc6c-47ae-9fca-8fed42cab3df"
+ },
+ {
+ "filename": "The FEBS Journal - 2015 - Chintalapudi - Multipronged approach to identify and validate a novel upstream regulator of Sncg.txt",
+ "id": "1db45d56-6061-4add-809b-8b53357faa9e"
+ },
+ {
+ "filename": "2021 - Gene-by-environment modulation of lifespan and weight gain in the murine BXD family.txt",
+ "id": "ce2c68bf-878d-460c-8d9b-d45ce3034ef7"
+ },
+ {
+ "filename": "2018 - Differential Exon Expression in a Large Family of Retinal Genes Is Regulated by a Single Trans Locus.txt",
+ "id": "d769f683-20fc-443f-ab0d-9879467e81ef"
+ },
+ {
+ "filename": "2022 - A mesocorticolimbic dopamine gene network moderates the effect of early adversity on the risk for psychiatric and cardio-metabolic comorbidities.txt",
+ "id": "0886be76-7080-4577-a40a-636a1957b5dc"
+ },
+ {
+ "filename": "2020 - Modeling the Genetic Basis of Individual Differences in Susceptibility to Gulf War Illness.txt",
+ "id": "88f640f5-8c18-4d4b-be58-e6c4c8accce7"
+ },
+ {
+ "filename": "2019 - Variable outcomes of human heart attack recapitulated in genetically diverse mice_.txt",
+ "id": "e43dfc29-b1b5-4a0e-be56-660c90e012cc"
+ },
+ {
+ "filename": "2018 -Camacho- NextGen ML for BioNets.txt",
+ "id": "24d8356c-9831-4f33-a725-29536bec3582"
+ },
+ {
+ "filename": "2017 - Variable Effects of Chronic Intermittent Ethanol Exposure on Ethanol Drinking in a Genetically Diverse Mouse Cohort.txt",
+ "id": "8c1fbb5e-3e46-4ff0-90ba-bd50f736f047"
+ },
+ {
+ "filename": "2022 -Liu- Quantitative proteomics approach reveals novel biomarkers and pathological.txt",
+ "id": "0bcdf164-dd98-40cc-84b7-c6b44f82272b"
+ },
+ {
+ "filename": "2018 - Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies.txt",
+ "id": "5be82617-a00b-414d-9058-bfbdb2974f43"
+ },
+ {
+ "filename": "2023 - Rate of tau propagation is a heritable disease trait in genetically diverse mouse strains.txt",
+ "id": "5b5a5f8d-149d-4504-99b8-f3374dadee54"
+ },
+ {
+ "filename": "2018 - Genetic variants of gestational diabetes mellitus a study of 112 SNPs among 8722 women in two independent populations.pdf",
+ "id": "0d181969-5716-4b92-9e7e-d9789dcb05ed"
+ },
+ {
+ "filename": "2017 - The Role of Obesity, Type 2 Diabetes, and Metabolic.pdf",
+ "id": "15687ed3-8ed6-400c-bef7-746b7c1a47c7"
+ },
+ {
+ "filename": "2018 - Approaches to carrier testing and results disclosure in translational genomics.pdf",
+ "id": "07fe0af5-b67c-47f0-91dd-7dd226fa4de8"
+ },
+ {
+ "filename": "2017 - Regular exercise participation improves genomic stability in diabetic patients an exploratory study to analyse telomere length and DNA damage.pdf",
+ "id": "f53cd4d6-2d42-47e1-b58f-5bf8f2d65ef5"
+ },
+ {
+ "filename": "2017 - Genetic regulatory signatures underlying islet geneexpression and type 2 diabete.pdf",
+ "id": "8d9680fd-70cc-4f62-9cf8-6eb608d6ef64"
+ },
+ {
+ "filename": "2012 - Apolipoprotein E gene polymorphism effects on plasma lipids and risk of type 2 diabetes and coronary artery disease.pdf",
+ "id": "c87ea109-ad9a-4406-bfcf-8f56223a4da5"
+ },
+ {
+ "filename": "2022 -Baker- Effects BXD Mouse.txt",
+ "id": "e9c8625b-498a-4e8d-b188-230423cfc094"
+ },
+ {
+ "filename": "2022 - Opiate responses are controlled by interactions of Oprm1 and Fgf12 loci in the murine BXD family Correspondence to human GWAS findings.txt",
+ "id": "baacd740-efc8-42f2-af22-6f5ac9710900"
+ },
+ {
+ "filename": "2020 - Genetic Variation in CNS Myelination and Functional Brain Connectivity in Recombinant Inbred Mice.txt",
+ "id": "dbe5a781-3561-48cb-9f63-cfb4f3246434"
+ },
+ {
+ "filename": "2022 -Hao- Integrative systems.txt",
+ "id": "c802cb60-1a15-4962-8e6d-f06608c00a54"
+ },
+ {
+ "filename": "2021 - Smarce1 and Tensin 4 Are Putative Modulators of Corneoscleral Stiffness.txt",
+ "id": "a813bad6-3435-4e24-8e41-2ea6f046790a"
+ },
+ {
+ "filename": "2019 - Beyond Genome-wide Significance Integrative Approaches to the Interpretation and Extension of GWAS Findings for Alcohol Use Disorder.txt",
+ "id": "fbdb3085-ad34-4d7d-bd30-9e9320789b52"
+ },
+ {
+ "filename": "2019 - Heritability of the Mouse Brain Connectome.txt",
+ "id": "103ecfc2-2e3d-42ca-acea-34972e6788ff"
+ },
+ {
+ "filename": "2018 - Genome wide association analysis in a mouse advanced intercross line.txt",
+ "id": "f566d14c-9d95-4546-81f0-f62bde769080"
+ },
+ {
+ "filename": "2022 -Senko- System Genetics in the Rat HXBBXH Family.txt",
+ "id": "f45cb472-2b22-47bf-9dba-2468b0b23a28"
+ },
+ {
+ "filename": "2020 - A platform for experimental precision medicine The extended BXD mouse family.txt",
+ "id": "e69ba4fa-6e30-4f66-aaae-5fde55d95d2a"
+ },
+ {
+ "filename": "2020 - Systems Genetics and Systems Biology Analysis of Paraquat Effects in BXD Recombinant Inbred Mice.txt",
+ "id": "93ef3283-7711-4d49-923c-c8fc3afd4209"
+ },
+ {
+ "filename": "2021 -Potter-Dickey- Genetic Susceptibility.txt",
+ "id": "bbc7cd33-8707-43d8-9058-d68c5fee97f7"
+ },
+ {
+ "filename": "2019 - Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1.txt",
+ "id": "0ba1ad53-88df-4c3b-96fb-7d4e257704d9"
+ },
+ {
+ "filename": "2021 - A Genetic differences in ethanol consumption effects on iron, copper, and zinc regulation in mouse hippocampus.txt",
+ "id": "7635a2fd-54a3-49e3-a0df-adbb97ff9613"
+ },
+ {
+ "filename": "2018 - Apremilast alters behavioral responses to ethanol in mice II. Increased sedation, intoxication, and reduced acute functional tolerance.txt",
+ "id": "3da7c010-cd02-4d09-8d73-99b70bc6d81c"
+ },
+ {
+ "filename": "2018 - The lifespan quantitative trait locus gene Securin controls hematopoietic progenitor cell function.txt",
+ "id": "ce270796-8098-48e6-afe2-ad285a75bce2"
+ },
+ {
+ "filename": "2018 - Leveraging the cell lineage to predict cell-type specificity of regulatory variation from bulk genomics.txt",
+ "id": "4dfdd8cf-6210-41eb-bac4-d0fb4a4d4036"
+ },
+ {
+ "filename": "2022 - Effects of Genetics and Sex on Acute Gene Expression Changes in the Hippocampus Following Neonatal Ethanol Exposure in BXD Recombinant Inbred Mouse Strains.txt",
+ "id": "cd3a86a9-5947-4c3a-bf9d-059170f82c5d"
+ },
+ {
+ "filename": "Breitling-GeneRank-2005.txt",
+ "id": "fa63ca14-f181-4816-8a39-063301b748e9"
+ },
+ {
+ "filename": "2018 - Genetic variations in key inflammatory cytokines exacerbates the risk of diabetic nephropathy by influencing the gene expression.pdf",
+ "id": "34184c8d-b167-4ae8-bfce-01e18d78fe41"
+ },
+ {
+ "filename": "2018 - Association of PGC-1α gene with type 2 diabetes in three unrelated endogamous groups of North-West India (Punjab) a case-control and meta-analysis study.pdf",
+ "id": "1b5c24ec-d9a8-421d-aea9-4ffd8ab3c571"
+ },
+ {
+ "filename": "2008 - Improved Elucidation of Biological Processes Linked to Diabetic Nephropathy by Single Probe-Based Microarray Data Analysis.pdf",
+ "id": "8f6c3be4-4598-4ae2-a7a8-8ea5a7a52794"
+ },
+ {
+ "filename": "2002 - Cardiovascular and diabetes mortality determined by nutrition during parents_ and grandparents_ slow growth period.pdf",
+ "id": "2ee22ab1-6a66-4144-998e-0dee028c0f26"
+ },
+ {
+ "filename": "2017 - Type 1 diabetes mellitus.pdf",
+ "id": "ee21529b-bf7d-49ec-a21e-c52c9c7ff7e1"
+ },
+ {
+ "filename": "2019 -Evaluation of Sirtuin-3 probe quality and co-expressed genes using literature cohesion.txt",
+ "id": "34a57416-2154-45dc-9e75-f928db77ad86"
+ },
+ {
+ "filename": "2022 - Systems genetics in the rat HXBBXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose.txt",
+ "id": "cabbee33-cf97-448d-ae70-23e11db43614"
+ },
+ {
+ "filename": "2021 - Genetic loci and metabolic states associated with murine epigenetic aging.txt",
+ "id": "0c6c0977-2cf9-4bbf-bc31-fe025f008089"
+ },
+ {
+ "filename": "2022 - A_hierarchical_regulatory_network_ensures_stable.12 (1).txt",
+ "id": "bc99b6b0-10de-4b5d-a150-92ab1a437d32"
+ },
+ {
+ "filename": "diversity-supplement-submitted-application-example.txt",
+ "id": "c449650e-a0ac-4023-b3c8-82cf3463b0f3"
+ },
+ {
+ "filename": "2022 -Madadi- AI RNA.txt",
+ "id": "5d2fa6b9-8412-43cb-bc86-e9bcda73a4ef"
+ },
+ {
+ "filename": "2022 -Chanpaisaeng- Diet X Gene Interactions Control Femoral Bone Adaptation to Low Dietary Calcium.txt",
+ "id": "99a1393e-3764-4c93-85d5-8d37f31b2b24"
+ },
+ {
+ "filename": "2020 - Discovery of a Role for Rab3b in Habituation and Cocaine Induced Locomotor Activation in Mice Using Heterogeneous Functional Genomic Analysis.txt",
+ "id": "3f27c6b7-2180-418d-abe8-088f6d69c0fe"
+ },
+ {
+ "filename": "2018 -Guzetta- ML in Biology.txt",
+ "id": "45ab337c-0a52-4bc0-ae4a-a29278644071"
+ },
+ {
+ "filename": "2023 - Striatum-specific mechanisms regulate neuronal cell cycle re-entry the choice between life and death.txt",
+ "id": "4f35144b-ba67-4791-8e27-c609e6fed77a"
+ },
+ {
+ "filename": "2021 -Ashbrook- will PMC.txt",
+ "id": "6b2dba7c-0249-448e-9e84-92de7088109b"
+ },
+ {
+ "filename": "2018 - Reproducibility and replicability of rodent phenotyping in preclinical studies.txt",
+ "id": "75813bc2-f0b5-400c-92d7-0958df97a04f"
+ },
+ {
+ "filename": "2020 -Highlights from the Era of Open Source Web-Based Tools.txt",
+ "id": "dd81be0c-5ebe-4ae6-b5b0-27610d41082d"
+ },
+ {
+ "filename": "2019 - Predicting compulsive alcohol drinking.txt",
+ "id": "0ca8ca87-9b90-45db-a239-aab1106ee703"
+ },
+ {
+ "filename": "2019 - Exploring the involvement of Tac2 in the mouse hippocampal stress response through gene networking.txt",
+ "id": "23320305-5766-48e6-8d89-fd252e47cbac"
+ },
+ {
+ "filename": "2022 - Identification of cyclin D1 as a major modulator of 3-nitropropionic acid-induced striatal neurodegeneration.txt",
+ "id": "f955b307-b7cc-4efb-a199-6055c6748826"
+ },
+ {
+ "filename": "2020 - Pex3 is involved in the genetic regulation.txt",
+ "id": "1705b972-f675-44ef-8294-c4f9d3040cd5"
+ },
+ {
+ "filename": "2018 - Identification and Validation of Midbrain Kcnq4 Regulation of Heavy Alcohol Consumption in Rodents.txt",
+ "id": "f1944f5d-cbf0-4204-bf38-52750d782dfd"
+ },
+ {
+ "filename": "2017 - Using MutPred derived mtDNA load scores to evaluate mtDNA variation in hypertension and diabetes in a two-population cohort The SABPA study.pdf",
+ "id": "b0af29ac-0997-416d-907a-6caba940536d"
+ },
+ {
+ "filename": "2018 - Bivariate Genome-Wide Association Study of Depressive.pdf",
+ "id": "08aeb508-32df-4632-ad96-814e4e6f63e1"
+ },
+ {
+ "filename": "2017 - A genome-wide association study of essential hypertension in an Australian population using a DNA pooling approach.pdf",
+ "id": "12125a18-7dbd-4c78-a538-fd19272859c7"
+ },
+ {
+ "filename": "2007 - Aryl hydrocarbon receptor nuclear translocator-like(BMAL1) is associated with susceptibilityto hypertension and type 2 diabete.pdf",
+ "id": "daa69996-3334-4400-8326-75764633d844"
+ },
+ {
+ "filename": "2017 - Metabolomics through the lens of precision cardiovascular medicine.pdf",
+ "id": "aa5b5723-1b81-4d27-8514-55665819be80"
+ },
+ {
+ "filename": "2018 - Genome-wide association studies for diabetic macular edema and proliferative diabetic retinopathy.pdf",
+ "id": "90eca621-c5fb-46c7-830b-40f0faa1b5a2"
+ },
+ {
+ "filename": "2017 - Insights into beta cell regeneration for diabetes via integration of molecular landscapes in human insulinomas.pdf",
+ "id": "cf4b0a35-aaad-4a91-96eb-ab0256ac32ce"
+ },
+ {
+ "filename": "2019 - Strain differences in maternal neuroendocrine and behavioral responses to stress and the relation to offspring cocaine responsiveness..txt",
+ "id": "d70e16cb-b617-4674-91d3-81beecc170b5"
+ },
+ {
+ "filename": "2020 - Postpartum psychosis an important clue to the etiology of mental illness.txt",
+ "id": "7a29e7c0-7ed6-455f-b076-a0d3545b1ca3"
+ },
+ {
+ "filename": "2022 -Neuner- Resilient Alzheimers.txt",
+ "id": "af83c313-40dc-4b13-863a-cd32a018e610"
+ },
+ {
+ "filename": "2018 - Ifi204 as the most favored candidate gene that regulates susceptibility to spontaneous arthritis in mice deficient in IL-1ra.txt",
+ "id": "25c1e893-5b3d-46ae-953c-30ab17934a9d"
+ },
+ {
+ "filename": "2020 -Mott- HEGP Genetics.txt",
+ "id": "095da902-d92c-44ab-a5c3-43a143d502bb"
+ },
+ {
+ "filename": "2022 - Behavioral phenotypes revealed during reversal learning are linked with novel genetic loci in diversity outbred mice.txt",
+ "id": "44fdea8f-75e7-4ffd-9b16-80a9aa66b511"
+ },
+ {
+ "filename": "2019 - Expression quantitative trait loci and genetic regulatory network analysis of Fbn1.txt",
+ "id": "a197da56-0c3b-445f-b89d-7f249f1343f7"
+ },
+ {
+ "filename": "2021 -Expression of LONP1 is high in visceral adipose tissue in obesity, and is associated with glucose and lipid metabolism.txt",
+ "id": "a5e25b91-4846-4a42-b9b4-838031ec19b7"
+ },
+ {
+ "filename": "2020 - Exploring the Role of Chemokine Receptor 6 (Ccr6) in the BXD Mouse Model of Gulf War Illness.txt",
+ "id": "66baf01d-e081-4034-b7ec-03592eac90a7"
+ },
+ {
+ "filename": "2019 -Papa- Expression Atlas.txt",
+ "id": "7b892fc9-9f0c-47fa-ab80-1f56995404a7"
+ },
+ {
+ "filename": "2018 - Sex Differences in Correlation with Gene Expression Levels between Ifi200 Family Genes and Four Sets of Immune Disease-Relevant Genes.txt",
+ "id": "c7baf2cb-4b8a-4701-9977-95e81b8df4cb"
+ },
+ {
+ "filename": "2018 -Park- CN Bone Metastasis.txt",
+ "id": "dddfbbbf-c48d-47e6-be9e-484fa5591942"
+ },
+ {
+ "filename": "2023 -Dietrich- Striatum-specific re-entry.txt",
+ "id": "78fa6c3e-5f09-4449-939a-d1d5f4460457"
+ },
+ {
+ "filename": "2022 -Chunduri- Drugs Animal Models.txt",
+ "id": "d0deb53b-7286-4fd0-9188-b7b9f366fd76"
+ },
+ {
+ "filename": "2021 - Hippocampal Transcriptome-Wide Association Study Reveals Correlations Between Impaired Glutamatergic Synapse Pathway and Age-Related Hearing Loss in BXD-Recombinant Inbred Mice.txt",
+ "id": "721eafff-b103-4ad4-a1b4-340942951440"
+ },
+ {
+ "filename": "2022 - Transcriptome-wide association study reveals cholesterol metabolism gene Lpl is a key regulator of cognitive dysfunction.txt",
+ "id": "41fc22ce-f0dc-4d81-a2b5-14c563c7c767"
+ },
+ {
+ "filename": "2022 - Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis.txt",
+ "id": "52990c69-609c-448e-9f2c-36e1655ca6db"
+ },
+ {
+ "filename": "2018 - A Genome-Wide Association Study of Diabetic Kidney.pdf",
+ "id": "8e257b8d-c5c9-4c9b-9b4a-3987c18188da"
+ },
+ {
+ "filename": "2018 - Cognitive decline and dementia in diabetes mellitus.pdf",
+ "id": "afe6a42e-2c8b-4cfd-9334-157d1b9d15b6"
+ },
+ {
+ "filename": "2017 - Genetics and Genomics in Oncology Nursing.pdf",
+ "id": "c563f71b-9193-429b-8268-04f4cfcbe510"
+ },
+ {
+ "filename": "2018 - Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.pdf",
+ "id": "f6602080-3ff3-4beb-9f80-308b7fb96dc9"
+ },
+ {
+ "filename": "2021 - A functional genomic approach to identify reference genes for human pancreatic beta cell real time quantitative RT PCR analysis.pdf",
+ "id": "af76add5-194c-49cc-9cd1-84d95884885b"
+ },
+ {
+ "filename": "2018 - Communication of cancer-related genetic and genomic information A landscape analysis of reviews.pdf",
+ "id": "cdef5df7-ea47-4fbd-be84-37046d9042ce"
+ },
+ {
+ "filename": "2019 - Heterogeneous impact of type 2 diabetes mellitus-related genetic variants on gestational glycemic traits review and future research needs.pdf",
+ "id": "5d3cb4d8-eb7c-40ce-bda5-d2347d64c4fc"
+ },
+ {
+ "filename": "2018 - A genome‐wide association study suggests new evidence for an association of the NADPH.pdf",
+ "id": "f8605b9d-94b1-47dd-a5a9-3e14452dff24"
+ },
+ {
+ "filename": "2021 - Moving from in vitro to in vivo CRISPR screens.pdf",
+ "id": "52480703-5353-4e55-a06b-110fd59db3a6"
+ },
+ {
+ "filename": "2008 - Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians.pdf",
+ "id": "118cf2e9-f789-48a4-bf8d-a018af45fd31"
+ },
+ {
+ "filename": "2020 - Systems Genetics of Optic Nerve Axon Necrosis During Glaucoma.txt",
+ "id": "23157342-c7ff-490a-b810-e93fdb9bc4f9"
+ },
+ {
+ "filename": "2018 - Thrombospondin-4 mediates cardiovascular remodelling in angiotensin II-induced hypertension.txt",
+ "id": "af6d5068-d4e5-4ac0-98fc-4185da16bb0f"
+ },
+ {
+ "filename": "2019 - The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging.txt",
+ "id": "a7f40b8e-5da0-43f5-a8dd-acbab8735211"
+ },
+ {
+ "filename": "2004 - Mapping of genes that control the antibody response to human factor IX in mice.txt",
+ "id": "7a5c1a3b-4bb2-4834-ba6f-4f36f12f57e0"
+ },
+ {
+ "filename": "2020 - An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice.txt",
+ "id": "52769f14-9d64-49a9-80ec-c41e500d8384"
+ },
+ {
+ "filename": "2021 Botia Hybrid Gene Selection.txt",
+ "id": "7686d354-e14a-423a-9db5-d5a74b0d046c"
+ },
+ {
+ "filename": "Double-machine-learning-causality-arxiv-2016.txt",
+ "id": "682683c5-7d32-4f5f-a8ae-b78078001a9c"
+ },
+ {
+ "filename": "2003_WebQTL_docs.txt",
+ "id": "9a882703-e0ff-4bac-b11a-d99284bf7f6c"
+ },
+ {
+ "filename": "2021 - System genetics in the rat HXBBXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose.txt",
+ "id": "ba770059-1ec9-448f-85c5-cf604193c225"
+ },
+ {
+ "filename": "2004 -Scott- P2p0r.txt",
+ "id": "4673d8d9-6b1e-46b9-b8b4-add9e1048b3e"
+ },
+ {
+ "filename": "2004 - Genetic analysis of complex cardiovascular traits in the spontaneously.txt",
+ "id": "bab65477-76ce-4506-bec8-589f1793e8af"
+ },
+ {
+ "filename": "2020 - Growth differentiation factor 15 protects against the aging‐mediated systemic inflammatory response in humans and mice.txt",
+ "id": "dfebf2a5-8553-41f9-af2d-f781778d1342"
+ },
+ {
+ "filename": "2022 -Jia- Alzheimers disease pathways.txt",
+ "id": "389bdbf3-0224-4edb-a4fb-71a54971ba66"
+ },
+ {
+ "filename": "2021 - Ace2 and Tmprss2 Expressions Are Regulated by Dhx32 and Influence the Gastrointestinal Symptoms Caused by SARS-CoV-2.txt",
+ "id": "6daf89f2-caee-4128-a1a0-61a5c2d37b48"
+ },
+ {
+ "filename": "2022 - Potential Similarities in Sex Difference in Key Genes and Their Expression, Network, EQTL and Pathways between COVID-19 and Chronic Kidney Disease Based on Mouse Model.txt",
+ "id": "bbfc7f30-2854-454a-87d7-39ebfd78673f"
+ },
+ {
+ "filename": "2003 -Wang- WebQTL.txt",
+ "id": "2c6178fe-c05a-42e6-aafb-7408592dcc50"
+ },
+ {
+ "filename": "2005 - Bioinformatics toolbox for narrowing rodent quantitative trait loci .txt",
+ "id": "7dc4230d-c0a3-484b-9fb4-04d5ff09956b"
+ },
+ {
+ "filename": "2019 - Cross-species alcohol dependence-associated gene networks Co-analysis of mouse brain gene expression and human genome-wide association data.txt",
+ "id": "6482f94f-bb32-458a-bbd8-2d164efba104"
+ },
+ {
+ "filename": "2022 -Batten- Guix.txt",
+ "id": "42a4ce82-d68f-4664-b7ca-7c1d6eb8022a"
+ },
+ {
+ "filename": "2022 - Evidence for a neuromuscular circuit involving hypothalamic interleukin-6 in the control of skeletal muscle metabolism.txt",
+ "id": "b7509816-3c54-4739-a209-2a3a32c3085a"
+ },
+ {
+ "filename": "2022 -Tabbaa- Mouse pop genetics.txt",
+ "id": "8a60b6f4-f1fd-4a89-8a7a-77d0341063f6"
+ },
+ {
+ "filename": "2005 - A Golden Age of Brain Exploration.txt",
+ "id": "94198e8e-42f2-4b5a-bb79-7a31ff629282"
+ },
+ {
+ "filename": "2019 - Identification of a Functional Non-coding Variant in the GABAA Receptor α2 Subunit of the C57BL6J Mouse Reference Genome Major Implications for Neuroscience Research.txt",
+ "id": "8e5b5131-2de8-4a9a-800b-721b4643582f"
+ },
+ {
+ "filename": "2017 - Genomics Education Knowledge of nurses across the profession and integration into practice.pdf",
+ "id": "a763df30-51d0-49a7-ab12-8e5eca84d963"
+ },
+ {
+ "filename": "2005 - Data integration challenges for drug discovery.txt",
+ "id": "faf00b06-9a8a-4a7f-9cf5-a0c7d99e1922"
+ },
+ {
+ "filename": "2005 - Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function.txt",
+ "id": "41ab0b16-b3f5-47b2-9058-abd3c4f4f662"
+ },
+ {
+ "filename": "2005 - Prediction of cis-QTLs in a pair of inbred mouse strains with the use of expression and haplotype data from public databases.txt",
+ "id": "14a2380d-a51f-4f1f-bbaf-8785941fddeb"
+ },
+ {
+ "filename": "2005 -Chona- Controlling retinal injury.txt",
+ "id": "ec5d7978-2efe-4cba-9b7e-4dddd63cc24c"
+ },
+ {
+ "filename": "2005 - Haplotypes at the Tas2r locus on distal chromosome 6 vary with quinine taste sensitivity in inbred mice.txt",
+ "id": "b8c1785f-643b-4939-8c0a-a2dbe64e7358"
+ },
+ {
+ "filename": "2005 - Genetic analysis of the antibody response to AAV2 and factor IX.txt",
+ "id": "09d8b848-6c07-43d7-980f-eb1c8933091d"
+ },
+ {
+ "filename": "2004 Pareto Optmial gene ranking.txt",
+ "id": "c787fdc3-10ec-48de-91e3-4f4f75fa696a"
+ },
+ {
+ "filename": "2005 -Broadkin- quantitative-trait-locus-analysis-of-aggressive-behaviours-in-mi.txt",
+ "id": "f253e087-e030-40a8-8400-3b6bf50c1fd6"
+ },
+ {
+ "filename": "2005 - Cognitive impairment in animal models of persistent pain.txt",
+ "id": "ebb66c1b-1c5a-437a-a39b-a7f2352a519a"
+ },
+ {
+ "filename": "2005 - Mouse phenogenomics The fast track to “systems metabolism”.txt",
+ "id": "ab1a324f-3c9c-4b41-bb1d-5d5ca216a001"
+ },
+ {
+ "filename": "2005 -Alvarez- Genetical_genomic_approaches_for_understanding.txt",
+ "id": "a402d4b4-d3a5-4809-b68c-932c6885e9f3"
+ },
+ {
+ "filename": "2005 - Less is More in Modeling Large Genetic Networks.txt",
+ "id": "56304081-0426-453f-b77b-ca2ef02a125f"
+ },
+ {
+ "filename": "2005 -Cao- Gene Entrapment.txt",
+ "id": "e3339afd-cf6d-4972-8e7a-d94e692ec630"
+ },
+ {
+ "filename": "2004 - Combining QTL and Microarray Data.txt",
+ "id": "d0d6c5d6-36c6-45f1-9107-cef95df83bb3"
+ },
+ {
+ "filename": "2005 -Dipetrillo- Bioinformatics toolbox QTL.txt",
+ "id": "80eb54fe-0d83-4300-9fba-e17ce5d1e5b4"
+ },
+ {
+ "filename": "2005 - Gene Array Profiling of Large Hypothalamic CNS Regions in Lactating and Randomly Cycling Virgin Mice.txt",
+ "id": "5043c845-5d0d-4821-992b-ee5fa043c046"
+ },
+ {
+ "filename": "2005 - Genes, Environment and Dyslexia.txt",
+ "id": "a6924cbc-a767-49f8-b06e-4725ba2a6198"
+ },
+ {
+ "filename": "2005 - The Anp32 family of proteins containing leucine-rich repeats.txt",
+ "id": "97a04cec-b2c7-4a2b-85d6-ce9f7842a0dd"
+ },
+ {
+ "filename": "2005 - Brain gene expression profiling in mice selected for differential hypnotic sensitivity to ethanol.txt",
+ "id": "70bf601a-547f-47a0-a42c-faeb092e6340"
+ },
+ {
+ "filename": "2005 - Complex trait approaches to the analysis of behaviour in the mouse.txt",
+ "id": "97771992-cce1-4392-b7b3-ff3c5967d228"
+ },
+ {
+ "filename": "2005 - Methodological aspects of the genetic dissection of gene expression.txt",
+ "id": "6b5ae9e0-ea61-45e2-9b6d-663b532c1a81"
+ },
+ {
+ "filename": "2005 - The impact of Neuroinformatics.txt",
+ "id": "83072278-19ab-4b08-9892-6dec72d766d6"
+ },
+ {
+ "filename": "2005 - Using Progenitor Strain Information to Identify Quantitative Trait Nucleotides in Outbred Mice.txt",
+ "id": "a64778cd-bff8-43dd-b5a3-d608ab8f4828"
+ },
+ {
+ "filename": "2004 - Uncovering_regulatory_pathways_that_affe.txt",
+ "id": "5e47c149-228e-41fb-b93b-3ea5bef15d6c"
+ },
+ {
+ "filename": "2005 - Expression and function of the cold channels in urinary bladder urothelium TRPM8 and TRPA1.txt",
+ "id": "3a0e87fe-47b3-482b-b114-cfce59265288"
+ },
+ {
+ "filename": "2005 - Genetics of body weight in the LXS recombinant inbred mouse strains.txt",
+ "id": "6f44583d-c019-4a89-8779-784d8c3894d8"
+ },
+ {
+ "filename": "2005 - Selection Experiments as a Tool in Evolutionary and Comparative Physiology Insights into Complex Traits An Introduction to the Symposium.txt",
+ "id": "15be5741-361d-4857-9770-d927523a7a30"
+ },
+ {
+ "filename": "2005 - Applications of gene targeting technology to mental retardation and developmental disability research.txt",
+ "id": "3cafb9e7-b3d9-4e8e-a727-da79282d2b14"
+ },
+ {
+ "filename": "2009 - Diabetes in Asia.pdf",
+ "id": "903e9615-c329-48be-9547-386a00f2dd94"
+ },
+ {
+ "filename": "2005 - The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion.txt",
+ "id": "a9f319e8-f1a4-471e-b2d8-36fe965ba725"
+ },
+ {
+ "filename": "2005 - WebQTL An Internet resource for the integrative genetic analysis of gene expression and pain related phenotypes.txt",
+ "id": "a31098c9-984f-4095-b84c-5f84f0e5719e"
+ },
+ {
+ "filename": "2005 - Genetic Analysis of the Hypothalamic CorticotropinReleasing Factor System.txt",
+ "id": "ddb46b49-97a2-4d06-951b-9fcab8278599"
+ },
+ {
+ "filename": "2005 - Nonparametric imputation of missing values for estimating equation based inference.txt",
+ "id": "4e2485fb-8490-4422-a794-592b28a956b9"
+ },
+ {
+ "filename": "2005 - Sp1 and NFkB pathways are regulated in brain inresponse to acute and chronic ethanol.txt",
+ "id": "644157d6-d149-4994-87fb-3c45e6fd5e0a"
+ },
+ {
+ "filename": "2005 - Cerebellar Gene Expression Profiling and eQTL Analysis in Inbred Mouse Strains Selected for Ethanol Sensitivity.txt",
+ "id": "60e08224-f0e8-409c-b00a-b9e7358d3548"
+ },
+ {
+ "filename": "2005 - Metastasis Predictive Signature Profiles Pre-exist in Normal Tissues.txt",
+ "id": "a7aa1a3e-4681-4596-b9d0-384dbb260857"
+ },
+ {
+ "filename": "2005 - Genetic tests of biologic systems in affective disorders.txt",
+ "id": "62a4ee72-b305-4027-be68-1c156fb7adbe"
+ },
+ {
+ "filename": "2005 - Inbred mouse strains C57BL6J and DBA2J vary in sensitivity to a subset of bitter stimuli.txt",
+ "id": "7ab1ee39-84b7-4def-91d6-5d79c4d46598"
+ },
+ {
+ "filename": "2005 - Sensitivity to the locomotor-stimulant effects of ethanol and allopregnanolone a quantitative trait locus study of common genetic influence.txt",
+ "id": "16f93624-6e07-44bb-ae0c-1404994f31ae"
+ },
+ {
+ "filename": "2005 - Genetic networks controlling retinal injury.txt",
+ "id": "54881d38-e18b-41a8-90d5-b1f990859811"
+ },
+ {
+ "filename": "2004 - Generalized genetical genomics.txt",
+ "id": "eee1f302-d85d-4445-8845-772c46ed7821"
+ },
+ {
+ "filename": "2005 -Chesler- geneexpression.txt",
+ "id": "aff3c087-be9c-41db-b5ba-2f8beade5a92"
+ },
+ {
+ "filename": "2003 -Williams- WebQTL_A_Tour_of_Transcriptional_Networks.txt",
+ "id": "e2448847-c4aa-44a1-b921-aae1bdc4e6c5"
+ },
+ {
+ "filename": "2005 - Meeting report for the 4th Annual Complex Trait Consortium Meeting From QTLs to Systems Genetics .txt",
+ "id": "159bdc9a-8d2f-4ada-81b4-2184cb385820"
+ },
+ {
+ "filename": "2005 -Bennett- Genetics_of_body_weight_in_the_LXS_recom.txt",
+ "id": "7cf7a43f-96e6-4ddf-9992-22dfdbbb9e33"
+ },
+ {
+ "filename": "2004 Yu -bioinf- BayesCausal.txt",
+ "id": "169a5bbe-a787-4b56-a112-485c127dc3db"
+ },
+ {
+ "filename": "2005 - Genetic Segregation of Spontaneous Erosive Arthritis and Generalized Autoimmune Disease in the BXD2 Recombinant Inbred Strain of Mice.txt",
+ "id": "8dad24f7-b658-44fa-af65-6f33db69c15a"
+ },
+ {
+ "filename": "2005 - quantitative-trait-locus-analysis-of-aggressive-behaviours-in-mi.txt",
+ "id": "3f8db22e-d5f9-44ba-8f78-fc77ccf024ce"
+ },
+ {
+ "filename": "2005 -Carlborg- Methodological aspects gene expression.txt",
+ "id": "bbf4a07f-b30d-4bd6-ba32-16ad470231b1"
+ },
+ {
+ "filename": "2005 - RESEARCH GROUP COMMITTEE REPORTS_.txt",
+ "id": "cca308ca-7b04-443a-9125-34a62e14064b"
+ },
+ {
+ "filename": "2005 - Complex_Genetics_of_Interactions_of_Alco.txt",
+ "id": "95b99c09-c336-44fd-b378-f41991edb3aa"
+ },
+ {
+ "filename": "2005 - GENETIC REGULATION OF HEMATOPOIETIC STEM CELL NUMBERS IN MICE.txt",
+ "id": "2dfc2b82-b8eb-4e73-957a-0ea8a4401a84"
+ },
+ {
+ "filename": "2005 - Spinal and supraspinal expression of PKC isoforms following excitotoxic spinal cord Spinal injury and implications for chronic pain management.txt",
+ "id": "30b1b054-c969-47a3-899d-063485e05ef8"
+ },
+ {
+ "filename": "2005 - How replicable are mRNA expression QTL.txt",
+ "id": "99eb95e6-f439-453e-b90f-4752f1b66d0b"
+ },
+ {
+ "filename": "2005 - Finding Fibrosis Genes.txt",
+ "id": "8244e2c7-d48d-4a2a-bd89-339e6d580d12"
+ },
+ {
+ "filename": "2005 - Genetic Correlates of Gene Expression.txt",
+ "id": "0c732155-1349-41d1-9f72-fa98cb6f1466"
+ },
+ {
+ "filename": "2004 - The_Positive_Regulatory_Effect_of_TGF-_2_on_Primit (1).txt",
+ "id": "958b37c9-9bd5-4e84-939d-8f12dccf1055"
+ },
+ {
+ "filename": "2005 - Noise Propagation in Gene Networks.txt",
+ "id": "2f6601d5-3f89-478e-9015-b45ea2daaf20"
+ },
+ {
+ "filename": "2020 - Calmodulin-binding transcription activator (CAMTA) genes family Genome-wide survey and phylogenetic analysis in flax (Linum usitatissimum).pdf",
+ "id": "36a721f2-6f53-4574-b4cb-4e631c680a99"
+ },
+ {
+ "filename": "2001 Bayesian Causal Maps.txt",
+ "id": "6d926b1e-e103-4efd-b566-3440be33d947"
+ },
+ {
+ "filename": "2005 - Author-attended APS poster sessions are 4-6 PM Thursday and Friday. Posters are avail-able for viewing Wednesday, 6-8 PM_ Thursday, 10. 15-11.15 AM and 4-6 PM_ Friday, 9.45.txt",
+ "id": "89f8a359-2d4a-4907-a840-ff4209966572"
+ },
+ {
+ "filename": "2005 -Nelson- Haplotypes Tas2r locus.txt",
+ "id": "3bae277a-538d-4ae7-9d57-62a254d02515"
+ },
+ {
+ "filename": "2006 - DNA Microarray and Proteomic Strategies for Understanding Alcohol Action.txt",
+ "id": "9a5c3e73-8270-400f-8a2d-4f36b757188c"
+ },
+ {
+ "filename": "2009 - Functional coding variation in recombinant inbred mouse lines reveals multiple serotonin transporter-associated phenotypes.txt",
+ "id": "cd7061ee-0596-4c33-abb9-d9fd6888d0aa"
+ },
+ {
+ "filename": "2005 -Pomp- GenomeExploitation.txt",
+ "id": "4a34fec8-ff56-4ec0-b51c-c21c130e53dd"
+ },
+ {
+ "filename": "2006 - An Integrative Genomic Approach to Uncover Molecular Mechanisms of Prokaryotic Traits.txt",
+ "id": "23dcf284-7c19-4335-91e1-50c3b85e6bad"
+ },
+ {
+ "filename": "2010 - A B2 SINE insertion in the Comt1 gene (Comt1B2i) results in an overexpressing, behavior modifying allele present in classical inbred mouse strains.txt",
+ "id": "61b00e6b-5eb5-417f-8a1d-4f51310fe8ef"
+ },
+ {
+ "filename": "2005 - Antihyperalgesic effect of herpes vector mediated knock-down of Nav1.7 sodium shannels in a rodent inflammatory model.txt",
+ "id": "b9eef266-9941-4644-a49b-b6fac22cca99"
+ },
+ {
+ "filename": "1967 -Coleman- DiabetesMouse.txt",
+ "id": "b1a1282d-421f-494a-b9df-5c3c9e1e2540"
+ },
+ {
+ "filename": "2005 - Numerical Algorithms for Mapping of Multiple Quantitative Trait Loci in Experimental Populations.txt",
+ "id": "0a30029f-fa8f-49e3-9a68-82d1a8ae3157"
+ },
+ {
+ "filename": "2003 - The nature and identification of quantitative trait loci.txt",
+ "id": "cb3f9967-9762-4a9b-96cb-0acccdc316d2"
+ },
+ {
+ "filename": "1471-2202-7-16-1.txt",
+ "id": "669283c7-22b1-45fe-9ea7-d17acdb5ad6d"
+ },
+ {
+ "filename": "003 -Barnes- Bioinformatics_for_Geneticists.txt",
+ "id": "5edf84d0-c2d9-45eb-91b9-c35743b6a463"
+ },
+ {
+ "filename": "2005 -Matilla- Anp32 family leucine-rich repeats.txt",
+ "id": "a3b95558-785a-4338-a7d4-798edd26995b"
+ },
+ {
+ "filename": "2005 -Flaherty- Genomics of the future.txt",
+ "id": "624ba3ed-0965-4451-a5e1-2150b68ae1b3"
+ },
+ {
+ "filename": "2005 -Lariviere- QTL neuropathic mech allodynia.txt",
+ "id": "229f364d-9f9c-4c48-a8ec-fbe39cffe11f"
+ },
+ {
+ "filename": "2005 -Liang- GENETIC REGULATION OF HEMATOPOIETIC STEM CELL NUMBERS IN MICE.txt",
+ "id": "9c266a06-68f9-4e25-8de4-87d8ee02d929"
+ },
+ {
+ "filename": "2003 -chesler-Genetic inbred strains.txt",
+ "id": "ef7565ef-c6e5-44e4-9628-43fa58f49826"
+ },
+ {
+ "filename": "2005 -Gewin- Golden Age Brain Exploration.txt",
+ "id": "3b1fe8ff-a6c5-4f0b-b824-9a854297f6f0"
+ },
+ {
+ "filename": "2005 - The Syntaxin Binding Protein 1 Gene (Stxbp1) Is a Candidate for an Ethanol Preference Drinking Locus on Mouse Chromosome 2.txt",
+ "id": "8bac5167-f777-4abe-a221-16dd818fc2c2"
+ },
+ {
+ "filename": "2005 -Chesler- WebQTL pain related phenotypes.txt",
+ "id": "3490ee08-29dd-4c88-8e58-fd47fb8f0413"
+ },
+ {
+ "filename": "2005 -Knott- Regression based QTL mapping.txt",
+ "id": "17690cd7-3e21-47df-b697-06726b3f0b69"
+ },
+ {
+ "filename": "2005 -Ljungberg- Numerical algos for Multi QTL.txt",
+ "id": "83a4ab87-f4a5-40b9-9297-5a3596e3636f"
+ },
+ {
+ "filename": "2005 -Bystrykh- Uncovering_regulatory_pathways_that_affe.txt",
+ "id": "969427e9-5901-402d-9d30-216c3c2f528c"
+ },
+ {
+ "filename": "2005 -Hu- QTL PigQTLDB.txt",
+ "id": "0022bfa1-c2e9-41e9-a96a-0e89688bcbe0"
+ },
+ {
+ "filename": "2005 -Integrated gene expression profiling and linkage analysis in the rat.txt",
+ "id": "4439ac39-e421-482f-9aa9-9ad11fa641c1"
+ },
+ {
+ "filename": "2005 -Boughter- Inbred mouse strains better stimuli.txt",
+ "id": "682c5755-d492-46f6-80e7-fc3055450028"
+ },
+ {
+ "filename": "2005 - quantitative-trait-analysis-in-the-investigation-of-function-and.txt",
+ "id": "d1f04d58-2589-4183-aee4-569820dae052"
+ },
+ {
+ "filename": "2005 -Lovinger- Lab models of alcoholism.txt",
+ "id": "447fc5a6-3f29-475e-9e88-a422f0fe03d3"
+ },
+ {
+ "filename": "2005 -Searls- DataIntegration.txt",
+ "id": "fdd4c745-dacc-4cef-b7b9-05b774ba930d"
+ },
+ {
+ "filename": "2005 -Tao- Spinal density-93.txt",
+ "id": "12a26064-293b-41ff-93c3-763dc2a160df"
+ },
+ {
+ "filename": "1995 - Functioning and Well-being Outcomes of Patients With Depression Compared With Chronic General Medical Illnesses.pdf",
+ "id": "bd9f534c-92a2-48e8-8a6c-9ed24806604e"
+ },
+ {
+ "filename": "2010 - KCNQ1 and type 2 diabetes study in Hubei Han Chinese and meta-analysis in East Asian populations.pdf",
+ "id": "03ab23bb-3374-4b23-9e9a-8ad090e882aa"
+ },
+ {
+ "filename": "1997 - CTLA4 Alanine-17 Confers Genetic Susceptibility to Graves_ Disease.pdf",
+ "id": "8ad08cb7-949d-44ee-bc4a-5a1b4d0da501"
+ },
+ {
+ "filename": "2019 - Nutrigenetics epigenetics and gestational diabetes consequences in mother and child.pdf",
+ "id": "21f4f4d2-8f80-4da2-a0f9-77be35da52d5"
+ },
+ {
+ "filename": "2009 - Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus.pdf",
+ "id": "6b7c6ac7-208d-4942-af31-cc3c37252751"
+ },
+ {
+ "filename": "2016 - h3africa-multi-centre-study-of-the-prevalence-and-environmental-and-genetic-determinants-of-type-2-diabetes-in-sub-saharan-africa-study-protocol.pdf",
+ "id": "3afac5a8-f2ef-48b2-ba1e-50482f24b19f"
+ },
+ {
+ "filename": "2007 - Brain region gene expression responds discretely to chronic alcohol withdrawal with specific disruption of the hippocampus during intoxication.txt",
+ "id": "945d04d0-6650-470f-a2ef-f88142749087"
+ },
+ {
+ "filename": "2005 -Shalkwyk- Complex trait in the mouse.txt",
+ "id": "b39d2e94-33be-426a-98f7-2ccf01e559b6"
+ },
+ {
+ "filename": "2006 - Animal models in biomedical research ethics, challenges, and opportunities.txt",
+ "id": "da4f25f3-bb89-4eb8-8fe7-5a77753b984f"
+ },
+ {
+ "filename": "2009 - The genetic control of neocortex volume and covariation with neocortical gene expression in mice.txt",
+ "id": "9de4364a-3da5-4a76-a68c-cddba815af1c"
+ },
+ {
+ "filename": "2013 - GenomIc damage in patients with type-2 diabetes.pdf",
+ "id": "90e2b0b3-8948-4794-a454-de0204e06bb4"
+ },
+ {
+ "filename": "2004 - Interaction and Association Analysis of a Type 1 Diabetes Susceptibility Locus.pdf",
+ "id": "e622ade6-f276-4309-a7a0-831276d169ec"
+ },
+ {
+ "filename": "2011 - Deep resequencing of GWAS loci identifies independent rare variants.pdf",
+ "id": "263ebf41-8033-4dd7-90ff-de0c1df22eb5"
+ },
+ {
+ "filename": "2020 - Prospective avenues for human population genomics and disease mapping in southern Africa.pdf",
+ "id": "36167b9b-8d77-47d4-b094-42f6795c9113"
+ },
+ {
+ "filename": "2004 - Diabetic nephropathy Linking histology, cell biology.pdf",
+ "id": "e66846a6-1546-481b-baae-a55fc524c8af"
+ },
+ {
+ "filename": "2017 - Genetics and Genomics of Congenital Heart Disease.pdf",
+ "id": "a2df7722-9091-4c02-896d-cbdedc30a4ce"
+ },
+ {
+ "filename": "2006 -Gelegen- Behavioural, physiological and molecular differences in response to dietary restriction.txt",
+ "id": "8dc20713-5876-42a2-8396-65b52c2bdcca"
+ },
+ {
+ "filename": "2005 -Yalcin- Using Progenitor Strain Information to Identify Quantitative Trait Nucleotides in Outbred Mice.txt",
+ "id": "c2efeeee-f71a-4292-8240-80a4518f820d"
+ },
+ {
+ "filename": "2008 - Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression.txt",
+ "id": "27e14ff3-b5a5-4f60-80a2-eaa2ab53e991"
+ },
+ {
+ "filename": "2010 - Epidemiology of diabetes.pdf",
+ "id": "ceab3d6d-62ca-459a-9a97-02a16d4dd193"
+ },
+ {
+ "filename": "2009 - Rationale and design of the Duke Electrophysiology Genetic and Genomic Studies (EPGEN) biorepository.pdf",
+ "id": "9ce1bc1f-3bbb-4acb-bc4f-a939315a509b"
+ },
+ {
+ "filename": "2018 - Experience with genomic sequencing in pediatric patients with congenital cardiac.pdf",
+ "id": "4d7f8d18-ddcf-4afc-8412-64f530ba7333"
+ },
+ {
+ "filename": "2011 - DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy.pdf",
+ "id": "37c22adb-2b45-4a15-a05b-dfcec0fb17ca"
+ },
+ {
+ "filename": "2010 - Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls.pdf",
+ "id": "cfadd898-ad64-45b4-af0a-e0a82817b8b5"
+ },
+ {
+ "filename": "2010 - Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes.pdf",
+ "id": "792e547d-5b91-49ba-b9e3-0d6727c1d483"
+ },
+ {
+ "filename": "2010 - _Systems genetics analysis of cardiovascular traits in a mouse intercross Integration of expression data, clinical traits and functional information.txt",
+ "id": "7eec6895-b939-4f1c-a689-e05f4d6fd7a5"
+ },
+ {
+ "filename": "2005 -Yeomans- Antihyperalgesic.txt",
+ "id": "cc715f3d-98fc-404b-9ade-ad6af24c2181"
+ },
+ {
+ "filename": "2006 - Behavioural, physiological and molecular differences in response to dietary restriction.txt",
+ "id": "4443620a-33a8-42d3-a193-54d6adbb48c5"
+ },
+ {
+ "filename": "2001 -Manly- MapManagerQTX.txt",
+ "id": "09cad84f-bc56-430e-861a-b2cad49af9d9"
+ },
+ {
+ "filename": "2005 - A Statistical Multiprobe Model for Analyzing cis and trans Genes in Genetical Genomics Experiments With Short-Oligonucleotide Arrays.txt",
+ "id": "8ed4ec84-8c84-4b52-bf20-65bcdf9fd64c"
+ },
+ {
+ "filename": "2012 - Genetic_Control_of_a_Central_Pattern_Gen.txt",
+ "id": "831b5b65-0767-4a8f-ac18-306a14e95185"
+ },
+ {
+ "filename": "2017 - Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol-response Behaviors in Model Organisms.txt",
+ "id": "b87bb1b6-8f39-4e64-ab9b-db07b1d91867"
+ },
+ {
+ "filename": "2012 -Bryant- Genes Brain and Behavior Congenic dissection of a major QTL for methamphetamine sensitivity implicates.txt",
+ "id": "3d08f31c-2fa4-422b-9ade-47a7b1d0b212"
+ },
+ {
+ "filename": "2016 - Quantitative Trait Loci and a Novel Genetic Candidate for Fear Learning.txt",
+ "id": "d8ebd966-e24f-4695-a712-8cac1993ea9b"
+ },
+ {
+ "filename": "2005 - Laboratory models of alcoholism treatment target identification and insight into mechanisms.txt",
+ "id": "843c0ab9-0a56-49f7-9be0-681b386cbbc5"
+ },
+ {
+ "filename": "2014 - A candidate syntenic genetic locus is associated with voluntary exercise levels in mice and humans(1).txt",
+ "id": "76277089-7d88-4c97-b76a-a669bb398cd0"
+ },
+ {
+ "filename": "2008 - Analysis of Natural Allelic Variation Controlling Arabidopsis thaliana Seed Germinability in Response to Cold and Dark Identification of Three Major Quantitative Trait Loci.txt",
+ "id": "9292f4ab-191e-4e8f-af39-68099158fd32"
+ },
+ {
+ "filename": "2012 - Genome‐wide association for methamphetamine sensitivity in an advanced intercross mouse line.txt",
+ "id": "6db3871a-9370-4438-bf74-560d2dfc7151"
+ },
+ {
+ "filename": "2005 - Alcohol Effects on Central Nervous System.txt",
+ "id": "57a3fa09-8f10-49fe-99f7-04add25c1804"
+ },
+ {
+ "filename": "2009 - In Silico Whole Genome Association Scan for Murine Prepulse Inhibition.txt",
+ "id": "b58ddaa8-9d41-4dc5-97d7-aca64de3685b"
+ },
+ {
+ "filename": "2014 - Identification of a QTL in Mus musculus for Alcohol Preference, Withdrawal, and Ap3m2 Expression Using Integrative Functional Genomics and Precision Genetics.txt",
+ "id": "fee26613-3228-4e76-80a5-db316980c43c"
+ },
+ {
+ "filename": "2014 - Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle.txt",
+ "id": "80a77e9d-0d80-4548-9253-c14b8bb5cff7"
+ },
+ {
+ "filename": "2008 - Studies on Syntaxin 12 and Alcohol Preference Involving C57BL6J and DBA2J Strains of Mice.txt",
+ "id": "d3dae048-6a34-4ab5-9c47-4f11da232b97"
+ },
+ {
+ "filename": "2006 - Characterization of genetic differences within the centrally projecting Edinger–Westphal nucleus of C57BL6J and DBA2J mice by expression profiling_William J Giardino, Dawn M Cote, Ju Li, Andrey.txt",
+ "id": "0140d814-c394-4293-89bf-81f94fd22012"
+ },
+ {
+ "filename": "2015 - Genetic properties of the MAGIC maize population a new platform for high definition QTL mapping in Zea mays.txt",
+ "id": "32338b01-15af-4ec9-9bc4-e9c58b53068e"
+ },
+ {
+ "filename": "2005 - Quantitative Trait Locus (QTL) mapping of mechanical sensitivity and peripheral nerve injury-induced neuropathic mechanical allodynia in Recombinant Inbred (RI) mice using www.webqtl.org.txt",
+ "id": "a68c1746-5f14-4226-af75-10c0988b2d38"
+ },
+ {
+ "filename": "2008 - Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning.txt",
+ "id": "5964906e-b016-4a60-b043-db826b438048"
+ },
+ {
+ "filename": "2016 - Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CASTEiJ mice.txt",
+ "id": "12780adb-bba7-43fe-9e36-2dc6b13afa93"
+ },
+ {
+ "filename": "2016 - Decreased expression levels of Ifi genes is associated to the increased resistance to spontaneous arthritis disease in mice deficiency of IL-1RA.txt",
+ "id": "3517925b-cdcd-477c-9632-09dadec2dffd"
+ },
+ {
+ "filename": "2012 - Hepatocellular carcinoma as extracolonic manifestation of Lynch syndrome indicates SEC63 as potential target gene in hepatocarcinogenesis.txt",
+ "id": "e70edf15-a163-4db3-9346-6d3b69cdc6d3"
+ },
+ {
+ "filename": "2012 - Genetic Control of a Central Pattern Generator Rhythmic Oromotor Movement in Mice Is Controlled by a Major Locus near Atp1a2.txt",
+ "id": "a6c28701-9fcd-4e0a-9d1d-26c63b28a6e7"
+ },
+ {
+ "filename": "2017 - Sex difference in the expression and gene network of epidermal growth factor receptor in pituitary gland in mice.txt",
+ "id": "7a81de58-67b5-4185-bc89-bcf50a7032d4"
+ },
+ {
+ "filename": "2015 - An Islet-Targeted Genome-Wide Association Scan.pdf",
+ "id": "ebb49f39-ee30-4b32-959d-305276fd589e"
+ },
+ {
+ "filename": "2020 - Identification of type 2 diabetes loci.pdf",
+ "id": "bb86d287-d3b8-43cf-9fa6-bece9d3059c8"
+ },
+ {
+ "filename": "2013 - Animal Models of GWAS-Identified Type 2 Diabetes Genes.pdf",
+ "id": "df542302-18b9-43c2-a421-cba1dba0b3be"
+ },
+ {
+ "filename": "2013 - Congenic Mice Provide Evidence for a Genetic Locus That Modulates Spontaneous Arthritis Caused by Deficiency of IL-1RA.txt",
+ "id": "7ca1b7d0-cbae-4c68-b8e8-610435d84f9f"
+ },
+ {
+ "filename": "2005 - Regression-based quantitative trait loci mapping robust, efficient and effective.txt",
+ "id": "d2749f7d-2943-4c3e-ae5a-ac3999aad956"
+ },
+ {
+ "filename": "2008 - Using hippocampal microRNA expression differences between mouse inbred strains to characterise miRNA function.txt",
+ "id": "e2799196-122f-4b4f-a2a6-68adf24a236f"
+ },
+ {
+ "filename": "2013 - Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli_Irit Gat-Viks, Nicolas Chevrier, [...], and Aviv.txt",
+ "id": "adf2ef89-dd1c-4b90-8eea-9d14a3952f6a"
+ },
+ {
+ "filename": "2011 - THREE APPROACHES TO INVESTIGATING AN EPIGENETIC BASIS TO NICOTINE CONSUMPTION IN ADOLESCENT MICE AGOUTI VIABLE YELLOW PROGRAMMING, METHYL DONOR SUPPLEMENTATION, AND MATERNAL CARE.txt",
+ "id": "448232de-41b9-4c26-82fc-d3e2126ad1dd"
+ },
+ {
+ "filename": "2006 - Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes.txt",
+ "id": "a67372ac-02b7-41c4-bb55-5152444c5479"
+ },
+ {
+ "filename": "2012 - Using Genome-Wide Expression Profiling to Define Gene Networks Relevant to the Study of Complex Traits From RNA Integrity to Network Topology.txt",
+ "id": "91f1c2e6-da3e-4709-ab7f-117297f1aea8"
+ },
+ {
+ "filename": "2004 - P2P-R expression is genetically coregulated with components of the translation machinery and with PUM2, a translational repressor that associates with the P2P-R mRNA.txt",
+ "id": "dee4f645-0cce-42f8-8cb5-66efb1378d82"
+ },
+ {
+ "filename": "2012 - Methods for scoring the collective effect of SNPs Minor alleles of common SNPs quantitatively affect traits diseases and are under both positive and negative selection.txt",
+ "id": "6d78d290-1edb-40aa-9bf9-a77998e47671"
+ },
+ {
+ "filename": "53b7b8006154d7cb2f4be3d20696a79d.pdf",
+ "id": "e34e7f49-66e0-4c99-8f7d-efe109589bf3"
+ },
+ {
+ "filename": "glm.pdf",
+ "id": "d74b9d37-258f-440c-afdd-cb3ed7c14f34"
+ },
+ {
+ "filename": "1989 - Amylin and the amylin gene structure, function.pdf",
+ "id": "bc76d2f5-204c-4883-84eb-371b666dc877"
+ },
+ {
+ "filename": "1992 - Normal C3b receptor (CRl) genomic polymorphism in patients.pdf",
+ "id": "db92dc6f-5349-41b3-b24f-df79e127f2f4"
+ },
+ {
+ "filename": "1992 - A Prospective Study of Exercise.pdf",
+ "id": "71446078-8694-4c94-a2aa-28369903d470"
+ },
+ {
+ "filename": "1992 - A genetic marker at the glucokinase gene locus for Type 2 (non-insulin-dependent) diabetes mellitus in Mauritian Creoles.pdf",
+ "id": "3aee857e-2d58-4b93-b8f7-dcefafc6ee6a"
+ },
+ {
+ "filename": "1978 - Obese and diabetes Two mutant genes causing diabetes-obesity syndromes in mice.pdf",
+ "id": "20771d36-aa57-46ad-b3c6-80f5b038ba43"
+ },
+ {
+ "filename": "1986 - Diabetes due to secretion of a structurally abnormal insulin.pdf",
+ "id": "da483ef5-232a-4589-af18-f01d33cc77ec"
+ },
+ {
+ "filename": "1993 - Transmission Test for Linkage Disequilibrium The Insulin Gene Region.pdf",
+ "id": "1ee7ac81-6f9e-4840-b8ca-a4a299dc4a31"
+ },
+ {
+ "filename": "1991 - Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility.pdf",
+ "id": "52b92796-0947-4d9b-aec8-791118996f78"
+ },
+ {
+ "filename": "1987 - HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus.pdf",
+ "id": "7b7f088c-9878-4631-b207-08135dcdf921"
+ },
+ {
+ "filename": "1988 - Genetic Heterogeneity, Modes of Inheritance, and Risk Estimates.pdf",
+ "id": "120e8112-ef4f-4e8a-9178-df95b8727f40"
+ },
+ {
+ "filename": "1981 - The William Allan Memorial Award Address.pdf",
+ "id": "748cfe7e-e4f2-453f-8575-50dfe84e2538"
+ },
+ {
+ "filename": "1991 - High-Resolution Linkage Mapping for Susceptibility Genes.pdf",
+ "id": "8a65c2b0-9989-4218-acdb-cc5a782b1d65"
+ },
+ {
+ "filename": "1994 - Genetic Predisposition to Diabetic Nephropathy.pdf",
+ "id": "29ac42a6-62bc-4143-aabe-d169539e7fff"
+ },
+ {
+ "filename": "1984 - A Polymorphic Locus.pdf",
+ "id": "045bb226-6aa5-42d4-b27a-b4ab640dd144"
+ },
+ {
+ "filename": "1992 - Genome-wide scanning for type 2 diabetes susceptibility in Canadian Oji-Cree, using 190 microsatellite markers.pdf",
+ "id": "fd2c4484-8a73-4297-abfe-8d5780782d3d"
+ },
+ {
+ "filename": "2004 - Diabetes Genes.pdf",
+ "id": "5c47eab4-1731-4e56-a04f-077aa6646ea9"
+ },
+ {
+ "filename": "2000 - A High Fasting Plasma Insulin Concentration.pdf",
+ "id": "ce0aa837-9615-4da1-825f-648045f65724"
+ },
+ {
+ "filename": "2007 - Genome-wide association with diabetes-related traits in the Framingham Heart Study.pdf",
+ "id": "633a55dc-244d-42e2-942b-8046b2391ef0"
+ },
+ {
+ "filename": "1998 - The Trp64Arg Polymorphism of the b 3-Adrenergic.pdf",
+ "id": "d49755ee-f825-4d61-970f-4900019a2cfe"
+ },
+ {
+ "filename": "2007 - A German genome-wide linkage scan for type 2 diabetes supports the existence of a metabolic syndrome locus on chromosome 1p36.13 and a type 2 diabetes locus on chromosome 16p12.pdf",
+ "id": "988d55c7-f831-4adb-94c0-6de4ebf4727b"
+ },
+ {
+ "filename": "2003 - Genome-wide screen in obese pedigrees with type 2 diabetes.pdf",
+ "id": "40cc7eee-9d31-4a82-83a8-bd8b160c844b"
+ },
+ {
+ "filename": "2007 - Meta-Analysis of Genome-Wide Linkage Studies.pdf",
+ "id": "3c0d6ddb-72a5-49d6-b2b7-035f116f1ebb"
+ },
+ {
+ "filename": "2001 - NFκB Polymorphisms and susceptibility to type 1 diabetes . Genes Immun 2.pdf",
+ "id": "d0af1efd-db27-42e5-b934-ed15b79484e8"
+ },
+ {
+ "filename": "2007 - Association_between_Angiotensin_Converting_Enzyme.pdf",
+ "id": "3714bf5e-c32f-4815-86bc-36b2b8d97341"
+ },
+ {
+ "filename": "2009 - Antidiabetic drug metformin (GlucophageR) increasesbiogenesis of Alzheimer’s amyloid peptides viaup-regulatingBACE1transcription.pdf",
+ "id": "9ac94855-0005-41fc-bdab-035926679476"
+ },
+ {
+ "filename": "2009 - Genetics and Genomics of Chronic Obstructive.pdf",
+ "id": "5bda696a-af28-4fe7-96c6-7b184428c59e"
+ },
+ {
+ "filename": "2009 - Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice.pdf",
+ "id": "39e48ed7-91ac-4062-b394-22606abe7e58"
+ },
+ {
+ "filename": "2005 - Genetic Analysis of HNF4A Polymorphisms in Caucasian-American Type 2 Diabetes.pdf",
+ "id": "caed4af0-165d-4ec4-b3c3-0f1eb2a56db2"
+ },
+ {
+ "filename": "2008 - Genomics and Nursing Practice Advancing the Nursing Profession.pdf",
+ "id": "069a62e0-e56a-46ab-9f93-c13a76a79989"
+ },
+ {
+ "filename": "2002 - SNP43 of CAPN10 and the Risk of Type 2 Diabetes.pdf",
+ "id": "0e30f24a-4b61-4e4e-bbbe-22b87d4946ff"
+ },
+ {
+ "filename": "2004 - Mutations in PTF1A cause pancreatic and cerebellar agenesis.pdf",
+ "id": "df7c135a-056e-4385-a49c-d33a2c56fedc"
+ },
+ {
+ "filename": "2006 - Analysis of 14 Candidate Genes for Diabetic Nephropathy.pdf",
+ "id": "f7871728-d790-4bbe-9aee-4ba40a30e5c9"
+ },
+ {
+ "filename": "2007 - Rage gene promoter polymorphisms and diabetic retinopathy in a clinic-based population from South India.pdf",
+ "id": "fbf9d32f-89e9-4687-838c-f0cc85f44184"
+ },
+ {
+ "filename": "1997 - A Prospective Study of Risk Factors for Pulmonary Embolism in Women.pdf",
+ "id": "c28536b5-703d-4b79-beee-3d38fa55d188"
+ },
+ {
+ "filename": "2007 - Two variants on chromosome 17 confer prostate cancer.pdf",
+ "id": "63b39d8d-f3cd-43b8-bb43-51c9ae039d00"
+ },
+ {
+ "filename": "2008 - MYH9 is associated with nondiabetic end-stage renal.pdf",
+ "id": "92297a96-fe67-4841-aa08-7556c4e10cf8"
+ },
+ {
+ "filename": "2005 - Pathogenesis of Type 2 Diabetes Mellitus.pdf",
+ "id": "516de7be-3cef-47ee-8338-199fb922bc6f"
+ },
+ {
+ "filename": "2008 - The Environmental Genome Project Reference Polymorphisms for Drug Metabolism Genes and Genome Wide Association Studies.pdf",
+ "id": "e9620bff-9687-4e0c-87d2-99a6138c4e11"
+ },
+ {
+ "filename": "1995- A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q.pdf",
+ "id": "84e3d477-2d6e-4d5b-9861-e53e45b5d081"
+ },
+ {
+ "filename": "2003 -Genetic epidemiology of type 1 diabetes.pdf",
+ "id": "76ae2f09-af4d-422a-b939-625f0fe4ae1c"
+ },
+ {
+ "filename": "2009 - Comparison of automated candidate gene prediction systems using genes implicated in type 2 diabetes by genome-wide association studies.pdf",
+ "id": "42083d88-b55c-47cd-bf6c-3e0ef2741177"
+ },
+ {
+ "filename": "1994 - Isolation of the Human LIMTHomeodomain Gene Islet-1.pdf",
+ "id": "1ef9a72d-b9ef-4955-a351-fca0175da3d1"
+ },
+ {
+ "filename": "2001 - A Gene Conferring Susceptibility to Type 2 Diabetes.pdf",
+ "id": "81820057-eea4-456f-ba0f-ee2021794574"
+ },
+ {
+ "filename": "2001 - A Genome Scan for Type 2 Diabetes Susceptibility Loci.pdf",
+ "id": "c8c58fdf-06e3-4da4-a920-d5bcbcd18289"
+ },
+ {
+ "filename": "1996 - A genome–wide search for human non–insulin–dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2..pdf",
+ "id": "86f71514-6d87-4a3c-9555-fd167b69effe"
+ },
+ {
+ "filename": "2004 - A Genome-Wide Scan for Type 2 Diabetes.pdf",
+ "id": "2a71b781-89fe-4055-bbb1-15aa226e1e3a"
+ },
+ {
+ "filename": "2004 - Novel Analytical Methods Applied to Type 1 Diabetes Genome-Scan Data.pdf",
+ "id": "19289b03-85fc-4e34-bbda-f0a9f1048d4c"
+ },
+ {
+ "filename": "1994 - Obesity, diabetes, and neoplasia in yellow A mice ectopic expression of the agouti gene.pdf",
+ "id": "15ecd7e9-45d5-48f7-bc0a-54f3d882fd4f"
+ },
+ {
+ "filename": "2005 - Genetic Linkage and Association of the Growth.pdf",
+ "id": "08d420b0-d726-4eba-aae6-85b288cf8fa6"
+ },
+ {
+ "filename": "2009 - Genetics of Type 1A Diabetes.pdf",
+ "id": "30d5d1de-ab8a-4b12-be3f-dd4e07d44a01"
+ },
+ {
+ "filename": "2002 - Single-nucleotide polymorphism haplotypes.pdf",
+ "id": "b8654f66-66ad-41c8-8578-b8fd00fffaec"
+ },
+ {
+ "filename": "2007 - Metabolic and genomic dissection of diabetes in the Cohen rat.pdf",
+ "id": "1dc0547a-1d61-4b27-b848-512875b52081"
+ },
+ {
+ "filename": "2009 - Opening Up the Conversation on Genetics.pdf",
+ "id": "64d87c52-1185-4080-8d06-134c32dae5fd"
+ },
+ {
+ "filename": "2002 - Clinical, Autoimmune, and Genetic.pdf",
+ "id": "c6c3ce6b-4b97-49ad-8935-b9e02c5552b5"
+ },
+ {
+ "filename": "1997 - A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus.pdf",
+ "id": "0f184e31-6a20-451f-b588-d4711d0a09ef"
+ },
+ {
+ "filename": "2009 - Association of RASGRP1 with type 1 diabetes.pdf",
+ "id": "d86525a8-0a2f-44a8-b343-61a5df8d6e68"
+ },
+ {
+ "filename": "2004 - Diabetes Mellitus and Risk of Alzheimer Disease and Decline in Cognitive Function.pdf",
+ "id": "71172700-7bcc-42f5-9354-d8e9290e8743"
+ },
+ {
+ "filename": "2008 - The impact of genetics and genomics on public health.pdf",
+ "id": "9e513fea-5257-4887-9802-57d416f21dfc"
+ },
+ {
+ "filename": "2009 - Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A.pdf",
+ "id": "ce87fc4c-0457-4e29-beb4-1c195e693cd1"
+ },
+ {
+ "filename": "2008 - Mechanisms of Disease genetic insights into the etiology of type 2 diabetes and obesity.pdf",
+ "id": "c2e5d067-1f15-4f4e-8df5-19149e7ef22d"
+ },
+ {
+ "filename": "2001 - Sequence and Functional Analysis of GLUT10 A Glucose Transporter.pdf",
+ "id": "278f8817-052c-4788-9687-d56c984cc516"
+ },
+ {
+ "filename": "1998 - Type II Diabetes, Essential Hypertension, and Obesity as Syndromes of Impaired Genetic Homeostasis The Thrifty Genotype Hypothesis Enters the 21st Century.pdf",
+ "id": "44cfaebc-d9de-4d25-8991-4b17d524ac6e"
+ },
+ {
+ "filename": "2007 - Bioethnic Conscription Genes, Race.pdf",
+ "id": "789097da-e961-4486-8c83-816626556b16"
+ },
+ {
+ "filename": "2005 - Pathway analysis of coronary atherosclerosis.pdf",
+ "id": "1b30ced3-9d09-4d3f-b46c-e67bf162c7a9"
+ },
+ {
+ "filename": "2007 - A genome-wide association study identifies KIAA0350.pdf",
+ "id": "9240ab9b-c5bb-4475-ad2b-111843cb146a"
+ },
+ {
+ "filename": "2008 - Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes.pdf",
+ "id": "fa72cb33-e1e4-49ea-a72e-dd851225ee0b"
+ },
+ {
+ "filename": "2000 - Allele-Specific Regulation of Matrix Metalloproteinase-12 Gene Activity Is Associated With Coronary Artery Luminal Dimensions in Diabetic Patients With Manifest Coronary Artery Disease.pdf",
+ "id": "e9f3797e-89be-4c0a-b1dd-8b514779b324"
+ },
+ {
+ "filename": "2007 - Recent development in pharmacogenomics from candidate genes to genome-wide association studies.pdf",
+ "id": "ad90e0ba-7691-4d64-a64f-2416b2bd4eb0"
+ },
+ {
+ "filename": "2003 - Genomic Priorities and Public Health.pdf",
+ "id": "c3afd314-f28a-4eca-9dee-43fe60b00b7a"
+ },
+ {
+ "filename": "2007 - Genome-wide search for susceptibility genes to type 2.pdf",
+ "id": "095b38c7-b0a8-4311-9f87-b506d90bd2a4"
+ },
+ {
+ "filename": "2007 -Sideways Glance Genome wide association studies for type 2 diabetes mellitus.pdf",
+ "id": "fcf8fb37-20cf-491c-96f8-04a5621812a2"
+ },
+ {
+ "filename": "2004 - A New Look at Viruses in Type 1 Diabetes.pdf",
+ "id": "d23dc03c-7abf-41bf-adb7-9c67af0d5a84"
+ },
+ {
+ "filename": "2005 - Genetic and genomic systems to study methylmalonic acidemia.pdf",
+ "id": "3238f205-367c-40ce-9ebf-8c46bc48ed7a"
+ },
+ {
+ "filename": "2000 - Analysis of Parent-Offspring Trios Provides Evidence for Linkage.pdf",
+ "id": "1396203b-cc03-475e-85ea-070e167d6ddd"
+ },
+ {
+ "filename": "2009 - Pathomechanisms of Type 2 Diabetes Genes.pdf",
+ "id": "3c35547c-eb9b-470d-b74b-0f9a0529e965"
+ },
+ {
+ "filename": "2007 - Coxsackie B4 virus infection of cells and naturalkiller cell insulitis in recent onset type 1diabetic patients.pdf",
+ "id": "3c6f1f18-bd43-4dfe-87dc-e3b14e8bd9e7"
+ },
+ {
+ "filename": "2008 - Glossary of Genetics Genomics Terms.pdf",
+ "id": "ce63119a-9a7b-4946-b1f5-bc8bfc4c10da"
+ },
+ {
+ "filename": "2008 - Common variants near MC4R are associated with fat mass, weight and risk of obesity..pdf",
+ "id": "e4a230f1-71f7-43da-a20c-6cd1fe3992ef"
+ },
+ {
+ "filename": "2010 - A Genome-Wide Association Study Identifies.pdf",
+ "id": "8857153e-a7be-45ee-84dd-14911bdd064a"
+ },
+ {
+ "filename": "2007 - Metabolic and genomic dissection of diabetes.pdf",
+ "id": "286480ca-0d7f-4a93-952b-2cf57292104d"
+ },
+ {
+ "filename": "2001 - Functional genomic studies of aldo–keto reductases.pdf",
+ "id": "e8018d14-937c-482b-b8ad-9a482abc418a"
+ },
+ {
+ "filename": "2008 - Meta-Analysis Approach identifies Candidate Genes and associated Molecular Networks for Type-2 Diabetes Mellitus.pdf",
+ "id": "1a93e25f-2a43-49e9-8450-03a57c93e613"
+ },
+ {
+ "filename": "2009 - Basic Genetics and Genomics A Primer for Nurses.pdf",
+ "id": "f051ad23-572d-4302-8dda-4d992aeaeb1a"
+ },
+ {
+ "filename": "1994 - Prevention of insulitis and diabetes in Β2-microglobulin-deficjent non-obese diabetic mice.pdf",
+ "id": "af80affc-1032-4f72-928c-9502f1a1f5a2"
+ },
+ {
+ "filename": "2002 - The search for type 2 diabetes susceptibility.pdf",
+ "id": "7432c2b7-6d20-4689-a12e-689211b3aa5a"
+ },
+ {
+ "filename": "1999 - Characterisation of the Human Central MHC Gene.pdf",
+ "id": "607a732d-9878-44b6-93ab-bcffe4284128"
+ },
+ {
+ "filename": "2009 - Confirmation of Multiple Risk Loci and Genetic Impacts.pdf",
+ "id": "c77080f3-5fb8-4f3c-89f9-cabd3fd2bce1"
+ },
+ {
+ "filename": "2004 - Polymorphisms of chemokine and chemokine receptor genes.pdf",
+ "id": "42cc2118-f5b7-415e-9a42-212b80b0a3db"
+ },
+ {
+ "filename": "2003 - Genomic Strategies for Diabetic Nephropathy.pdf",
+ "id": "c24330f7-9f82-404a-86d5-a16d814bb754"
+ },
+ {
+ "filename": "2007 - A genome-wide association study identifies novel risk loci.pdf",
+ "id": "e7adf506-2ecb-4228-9f9f-7f48d915e6ac"
+ },
+ {
+ "filename": "2007 - Relation of Diabetes to Mild Cognitive Impairment.pdf",
+ "id": "756b902b-cbc7-40e8-84a5-9372221d83a4"
+ },
+ {
+ "filename": "2010 - Comparative genetic analysis of inflammatory.pdf",
+ "id": "fece3616-2040-421d-9eae-1f6d8f71a871"
+ },
+ {
+ "filename": "1997 - Association of diabetic neuropathy with NaK ATPase gene polymorphism.pdf",
+ "id": "26a0247f-2c9a-4b7f-8a80-0b60721b69d5"
+ },
+ {
+ "filename": "2006 - Genetic and Genomic Analysis of a Fat Mass.pdf",
+ "id": "e5f11232-0e76-4f32-86e8-5a5613feed39"
+ },
+ {
+ "filename": "2001 - The N363S Polymorphism of the Glucocorticoid.pdf",
+ "id": "5a0bacfb-2d17-4c5b-be8c-4a998b07626e"
+ },
+ {
+ "filename": "2008 - Type 2 diabetes new genes, new understanding.pdf",
+ "id": "5782c1a9-6ab1-4c66-b1e6-116ac6a0e50b"
+ },
+ {
+ "filename": "2005 - Peroxisome proliferator-activated receptor g.pdf",
+ "id": "4252d7ad-82de-480c-a801-9ed1c84fb968"
+ },
+ {
+ "filename": "2009 - Genome-Wide Linkage Scan in Gullah-Speaking African American Families.pdf",
+ "id": "959e73bd-ac3b-437d-91b5-619b9d45aaca"
+ },
+ {
+ "filename": "1996 - Association of Elevated Serum Lipid Levels With Retinal Hard Exudate in Diabetic Retinopathy.pdf",
+ "id": "bad37687-51d8-4a3d-93f1-3a3e78e901e4"
+ },
+ {
+ "filename": "2002 - Ethnic Disparities in Diabetic Complications in an Insured Population.pdf",
+ "id": "0892f235-d77f-4739-8156-dfc0ad0e6dc6"
+ },
+ {
+ "filename": "2008 - Fetuin-A and Incident Diabetes Mellitus.pdf",
+ "id": "1a3856b6-260b-4980-b5be-548b6a0f556a"
+ },
+ {
+ "filename": "2002 - Genetic Effects on Age-Dependent Onset and Islet Cell.pdf",
+ "id": "0f0c3b9e-4f25-4ed3-8fa1-77830bd51e96"
+ },
+ {
+ "filename": "1994 - The Wisconsin Epidemiologic Study of Diabetic Retinopathy.pdf",
+ "id": "632a479d-470e-487c-aec9-2224ac78f19c"
+ },
+ {
+ "filename": "2008 - HLA DR-DQ Haplotypes and Genotypes and Type 1.pdf",
+ "id": "2eba20bf-94fe-4dd1-bed4-ade71dacd0d0"
+ },
+ {
+ "filename": "2008 - Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus.pdf",
+ "id": "cc72b0db-be79-4210-b111-bf01b07fd239"
+ },
+ {
+ "filename": "2006 - Isomers of the TCF1 gene encoding hepatocyte.pdf",
+ "id": "dfdd2573-3dba-45bb-9606-aa28f0405c99"
+ },
+ {
+ "filename": "2007 - Relevance of Genetics and Genomics for Prevention and Treatment of Cardiovascular Disease.pdf",
+ "id": "cbc03a11-fe9c-4b54-b290-bd24c1447607"
+ },
+ {
+ "filename": "2003 - Haplotypes and the systematic analysis of genetic variation in genes and genomes.pdf",
+ "id": "d9936dc6-ff6e-47a1-b89c-0138526ede6f"
+ },
+ {
+ "filename": "1999 - Clinical and Genetic Characteristics of Type 2.pdf",
+ "id": "45a402da-a0f1-4b64-b231-eb928486067a"
+ },
+ {
+ "filename": "2004 - A genome scan for diabetic nephropathy in African Americans.pdf",
+ "id": "246423cf-361d-4d78-8471-81869b5fe7bc"
+ },
+ {
+ "filename": "2002 - Variation in Three Single Nucleotide Polymorphisms.pdf",
+ "id": "43a455aa-e353-43ad-afc2-c6e0caaf180c"
+ },
+ {
+ "filename": "2009 - Centralized Biorepositories for Genetic.pdf",
+ "id": "b694f2dc-cee2-4eb7-b779-be963714486c"
+ },
+ {
+ "filename": "2004 - Errand Gabpab specify PGC1dependentoxidative phosphorylation gene expressionthat is altered in diabetic muscle.pdf",
+ "id": "c8c559fc-0472-4b17-99ed-0d2ea27f37ac"
+ },
+ {
+ "filename": "2000 - Congenic Mapping of the Type 1 Diabetes Locus.pdf",
+ "id": "ed1a5572-124a-4824-8b9c-5a540e5d6092"
+ },
+ {
+ "filename": "2007 - Designing candidate gene and genome-wide case–control association studies.pdf",
+ "id": "0975edbc-0f57-495e-bc6d-f214e2d354d7"
+ },
+ {
+ "filename": "2001 - Genetic Analysis of a New Mouse Model for Non-InsulinDependent Diabetes.pdf",
+ "id": "1bf337a1-ffed-4199-a11f-c5a62df47980"
+ },
+ {
+ "filename": "2005 - Genetics and genomics of Drosophilamating behavior.pdf",
+ "id": "2115ca11-44ee-4043-96ce-5347aba23a2d"
+ },
+ {
+ "filename": "2007 - Genotyping OLR1 Gene A Genomic Biomarker for Cardiovascular Diseases.pdf",
+ "id": "220633f9-c069-4085-a424-ef49dc9fa889"
+ },
+ {
+ "filename": "2001 - The genetics of atopic dermatitis Strategies, candidate genes, and genome screens.pdf",
+ "id": "2420b221-94fa-40ac-8bfd-55e90d7c1c23"
+ },
+ {
+ "filename": "2007 - Multiple type 2 diabetes susceptibility genes following genome-wide association scan in UK samples.pdf",
+ "id": "b29b3621-cdb5-4723-b771-8b48546241a5"
+ },
+ {
+ "filename": "1996 - IDDM2-VNTR-encoded Susceptibility to Type 1 Diabetes.pdf",
+ "id": "70667239-7e12-494f-a6dd-5b1d073b5a56"
+ },
+ {
+ "filename": "2009 - Genome-wide association studies in type 1 diabetes, inflammatory bowel disease.pdf",
+ "id": "0bcb68e6-4da3-457c-a68c-981b14d1ded8"
+ },
+ {
+ "filename": "2010 - A Genome-Wide Association Study of Treated A1C.pdf",
+ "id": "cacb086c-b42f-4cef-b4a2-4720a86fc6b5"
+ },
+ {
+ "filename": "2008 - Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes.pdf",
+ "id": "1c2f4eb9-5880-418a-be08-4c33ec3a8889"
+ },
+ {
+ "filename": "2005 - Realizing the Promise of Genomics.pdf",
+ "id": "f8be7949-8fa0-4730-9143-caa6161bf463"
+ },
+ {
+ "filename": "2004 - Significant Association of the Interleukin-6 Gene.pdf",
+ "id": "0c892795-2bbf-4305-a7fb-e86b54f0d6df"
+ },
+ {
+ "filename": "2008 - Study Design and Statistical Issues.pdf",
+ "id": "5dbfad5b-73a3-4843-a230-1071adb296c4"
+ },
+ {
+ "filename": "2007 - A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease.pdf",
+ "id": "f9a2ab0b-4c01-4eae-97a2-e25fea69e1d5"
+ },
+ {
+ "filename": "2007 - Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes.pdf",
+ "id": "a49c4251-7a66-44f1-9f95-0d6e8191a2ad"
+ },
+ {
+ "filename": "2002 - Genetic Variation in the Gene Encoding Adiponectin.pdf",
+ "id": "502cf764-8684-4949-bb2c-f68ba5a65a30"
+ },
+ {
+ "filename": "2007 - Network-Based Analysis.pdf",
+ "id": "21368075-9e10-4260-b346-43b1029b3bf0"
+ },
+ {
+ "filename": "2001 - Genetics and genomics in infectious disease susceptibility.pdf",
+ "id": "7ddaf43c-ab9f-4ecc-9754-b7deb57fec2f"
+ },
+ {
+ "filename": "2010 - A recombination hotspot leads to sequence variability.pdf",
+ "id": "a551b815-1d9d-4dae-a194-8f77e317b506"
+ },
+ {
+ "filename": "2007 - A strategy to search for common obesity.pdf",
+ "id": "3ce10e4a-3ddc-4c7c-8897-84285ccfeedc"
+ },
+ {
+ "filename": "2001 - The genetics of type 2 diabetes.pdf",
+ "id": "5293f814-f4a7-48e0-b4e5-b1f13fdc8516"
+ },
+ {
+ "filename": "2003 - Large-Scale Association Studies of Variants in Genes.pdf",
+ "id": "ac1a803b-c559-430e-bc2c-acca9322e1fb"
+ },
+ {
+ "filename": "1999 - Gender-influenced obesity QTLs identified in a cross involving the KK type II diabetes-prone mouse strain.pdf",
+ "id": "8e92b2e3-b525-4c17-a0cb-5ca740a74c66"
+ },
+ {
+ "filename": "2007 - Glutathione S-transferase gene polymorphisms in Turkish patients with diabetes mellitus.pdf",
+ "id": "71627375-4ac8-491e-b83b-33c7d0e02572"
+ },
+ {
+ "filename": "2004 - A genomic perspective on protein tyrosine.pdf",
+ "id": "53ec015a-a33b-410f-a218-6d728814ded6"
+ },
+ {
+ "filename": "1996 - Long-term Renoprotective Effect of Angiotensin-converting Enzyme Inhibition.pdf",
+ "id": "f4a4466a-e930-472e-9d29-990cd6fe7e80"
+ },
+ {
+ "filename": "2009 - Cis-regulatory mutations in human disease.pdf",
+ "id": "725a5276-7b03-4784-a13e-53b146cd4339"
+ },
+ {
+ "filename": "2009 - Rare Variants of IFIH1, a Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes.pdf",
+ "id": "23509967-f787-4862-afce-bc8475f2d814"
+ },
+ {
+ "filename": "2008 - Variations in DNA elucidate molecular networks that cause disease.pdf",
+ "id": "d2441db2-4e0a-4119-aed9-1e275ddc7f9b"
+ },
+ {
+ "filename": "2008 - PPARGC1A Variation Associated With DNA Damage.pdf",
+ "id": "d9df6ce7-31a9-4041-bff4-e9624815b61a"
+ },
+ {
+ "filename": "1997 - Development of non-insulin-dependent diabetes mellitus.pdf",
+ "id": "a899062a-0d65-409c-8286-4f328b8a80e8"
+ },
+ {
+ "filename": "2009 - Expanded Clinical Spectrum in Hepatocyte Nuclear Factor 1B-Maturity-Onset Diabetes of the Young.pdf",
+ "id": "1100af5f-d164-48f2-99de-b79d2c047ee6"
+ },
+ {
+ "filename": "2003 - A Genome-Wide Scan in Families With Maturity-Onset.pdf",
+ "id": "94a3eddb-6151-4319-b83a-6a0cfa8d1e49"
+ },
+ {
+ "filename": "2006 - Molecular pathogenesis of thyroid cancer the significance.pdf",
+ "id": "e4eca0fc-d0bc-45fa-87e6-4958ebdf66f0"
+ },
+ {
+ "filename": "2007 - Future Use of Genomics in Coronary Artery Disease.pdf",
+ "id": "7bd7a98f-955a-4988-8981-a0ff7ab6f7df"
+ },
+ {
+ "filename": "2005 - Genome-Wide Association Studies for Common Diseases and Complex Traits.pdf",
+ "id": "915ee14c-df93-4482-966a-fbf3db2c11ea"
+ },
+ {
+ "filename": "2005 - The Common Polymorphisms (Single Nucleotide Polymorphism).pdf",
+ "id": "81222665-0c3d-4088-b8d9-b26757be47b8"
+ },
+ {
+ "filename": "2009 - Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes.pdf",
+ "id": "33c5de8c-7efc-41df-a540-22729d8b7d2c"
+ },
+ {
+ "filename": "2008 - A Common Nonsynonymous Single Nucleotide.pdf",
+ "id": "409b0b92-0a89-4a16-88d9-638af0f56b4e"
+ },
+ {
+ "filename": "2008 - High-Density Single Nucleotide Polymorphism.pdf",
+ "id": "8a865bb9-a5fc-4023-9f54-2cc2863b73a6"
+ },
+ {
+ "filename": "2005 - Animal models of diabetes mellitus.pdf",
+ "id": "b954224b-333b-4d82-bb9a-6e5b3837849e"
+ },
+ {
+ "filename": "2004 - From genetic to genomic and to functional genomic. Goals and future perspective.pdf",
+ "id": "63dbf93c-9471-419a-a495-5f78788bd6aa"
+ },
+ {
+ "filename": "2008 - Genetic and Genomic Discovery Using Family Studies.pdf",
+ "id": "25622783-ac42-479d-8698-905a7523c38a"
+ },
+ {
+ "filename": "2007 - A variant in CDKAL1 influences insulin response and risk of type 2 diabetes.pdf",
+ "id": "7e259094-bd70-4d68-b8a1-0a3d051cb31e"
+ },
+ {
+ "filename": "1997 - Dietary Fiber, Glycemic Load, and Risk of Non—insulin-dependent Diabetes Mellitus in Women.pdf",
+ "id": "bdbd69ca-05b3-4262-8978-e55f07ab4797"
+ },
+ {
+ "filename": "2001 - Uncoupling proteins functional characteristics and role in the pathogenesis of obesity and Type II diabetes.pdf",
+ "id": "fc48c27f-fef0-4234-9593-40075be9f458"
+ },
+ {
+ "filename": "2003 - Mouse Phenome Project understanding human biology.pdf",
+ "id": "74f148ef-696c-4e25-80e5-1d44ae70540e"
+ },
+ {
+ "filename": "2008 - Genetic and Genomic Healthcare Ethical Issues of Importance to Nurses.pdf",
+ "id": "56cf7be3-8c73-498d-b48f-8d99592b0213"
+ },
+ {
+ "filename": "2005 - Association Between Common Polymorphisms.pdf",
+ "id": "ade69bf7-115a-4c1c-b75b-4761351a9c5c"
+ },
+ {
+ "filename": "2008 - Implication of Genetic Variants Near TCF7L2, SLC30A8,.pdf",
+ "id": "b978a189-6fbd-4791-8072-7db79f43746a"
+ },
+ {
+ "filename": "2005 - Genome-Wide Linkage Analyses of Type 2 Diabetes.pdf",
+ "id": "58e02e44-b79f-498f-8199-ac2cd511b7fd"
+ },
+ {
+ "filename": "2009 - Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity.pdf",
+ "id": "0e80507d-f408-4836-b7e1-d8b12b6a3182"
+ },
+ {
+ "filename": "1999 - Genome-wide scanning for type 2 diabetes susceptibility in Canadian Oji-Cree, using 190 microsatellite markers.pdf",
+ "id": "0391ea68-e68c-4e0a-95b2-4498f46bc5d9"
+ },
+ {
+ "filename": "2007 - Robust associations of four new chromosome regions.pdf",
+ "id": "82fcaf77-adf7-47f4-8ebd-6b7a9df8d73e"
+ },
+ {
+ "filename": "1995 - Identification of a new susceptibility locus for insulin-dependent diabetes mellitus.pdf",
+ "id": "a336cce3-cd6a-4a9d-99da-4e4eda9a5363"
+ },
+ {
+ "filename": "2004 - A reverse genetic approach for generating gene replacement mutants in Ustilago maydis.pdf",
+ "id": "ab37ae93-c6dd-41a2-a9d0-35666249c057"
+ },
+ {
+ "filename": "2001 - Genomic variation in pancreatic ion channel genes in Japanese type 2 diabetic patients.pdf",
+ "id": "8aee60c9-9bb4-4867-96c9-830c1e43c72e"
+ },
+ {
+ "filename": "2009 - Common Genetic Variation Near Melatonin Receptor.pdf",
+ "id": "d74380fc-c045-4d3e-bd50-390d3cee15a4"
+ },
+ {
+ "filename": "2005 - Type 2 diabetes mellitus from genes to disease.pdf",
+ "id": "15524ac0-da3c-4c01-8ae2-1b8c901105ad"
+ },
+ {
+ "filename": "2009 - Follow-Up Analysis of Genome-Wide Association Data.pdf",
+ "id": "3bd9d1c6-6b4b-42dc-915a-b3323f1fb98a"
+ },
+ {
+ "filename": "2007 - Genetic studies of diabetes following the advent of the genome-wide association study where do we go from here.pdf",
+ "id": "16b435dd-720c-4f59-ab34-b1b8b28b74e3"
+ },
+ {
+ "filename": "2000 - Genetic variation in the gene encoding.pdf",
+ "id": "afb0bd31-df62-4a8d-8c20-9841e2d2dc4a"
+ },
+ {
+ "filename": "2008 - Public Health Genomics Approach to Type 2 Diabetes.pdf",
+ "id": "e9b48e14-aa0c-4331-a17d-82a7f424233c"
+ },
+ {
+ "filename": "2008 - Cardiovascular Genetic Medicine Genomic Assessment of Prognosis and Diagnosis in Patients with Cardiomyopathy and Heart Failure.pdf",
+ "id": "32e8633c-a660-4bbf-8a54-2dfc4d826283"
+ },
+ {
+ "filename": "2007 - Identification of PVT1 as a Candidate Gene for End-Stage.pdf",
+ "id": "32aeff1a-b64b-47cf-a5a1-2d5ca91c1190"
+ },
+ {
+ "filename": "2002 - Genetic linkage and association studies of Type I diabetes challenges and rewards.pdf",
+ "id": "977994e6-80dc-4b82-9bb1-4a89455cd4da"
+ },
+ {
+ "filename": "1996 - Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3)..pdf",
+ "id": "d2856682-f650-4613-9637-d9716fa77550"
+ },
+ {
+ "filename": "2008 - Zinc Transporter-8 Gene (SLC30A8) Is Associated.pdf",
+ "id": "05698181-fa43-4a80-9018-7ef494577c35"
+ },
+ {
+ "filename": "2004 - From genetic to genomic and to functional genomic.pdf",
+ "id": "8bc85643-2c03-464e-9c5a-d3017dabb5b3"
+ },
+ {
+ "filename": "2007 - New models of collaboration in genome-wide association studies the Genetic Association Information Network.pdf",
+ "id": "0999dbed-9588-479c-b620-6baae84312dd"
+ },
+ {
+ "filename": "2006 - Polymorphisms in the Ghrelin Gene Are Associated with Serum High-Density Lipoprotein.pdf",
+ "id": "803a6865-d2af-408c-8ae7-d31e820639b2"
+ },
+ {
+ "filename": "2012 - Effect of Genome-Wide Genotyping and Reference Panels on Rare Variants Imputation.pdf",
+ "id": "1f309305-e804-40c0-91ed-9203e4b798c5"
+ },
+ {
+ "filename": "1995 - Linkage disequilibrium mapping of a type 1 diabetes susceptibility gene (IDDM7) to chromosome 2q31–q33.pdf",
+ "id": "0d3d0b67-148d-4df2-8bd9-e89c3a726ec0"
+ },
+ {
+ "filename": "2014 - Potential epigenetic dysregulation of genes associated.pdf",
+ "id": "e51e88b2-bea3-4ab7-858f-824f7d5ccbdd"
+ },
+ {
+ "filename": "2008 - Genetics and Genomics for Clinicians.pdf",
+ "id": "be3e9fcb-5469-48eb-bc1b-118e58f82cc5"
+ },
+ {
+ "filename": "2001 - Vitamin D receptor initiation codon polymorphism influences genetic susceptibility to type 1 diabetes mellitus in the Japanese population.pdf",
+ "id": "5ab4c77b-f156-4c78-aada-3e67abed8f64"
+ },
+ {
+ "filename": "2009 - Common Genetic Variation and Human Traits.pdf",
+ "id": "e17ef791-e77a-486b-a3c1-c7f037fa530c"
+ },
+ {
+ "filename": "2003 - Novel Methods for Multivariate Ordinal Data.pdf",
+ "id": "95093ef0-72c4-4085-88b3-29cf999f83a3"
+ },
+ {
+ "filename": "1999 - Linkage of Type 2 Diabetes Mellitus and of Age at Onset to a Genetic Location.pdf",
+ "id": "994ec7c3-b729-4868-a015-36f1fc4fc19e"
+ },
+ {
+ "filename": "2007 - SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population.pdf",
+ "id": "fdc9783f-ddfd-49eb-bd93-970ee7479472"
+ },
+ {
+ "filename": "2006 - Quantitative Trait Loci on Chromosome 8q24.pdf",
+ "id": "4d461731-b45b-468c-9bf6-b5f0503b0b78"
+ },
+ {
+ "filename": "2001 - Glucose Tolerance and Cardiovascular Mortality.pdf",
+ "id": "7a8d7859-d7f3-4f05-8966-ecb7ab6e64d5"
+ },
+ {
+ "filename": "2007 - Genetics and Genomics of Hepatic Acute Phase Reactants A Mini-Review.pdf",
+ "id": "f5adaa9e-24e6-4633-8d92-ad98e19d318f"
+ },
+ {
+ "filename": "2009 - SLC29A3 gene is mutated in pigmented hypertrichosis.pdf",
+ "id": "647571cd-ff36-4be4-97c4-cd006d9bfbaf"
+ },
+ {
+ "filename": "2002 - Genome-Wide Search for Type 2 Diabetes in Japanese.pdf",
+ "id": "0c15fb57-68e0-4242-964f-6165eb23dbce"
+ },
+ {
+ "filename": "2007 - Integrating Genetic, Functional Genomic, and Bioinformatics Data in a Systems Biology Approach to Complex Diseases Application to Schizophrenia.pdf",
+ "id": "9c6768d5-8c46-4a60-8cae-9be25ad5cbcc"
+ },
+ {
+ "filename": "1997 - Hypothalamic_expression_of_ART_a_novel_gene.pdf",
+ "id": "9aaab43e-8e34-47b8-9175-7a321d9b79b1"
+ },
+ {
+ "filename": "2006 - A Strong Dose-Response Relation.pdf",
+ "id": "24f2fce1-0491-4b45-9a05-72ad6280c6ac"
+ },
+ {
+ "filename": "2005 - Cardiorespiratory Fitness and Body Mass Index.pdf",
+ "id": "1da4ca81-cc55-4507-8b55-08263e25901c"
+ },
+ {
+ "filename": "2008- Association of Insertion Deletion Polymorphism of Angiotensin Converting Enzyme Gene.pdf",
+ "id": "833f89fa-ec58-4670-8f3b-8f5eb486a5bf"
+ },
+ {
+ "filename": "2009 - Genomic and personalized medicine foundations.pdf",
+ "id": "cf8565cf-bb54-40c4-9dd9-4467f9ec9842"
+ },
+ {
+ "filename": "2009 - From Disease Association to Risk Assessment.pdf",
+ "id": "d7ae1883-9ba5-4933-bdcb-98c63bebd517"
+ },
+ {
+ "filename": "2008 - Centralized Biorepositories for Genetic.pdf",
+ "id": "9c6097d3-f47f-419e-810f-99775e92a644"
+ },
+ {
+ "filename": "2004 - Functional Variants in the Glutathione Peroxidase-1.pdf",
+ "id": "0a960401-f382-47c7-8dc5-c38a85b9d7e1"
+ },
+ {
+ "filename": "2007 - Adipocyte Death, Adipose Tissue Remodeling.pdf",
+ "id": "5c8c5649-dbaa-43cb-a8ce-7d3bc6458a38"
+ },
+ {
+ "filename": "2007 - Pharmacogenetics of metformin response a step in the path toward personalized medicine.pdf",
+ "id": "063a0254-1d1b-4caa-b782-6a1fe4ebca0d"
+ },
+ {
+ "filename": "2005 - Genome-wide linkage scans for prediabetes phenotypes in response to 20 weeks of endurance exercise training in non-diabetic whites and blacks_ the Heritage Family Study.pdf",
+ "id": "bbfe03a8-70a8-43b5-b47d-24e1dc227e6d"
+ },
+ {
+ "filename": "1996 - Phenotypes of Mouse diabetes and Rat fatty Due to Mutations in the OB (Leptin) Receptor.pdf",
+ "id": "14543634-0dd8-4086-a5d4-ef577c37a7e3"
+ },
+ {
+ "filename": "2003 - Association of the CTLA-4 Gene 49 AG.pdf",
+ "id": "cab903b3-3e07-48e1-be92-7f3093c979d5"
+ },
+ {
+ "filename": "2009 - Metabolomics Applied to Diabetes Research.pdf",
+ "id": "d6f6642c-77f3-4e8a-9aea-ca0c8d9b91ea"
+ },
+ {
+ "filename": "2007 - Animal_models_in_type_2_diabetes_research_.pdf",
+ "id": "8cb13eb6-a9b9-4f9f-8680-9b8add1c453d"
+ },
+ {
+ "filename": "2002 - Approaches to understanding susceptibility to nephropathy From genetics to genomics.pdf",
+ "id": "9d80d3cf-802e-4a58-966f-9e3fcea78701"
+ },
+ {
+ "filename": "2002 - Genomic Medicine - A Primer.pdf",
+ "id": "4ba4d5e0-cb28-433d-8e9f-b09779e9d429"
+ },
+ {
+ "filename": "2008 - Clinical Risk Factors, DNA Variants.pdf",
+ "id": "80500e0d-0e39-4e46-bb60-8721f4f512c0"
+ },
+ {
+ "filename": "1996 - The Progression From Hypertension.pdf",
+ "id": "ff257789-521e-4ae9-aafd-a97552367e94"
+ },
+ {
+ "filename": "1995 - Neurodegeneration and diabetes UK nationwide study of Wolfram syndrome.pdf",
+ "id": "e9daf364-3630-4006-bc05-e7e9f462d520"
+ },
+ {
+ "filename": "1999 - Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus.pdf",
+ "id": "ee6e646f-d094-4f0a-ba05-b3718e3eed23"
+ },
+ {
+ "filename": "2003 - PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.pdf",
+ "id": "00da4d7c-879c-47f8-8648-89b2fdb19eda"
+ },
+ {
+ "filename": "2008 - Shared and Distinct Genetic Variants in Type 1 Diabetes.pdf",
+ "id": "29963974-dd15-46c5-9f83-9b21c962f64b"
+ },
+ {
+ "filename": "2007 - Genetics and genomics in human lung transplantation.pdf",
+ "id": "4087c38a-430e-4d37-ae26-7f033fd959da"
+ },
+ {
+ "filename": "2009 - Signals of recent positive selection in a worldwide sample of human populations.pdf",
+ "id": "daf27289-f337-40ee-ab3f-8e1f63de8fa7"
+ },
+ {
+ "filename": "2009 - From Genetics to Genomics Ethics, Policy, and Parental.pdf",
+ "id": "782103fd-2cb6-44c8-9b39-d82430d335c9"
+ },
+ {
+ "filename": "2005 - Genomics research in the UK—the social science agenda.pdf",
+ "id": "9a093914-e3b6-408a-b50f-f2482b7c91af"
+ },
+ {
+ "filename": "2009 - Common Variants of Inflammatory Cytokine Genes.pdf",
+ "id": "e8dd8ca2-6fab-4acd-9b29-4e8583365d6d"
+ },
+ {
+ "filename": "1997 - Molecular Scanning of the Human Peroxisome.pdf",
+ "id": "51ded444-c5f9-4e0c-a443-3b0be9d908cf"
+ },
+ {
+ "filename": "2003 - Coordinated reduction of genes of oxidativemetabolism in humans with insulin resistanceand diabetes Potential role ofPGC1andNRF1.pdf",
+ "id": "e92427da-dee9-472f-bfa1-2e7bfa7de521"
+ },
+ {
+ "filename": "2006 - SORBS1 gene, a new candidate for diabetic nephropathy results from a multi-stage genome-wide association study in patients with type 1 diabetes.pdf",
+ "id": "b79b620c-6e2d-480b-8aba-523c94651a87"
+ },
+ {
+ "filename": "2007 - Successful design and conduct of genome-wide association studies.pdf",
+ "id": "5a5fd793-4518-4cac-9ae3-8372f824c51f"
+ },
+ {
+ "filename": "2007 - Integrative analysis for finding genes and networks involved in diabetes and other complex diseases.pdf",
+ "id": "68a3fa63-c9f3-4ca1-a3fa-0b588dd5496e"
+ },
+ {
+ "filename": "2005 - Conditioning the genome identifies additional diabetes resistance loci in Type I diabetes resistant NORLt mice..pdf",
+ "id": "d9122700-a177-4c13-b14e-c7f3e9899511"
+ },
+ {
+ "filename": "2008 - Inflammation, Insulin Resistance and Diabetes.pdf",
+ "id": "5e8e975c-0d05-4ae4-8787-0edad28bc965"
+ },
+ {
+ "filename": "2007 - Physical activity modifies the effect of SNPs in the SLC2A2 (GLUT2).pdf",
+ "id": "7355ea4d-8c2b-454d-96d0-527645046e1e"
+ },
+ {
+ "filename": "2009 - A variant near MTNR1B is associated with increased fasting plasma glucose levels.pdf",
+ "id": "3cd881a9-3e3d-4e50-85fc-599efbc14efd"
+ },
+ {
+ "filename": "2004 - Adiponectin Gene Polymorphisms and Adiponectin Levels are Independently Associated with the development f hyperglycemia.pdf",
+ "id": "ad3321fb-1f4c-421a-be73-649447338db0"
+ },
+ {
+ "filename": "2008 - Genetics and Genomics of Primary Biliary Cirrhosis.pdf",
+ "id": "bd1ca72f-cd18-4926-b270-97c7c81b0094"
+ },
+ {
+ "filename": "2000 - Pathophysiology and Pharmacological Treatment.pdf",
+ "id": "5f35d266-6ac5-4531-9fcf-ef663d5b2991"
+ },
+ {
+ "filename": "2001 - Hypoadiponectinemia in Obesity and Type 2 Diabetes.pdf",
+ "id": "1031c02c-61fe-4b06-a64d-770507d9714b"
+ },
+ {
+ "filename": "2007 - Genome-Wide Association Analysis Identifies Loci for Type 2.pdf",
+ "id": "f3b925cc-2556-4f30-809b-6bfe63a805b8"
+ },
+ {
+ "filename": "2000 - The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes.pdf",
+ "id": "ee5128ff-94e6-4aa5-9369-58ec05692de0"
+ },
+ {
+ "filename": "2003 - Fibrinogen Is a Marker for Nephropathy.pdf",
+ "id": "867d7697-f9ef-42c5-bf35-c841b5a67cce"
+ },
+ {
+ "filename": "1998 - An Autosomal Genomic Scan for Loci Linked to Type II Diabetes Mellitus.pdf",
+ "id": "25470a2a-c435-4618-b109-c1b7f007025a"
+ },
+ {
+ "filename": "2004 - Association of Protein Tyrosine Phosphatase 1B Gene Polymorphisms.pdf",
+ "id": "6ba4ba64-d0f2-4a8e-bb08-7d062091aa11"
+ },
+ {
+ "filename": "2007 - TCF7L2 polymorphisms are associated with type 2 diabetes in northern Sweden.pdf",
+ "id": "81e0134b-95c9-4b5e-961f-7ecde79a3038"
+ },
+ {
+ "filename": "2005 - Disclosing Individual Results of Clinical ResearchImplications of Respect for Participants.pdf",
+ "id": "5e10cec9-f822-492d-b6f0-f0b681144baf"
+ },
+ {
+ "filename": "2005 - Interleukin-6 and Diabetes The Good the Bad or the Indifferent.pdf",
+ "id": "73e26273-682e-4454-b095-84c3cf5bc13e"
+ },
+ {
+ "filename": "2008 - Genetics and genome-wide association studies surgery-guided algorithm and promise for future breast cancer personalized surgery.pdf",
+ "id": "ace3a3d7-d2f6-4b8f-89b9-2c181f000e90"
+ },
+ {
+ "filename": "2009 - Future of Osteoporosis Genetics Enhancing Genome-Wide Association Studies.pdf",
+ "id": "b72de324-d40f-41a7-8ad5-a2daf8b3eeae"
+ },
+ {
+ "filename": "1996 - The Role of HLA Class 11 Genes in Insulin-Dependent Diabetes.pdf",
+ "id": "827fe4e9-ee2b-46fe-80fd-3ea6d2168a28"
+ },
+ {
+ "filename": "2009 - Mutations at the BLK locus linked to maturity onset.pdf",
+ "id": "c4c5c626-51f7-4b87-84a3-8323a9233ca1"
+ },
+ {
+ "filename": "1999 - The NOD mouse model of type 1 diabetes.pdf",
+ "id": "45686425-1cfe-407d-bc1f-ee87489f2c05"
+ },
+ {
+ "filename": "1995 - Pancreatic b-Cell-specific.pdf",
+ "id": "aaf4c1b7-54fc-4f64-b7c6-5008d868903c"
+ },
+ {
+ "filename": "2008 - The Common P446L Polymorphism in GCKR Inversely.pdf",
+ "id": "75699e3f-2905-42e0-b4d9-2918250a81df"
+ },
+ {
+ "filename": "2009 - The P446L variant in GCKR associated with fasting.pdf",
+ "id": "1a17d68f-1d1e-456b-91ed-eb37ada1806d"
+ },
+ {
+ "filename": "2009 - Agreement among type 2 diabetes linkage studies but a poor correlation with results from genome-wide association studies.pdf",
+ "id": "e04e12ba-9cff-4cc0-8084-66266d6a603e"
+ },
+ {
+ "filename": "2002 - Haptoglobin Phenotype Is an IndependentRisk Factor for Cardiovascular Disease inIndividuals With Diabetes The Strong Heart Study.pdf",
+ "id": "1f8eca9e-72e3-4fcf-91f0-e7e5b5edd241"
+ },
+ {
+ "filename": "2008 - Commonality of functional annotation a method for prioritization of candidate genes.pdf",
+ "id": "a9b5b1eb-9421-47e5-99eb-2adc1540ee14"
+ },
+ {
+ "filename": "2008 - Learning From Molecular Genetics.pdf",
+ "id": "0da4d3d4-10d5-4a58-9e50-c1fa0b414427"
+ },
+ {
+ "filename": "2001 - Mapping by Genetic Interaction.pdf",
+ "id": "e9a398f1-eee9-45e1-b563-0f399d383b19"
+ },
+ {
+ "filename": "2004 - Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus.pdf",
+ "id": "ed2d6ad9-40cb-4618-9d1c-a1d81d146a2d"
+ },
+ {
+ "filename": "2009 - Common variant in MTNR1B associated with increased risk of type 2 diabetes.pdf",
+ "id": "cecabb27-9681-491c-a901-5ad3a5a709b7"
+ },
+ {
+ "filename": "2003 - The Genetics and Genomics of Cancer.pdf",
+ "id": "f903e70d-7935-4caa-a6c0-63ef7e2095b5"
+ },
+ {
+ "filename": "2007 - Localization of type 1 diabetes susceptibility to the MHC Class 1 Genes.pdf",
+ "id": "fd06b24a-b7c1-4834-addc-51bb6f6c96c2"
+ },
+ {
+ "filename": "2007 - Prediction of individual genetic risk to disease.pdf",
+ "id": "be32a861-a32f-4026-8c5c-fc53624af332"
+ },
+ {
+ "filename": "2006 - A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus.pdf",
+ "id": "b48c5252-605e-4144-b1df-4569c21c0e7c"
+ },
+ {
+ "filename": "2002 - Asian-Specific HLA Haplotypes Reveal Heterogeneity.pdf",
+ "id": "c2a479f1-3fbd-4a06-a310-2f2d7b1d99ad"
+ },
+ {
+ "filename": "2005 - Discovering statistically significant pathwaysin expression profiling studies.pdf",
+ "id": "421fceea-d3a2-4a87-a19c-d0df5dd3582c"
+ },
+ {
+ "filename": "2009 - Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families..pdf",
+ "id": "2f198cab-0bad-4cca-a67d-7d775be15d83"
+ },
+ {
+ "filename": "2007 - Genome-Wide Association Scan.pdf",
+ "id": "ad15425d-4e44-4c16-b1bf-bf5c15c3b72e"
+ },
+ {
+ "filename": "2009 - Next generation disparities in human genomics.pdf",
+ "id": "1e929a97-af99-4fde-bb24-8cdc18b0b72f"
+ },
+ {
+ "filename": "2007 - Promoting_Student_Scientific_Literacy_of_Molecular Genetics and Genomics.pdf",
+ "id": "42c9d5e4-2d88-4a71-8f4a-754895d853a6"
+ },
+ {
+ "filename": "2007 - TCF7L2 the biggest story in diabetes genetics since HLA.pdf",
+ "id": "aef1a825-89fa-4566-9a9e-297802a9ba8e"
+ },
+ {
+ "filename": "2009 - Common vs. rare allele hypotheses for complex diseases.pdf",
+ "id": "ae333983-6054-4788-90fd-f82d93c8a515"
+ },
+ {
+ "filename": "2004 - Common polymorphisms of the PPAR-γ2 (Pro12Ala) and PGC-1α (Gly482Ser) genes are associated with the conversion from impaired glucose tolerance to type 2 diabetes in the STOP-NIDDM trial.pdf",
+ "id": "f6231931-6b32-417f-8f68-2222a4a3f723"
+ },
+ {
+ "filename": "2008 - The Diabetic Phenotype in HNF4A Mutation Carriers.pdf",
+ "id": "6cf37df4-2abe-4289-a3fd-bd8892e91331"
+ },
+ {
+ "filename": "2006 - Adiponectin, type 2 diabetes and the metabolic syndrome.pdf",
+ "id": "35a32979-81b5-497c-98e6-cef8d5bdf8e4"
+ },
+ {
+ "filename": "2008 - Current challenges in metabolomics for diabetes research a vital functional genomic tool or just a ploy for gaining funding.pdf",
+ "id": "37d53e91-459c-4b9f-b753-9a5b1c8e705b"
+ },
+ {
+ "filename": "1998 - Genetic dissection of ``OLETF_, a rat model for non-insulin-dependent diabetes mellitus.pdf",
+ "id": "f54c42a7-cba6-4d2c-b5a1-484d3ab107db"
+ },
+ {
+ "filename": "2001 - Molecular mechanism of insulin resistance.pdf",
+ "id": "266b7aef-0eae-40e9-a386-de8821af59db"
+ },
+ {
+ "filename": "2000 - Vitamin D Receptor Allele Combinations Influence Genetic Susceptibility.pdf",
+ "id": "a3b42164-cf44-4ef4-837b-fbdd5060136d"
+ },
+ {
+ "filename": "2007 - Megsin Gene Its Genomic Analysis, Pathobiological Functions.pdf",
+ "id": "dffb1ab7-ca1e-487d-9c3d-0ebed58d215e"
+ },
+ {
+ "filename": "1997 - A Prospective Study of Pregravid Determinants of Gestational Diabetes Mellitus.pdf",
+ "id": "91f87f68-691b-451e-9e4d-3aac3c3b1160"
+ },
+ {
+ "filename": "1999 - Type 2 diabetes Evidence for linkage on chromosome 20 in 716Finnish affected.pdf",
+ "id": "fe39161b-60b7-42b9-9c87-a23f4c199fa0"
+ },
+ {
+ "filename": "2002 - Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome.pdf",
+ "id": "6c45bd96-d6c2-407a-a228-c43eef17290a"
+ },
+ {
+ "filename": "2003 - The Inherited Basis of Diabetes Mellitus.pdf",
+ "id": "63752d7d-dfdd-48a2-9f39-e1672255a519"
+ },
+ {
+ "filename": "2007 - Association scan of 14,500 nonsynonymous SNPs in four.pdf",
+ "id": "d343c5bb-27b7-4a29-b2c8-746900948b23"
+ },
+ {
+ "filename": "2008 - Genome-wide association analysis identifies 20 loci that influence adult height.pdf",
+ "id": "e891454d-f893-4f19-9adc-faaa270ece2f"
+ },
+ {
+ "filename": "2008 - Loci Related to Metabolic-Syndrome Pathways Including LEPR.pdf",
+ "id": "7eaf38ba-809b-4594-ae98-b4a3445dc6b3"
+ },
+ {
+ "filename": "1995 - Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus..pdf",
+ "id": "ac6533a1-fd89-4ffd-b2cb-cc0918cff22f"
+ },
+ {
+ "filename": "2003 - Genes, environment and Oji-Cree type 2 diabetes.pdf",
+ "id": "b7b24dc8-2b03-4f78-b7e0-0a16c7aa44d6"
+ },
+ {
+ "filename": "2002 - Balancing Life-Style and Genomics Research for Disease Prevention.pdf",
+ "id": "3804b8c5-d764-49d1-afcc-841b670ea737"
+ },
+ {
+ "filename": "2009 - Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes.pdf",
+ "id": "b973bd17-aac9-4d68-8ac4-1c683165b68f"
+ },
+ {
+ "filename": "2007 - A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants.pdf",
+ "id": "976e2b74-91b0-4616-aaf0-d1ecf8dc770d"
+ },
+ {
+ "filename": "2011 - Evaluation of glycemic control, gastric juice nitric oxide.pdf",
+ "id": "9f077157-13d7-499a-a51c-c8d732e97b20"
+ },
+ {
+ "filename": "2014 - Molecular mechanisms of diabetic kidney disease.pdf",
+ "id": "7e75c52c-59ac-43fc-8fc8-28d2131c5531"
+ },
+ {
+ "filename": "2010 - Genome-wide analysis of histone modifications.pdf",
+ "id": "9864689f-2c1e-4fb2-a621-f39d4c57f140"
+ },
+ {
+ "filename": "2012 - Association between type 2 diabetes genetic susceptibility loci and visceral and subcutaneous fat area as determined by computed tomography.pdf",
+ "id": "18d5231c-050f-4dc1-bc71-188ca39130ad"
+ },
+ {
+ "filename": "2010 - Integrated Genetic and Epigenetic Analysis Identifies.pdf",
+ "id": "1039378d-078c-4e90-a055-c7337aa7abf5"
+ },
+ {
+ "filename": "2015 - Age- and Sex-Specific Causal Effects of Adiposity.pdf",
+ "id": "7f4d5a4d-f9f4-48d4-bfc3-d57c393eed07"
+ },
+ {
+ "filename": "2013 - Integrated Enrichment Analysis of Variants.pdf",
+ "id": "abfb9f3b-8f36-4696-aa42-f43ded30869c"
+ },
+ {
+ "filename": "2013 - Baboons as a Model to Study Genetics and Epigenetics of Human Disease.pdf",
+ "id": "d4fb56e4-06ab-4c01-b7a0-a193c4a40800"
+ },
+ {
+ "filename": "2015 - Insights Into the Role of the Microbiome in Obesity and Type 2 Diabetes.pdf",
+ "id": "0f429b12-5d8d-45e3-9011-4794123cfb19"
+ },
+ {
+ "filename": "2014 - Impact of Delivery Models on Understanding Genomic Risk for Type 2 Diabetes.pdf",
+ "id": "6ec45055-8c2a-4c49-a499-023cd79c11ec"
+ },
+ {
+ "filename": "2010 - Epigenetic phenomena linked to diabetic complications.pdf",
+ "id": "8ff3f07d-4894-49bb-a92d-38647f46814b"
+ },
+ {
+ "filename": "2009 - When Family Means More (or Less) Than Genetics.pdf",
+ "id": "dc2f6b02-5c9a-4764-b70e-d2321135e148"
+ },
+ {
+ "filename": "2012 - Type 2 Diabetes Genetics Beyond GWAS.pdf",
+ "id": "559a3a15-da15-4132-a8b5-5401bfe770ef"
+ },
+ {
+ "filename": "2013 - Genetics and Genomics for the Prevention and Treatment of Cardiovascular Disease Update.pdf",
+ "id": "cea13566-9d52-4423-9280-d46da486dd7f"
+ },
+ {
+ "filename": "2015 - Dietary Polyphenols Promote Growth.pdf",
+ "id": "38be907c-70ea-45f2-a8c1-7aed203a5256"
+ },
+ {
+ "filename": "2011 - Genome-wide Association Study of Diabetic Retinopathy in a Taiwanese Population.pdf",
+ "id": "091ab13a-1b8a-4849-b698-48db7b1a948f"
+ },
+ {
+ "filename": "2010 - Cardiovascular Disease Risk Factors, Type 2 Diabetes Mellitus, and the Framingham Heart Study.pdf",
+ "id": "2c6a650e-0c14-409d-aa2b-3d5516f319bf"
+ },
+ {
+ "filename": "2015 - Genetic Studies on Diabetic Microvascular Complications.pdf",
+ "id": "a5a0cd4f-8acf-4e89-9033-04f448dc0b15"
+ },
+ {
+ "filename": "2010 - Polymorphisms Identified through Genome-Wide Association Studies.pdf",
+ "id": "4fe0a01d-3be8-4cd5-ac59-8b0ef085b20c"
+ },
+ {
+ "filename": "2011 - Type 1 Diabetes Etiology, Immunology.pdf",
+ "id": "00591f6a-0d6f-4993-ae6c-e9a8109a95ec"
+ },
+ {
+ "filename": "2010 - Update on the genetics and genomics of PBC.pdf",
+ "id": "98e30ad9-231c-4eb0-97a7-af3206777abd"
+ },
+ {
+ "filename": "2012 - Finding Genetic Risk Factors of Gestational Diabetes.pdf",
+ "id": "b0b3377e-b9f2-4810-8fc2-722dfb9899a8"
+ },
+ {
+ "filename": "2013 - Systems Biology Approach Reveals Genome to Phenome Correlation in Type 2 Diabetes.pdf",
+ "id": "3d8e4c25-e01b-40e0-9993-68d4e9d54822"
+ },
+ {
+ "filename": "2014 - Genome-wide association study of urinary albumin excretion rate.pdf",
+ "id": "2ee3f340-13a6-4ad6-8193-042eece0853b"
+ },
+ {
+ "filename": "2014 - Testing the role of vitamin D in response to antitumour necrosis factor α therapy in a UK cohort a Mendelian randomisation approach.pdf",
+ "id": "5b3ca7f8-8e20-42dd-a014-81e9a91fd00a"
+ },
+ {
+ "filename": "2011 - Natural selection at genomic regions associated with obesity.pdf",
+ "id": "e740b5de-8bea-4dfd-bd19-fc21dbb0df90"
+ },
+ {
+ "filename": "2014 - Disease variants in genomes of 44 centenarians.pdf",
+ "id": "f304d864-108a-417c-b162-e960fa3e9076"
+ },
+ {
+ "filename": "2012 - Predictive and Prognostic Value.pdf",
+ "id": "3e809889-2704-4cd2-90fb-f17f895d14be"
+ },
+ {
+ "filename": "2015 - Recent advances in understanding the genetic architecture of type 2 diabetes.pdf",
+ "id": "ad88aed6-75ba-469d-b96b-7be4a65be8fc"
+ },
+ {
+ "filename": "2010 - Recent advances in the genetics and genomics of asthma.pdf",
+ "id": "a5bf198e-e2eb-4b76-9421-731ffbf3400d"
+ },
+ {
+ "filename": "2014 - Do physicians think genomic medicine will be useful for patient care.pdf",
+ "id": "599ad16f-5996-4f48-803e-ca05398bf08b"
+ },
+ {
+ "filename": "2015 - Genetic analysis of nonalcoholic fatty liver disease within a Caribbean Hispanic.pdf",
+ "id": "0018c797-5a74-441f-8167-e7ab4cfd66ec"
+ },
+ {
+ "filename": "2012 - Association of the CpG Methylation Pattern.pdf",
+ "id": "5f2e8622-aedf-46dc-98d9-7b0b30937d63"
+ },
+ {
+ "filename": "2015 - Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide Association Studies of Obesity-Related Traits.pdf",
+ "id": "675e8df5-d8e4-4f5d-bdae-300f87520977"
+ },
+ {
+ "filename": "2014 - Multi‐Ethnic Minority Nurses Knowledge and Practice of Genetics and Genomics.pdf",
+ "id": "1643f445-62fc-4415-a5c8-774ccb131d03"
+ },
+ {
+ "filename": "2011 - Genome-wide association studies (GWAS) impact.pdf",
+ "id": "7d4a197e-3774-40a4-9897-ed7c71f213b6"
+ },
+ {
+ "filename": "2013 - TCF7L2 gene polymorphisms and type 2 diabetes association with diabetic retinopathy and cardiovascular autonomic neuropathy.pdf",
+ "id": "3a066437-9d88-46c7-bc55-9992728847a7"
+ },
+ {
+ "filename": "2014 - The Involvement of Lipids in Alzheimer’s Disease.pdf",
+ "id": "2e6881b6-52f2-4506-b89e-e4cb466e85ef"
+ },
+ {
+ "filename": "2010 - Co-existence of risk and protective haplotypes.pdf",
+ "id": "13af95a1-38be-4c46-9ad5-a85e501d262e"
+ },
+ {
+ "filename": "2010 - Epigenetics Mechanisms and Implications for Diabetic Complications.pdf",
+ "id": "99b1e2cc-c500-449e-8bdd-acfbd65af79a"
+ },
+ {
+ "filename": "2011 - Type 2 diabetes across generations from pathophysiology to prevention and management.pdf",
+ "id": "08858a32-d736-4d8d-a135-f86568152a81"
+ },
+ {
+ "filename": "2012 - From candidate gene to genome-wide association studies in cardiovascular disease.pdf",
+ "id": "78aa075a-710a-4fc2-aa50-8ba27e5e607b"
+ },
+ {
+ "filename": "2011 - Genetic Variance in Uncoupling Protein 2 in Relation.pdf",
+ "id": "e35e41a0-2d5b-4d3b-a99c-3dda93efbd4a"
+ },
+ {
+ "filename": "2010 -Two SNPs in NLRP3 gene are involved in the predisposition to type 1 diabetes and celiac disease in a pediatric population from northeast Brazil.pdf",
+ "id": "42f5cfe2-451f-4b45-8d32-4480f652432a"
+ },
+ {
+ "filename": "2014 - A Genome-Wide Association.pdf",
+ "id": "bac22f02-a313-45e5-99cc-c2e6615876fd"
+ },
+ {
+ "filename": "2012 - Use of diverse electronic medical record systems.pdf",
+ "id": "102b534a-86e3-4a30-a135-b3e800f0d848"
+ },
+ {
+ "filename": "2012 - Meta-Analysis of the Relationship between Common.pdf",
+ "id": "8264bcad-c83c-468c-a848-119797db534f"
+ },
+ {
+ "filename": "2010 - Integrating Pathway Analysis and Genetics.pdf",
+ "id": "7d0f2b5c-0e6b-400a-ae22-8dd4feec9608"
+ },
+ {
+ "filename": "2015 - Alterations of a Cellular Cholesterol Metabolism Network.pdf",
+ "id": "82ad689c-e6f4-43df-93ca-202e4cebcf3e"
+ },
+ {
+ "filename": "2014 - Heritability of variation in glycaemic response to metformin.pdf",
+ "id": "57ea517d-447a-48ae-8670-788938f6843d"
+ },
+ {
+ "filename": "2012 - Recent Developments in the Genetic and Genomic Basis of Type 2 Diabetes.pdf",
+ "id": "a2e62868-c700-4d3f-a7a4-15491a150fc8"
+ },
+ {
+ "filename": "2013 - Beta Cell 59-Shifted isomiRs Are Candidate Regulatory.pdf",
+ "id": "4a1a2496-1172-4262-8158-a3a96b80bcf4"
+ },
+ {
+ "filename": "2015 - Disentangling type 2 diabetes and metformin.pdf",
+ "id": "ffff627b-c955-4a06-b3b3-1d1ab20391bf"
+ },
+ {
+ "filename": "2013 - Investigation of osteopontin levels and genomic variation.pdf",
+ "id": "38f0171c-7952-4ab8-8e52-983a72888903"
+ },
+ {
+ "filename": "2011 - Obesity and Type 2 Diabetes What Can Be Unified.pdf",
+ "id": "195cace4-f298-4910-8b7c-c4e6f208cd35"
+ },
+ {
+ "filename": "2015 - Reduced Tyk2 gene expression in β-cells due to natural mutation determines susceptibility to virus-induced diabetes.pdf",
+ "id": "6e80ed3b-2be6-4775-a3c5-89cb4ddc88ae"
+ },
+ {
+ "filename": "2009 - X-Chromosome Gene Dosage and the Risk of Diabetes.pdf",
+ "id": "76f1e8d2-15bf-4ce6-9cd0-2ab889c23664"
+ },
+ {
+ "filename": "2012 - Millets_genetic_and_genomic_resources.pdf",
+ "id": "4ab80ffa-0ff3-4d42-b226-fa685555420c"
+ },
+ {
+ "filename": "2013 - Genome-Wide Contribution of Genotype by Environment Interaction.pdf",
+ "id": "1e3a2816-2a1f-41c3-88d6-03330f04652b"
+ },
+ {
+ "filename": "2012 - Gene-Environment Interactions in the Development of Type 2 Diabetes.pdf",
+ "id": "8ab10856-5df7-4f76-897a-84e6f25cd3f5"
+ },
+ {
+ "filename": "2013 - MicroRNAs in Kidney Fibrosis and Diabetic Nephropathy.pdf",
+ "id": "d23e9456-8ee8-46e0-9870-18ff69965c28"
+ },
+ {
+ "filename": "2011 - Prioritizing candidate disease genes by network-based boosting of genome-wide association data.pdf",
+ "id": "a579db95-2a40-43ff-b237-d47f90aaf64f"
+ },
+ {
+ "filename": "2010 - Common Inherited Variation in Mitochondrial Genes.pdf",
+ "id": "9e3a4f4a-24d6-4a12-a798-ca654e225e7e"
+ },
+ {
+ "filename": "2010 - Reviewe Genetics and Genomics in equine.pdf",
+ "id": "b42bfab2-62f0-49c4-98f0-5e64fd5039a2"
+ },
+ {
+ "filename": "2011 - Globalization of Diabetes.pdf",
+ "id": "3548bb7f-727c-4ccb-acc7-a97553b89992"
+ },
+ {
+ "filename": "2015 - Genetic and genomic markers of anti-TNF treatment response in rheumatoid arthritis.pdf",
+ "id": "5341ea0f-13b5-4f9c-9466-7739514eab95"
+ },
+ {
+ "filename": "2012 - Bayesian inference analyses of the polygenic architecture.pdf",
+ "id": "cd9f4acc-1e47-4898-98f8-e27b8b290a3d"
+ },
+ {
+ "filename": "2013 - Diabetes genes identified by genome-wide association studies are regulated in mice by nutritional factors in metabolically relevant tissues and by glucose concentrations in islets.pdf",
+ "id": "41bc85bc-314f-4d92-9007-5d1571506ef3"
+ },
+ {
+ "filename": "2015 - Maternal diabetes, gestational diabetes and the role of epigenetics in their long term effects on offspring.pdf",
+ "id": "0ae5d2bb-b09d-4646-922a-277188b53cbb"
+ },
+ {
+ "filename": "2010 - Evidence of Interaction between Type 2 Diabetes.pdf",
+ "id": "b07d827c-136a-4938-b3f5-b1cde90a2332"
+ },
+ {
+ "filename": "2013 - The CTRB12 Locus Affects Diabetes Susceptibility.pdf",
+ "id": "a56721cb-b86f-4ef8-b81c-d8189d4ffac1"
+ },
+ {
+ "filename": "2014 - Neuronatin gene Imprinted and misfolded studies.pdf",
+ "id": "d404784f-962d-41be-bea9-e4e1e5555165"
+ },
+ {
+ "filename": "2015 - Effects of Metformin on Metabolite Profiles.pdf",
+ "id": "7774c5a5-c9c8-42fd-ab00-0deb2a32028d"
+ },
+ {
+ "filename": "2014 - Ecological Epigenetics.pdf",
+ "id": "538c6234-b5bf-43b7-97ce-091531a139b7"
+ },
+ {
+ "filename": "2014 - Identification of a Regulatory Variant That Binds FOXA1.pdf",
+ "id": "e88b610f-8afa-46f7-a03c-d7bd579a7496"
+ },
+ {
+ "filename": "2009 - Zinc and Diabetes - clinical links and molecular mechanisms.pdf",
+ "id": "9cce7fe9-cb40-4e75-85bc-d8655c3343d6"
+ },
+ {
+ "filename": "2011 - Type 2 diabetes and obesity genomics and the clinic.pdf",
+ "id": "8f74252a-5ce1-4109-86b6-5b0228b23bba"
+ },
+ {
+ "filename": "2012 - What will Diabetes Genomes Tell Us.pdf",
+ "id": "a83987ea-607c-4952-a1cc-69c6f193ba2a"
+ },
+ {
+ "filename": "2015 - Selecting causal genes from genome-wide association studies via functionally coherent subnetworks.pdf",
+ "id": "5d7a863d-1811-4eea-9fb0-fbc3067aa664"
+ },
+ {
+ "filename": "2014 - A Population Genetic Signal of Polygenic Adaptation.pdf",
+ "id": "455a2e62-ffcd-4e70-8c9a-95928904d697"
+ },
+ {
+ "filename": "2014 - The genetic basis of obesity-associated type 2 diabetes (diabesity) in polygenic mouse models.pdf",
+ "id": "84b037c5-8e75-434f-aad1-d270257963f6"
+ },
+ {
+ "filename": "2012 - Reduced Insulin Exocytosis in Human Pancreatic b-Cells.pdf",
+ "id": "845adde7-823a-4bfc-9f5e-7082d2e26102"
+ },
+ {
+ "filename": "2010 - Genomic Research in Rat Models of Kidney Disease.pdf",
+ "id": "09f7d532-8f7d-4b23-9049-7548fd697137"
+ },
+ {
+ "filename": "2011 - Genetic Variations in the FTO Gene Are Associated with Type 2 Diabetes.pdf",
+ "id": "602b3b63-ede6-44ca-a790-9e39b08bc29a"
+ },
+ {
+ "filename": "2011 - Development of the Essential Genetic and Genomic Competencies for Nurses.pdf",
+ "id": "cdc51e45-5165-414e-969f-bc8bcec1d26c"
+ },
+ {
+ "filename": "2011 - AluYb8 insertion in the MUTYH gene is related to increased 8-OHdG in genomic DNA.pdf",
+ "id": "552070a0-c161-4b52-b0a3-d3ad547824b4"
+ },
+ {
+ "filename": "2014 - Evidence for the presence of somatic mitochondrial DNA.pdf",
+ "id": "2c97b26f-3298-4ab9-8a00-6184f4c68290"
+ },
+ {
+ "filename": "2015 - The genetics of diabetic complications.pdf",
+ "id": "277be46c-4307-4738-972d-eb6efd9b175a"
+ },
+ {
+ "filename": "2012 - Systems analysis of eleven rodent disease models.pdf",
+ "id": "f650f2c3-aa1b-4b1e-98c6-b15331eee667"
+ },
+ {
+ "filename": "2013 - The non-obese diabetic mouse sequence.pdf",
+ "id": "d0f94be6-ea2f-41ca-841a-3805822e8a28"
+ },
+ {
+ "filename": "2015 - Fine mapping of type 1 diabetes susceptibility loci.pdf",
+ "id": "31281794-5c04-4274-8ae7-e3f9ac0bfef5"
+ },
+ {
+ "filename": "2010 - Metabolic Footprint of Diabetes A Multiplatform.pdf",
+ "id": "82148af9-b60e-40a0-8450-47970498e13d"
+ },
+ {
+ "filename": "2012 - A major X-linked locus affects kidney function in mice.pdf",
+ "id": "b3841fc4-9008-425a-9136-31f55b8c9855"
+ },
+ {
+ "filename": "2012 - Diabetes and Hypertension Is There a Common Metabolic Pathway.pdf",
+ "id": "0ee6691b-5542-418c-970e-a422199456cd"
+ },
+ {
+ "filename": "2015 - Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Cardiovascular Epidemiology and Genetics.pdf",
+ "id": "d3ea9177-082e-4ab0-a226-7244192c2c25"
+ },
+ {
+ "filename": "2010 - African ancestry allelic variation at the MYH9.pdf",
+ "id": "0dba86a4-d6dc-40ab-b4a5-49d02047a388"
+ },
+ {
+ "filename": "2010 - Diabetes in Asia.pdf",
+ "id": "18d88787-096b-4fc1-ad4e-3d1b1f3a90d9"
+ },
+ {
+ "filename": "2015 - Cardiometabolic eff ects of genetic upregulation of the interleukin 1 receptor.pdf",
+ "id": "48c7ff9b-8daf-4cb4-984b-896ea61ca714"
+ },
+ {
+ "filename": "2012 - Novel biomarkers for pre‐diabetes identified by metabolomics.pdf",
+ "id": "be313a5a-60f9-4fe7-a1e7-e89cc194a6dc"
+ },
+ {
+ "filename": "2010 - Genetics of Type 1 Diabetes What’s Next.pdf",
+ "id": "7b7ce30c-f398-4b0e-bcb6-52f2644201fd"
+ },
+ {
+ "filename": "2013 - Genomic Justice for Native Americans.pdf",
+ "id": "ab97c3f0-f7a4-439b-8706-842826aa529f"
+ },
+ {
+ "filename": "2015 - Genome-Wide Linkage and Positional Association Analyses Identify Associations.pdf",
+ "id": "96942da5-2223-4afc-b2a6-09ebf64b3c69"
+ },
+ {
+ "filename": "2013 - A Genome-Wide Search for Type 2 Diabetes Susceptibility Genes in an Extended Arab Family.pdf",
+ "id": "3bde9884-e31d-4719-b42f-02dca25d6c08"
+ },
+ {
+ "filename": "2010 - The Genetics of Type 2 Diabetes.pdf",
+ "id": "553ae95d-0a2b-4f2a-8123-da9a9e9e7a77"
+ },
+ {
+ "filename": "2013 - Gene expression drives local adaptation in humans.pdf",
+ "id": "2e01129f-ddee-4be7-9e89-fda821e449b0"
+ },
+ {
+ "filename": "2011 - Genetics and Genomics of Cholesterol and Polyunsaturated Fatty Acid Metabolism in Relation to Coronary Heart Disease Risk.pdf",
+ "id": "722a9acb-d3e3-492d-9786-7475c5f35c25"
+ },
+ {
+ "filename": "2014 - Validation of Type 2 Diabetes Risk Variants Identified.pdf",
+ "id": "c5ae22bf-0abc-41ae-a35e-cfdad0156d15"
+ },
+ {
+ "filename": "2011 - The Reference Human Genome High Risk of Type 1 Diabetes and Other Disorder.pdf",
+ "id": "971d0afa-a50c-409d-942a-ab747a9f4663"
+ },
+ {
+ "filename": "2011 - Enterovirus infection and type 1 diabetes mellitus.pdf",
+ "id": "f68b645e-05e0-4640-a3a1-42c66fb4b822"
+ },
+ {
+ "filename": "2014 - Mediterranean Diet and Cardiovascular Health.pdf",
+ "id": "f8567357-ce71-4d2a-9e32-036893bb964c"
+ },
+ {
+ "filename": "2013 - Recommendations for returning genomic incidental findings We need to talk!.pdf",
+ "id": "3ccc39c5-e0c4-4686-9d08-c3214c57ad41"
+ },
+ {
+ "filename": "2012 - Informed Conditioning on Clinical Covariates Increases Power in case control aviation studies.pdf",
+ "id": "2df2c82c-1fc8-4512-bd56-eea17cacfcb6"
+ },
+ {
+ "filename": "2014 - Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection.pdf",
+ "id": "c9a56d3b-f8bd-44d5-bf2c-a1e2b8d166f3"
+ },
+ {
+ "filename": "2011 - Inherited destiny Genetics and gestational diabetes mellitus.pdf",
+ "id": "999c655b-b078-4129-b141-178867aca79f"
+ },
+ {
+ "filename": "2012 - Early-life gut microbiota under physiological and pathological conditions.pdf",
+ "id": "8f081899-5f01-415c-a5e6-5a25592804a0"
+ },
+ {
+ "filename": "2012 - Targeted Loss of GHR Signaling in Mouse Skeletal.pdf",
+ "id": "b942c082-a734-47d7-8494-8457ce995ce2"
+ },
+ {
+ "filename": "2015 - Genome-wide studies to identify risk factors for kidney disease.pdf",
+ "id": "3829213f-5834-46f4-8499-70448505296d"
+ },
+ {
+ "filename": "2014 - Mendelian randomization genetic anchors for causal inference.pdf",
+ "id": "93389995-ec48-4d65-8435-96c4a57f36fc"
+ },
+ {
+ "filename": "2013 - Seroconversion to Multiple Islet Autoantibodies.pdf",
+ "id": "c5df256a-792c-4768-95bc-33e1a913d802"
+ },
+ {
+ "filename": "2013 - Variants of Insulin-Signaling Inhibitor Genes.pdf",
+ "id": "cb451da9-faae-4cb7-9b49-b1b38f8f1dd9"
+ },
+ {
+ "filename": "2012 - PICARA, an Analytical Pipeline Providing Probabilistic Inference.pdf",
+ "id": "67f74829-7056-439a-a993-43311353d7de"
+ },
+ {
+ "filename": "2010 - Association of Gly972Arg polymorphism of IRS1 gene with type 2.pdf",
+ "id": "f44149e0-d183-48c1-a937-729e7abd87f5"
+ },
+ {
+ "filename": "2010 - The Role of Epigenetics in the Pathology of Diabetic Complications.pdf",
+ "id": "0c6f74c6-7cc6-477b-bfe8-69a8951d0297"
+ },
+ {
+ "filename": "2014 - Developing patient-friendly genetic and genomic test reports formats to promote patient engagement and understanding.pdf",
+ "id": "374c7dcd-919a-4562-aa70-00fc33f918ed"
+ },
+ {
+ "filename": "2014 - Filipino-American Nurses_ Knowledge, Perceptions, Beliefs.pdf",
+ "id": "be3acd18-3613-4a3a-a8ce-cff8ba55d450"
+ },
+ {
+ "filename": "2010 - Neural tube defect genes and maternal diabetes during pregnancy.pdf",
+ "id": "85f3a390-15cf-40d9-91dc-e6238b58f171"
+ },
+ {
+ "filename": "2015 - Current and Best Practices of Genetic Testing for Maturity.pdf",
+ "id": "2f6521cf-fc78-45b3-a32d-8738ded6efa9"
+ },
+ {
+ "filename": "2015 - A genome‐wide association study suggests an association of Chr8p21 3 GFRA2.pdf",
+ "id": "a2e1b50b-9396-4d7d-b6db-bdd0f34529ae"
+ },
+ {
+ "filename": "2013 - Gene-Environment and Gene-Treatment.pdf",
+ "id": "95a5a00b-9cf4-4988-bc6c-9df0e8e1b155"
+ },
+ {
+ "filename": "2011 - Interaction Between Exercise and Genetics.pdf",
+ "id": "6e570a0b-a876-4263-b32f-cee85088756d"
+ },
+ {
+ "filename": "2012 - Integrative Analysis of a Cross-Loci Regulation Network.pdf",
+ "id": "29e232a4-a580-411d-83a3-7ff6a4e8f0ad"
+ },
+ {
+ "filename": "2013 - Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases.pdf",
+ "id": "fd03b865-0589-4d11-9c2a-f9409a52cf82"
+ },
+ {
+ "filename": "2010 - Direct-to-Consumer Genetic and Genomic Testing Preparing Nurse Practitioners for Genomic Healthcare.pdf",
+ "id": "1f5f2923-ca25-496c-b70e-5d15825c5575"
+ },
+ {
+ "filename": "2011 - Biomarkers for the Prediction of Type 2 Diabetes.pdf",
+ "id": "4c7bbf98-aed3-4899-8080-9ee81f62c67e"
+ },
+ {
+ "filename": "2012 - A metagenome-wide association study of gut microbiota in type 2 diabetes.pdf",
+ "id": "1680144d-1283-431e-aaf9-75a84f5599dd"
+ },
+ {
+ "filename": "2015 - Rare and Common Genetic Events in Type 2 Diabetes.pdf",
+ "id": "eaca0f25-4a6b-4c0e-a6df-12e25060b169"
+ },
+ {
+ "filename": "2015 - Transcript Expression Data from Human.pdf",
+ "id": "752b2413-8c90-4af7-b65b-db429145b3bb"
+ },
+ {
+ "filename": "2010 - Genetics, pathogenesis and clinical interventions in type 1 diabetes.pdf",
+ "id": "b54c30da-8275-464c-8729-9269585850a1"
+ },
+ {
+ "filename": "2011 - The eMERGE Network A consortium of biorepositories linked to electronic medical records data for conducting genomic studies.pdf",
+ "id": "2d0d119b-3242-4358-9661-f5c2b362d8dc"
+ },
+ {
+ "filename": "2011 - Epigenetic Gene Promoter Methylation at Birth Is Associated with Child_s Later Adiposity.pdf",
+ "id": "52cb15f3-8838-4fb8-8faf-96fcff7d63e0"
+ },
+ {
+ "filename": "2010 - Impact of Common Variants of PPARG, KCNJ11, TCF7L2.pdf",
+ "id": "bbb4af44-2659-4207-b9a1-0ff85d379a9f"
+ },
+ {
+ "filename": "2011 - Genetics and Genomics to the Clinic.pdf",
+ "id": "98b14ef0-fc00-4252-9463-b6b92ff65d18"
+ },
+ {
+ "filename": "2015 - First Genome-Wide Association Study.pdf",
+ "id": "17a737cd-80b8-45ef-a0d5-159d4bcf3593"
+ },
+ {
+ "filename": "2015 - Decreased N6 Methyladenosine in Peripheral Blood RNA.pdf",
+ "id": "3ab6368e-8b4a-422e-b019-2d80ce121908"
+ },
+ {
+ "filename": "2012 - Pharmacogenomic analysis of ATP-sensitive potassium.pdf",
+ "id": "e3ecfea9-c849-453d-9ac1-b1db6b0052e7"
+ },
+ {
+ "filename": "2013 -Whole-Exome Sequencing of 2,000 Danish Individuals.pdf",
+ "id": "955c8290-efde-44e7-a8ad-10ce42e2a88d"
+ },
+ {
+ "filename": "2012 - The Genetic and Epigenetic Basis of Type 2 Diabetes and Obesity.pdf",
+ "id": "d1f8656e-e58a-4461-b75b-89815b2c7369"
+ },
+ {
+ "filename": "2010 - Impact of limited population diversity of genome-wide association studies.pdf",
+ "id": "66d69e35-7d29-436d-b4fe-c25f922bb3ba"
+ },
+ {
+ "filename": "2015 - Four Apolipoprotein B gene polymorphisms and the risk for coronary artery disease a meta-analysis of 47 studies.pdf",
+ "id": "d40478e9-e5dd-48a3-b66e-823d0c9feeaa"
+ },
+ {
+ "filename": "2010 - New genetic loci implicated in fasting glucose.pdf",
+ "id": "5564cfa4-6a5c-4328-a0b6-5cd1cc0b2338"
+ },
+ {
+ "filename": "2010 - Genome-Wide Analysis of Copy Number Variation.pdf",
+ "id": "144c9105-3ce9-46cc-b9c6-cc14cf40e945"
+ },
+ {
+ "filename": "2013 - Genetic and Genomic Approaches to Understanding Macrophage Identity and Function.pdf",
+ "id": "61c2db95-0e03-4c75-a85f-3560079fd9c2"
+ },
+ {
+ "filename": "2015 - Type 2 Diabetes Mellitus and the Association of Candidate Genes.pdf",
+ "id": "fd143578-73cd-4046-aecf-e546026c35ee"
+ },
+ {
+ "filename": "2013 - Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity.pdf",
+ "id": "3b403824-5be6-4799-84c4-70bf6155a28e"
+ },
+ {
+ "filename": "2013 - Are health professionals ready for direct-to-sonumer genetic and genomic testing.pdf",
+ "id": "df1cc001-06bb-4070-84ed-dc48d12395fc"
+ },
+ {
+ "filename": "2010 - Twelve type 2 diabetes susceptibility loci identified.pdf",
+ "id": "fdbabc3c-ec60-45ce-9f5c-683f745c4d00"
+ },
+ {
+ "filename": "2015 - Gestational Diabetes Alters Offspring DNA.pdf",
+ "id": "05c26b4c-cc56-49bc-914e-066ba0f05e97"
+ },
+ {
+ "filename": "2011 - Genome-Wide Association Identifies Nine Common.pdf",
+ "id": "52fbc21d-e3c9-4f79-bdb9-deb5152e207c"
+ },
+ {
+ "filename": "2014 - Reference Genes for Expression Studies in Hypoxia.pdf",
+ "id": "8e42498d-ca77-4580-9c4c-2c7b0885431a"
+ },
+ {
+ "filename": "2014 - Diabetes in Europe An update.pdf",
+ "id": "1871276b-11a6-4cff-9c2c-25eb442db144"
+ },
+ {
+ "filename": "2012 - Investigation of the biological properties of Cinnulin PF.pdf",
+ "id": "82fdf358-5073-4f7b-97a0-01328a639ccc"
+ },
+ {
+ "filename": "2011 - Lifestyle and Genetics in Obesity and type 2 Diabetes.pdf",
+ "id": "62af87d7-7290-4ad1-9914-fb1488841ad8"
+ },
+ {
+ "filename": "2014 - Meta‑analysis of genome‑wide association study of homeostasis.pdf",
+ "id": "8b494a5b-c9c0-46b9-8ce7-388a5ba8e5b2"
+ },
+ {
+ "filename": "2015 - Realizing the potential of Nurses role in Genetics and Genomic health care.pdf",
+ "id": "b62ac0c7-1536-49b2-9b50-f20efc324b0b"
+ },
+ {
+ "filename": "2010 - Drosophila Genome-wide Obesity Screen.pdf",
+ "id": "8d53b2e9-f00f-45c5-9403-43c2ae8ee330"
+ },
+ {
+ "filename": "2016 - An Isogenic Human ESC Platform for Functional.pdf",
+ "id": "f1a4645e-0e52-4699-8b9b-19f7ca526e2b"
+ },
+ {
+ "filename": "2011 - Communicating Genetic and Genomic.pdf",
+ "id": "783dfac9-29b7-4755-9b36-9124de398c78"
+ },
+ {
+ "filename": "2010 - Autism Spectrum Disorders and Epigenetics.pdf",
+ "id": "ef2c8463-5169-46aa-938b-7d04ea8da6b7"
+ },
+ {
+ "filename": "2012 - A review of ethical frameworks.pdf",
+ "id": "fd65cdbd-68b6-4ca3-b7de-4353662ea33d"
+ },
+ {
+ "filename": "2011 - The identification of gene expression.pdf",
+ "id": "72aa5d47-336b-4e4f-8593-ee215b8891d2"
+ },
+ {
+ "filename": "2014 - Genetics and genomic medicine.pdf",
+ "id": "93dc581e-5e45-48b4-b82f-35e32d7bd58e"
+ },
+ {
+ "filename": "2011 - Establishing the Outcome Indicators for the Essential Nursing Competencies and Curricula Guidelines for Genetics and Genomics.pdf",
+ "id": "9f21007a-1487-46d8-8e9e-cde8df4af6d5"
+ },
+ {
+ "filename": "2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf",
+ "id": "15db26fd-b49f-42ca-9fee-622649e9a4f8"
+ },
+ {
+ "filename": "2011 - Etiological heterogeneity in autism spectrum disorders.pdf",
+ "id": "294842fb-9af9-404f-baa3-d2f3e1a4789d"
+ },
+ {
+ "filename": "2010 - Pharmacogenetics of Anti-Diabetes Drugs.pdf",
+ "id": "b00b9753-c198-4f8a-a8b9-dd5e94dc5896"
+ },
+ {
+ "filename": "2012 - Predicting Diabetes Our Relentless Quest for Genomic Nuggets.pdf",
+ "id": "41ba5319-e77d-4838-8f50-e59fe86b94f8"
+ },
+ {
+ "filename": "2012 - Evaluation of Genome-wide Association Study-identified Type 2 Diabetes Loci.pdf",
+ "id": "d15b3490-241d-4766-8e3e-feb683503d1b"
+ },
+ {
+ "filename": "2015 - Type 2 diabetes mellitus.pdf",
+ "id": "a50a70cb-4c16-4b7e-b532-fe7db9ab435e"
+ },
+ {
+ "filename": "2015 - Functional consequences of transferrin receptor-2.pdf",
+ "id": "b8797cf2-24c2-49c4-b050-b7a191aa7157"
+ },
+ {
+ "filename": "2014 - Diabetic nephropathy—emerging epigenetic mechanisms.pdf",
+ "id": "ec62a4d9-2fe2-49b0-84d8-13b1597e2067"
+ },
+ {
+ "filename": "2015 - Information-Seeking and Sharing Behavior Following Genomic.pdf",
+ "id": "7fd7dbde-cd35-47c4-945a-1b1e22c41c5d"
+ },
+ {
+ "filename": "2011 - Molecular Genomic Research Designs.pdf",
+ "id": "174869dd-e433-4b27-8f9b-f77599358c3f"
+ },
+ {
+ "filename": "2010 - Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus.pdf",
+ "id": "fffba592-600d-49d1-8e6c-321786d0ad8f"
+ },
+ {
+ "filename": "2015 - Advances in Setaria genomics for genetic improvement of cereals.pdf",
+ "id": "b260f1bd-5522-484f-bcdf-94074e6a6e7c"
+ },
+ {
+ "filename": "2013 - Genetic association of ADIPOQ gene variants with type 2 diabetes, obesity.pdf",
+ "id": "1a51265b-1ec8-4c31-9d46-a192906f539e"
+ },
+ {
+ "filename": "2011 - Genome-Wide Association Scan Allowing for Epistasis.pdf",
+ "id": "f54c692a-eae6-4516-ba43-7d8b0ac88477"
+ },
+ {
+ "filename": "2010 - Implication of Genetic Variants Near NEGR1, SEC16B.pdf",
+ "id": "6f277be5-2f33-47dd-9983-8ca75a28ad29"
+ },
+ {
+ "filename": "2014 - Dorothy Hodgkin Lecture 2014 Understanding genes identified by genome‐wide association.pdf",
+ "id": "b666545f-6a53-45de-8562-55d88fc6f7ee"
+ },
+ {
+ "filename": "2013 - Individualized genomics and the future of translational medicine.pdf",
+ "id": "76cbb6b8-d9b0-482d-b724-08892633bb62"
+ },
+ {
+ "filename": "2011 - Transferability of Type 2 Diabetes Implicated Loci in multi-ethnic cohorts from Southeast Asia.pdf",
+ "id": "6a2d9ea5-7018-42fe-bed9-2c9c508531cb"
+ },
+ {
+ "filename": "2014 - Revisiting the Thrifty Gene Hypothesis via 65 Loci.pdf",
+ "id": "956048af-a512-4b39-8555-a8fe97f5b7ba"
+ },
+ {
+ "filename": "2012 - Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.pdf",
+ "id": "b1d09a6d-334a-48f4-b4ed-4754f398d046"
+ },
+ {
+ "filename": "2012 - The Pathogenesis and Natural History of Type 1 diabetes.pdf",
+ "id": "b3bdc337-4b5b-41fd-bd6e-612ac558422e"
+ },
+ {
+ "filename": "2011 - Comparative Genetics and Genomics of Nematodes.pdf",
+ "id": "f06773a6-5f81-4d74-883d-c0819b81b68e"
+ },
+ {
+ "filename": "2014 - Genetics of Type 2 Diabetes Insights into the Pathogenesis.pdf",
+ "id": "183f165e-4d5c-4580-9aff-4e6b2e5a6463"
+ },
+ {
+ "filename": "2013 - Association of Ketone Body Levels With Hyperglycemia.pdf",
+ "id": "e2dffbbd-ae00-4cc9-947c-0e28b49c880d"
+ },
+ {
+ "filename": "2015 - Diabetes mellitus The epidemic of the century.pdf",
+ "id": "a7bad429-5f6a-464f-a666-f9cb1be60338"
+ },
+ {
+ "filename": "2013 - Systematic comparison of phenome-wide association.pdf",
+ "id": "d2b7db1d-2821-4ca0-a6ea-b99108eb3f94"
+ },
+ {
+ "filename": "2014 - Microbiota and diabetes an evolving relationship.pdf",
+ "id": "3036f895-8263-405c-8273-365b39275ea5"
+ },
+ {
+ "filename": "2010 - Type 2 diabetes mellitus and inflammation Prospects for biomarkers of risk and nutritional intervention.pdf",
+ "id": "f413d09d-cc53-4f6c-b990-dec57ab9a253"
+ },
+ {
+ "filename": "2012 - SNP in the genome-wide association study hotspot on chromosome 9p21.pdf",
+ "id": "57d91713-225c-4c04-a9e7-e275588e2a68"
+ },
+ {
+ "filename": "2015 - Novel epigenetic determinants of type 2 diabetes.pdf",
+ "id": "dad48e98-2dcc-41ae-866a-139f5540a24c"
+ },
+ {
+ "filename": "2010 - Considerations for the Impact of Personal Genome Information.pdf",
+ "id": "f8659e89-3f2f-4c83-8069-f015862b7377"
+ },
+ {
+ "filename": "2014 - Association of Dioxin and Other Persistent Organic Pollutants (POPs) with Diabetes Epidemiological Evidence and New Mechanisms of Beta Cell Dysfunction.pdf",
+ "id": "893e83e6-05f4-4917-9dee-6ec2cb847def"
+ },
+ {
+ "filename": "2013 - Progress in Genetics and Genomics of Nonhuman Primates.pdf",
+ "id": "370a3b80-64ed-42df-a480-2fc62b563131"
+ },
+ {
+ "filename": "2013 - Exploring genome-wide – dietary heme iron intake interactions and the risk of type 2 diabetes.pdf",
+ "id": "df262ebc-bd7f-4866-a165-afae227974db"
+ },
+ {
+ "filename": "2011 - Discovery of Genes Related to Diabetic Nephropathy in Various Animal Models by Current Techniques.pdf",
+ "id": "6011e960-6a6e-47fe-94f2-2c21c224fd25"
+ },
+ {
+ "filename": "2014 - Nutrigenetics and Nutrigenomics Insights into Diabetes Etiopathogenesis.pdf",
+ "id": "8cd81e24-a326-4443-bc37-0e6e421e70b2"
+ },
+ {
+ "filename": "2013 - The genomics of preterm birth from animal models to human studies.pdf",
+ "id": "8a9fe1bc-7fa3-40ee-ade0-9a498bcf9def"
+ },
+ {
+ "filename": "2013 - Genome-wide association study in a Chinese population with diabetic retinopathy.pdf",
+ "id": "fb7a24a3-9d72-49d7-93df-7a2f400f44c4"
+ },
+ {
+ "filename": "2010 - Systems biology discoveries using non-human primate pluripotent stem and germ cells novel gene and genomic imprinting interactions as well as unique ex.pdf",
+ "id": "96913276-ef55-4c0e-8a6e-557963f327c0"
+ },
+ {
+ "filename": "2012 - Next Steps in Cardiovascular Disease Genomic Research.pdf",
+ "id": "17cd95a4-6e8e-4696-8881-ea43fa80ccce"
+ },
+ {
+ "filename": "2011 - Implications for Educating the Next Generation of Nurses on Genetics and Genomics in the 21st Century.pdf",
+ "id": "99d5e3d6-c802-468a-a13c-723bcc7000cb"
+ },
+ {
+ "filename": "2014 - The potential of novel biomarkers to improve risk prediction of type 2 diabetes.pdf",
+ "id": "6303851b-5bac-4c62-bafc-78f9276c0285"
+ },
+ {
+ "filename": "2011 - Genetic determinants of platelet reactivity during acetylsalicylic acid therapy.pdf",
+ "id": "6f3e85af-5c85-4fa2-bd76-9b735aec379e"
+ },
+ {
+ "filename": "2015 - Basic Concepts and Potential Applications of Genetics and Genomics for Cardiovascular and Stroke Clinicians.pdf",
+ "id": "6c0eb981-977a-42f5-a3b1-136e1ccfc5aa"
+ },
+ {
+ "filename": "2011 - Responses of Gut Microbiota and Glucose and Lipid.pdf",
+ "id": "3035a342-be3f-41ad-b0e3-36a67c5f2491"
+ },
+ {
+ "filename": "2011 - A Systematic Review of Strategies that Increase the Recruitment.pdf",
+ "id": "af5bb4ab-62ee-4e30-9112-0eefef3685ed"
+ },
+ {
+ "filename": "2012 - Genomic instability in patients with type 2 diabetes mellitus on hemodialysis.pdf",
+ "id": "3d681d63-2ed3-4675-acd8-04bd00f152a6"
+ },
+ {
+ "filename": "2014 - Impact of Type 2 Diabetes.pdf",
+ "id": "f06a22ff-cf91-46e8-8a2f-6690d7ba90d9"
+ },
+ {
+ "filename": "2014 - Evaluating the Role of Epigenetic Histone Modifications.pdf",
+ "id": "8d723c99-bd3c-43eb-9b31-14ee233c2ed4"
+ },
+ {
+ "filename": "2012 - Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits.pdf",
+ "id": "f5691980-91d6-40c9-adf3-9b3daab14841"
+ },
+ {
+ "filename": "2010 - Genetic_and_Genome_Resources_in_Buckwheat.pdf",
+ "id": "ac931339-9162-4bb8-97ad-a499afd69004"
+ },
+ {
+ "filename": "2015 - Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.pdf",
+ "id": "0f966b06-6a2f-4373-84f6-e2112fe0aaba"
+ },
+ {
+ "filename": "2015 - Exercise genomics—a paradigm shift is needed.pdf",
+ "id": "4d681730-97a5-4efd-89ef-76da9f49f793"
+ },
+ {
+ "filename": "2010 - Global Epigenomic Analysis of Primary Human.pdf",
+ "id": "251d15dc-e1ec-4fea-8c29-b000f51a62cd"
+ },
+ {
+ "filename": "2013 - Papaya as a Medicinal Plant.pdf",
+ "id": "d7738041-0387-489b-b2ed-9b42a62dbba8"
+ },
+ {
+ "filename": "2012 - The use of animal models in diabetes research.pdf",
+ "id": "770beab7-59a4-4bbe-94a5-79a965ab696a"
+ },
+ {
+ "filename": "2013 - From Candidate Genes to Genome-wide Association.pdf",
+ "id": "82f54aa3-df35-48e1-8311-d1e4354cc302"
+ },
+ {
+ "filename": "2015 - The Association of Type 2 Diabetes Loci.pdf",
+ "id": "f14a6713-c827-4d4d-9b64-256de84b926e"
+ },
+ {
+ "filename": "2015 - Exploring human brain lateralization with molecular.pdf",
+ "id": "07e4d0a6-79a9-421f-8431-2569b3c0c006"
+ },
+ {
+ "filename": "2013 - The miRNA Profile of Human Pancreatic Islets and BetaCells and Relationship to Type 2 Diabetes Pathogenesis.pdf",
+ "id": "481df52b-2ef8-4afa-b3b3-588a01476907"
+ },
+ {
+ "filename": "2012 - Next-generation sequencing identifies TGF-β1-associated gene expression profiles.pdf",
+ "id": "9f27addf-3ea2-4538-aa24-12cc14bbd690"
+ },
+ {
+ "filename": "2014 - Evaluation of Candidate Nephropathy Susceptibility.pdf",
+ "id": "35c60b97-b5b0-40e4-99c5-66cbec9c96b2"
+ },
+ {
+ "filename": "2010 - Tailoring the process of informed consent in genetic and genomic research.pdf",
+ "id": "16a19a42-1f27-43e4-a4df-46d5e9c81096"
+ },
+ {
+ "filename": "2014 - Translational pain research Lessons from genetics and genomics.pdf",
+ "id": "3a70f8f8-9aec-4f54-b80d-7c5c157c552a"
+ },
+ {
+ "filename": "2011 - Genetic variants of 11 telomere-pathway gene loci and the risk of incident type 2 diabetes mellitus.pdf",
+ "id": "c929b525-7ab9-422a-be19-df86f3167f4e"
+ },
+ {
+ "filename": "2010 - Liver and Adipose Expression Associated SNPs.pdf",
+ "id": "5c14a921-3200-44d8-8210-fcf86bd7915c"
+ },
+ {
+ "filename": "2015 - Pharmacogenetics and individual responses to treatment of hyperglycemia.pdf",
+ "id": "4feda561-1914-404d-9092-3c629d5251bd"
+ },
+ {
+ "filename": "2011 - Implications of genome wide association studies for the understanding.pdf",
+ "id": "d28444c1-b67e-4ea5-84c4-6bb18d048c92"
+ },
+ {
+ "filename": "2015 - Genetics, genomics and personalized medicine in Type 2 Diabetes.pdf",
+ "id": "4d3330eb-acd0-4f72-aadf-b056d3c8b389"
+ },
+ {
+ "filename": "2012 - Sex-specific mouse liver gene expression genome-wide analysis of developmental changes from pre-pubertal period to young adulthood.pdf",
+ "id": "1fd1a511-e2f6-405a-921e-9c3b1fbd34cd"
+ },
+ {
+ "filename": "2012 - A Genome-Wide Association Search for Type 2 Diabetes.pdf",
+ "id": "711e3d33-a196-4072-bc31-ffaa6bb3efa0"
+ },
+ {
+ "filename": "2011 - A large multi-centre European study validates high-sensitivity C-reactive protein (hsCRP) as a clinical biomarker for the diagnosis of diabetes subtypes.pdf",
+ "id": "a43dca68-1d67-4a0a-a090-c66e80acac84"
+ },
+ {
+ "filename": "2013 - A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX.pdf",
+ "id": "48376df6-3da4-4974-8148-ecd7d2c555c4"
+ },
+ {
+ "filename": "2014 - Informed consent for human genetic.pdf",
+ "id": "81ca527f-c0f7-417f-8b27-8d6a03ec1c43"
+ },
+ {
+ "filename": "2014 - Pathophysiology and treatment of type 2 diabetes.pdf",
+ "id": "646689fd-501b-4b27-b8fa-dc098f613044"
+ },
+ {
+ "filename": "2015 - Biological interpretation of genome-wide association studies using predicted gene functions.pdf",
+ "id": "bdf22103-8331-4320-9bf4-c008da48ebdc"
+ },
+ {
+ "filename": "2011 - Emerging Applications of Metabolomic.pdf",
+ "id": "45c14654-f263-4031-9941-206d7b6a97f3"
+ },
+ {
+ "filename": "2010 - Genetics and Genomics of Stroke.pdf",
+ "id": "bac1c937-ca95-4f16-a608-b2b4e9a6186a"
+ },
+ {
+ "filename": "2012 - Impact of data fragmentation across healthcare.pdf",
+ "id": "973fb168-c1d9-4d0d-83f7-6936aecb1047"
+ },
+ {
+ "filename": "2013 - Genome-wide meta-analyses of multiancestry cohorts.pdf",
+ "id": "4a23a74f-4853-43e1-b6da-af7a84e7021f"
+ },
+ {
+ "filename": "2014 - Common quantitative trait locus downstream of RETN.pdf",
+ "id": "a1db9e3f-939d-4fc9-8c6b-5a23d52e2177"
+ },
+ {
+ "filename": "2012 - DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from.pdf",
+ "id": "4322db2f-5f43-4fc0-8968-b24438a7d6b9"
+ },
+ {
+ "filename": "2013 - Public Knowledge of and Attitudes.pdf",
+ "id": "3992d979-8089-49a5-b0f1-84d04eaf79ad"
+ },
+ {
+ "filename": "2011 - Shared Genomics of Type 2 and Gestational Diabetes Mellitus.pdf",
+ "id": "3ddde56a-a480-41c4-a2ec-d14ca406964d"
+ },
+ {
+ "filename": "2014 - The intestinal microbiome in type 1 diabetes.pdf",
+ "id": "0125981a-00a6-4143-bab4-f5d5180ee919"
+ },
+ {
+ "filename": "2014 - Effect of Genetic Variation in a Drosophila Model of Diabetes associated misfolded human proinsulin.pdf",
+ "id": "0ad70153-d5e4-4518-a5a9-a6fc05254444"
+ },
+ {
+ "filename": "2013 - The Essential Detail The Genetics and Genomics of the Primate Immune.pdf",
+ "id": "4e447887-0f0f-48b3-b085-2b2fa59e687b"
+ },
+ {
+ "filename": "2011 - Diet‐Dependent Genetic and Genomic Imprinting Effects on Obesity in Mice.pdf",
+ "id": "04e193a3-e55b-461e-b884-8bf251a5ada9"
+ },
+ {
+ "filename": "2012 - Genome-wide meta-analysis of genetic susceptible genes for Type 2 Diabetes.pdf",
+ "id": "c4c1c99c-fd1b-41ed-ae2e-575fcd463fd0"
+ },
+ {
+ "filename": "2011 - Genetic and Genomic Research—Changing Patterns of Accountability.pdf",
+ "id": "9ecacdf6-60be-4790-a431-ccb77aa09231"
+ },
+ {
+ "filename": "2010 - Interactions of Dietary Whole-Grain Intake.pdf",
+ "id": "89a3d588-d85b-4655-ae25-86116d0893cc"
+ },
+ {
+ "filename": "2010 - Sequence Variation in DDAH1 and DDAH2 Genes.pdf",
+ "id": "1293a323-c0a2-4f10-ae75-1e2ee4380a54"
+ },
+ {
+ "filename": "2015 - Maternal gestational diabetes is associated.pdf",
+ "id": "049e1d89-52e3-4d15-ade5-7f54db927fcb"
+ },
+ {
+ "filename": "2011 - Public Perspectives on Returning.pdf",
+ "id": "3589de1c-19c6-4f76-a2be-b8e14ce63b8b"
+ },
+ {
+ "filename": "2010 - Genomics, Type 2 Diabetes, and Obesity.pdf",
+ "id": "5d1d5baa-75f4-42d5-8e4c-fb038a71bbec"
+ },
+ {
+ "filename": "2014 - Novel Rheumatoid Arthritis Susceptibility Locus at 22q12 Identified.pdf",
+ "id": "20b47cd4-95ea-4503-9019-80e6648d432f"
+ },
+ {
+ "filename": "2011 - Will family studies return to prominence in human genetics and genomics Rare variants and linkage analysis of complex traits.pdf",
+ "id": "17a0af49-7b1b-43d4-9068-216affd7221e"
+ },
+ {
+ "filename": "2012 - Needs Analysis of Genetics and Genomics in Communication Sciences and Disorders.pdf",
+ "id": "af3d7cd3-40ec-4a86-a473-89f83da250e4"
+ },
+ {
+ "filename": "2014 - Analysis on the association between PPARαγ polymorphisms and lipoprotein(a) in a Chinese Han population.pdf",
+ "id": "ab31e640-bc63-40a5-b38f-7a9c8c140a0c"
+ },
+ {
+ "filename": "2015 - Association between circulating 25-hydroxyvitamin D.pdf",
+ "id": "9818093b-803d-41bc-9412-2e18a7bfb21b"
+ },
+ {
+ "filename": "2016 - Epigenetic Mechanisms in Diabetic Kidney Disease.pdf",
+ "id": "4dd608e1-c16d-40ff-b92f-c765da39af28"
+ },
+ {
+ "filename": "2015 - Genetic association of IL-6, TNF-α and SDF-1 polymorphisms with serum.pdf",
+ "id": "01013a04-f594-4520-8c73-e13226f203a6"
+ },
+ {
+ "filename": "2011 - A Genome-Wide Meta-Analysis of Six Type 1 Diabetes.pdf",
+ "id": "2e317f9d-c028-41b7-a99e-28da61db9970"
+ },
+ {
+ "filename": "2014 - Identification of novel risk genes associated with type 1 diabetes mellitus.pdf",
+ "id": "7e816722-443f-463c-8a79-852752df28e6"
+ },
+ {
+ "filename": "2013 - Epigenetic Modifications in the Pathogenesis of Diabetic Nephropathy.pdf",
+ "id": "0e3dbf93-305e-40a6-9843-23afd2a18d7d"
+ },
+ {
+ "filename": "2010 - Family History of Diabetes and Prevalence.pdf",
+ "id": "27ebf515-68b1-4365-a719-e252cd6639ea"
+ },
+ {
+ "filename": "2013 - Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4.pdf",
+ "id": "b9c9912f-0344-4945-adb1-fd038bed90ab"
+ },
+ {
+ "filename": "2016 - Complete chloroplast genome sequences of Eucommia ulmoides.pdf",
+ "id": "77631e63-ef0b-4263-8e0e-1a73f84d7c4d"
+ },
+ {
+ "filename": "2015 - Epigenetic mechanisms in diabetic complications and metabolic memory.pdf",
+ "id": "2dc80127-89ba-47be-9e94-d90c2105be8d"
+ },
+ {
+ "filename": "2012 - Replication of genome-wide association signals of type 2 diabetes.pdf",
+ "id": "f1c48f50-888d-468b-9304-90141950e50d"
+ },
+ {
+ "filename": "2012 - Combination treatment with metronomic temozolomide.pdf",
+ "id": "08ef2d90-1578-4d3e-bb53-21f12b43a0ed"
+ },
+ {
+ "filename": "2011 - Human genetics and genomics a decade after the release of the draft sequence of the human genome.pdf",
+ "id": "937fe28b-dbaf-422b-a2de-9ffeafd94172"
+ },
+ {
+ "filename": "2015 - Targeted Allelic Expression.pdf",
+ "id": "9fd49699-612f-48c0-b1d9-e01158472be6"
+ },
+ {
+ "filename": "2017 - An Expanded Genome-Wide Association Study.pdf",
+ "id": "452799b7-ecc8-409d-ad22-04505067176b"
+ },
+ {
+ "filename": "2019 - Genome-Wide Association Study on the Early-Phase.pdf",
+ "id": "ba6454a1-cc8e-48d4-9df9-c0314734535f"
+ },
+ {
+ "filename": "2020 - Genetic analysis resolves differential diagnosis of a familial syndromic dilated.pdf",
+ "id": "461123d9-7d30-4cf6-8fa0-179c0938177a"
+ },
+ {
+ "filename": "2019 - Association between IL1B gene and cervical cancer susceptibility.pdf",
+ "id": "39b9bd2d-c6fa-49c7-8071-646be8d9c574"
+ },
+ {
+ "filename": "2017 - Genetic and Environmental.pdf",
+ "id": "d2eb3f52-43c5-4b3f-a501-0a6e1b00e19b"
+ },
+ {
+ "filename": "2021 - Genome-wide association studies identify two novel loci.pdf",
+ "id": "775c4a80-54c5-4cc1-ba8c-4975720126ba"
+ },
+ {
+ "filename": "2018 - Identification of CDC42BPG as a novel susceptibility locus for hyperuricemia in a Japanese population.pdf",
+ "id": "40c70f4e-09f3-46de-be1e-eb00499f4de3"
+ },
+ {
+ "filename": "2018 - Regulatory variants at KLF14 influence type.pdf",
+ "id": "d4d3cb27-76d2-4218-8506-25bcecdb975e"
+ },
+ {
+ "filename": "2019 - How Recent Advances in Genomics Improve Precision Diagnosis.pdf",
+ "id": "039589d5-c2a7-417f-b58d-7af5ee424a99"
+ },
+ {
+ "filename": "2019 - The influence of paternal diet on sncRNA-mediated epigenetic.pdf",
+ "id": "a63a6de1-9886-42a5-9572-e1743f6793c1"
+ },
+ {
+ "filename": "2016 - The Application of Genomics.pdf",
+ "id": "25481e34-2a45-4448-84f0-32c823cfcd03"
+ },
+ {
+ "filename": "2021 - Modern Statistical Methods for Genetics and Genomic Studies.pdf",
+ "id": "6910b508-6d25-4804-9e47-3590b57aa061"
+ },
+ {
+ "filename": "2015 - Where Next for Genetics and Genomics.pdf",
+ "id": "87f80b4d-2904-4fdf-bb6f-1ee91ed53c03"
+ },
+ {
+ "filename": "2018 - Multivariate analysis of genomics data to identify potential pleiotropic genes.pdf",
+ "id": "05f29542-022e-43df-840a-25973bf53599"
+ },
+ {
+ "filename": "2020 - Role of Helicobacter pylori infection in the manifestation of old age-related diseases.pdf",
+ "id": "5d933a9a-8b30-4cca-b09e-0f876df06ff7"
+ },
+ {
+ "filename": "2016 - Functional mechanisms for diabetic nephropathy-associated genetic variants..pdf",
+ "id": "02e531c0-473b-4e1f-b357-70d3c515b219"
+ },
+ {
+ "filename": "2018- A novel desmin DES indel mutation causes severe atypical cardiomyopathy in.pdf",
+ "id": "737d12b3-3805-4a4b-96c1-be39629950c3"
+ },
+ {
+ "filename": "2016 - Genome-Wide Studies of Type 2 Diabetes and Lipid Traits in Hispanics.pdf",
+ "id": "4be1d780-404a-4826-ba06-80b2c15e705b"
+ },
+ {
+ "filename": "2016 - Type 2 diabetes mellitus disease risk genes.pdf",
+ "id": "ba7298cd-4d19-4f98-9a2a-5fb625aa0068"
+ },
+ {
+ "filename": "2022 - Damaging missense variants in IGF1R implicatea role.pdf",
+ "id": "15b5c53c-d153-4932-9d24-9864e92a601d"
+ },
+ {
+ "filename": "2019 - Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data.pdf",
+ "id": "faa23996-65fc-4bc6-938a-c959e981d493"
+ },
+ {
+ "filename": "2016 - Antiapoptotic efficacy of seed of Eugenia jambolana on testicular germ cell in experimental diabetic rat a genomic study.pdf",
+ "id": "5e0b9d8a-123f-46a1-9568-69eda9104891"
+ },
+ {
+ "filename": "2020 - Mainstreaming genetics and genomics a systematic review.pdf",
+ "id": "4b5d79da-a618-424d-82aa-3024e4bca61d"
+ },
+ {
+ "filename": "2020 - Association of polymorphism in heat shock protein 70 genes with type 2 diabetes in Bangladeshi population.pdf",
+ "id": "94e153f4-bc43-4e5b-99d4-6bb64ed24e4a"
+ },
+ {
+ "filename": "2020 - Identifcation of pleiotropic genes between risk factors of stroke.pdf",
+ "id": "5def3cf5-1625-4f57-905e-6c5592b3926f"
+ },
+ {
+ "filename": "2016 - NIH working group report using genomic information to guide weight management From universal.pdf",
+ "id": "d53f2ef6-80e8-491a-9985-2b470144d313"
+ },
+ {
+ "filename": "2021 - Exome sequencing identifies a disease variant of the mitochondrial ATP-MgPi carrier.pdf",
+ "id": "2d99dae0-a039-446e-82c7-434af2e5f421"
+ },
+ {
+ "filename": "2021 - The oral microbiome of pregnant women facilitates gestational.pdf",
+ "id": "949e5edc-c324-473e-85b4-f73d500572fb"
+ },
+ {
+ "filename": "2017 - diabetes-mellitus-in-developing-countries-and-underserved-commun-2017.pdf",
+ "id": "7b869773-8f84-497b-8462-8bf18bf25828"
+ },
+ {
+ "filename": "2019 - Association of COX2 −765GC promoter polymorphism and coronary artery disease in Korean population.pdf",
+ "id": "b46aa38b-e663-4f9d-9b10-2a9f7d8617b0"
+ },
+ {
+ "filename": "2018 - Results of the First Genome-Wide Association Study of Latent Autoimmune Diabetes.pdf",
+ "id": "4de29b20-8aad-4607-9b54-f13a62bbc3e7"
+ },
+ {
+ "filename": "2018 - Identification of non-HLA genes associated with development of islet autoimmunity and type.pdf",
+ "id": "ed473b21-b1e1-4b58-b48d-5e3be03b82f5"
+ },
+ {
+ "filename": "2015 -iGWAS Integrative Genome-Wide Association.pdf",
+ "id": "3deff236-a94d-4e57-a6aa-bd432057bc8e"
+ },
+ {
+ "filename": "2016 - Gene targeting, genome editing from Dolly to editors.pdf",
+ "id": "e2d1d559-d48f-4e57-8372-04d31f0f9da3"
+ },
+ {
+ "filename": "2021 - Gallstone disease, diabetes, calcium, triglycerides, smoking and alcohol consumption and pancreatitis risk Mendelian randomization study.pdf",
+ "id": "44dfea31-ea1d-4a0a-bd33-eaa71160d089"
+ },
+ {
+ "filename": "2016 - Association of genetic variants in INS (rs689), INSR (rs1799816) and PP1G.G (rs1799999) with type 2 diabetes (T2D) a case–control study in three ethnic groups from N.pdf",
+ "id": "4cc0ec23-2c2c-461e-a84c-0e5364d5d1be"
+ },
+ {
+ "filename": "2019 - Human genetics and genomics research in Ecuador historical survey, current state, and future directions.pdf",
+ "id": "c99adc1d-e48a-4175-b172-6db423609120"
+ },
+ {
+ "filename": "2019 - Whole exome sequencing reveals novel LEPR frameshift mutation.pdf",
+ "id": "528babba-e50e-4d60-8f81-cb89f2ec7695"
+ },
+ {
+ "filename": "2016 - Genome-wide DNA methylation pattern in visceral adipose tissue.pdf",
+ "id": "065a4ead-3f3a-44a9-9dc2-41e579da1dae"
+ },
+ {
+ "filename": "2019 - Genome-wide association study for proliferative diabetic retinopathy in Africans.pdf",
+ "id": "2622ae0b-4cbf-468b-bb0f-afb4768968a6"
+ },
+ {
+ "filename": "2020 - Genetic and genomic analysis of long insemination interval.pdf",
+ "id": "fcc3cb07-5245-479e-a820-9ffba82a05e8"
+ },
+ {
+ "filename": "2018 - Neuro-Immuno-Gene- and GenomeEditing-Therapy for Alzheimer’s.pdf",
+ "id": "ac00c552-7514-49d4-9e90-ab01c22472ae"
+ },
+ {
+ "filename": "2016 - Parents’ experiences 12 years after newborn screening for genetic susceptibility to type 1 diabetes and their attitudes to whole-genome sequencing in newborns.pdf",
+ "id": "49320a63-b003-4018-b8c8-702f7966a43a"
+ },
+ {
+ "filename": "2019 - Optimal Integration of Behavioral Medicine.pdf",
+ "id": "f52802b0-52ca-4c3c-8953-67bc70cd40c6"
+ },
+ {
+ "filename": "2021 - A genome-wide association study identifies 5 loci associated with frozen shoulder and implicates diabetes as a causal risk factor.pdf",
+ "id": "bdf04fc4-cd77-4b20-a322-e524449a3108"
+ },
+ {
+ "filename": "2020 - Shared (epi)genomic background connecting neurodegenerative diseases.pdf",
+ "id": "af0ef613-cf39-45d3-a637-be6b2e9531b7"
+ },
+ {
+ "filename": "2016 - The Effect of Pioglitazone on Genomic Instability in Induced Diabetic Rats.pdf",
+ "id": "1e132441-28f9-4b2e-93d8-5d5d3bf0d5b5"
+ },
+ {
+ "filename": "2019 - Development and Genome Sequencing.pdf",
+ "id": "77ffc55f-68a8-4c02-96a5-428b81bf6436"
+ },
+ {
+ "filename": "2021 - Molecular genetics and genomics of the ABO blood group system.pdf",
+ "id": "78b3c74d-d999-4009-878d-5349a1204ebe"
+ },
+ {
+ "filename": "2021 - Genome-wide association study of vitamin D concentrations and bone mineral density in the African American-Diabetes Heart Study.pdf",
+ "id": "851e8543-425e-4217-834d-fcadaed4b3ec"
+ },
+ {
+ "filename": "2020 - Identification of histone malonylation in the human fetal brain and implications.pdf",
+ "id": "a41dae15-ad6c-4fb2-b146-a0f68b29ade3"
+ },
+ {
+ "filename": "2020 - Modern genetic and genomic improvements of the pig.pdf",
+ "id": "03110c8a-1232-40c2-8380-c9feb8b6468c"
+ },
+ {
+ "filename": "2018-a-bayesian-gene-based-genome-wide-association-study-analysis-of-osteosarcoma-trio-data-using-a.pdf",
+ "id": "c45cd32e-d39d-4c13-9c2a-d7c73d16c28d"
+ },
+ {
+ "filename": "2017 - DNA methylation profiling reveals the presence of populationspecific signatures correlating with phenotypic characteristics.pdf",
+ "id": "fa98be3a-0739-4dd1-90c6-2f47a133c0b1"
+ },
+ {
+ "filename": "2018 - Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci.pdf",
+ "id": "7fe48b75-62e5-4459-913a-776bf6ccd764"
+ },
+ {
+ "filename": "2016 - The Genomics of Type 1 Diabetes.pdf",
+ "id": "f7072d9b-4e07-4541-bac7-13a25761f460"
+ },
+ {
+ "filename": "2019 - Whole‐exome sequencing provides insights into monogenic.pdf",
+ "id": "697698d3-6959-48c5-9cb5-cac8dff223a8"
+ },
+ {
+ "filename": "2018 - Genome-wide DNA methylation profiling in infants born to gestational diabetes.pdf",
+ "id": "0b9235ba-bee0-4265-999b-b364b66066a8"
+ },
+ {
+ "filename": "2016 - Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes.pdf",
+ "id": "0ffd1f4d-683e-4e44-a6b2-8d2d9849c45d"
+ },
+ {
+ "filename": "2020 - Multifaceted genome‑wide study identifes novel regulatory loci.pdf",
+ "id": "fd07e741-26d8-4d90-97e8-27a43f9dc8b7"
+ },
+ {
+ "filename": "2016 - Putting the Genome in Context Gene-Environment Interactions.pdf",
+ "id": "940283a4-b7e7-4bbe-ba34-c80c4717c15a"
+ },
+ {
+ "filename": "2020 - Carrot Anthocyanins Genetics and Genomics Status and Perspectives to Improve Its Application for the Food Colorant Industry.pdf",
+ "id": "33f1abde-a821-483b-b8b4-785f499db09d"
+ },
+ {
+ "filename": "2019 - IRS1‐ rs10498210 GA and CCR5‐59029 AG polymorphisms in patients with type 2 diabetes in Kurdistan.pdf",
+ "id": "9b93b4eb-98c2-403f-aea2-6b24399501b8"
+ },
+ {
+ "filename": "2016 - Genome-wide association study of 25(OH) Vitamin D concentrations in Punjabi Sikhs.pdf",
+ "id": "459eafe2-cf00-4dad-8690-06bdd509afda"
+ },
+ {
+ "filename": "2016 -Determinants and Consequences of Obesity.pdf",
+ "id": "0b48022e-039a-4bf9-8a94-667c0ce77f3d"
+ },
+ {
+ "filename": "2020 - Genetic and genomic research for the development of an efficient.pdf",
+ "id": "41a62819-a8b1-46c2-a191-20added5d81f"
+ },
+ {
+ "filename": "2020 - Shortened consent forms for genome-wide sequencing Parent.pdf",
+ "id": "6b6fd53a-8eee-4e52-9f02-9ae9da511e94"
+ },
+ {
+ "filename": "2019 - Circulating miR‐130 and its target PPAR‐ may be potential biomarkers in patients.pdf",
+ "id": "5acc4c05-84a5-4bca-9d45-d8a0dfae7ac9"
+ },
+ {
+ "filename": "2019 - Overview of genomics and post-genomics research on type 2.pdf",
+ "id": "b3fa4d11-72b9-4e6f-9c28-39efdaded492"
+ },
+ {
+ "filename": "2015 -precision-medicine-for-managing-diabetes.pdf",
+ "id": "1ecd1047-39d1-44ea-b3a2-3d8472be3435"
+ },
+ {
+ "filename": "2019 - Association of PTPN22 polymorphism and its correlation.pdf",
+ "id": "bd834094-7504-4fc5-bc9d-78e6a9e719f0"
+ },
+ {
+ "filename": "2016 - CRISPR-Cas9–Mediated Modification.pdf",
+ "id": "953e74d0-0fbd-461c-bec1-66c9da2eb900"
+ },
+ {
+ "filename": "2017 - Diabetes, Associated Clinical Spectrum Long-term Prognosis.pdf",
+ "id": "db8194b1-837f-42da-b7e9-3272e25c3560"
+ },
+ {
+ "filename": "2020 - Identification of novel differentially expressed genes in retinas of STZ‐induced.pdf",
+ "id": "230022b2-931e-42ab-b100-5e9776483d1a"
+ },
+ {
+ "filename": "2018 - Novel risk genes identified in a genome-wide association study for coronary artery disease in patients with type 1 diabetes.pdf",
+ "id": "58c010e8-8ab5-4d2b-9e9f-1367acd1abfb"
+ },
+ {
+ "filename": "2021 - A genome-wide association study identifies novel candidate genes for susceptibility to diabetes mellitus in non-obese cats.pdf",
+ "id": "d9b4a93b-2fb8-46e6-bccf-18dbc4ec8024"
+ },
+ {
+ "filename": "2021- Development of genome-wide polygenic risk scores for lipid traits and clinical applications for dyslipidemia, subclinical atherosclerosis, and diabetes cardiovascular complications among East Asians.pdf",
+ "id": "85c3da22-2afa-4a31-814d-b293f9caf6f9"
+ },
+ {
+ "filename": "2019 - Gene coexpression network analysis identified potential biomarkers in gestational.pdf",
+ "id": "e4a469d8-5c4f-48aa-9175-eba55767e8f4"
+ },
+ {
+ "filename": "2021 - Gene-level analysis of rare variants in 379,066 whole exome sequences identifies an association of GIGYF1 loss of function with type 2 diabetes.pdf",
+ "id": "2bef9608-4bd6-4252-9fbd-2413b2cad4f8"
+ },
+ {
+ "filename": "2018 - Systems Pharmacology-Based Approach of Connecting.pdf",
+ "id": "4a71cebc-a7ab-4fa3-9dc0-8982ee77ecec"
+ },
+ {
+ "filename": "2019 - Genome-wide association study identifies new susceptibility.pdf",
+ "id": "0d6183be-3cc9-43f5-911c-7c7d5b0ec013"
+ },
+ {
+ "filename": "2019 - Role of genomics literacy in reducing the burden of common.pdf",
+ "id": "ccb4bb6f-7d39-4e26-aec1-c99128af1ff2"
+ },
+ {
+ "filename": "2018 - Pilot genome-wide association study identifying novel risk loci for type 2.pdf",
+ "id": "d01eef0b-9e5b-4d97-a114-60edbce93671"
+ },
+ {
+ "filename": "2017 - Refining genotype phenotype correlation in Alstr m syndrome through study of primary.pdf",
+ "id": "6a868814-5c2a-4b12-aa8c-e5c9a00d22e7"
+ },
+ {
+ "filename": "2017 - Sub-Saharan centralized biorepository for genetic and genomic research.pdf",
+ "id": "15efc0be-fb91-4abd-9bb7-2c9546056ec6"
+ },
+ {
+ "filename": "2018 - Lnc‑ing non‑coding RNAs with metabolism and diabetes roles.pdf",
+ "id": "7ebf3dcf-0e9a-44d7-bd1c-1c49004d0753"
+ },
+ {
+ "filename": "2016 - Contribution of the Nurses’Health Studies toUncovering Risk Factors for Type 2 Diabetes Diet,Lifestyle, Biomarkers, and Genetics.pdf",
+ "id": "31588831-61b3-4018-9962-bd6985c3061b"
+ },
+ {
+ "filename": "2017 - Disease-specific biases in alternative splicing.pdf",
+ "id": "232dc4fe-6c33-4ec6-ad51-6c2bd95d0bea"
+ },
+ {
+ "filename": "2021 - Genetic discovery and risk characterization in type 2.pdf",
+ "id": "48fa92f3-edad-4ee6-91aa-a6801571e4af"
+ },
+ {
+ "filename": "2020 - Pattern analysis of genetics and genomics.pdf",
+ "id": "68c109d7-cfef-4a50-8f22-f0b16a5cb52c"
+ },
+ {
+ "filename": "2016 - Hypomethylation within gene promoter regions and type 1 diabetes.pdf",
+ "id": "657de620-10e3-4b82-ad93-a0b6a775aca4"
+ },
+ {
+ "filename": "2018 - The genetic architecture of type 1 diabetes mellitus.pdf",
+ "id": "588bca6b-82c0-4ac1-9c7e-dc09af1d49b0"
+ },
+ {
+ "filename": "2019 - Genetic Risk Scores for Diabetes Diagnosis.pdf",
+ "id": "cf022812-00a2-42ba-88fb-5c2014c86c43"
+ },
+ {
+ "filename": "2019 - What Is the Psychosocial Impact of Providing Genetic and Genomic Health Information.pdf",
+ "id": "b0b60080-2338-411b-bc44-1f5626a3c442"
+ },
+ {
+ "filename": "2020 - Genetics and Epigenetics New Insight on Gestational Diabetes Mellitus.pdf",
+ "id": "07e78308-be06-4330-b61c-34628ba78633"
+ },
+ {
+ "filename": "2016 - A Genome-Wide Association Study Provides New Evidence That CACNA1C Gene is Associated With Diabetic Cataract.pdf",
+ "id": "f136ebbc-afe9-4773-ac22-451dce7f438e"
+ },
+ {
+ "filename": "2016 - Replication and Relevance of Multiple Susceptibility Loci.pdf",
+ "id": "8909aa39-da1c-49fc-aa39-2be2db686ddc"
+ },
+ {
+ "filename": "2019 - Biomarkers for type 2 diabetes.pdf",
+ "id": "69f1f8e6-4acb-4988-a778-d1a9b524fc62"
+ },
+ {
+ "filename": "2021 - Association of APOE genotype with lipid profiles and type 2 diabetes mellitus in a Korean population.pdf",
+ "id": "2730a3fd-941d-40e2-ac6d-631010bfcb4d"
+ },
+ {
+ "filename": "2018 - Genome-wide polygenic scores for common diseases.pdf",
+ "id": "c1a4379a-6413-4328-8b83-d0a0bb21c2b2"
+ },
+ {
+ "filename": "2020 - The study of METTL14, ALKBH5, and YTHDF2 in peripheral.pdf",
+ "id": "b8e583aa-ff67-425e-89ab-1c53f413aa31"
+ },
+ {
+ "filename": "2019 - Implementation of Genomic Medicine.pdf",
+ "id": "143fe896-0f3e-49d2-98f8-2af585d5070e"
+ },
+ {
+ "filename": "2021 - PPARγ and Diabetes Beyond the Genome and Towards Personalized Medicine.pdf",
+ "id": "eea5f67b-edf7-4ec1-b874-461b49914480"
+ },
+ {
+ "filename": "2016 - Genetics and Genomics of Coronary Artery Disease..pdf",
+ "id": "1854d678-f8ac-4669-8dc4-aad5769bb183"
+ },
+ {
+ "filename": "2021 - Genomic risk score provides predictive performance for type 2 diabetes in the UK biobank.pdf",
+ "id": "52839835-a0ac-4056-b762-f60ded1a9619"
+ },
+ {
+ "filename": "2019 - Genome-wide association study of cervical cancer.pdf",
+ "id": "5c91b83f-4d0f-400a-b266-6f3ff97d48aa"
+ },
+ {
+ "filename": "2019- Candidate Gene and Genome-Wide Association Studies for Circulating Leptin Levels Reveal Population and Sex-Specific Associations in High Cardiovascular Risk Mediterranean Subjects.pdf",
+ "id": "9923e77c-5ae5-4330-ba35-1725f27da331"
+ },
+ {
+ "filename": "2022 - From karyotypes to precision genomics.pdf",
+ "id": "4ad6da14-56a3-48ab-a587-42761ceac238"
+ },
+ {
+ "filename": "2016 - The genetic architecture of type 2 diabetes.pdf",
+ "id": "632bc212-4a29-46c2-8e75-4205d347bbc4"
+ },
+ {
+ "filename": "2021 - Human Molecular Genetics and Genomics.pdf",
+ "id": "801c9288-70c9-4d14-b8bc-13ee6708803a"
+ },
+ {
+ "filename": "2020 - Genetics and Genomics of Atherosclerotic Cardiovascular Disease.pdf",
+ "id": "77a3661f-21e0-4def-8cb6-4f39f303212e"
+ },
+ {
+ "filename": "2021 - Plasma Vitamin C and Type 2.pdf",
+ "id": "7f69403c-5bb3-4a3c-889b-6d6c9f144bdd"
+ },
+ {
+ "filename": "2019 - Characteristics and quality of genetics and genomics mobile apps a systematic review.pdf",
+ "id": "1c18e524-0f4e-4024-b937-aef9edccee80"
+ },
+ {
+ "filename": "2018 - Precision Behavioral Medicine Implications of Genetic and Genomic Discoveries.pdf",
+ "id": "d2ae7a22-e865-4927-885f-2f024b350fa5"
+ },
+ {
+ "filename": "2016 - Identifying Novel Gene Variants in Coronary Artery Disease and Shared Genes.pdf",
+ "id": "22125d3d-2da9-4e8e-aac4-559d9a7cf99c"
+ },
+ {
+ "filename": "2019 - (Epi)genomic heterogeneity of pancreatic islet function and failure in type 2 diabetes.pdf",
+ "id": "6a8362f1-8572-4f6f-97d4-1d783c1937c7"
+ },
+ {
+ "filename": "2016 - Genetics and Genomics of Pathogens Fighting Infections with Genome-Sequencing Technology.pdf",
+ "id": "c49a1138-407c-4ee7-bdd3-83e1e86f5f48"
+ },
+ {
+ "filename": "2021 - Genetics and Genomics of SOST Functional Analysis of Variants and Genomic Regulation in Osteoblasts.pdf",
+ "id": "66948d59-a372-4efc-8610-f2fa6fd0c66c"
+ },
+ {
+ "filename": "2016 - Differentially expressed microRNAs in the corpus cavernosum from a murine model with type 2 diabetes mellitus-associated erectile dysfunction.pdf",
+ "id": "42e06cda-627e-46f2-a289-c4c1fb6af8f2"
+ },
+ {
+ "filename": "2022 - A genome-wide functional genomics approach uncovers genetic determinants of immune phenotypes in type 1 diabetes.pdf",
+ "id": "54812135-0ef6-4654-afe9-8ee40336238e"
+ },
+ {
+ "filename": "2016 - Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility.pdf",
+ "id": "ba4df6c3-8d2c-4b96-8fae-e5b5072eb1c7"
+ },
+ {
+ "filename": "2020 - Informed Consent for Genetic and Genomics Research.pdf",
+ "id": "a4b0655d-895c-4368-9401-ee2903b15d42"
+ },
+ {
+ "filename": "2017 - Embracing an “African Ethos” to facilitate African immigrants participation in medical genetics and genomics research.pdf",
+ "id": "35e2839e-4c74-4d5e-8321-dba5a74380a4"
+ },
+ {
+ "filename": "2019 - Strain- and Species-Level Variation.pdf",
+ "id": "ec830735-113b-489f-bbd9-4127790b41c1"
+ },
+ {
+ "filename": "2019 - Genome-wide association study of type 2 diabetes in Africa.pdf",
+ "id": "0de85e11-dcbb-4538-b043-ee18a30e9f14"
+ },
+ {
+ "filename": "2019 - Genetic risk score combining six genetic variants associated.pdf",
+ "id": "d1be871a-23b7-4666-a06c-51cf18a2b653"
+ },
+ {
+ "filename": "2018 - The human gut microbiome in early-onset type 1 diabetes from the TEDDY study.pdf",
+ "id": "e9fe3604-5c5a-41e1-ab6c-3aa69a138823"
+ },
+ {
+ "filename": "2016 - A view on clinical genetics.pdf",
+ "id": "2d3ddef3-a947-4991-8c8a-abb2cee94500"
+ },
+ {
+ "filename": "2020 - Waist circumference increases risk of coronary heart disease Evidence from a Mendelian.pdf",
+ "id": "72ebb953-2408-4967-bd33-f36e5789587f"
+ },
+ {
+ "filename": "2017 - A Loss-of-Function Splice Acceptor Variant in IGF2.pdf",
+ "id": "2a94ec9f-6fb6-4ce3-8e33-1a8859470be9"
+ },
+ {
+ "filename": "2021 - COVID-19 one year into the pandemic from genetics and genomics to therapy, vaccination, and policy.pdf",
+ "id": "fbcdf388-2f26-4be9-8c92-d6a030c45689"
+ },
+ {
+ "filename": "2020 - Phenotypic and Genetic Characterization of Lower LDL Cholesterol.pdf",
+ "id": "aa33df5e-983b-433c-8ebc-34d10fbc1ce3"
+ },
+ {
+ "filename": "2016 - The genetic regulatory signature of type 2 diabetes in human skeletal muscle.pdf",
+ "id": "561f13ee-3b5d-49bf-9196-6aea8219ce0d"
+ },
+ {
+ "filename": "2018 - Global aetiology and epidemiology of type 2 diabetes mellitus and its complications.pdf",
+ "id": "d978c09f-53e0-4a69-bfa6-e15537f32ffb"
+ },
+ {
+ "filename": "2018 - MALAT1 An Epigenetic Regulator of Inflammation in Diabetic Retinopathy.pdf",
+ "id": "eaec9118-d7f3-4f1a-bb8e-37baee9c49b0"
+ },
+ {
+ "filename": "2020 - Determination of mutations in iron regulating genes of beta.pdf",
+ "id": "2da9b10b-fac7-45c5-96d4-6569aa0be00b"
+ },
+ {
+ "filename": "2018 - High-Throughput Approaches onto Uncover (Epi)Genomic Architecture of Type 2 Diabetes.pdf",
+ "id": "82012b1c-332a-4b23-94ec-5e3536302173"
+ },
+ {
+ "filename": "2019 - Genetic variants of resistin and its plasma levels Association with obesity.pdf",
+ "id": "e2badd5b-39b8-41c4-827a-19c6f686b9f3"
+ },
+ {
+ "filename": "2020 - What constitutes good ethical practice in genomic research in Africa Perspectives of participants in a genomic research study in Uganda.pdf",
+ "id": "7c64cac2-5d11-4a95-87ff-aba4d307609a"
+ },
+ {
+ "filename": "2016 - TRPV1 Gene Polymorphisms Are Associated with Type 2 Diabetes by Their Interaction with Fat Consumption in the Korean Genome Epidemiology Study.pdf",
+ "id": "0d249cf0-9457-473d-a04b-cdeab34d7fb5"
+ },
+ {
+ "filename": "2019 - Characterization of bovine (Bos taurus).pdf",
+ "id": "b5ed7f1a-cabd-435b-9f36-8436b82dddff"
+ },
+ {
+ "filename": "2022 - A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes.pdf",
+ "id": "5c1e50c0-3545-490c-8430-c199fd84db97"
+ },
+ {
+ "filename": "2021 - Identification of ZBTB18 as a novel colorectal tumor suppressor gene through genome-wide promoter hypermethylation analysis.pdf",
+ "id": "1e5eee34-b4c8-47be-ba2c-6d14d13d49bf"
+ },
+ {
+ "filename": "2021 - Polygenic risk scores in the clinic.pdf",
+ "id": "c500b56a-3606-4a5e-b0c2-29eaa631cb16"
+ },
+ {
+ "filename": "2020 - Evaluation of genetic susceptibility of six type II diabetes Genome-Wide.pdf",
+ "id": "59c5ad68-6524-466f-a037-1cc1dff592d8"
+ },
+ {
+ "filename": "2017 - Expanding the mutational spectrum in Johanson-Blizzard.pdf",
+ "id": "6fb02215-e24d-4878-86cf-54d8b68eeac5"
+ },
+ {
+ "filename": "2020 - Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics..pdf",
+ "id": "1cebda9b-a727-4bfd-8521-cf61903235cc"
+ },
+ {
+ "filename": "2021 - Genetics and genomics of arrhythmic.pdf",
+ "id": "773837e0-371c-4ba2-bdc0-02c4996b534d"
+ },
+ {
+ "filename": "2018 - Type 2 Diabetes Mellitus and Cardiovascular Disease Genetic and Epigenetic Links.pdf",
+ "id": "18a35699-873a-4542-b35a-3a4a14edd628"
+ },
+ {
+ "filename": "2020 - Polygenic inheritance, GWAS, polygenic risk scores,and the search for functional variants.pdf",
+ "id": "8051a2ea-ac83-4204-a439-13d4f105be45"
+ },
+ {
+ "filename": "2016 - Genetics and genomic medicine in Morocco.pdf",
+ "id": "f6baaabe-5856-4be5-8fe5-cd2b935ebacf"
+ },
+ {
+ "filename": "2020 - Atypical juvenile hereditary hemochromatosis onset with positive pancreatic islet.pdf",
+ "id": "ca89a942-79a6-4677-9519-3dd0b7d6400b"
+ },
+ {
+ "filename": "2020 - Genome-Wide Gene–Diabetes and Gene–Obesity.pdf",
+ "id": "0b9c1e0f-54bc-47f2-a083-ecf9d607335d"
+ },
+ {
+ "filename": "2016 - Implications of critical PPARγ2, ADIPOQ and FTO gene polymorphisms in type 2 diabetes and obesity-mediated susceptibility to type 2 diabetes in an Indian population.pdf",
+ "id": "46d0084d-a3ff-43ec-b53c-6dc5c8d758eb"
+ },
+ {
+ "filename": "2016 - The progress in understanding and treatment of diabetic retinopathy.pdf",
+ "id": "7e809821-000d-4fff-971d-264650e3612b"
+ },
+ {
+ "filename": "2016 - Dissecting diabetes metabolic disease.pdf",
+ "id": "50c72e55-b5fe-42a6-b837-64c28620a4c0"
+ },
+ {
+ "filename": "2021 - Defining nosocomial transmission of Escherichia coli.pdf",
+ "id": "717d8dcc-543b-438c-9660-b72a1354fbd0"
+ },
+ {
+ "filename": "2018 - Maternal genome wide DNA methylation profiling in gestational diabetes shows distinctive disease associated changes relative to matched healthy.pdf",
+ "id": "e3eebb84-4eac-4dc7-86a6-0d859fa094e7"
+ },
+ {
+ "filename": "2016 - APOL1 nephropathy from gene to mechanisms of kidney injury.pdf",
+ "id": "a8bfdaff-7e26-4038-a572-501c13b27197"
+ },
+ {
+ "filename": "2018 - Progress and challenges in genome-wide studies to understand the genetics.pdf",
+ "id": "afd09e9d-5017-41e0-9145-e973cd826308"
+ },
+ {
+ "filename": "2019 - Metformin treatment in young children with fragile X syndrome.pdf",
+ "id": "5f119e74-d364-4f7b-bbdd-6fd19427e5a8"
+ },
+ {
+ "filename": "2019 - Targeted sequencing identifies novel variants in common and rare MODY genes.pdf",
+ "id": "22a0a8a3-18c1-46f9-aca2-1391c5524431"
+ },
+ {
+ "filename": "2021 - Circulating ceramides as biomarkers of cardiovascular disease Evidence.pdf",
+ "id": "05ac6648-5523-41c7-86c7-8240f0bf7e14"
+ },
+ {
+ "filename": "2019 - Genomic Research Through an Indigenous Lens.pdf",
+ "id": "7e83b0ad-8950-48e1-8e5c-7b048be228bb"
+ },
+ {
+ "filename": "2020 - Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study.pdf",
+ "id": "ff69cd83-ab79-4c24-8bc5-fd9009aa259b"
+ },
+ {
+ "filename": "2019 - A multidisciplinary approach to the clinical management of Prader Willi syndrome.pdf",
+ "id": "24a47d3d-4dcc-49f4-b58b-286932c5bf89"
+ },
+ {
+ "filename": "2016 - Genetics and genomic medicine in the Phillipines.pdf",
+ "id": "370075cf-8288-43e0-97ed-74046648e8bc"
+ },
+ {
+ "filename": "2016 - Allelic variants of the Melanocortin 4 receptor (MC4R) gene.pdf",
+ "id": "60c26184-f85d-4a99-afbd-877884f37900"
+ },
+ {
+ "filename": "2019 - The 44 C G rs1800972 polymorphism of the ‐defensin 1 is associated.pdf",
+ "id": "d5a64f2d-34f8-4550-9a2d-3bdbef47d4d5"
+ },
+ {
+ "filename": "2018 - Quantitative Relationship Between Cumulative Risk Alleles Based.pdf",
+ "id": "681624d8-c652-4088-92d9-46f542cbc304"
+ },
+ {
+ "filename": "2020 - SHORT syndrome in two Chinese girls A case report and review of the literature.pdf",
+ "id": "e6682821-7729-4cbe-a817-51c4ce641e01"
+ },
+ {
+ "filename": "2016 - Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes.pdf",
+ "id": "7b8b3e82-ff68-4997-bec4-c0ce0789da92"
+ },
+ {
+ "filename": "2017 - A genome-wide association study suggests that MAPK14 is associated with diabetic foot ulcers.pdf",
+ "id": "dbf417f2-617f-418d-a155-8f12385656e9"
+ },
+ {
+ "filename": "2019 - Genomic Research in Rat Models of Kidney Disease.pdf",
+ "id": "7d5b12ef-7b17-4b49-8da2-1a4179601520"
+ },
+ {
+ "filename": "2021 - Genetics and genomics studies in type 2 diabetes A brief review of the curernt scenario in the Arab region.pdf",
+ "id": "64b63031-1024-43f9-8b27-0ada92829a7a"
+ },
+ {
+ "filename": "2019 - Mother or Father who is in the front line.pdf",
+ "id": "e14d92cf-d1ff-4a75-beee-b3312defeffd"
+ },
+ {
+ "filename": "2022 - Addressing underrepresentation in genomics.pdf",
+ "id": "24c79e24-1b2a-4e5c-bcb8-f966f29b60c8"
+ },
+ {
+ "filename": "2021 - Quercus Conservation Genetics and Genomics Past, Present and Future.pdf",
+ "id": "f8184d24-6bd9-4450-a13e-d656aa2afb02"
+ },
+ {
+ "filename": "2020 - Precision Medicine in Diabetes.pdf",
+ "id": "e2c1cfb0-9cfc-4a59-9df6-8599708b25ed"
+ },
+ {
+ "filename": "2016 - Te-Mata-Ira-Genome-Research-Guidelines.pdf",
+ "id": "cb76344a-9307-4a44-b6b2-455b728bb249"
+ },
+ {
+ "filename": "2018 - Human Genetics and Genomics in South Africa.pdf",
+ "id": "a4e27158-1e54-4ee2-9cc1-049489a628bc"
+ },
+ {
+ "filename": "2019 - Genome wide DNA methylation profiling of human diabetic peripheral neuropathy in subjects with type 2 diabetes mellitus.pdf",
+ "id": "ef684dbd-c0f9-4f5d-a370-2b4a9386e436"
+ },
+ {
+ "filename": "2020 - Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes.pdf",
+ "id": "88dde947-5255-40e1-92d5-afde089b517b"
+ },
+ {
+ "filename": "2016 - Effects of the genome on immune regulation in type 1 diabetes.pdf",
+ "id": "8c2184e3-fbe4-4337-97b6-b9ab10e8412e"
+ },
+ {
+ "filename": "2021 - Interpreting type 1 diabetes risk.pdf",
+ "id": "581fb26a-8391-433b-afc2-d5694f5344fd"
+ },
+ {
+ "filename": "2022 - Genome-Wide Placental Gene Methylations in Gestational Diabetes Mellitus, Fetal Growth and Metabolic Health Biomarkers in Cord Blood.pdf",
+ "id": "fb01b51c-3558-4133-a2f1-66c37bb5594e"
+ },
+ {
+ "filename": "2018 - Medical genetics and genomic.pdf",
+ "id": "f1c8cd32-f4f0-49b2-a2c7-125769cc02b3"
+ },
+ {
+ "filename": "2020 - Whole blood co-expression modules associate with metabolic traits and type 2 diabetes an IMI-DIRECT study.pdf",
+ "id": "9f386bdd-fa6f-476f-9b9d-b2602957284f"
+ },
+ {
+ "filename": "2018 - Type 2 Diabetes in adolescents and young adults.pdf",
+ "id": "d1449eee-d4ec-4886-87d1-835fb54a5f56"
+ },
+ {
+ "filename": "2016 - The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota.pdf",
+ "id": "a40877bb-3362-45fb-9943-8aae0cbb8734"
+ },
+ {
+ "filename": "2017 - Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet.pdf",
+ "id": "e2e4550c-6004-4911-aa83-fde6ed6d872c"
+ },
+ {
+ "filename": "2019 - Genome-Wide Association Study Confirming a Strong Effect of HLA.pdf",
+ "id": "0ad34d2d-e732-4eda-b372-0bd8f0807000"
+ },
+ {
+ "filename": "2016 - Epigenomic profiling reveals an association betweenpersistence of DNA methylation and metabolicmemory in the DCCTEDIC type 1 diabetes cohor.pdf",
+ "id": "30acd1d1-9eda-40af-870a-9014d212ff19"
+ },
+ {
+ "filename": "2016 - Test–Retest Reliability of the Genetics and Genomics in Nursing Practice Survey Instrument.pdf",
+ "id": "13ad1128-9df0-4956-9606-2d5b936bf204"
+ },
+ {
+ "filename": "2018 - Whole-exome sequencing in maya indigenous families variant in PPP1R3A is associated with type 2 diabetes.pdf",
+ "id": "8dcc3eab-8ddd-45f8-a3ef-266253b51e15"
+ },
+ {
+ "filename": "2018 - MicroRNA profiling and their pathways in South African.pdf",
+ "id": "031710f4-7b49-40d8-8568-682d86ed3b99"
+ },
+ {
+ "filename": "2019 - Multivariate analysis of genome-wide data to identify potential pleiotropic genes.pdf",
+ "id": "2c132879-3bc2-4941-a082-042ee350b102"
+ },
+ {
+ "filename": "2021 - Lessons learned from the eMERGE Network balancing genomics.pdf",
+ "id": "5943d77b-0724-4617-89eb-e5c9a54eab15"
+ },
+ {
+ "filename": "2016 - Genome-Wide Association Studies of Type 2 Diabetes.pdf",
+ "id": "dc17cd1d-f36c-46cd-9260-d9f1141851a1"
+ },
+ {
+ "filename": "2017 - Age-related alterations.pdf",
+ "id": "ab1cabfc-3657-41f1-aa92-110d0a7607d3"
+ },
+ {
+ "filename": "2016 - Transcriptomics in type 2 diabetes Bridging the gap between genotype and phenotype.pdf",
+ "id": "7ed2925a-1751-48e5-ab1d-0160ccf26314"
+ },
+ {
+ "filename": "2019 - Deep sequencing-based de novo transcriptome analysis reveals biosynthesis of gymnemic acid in Gymnema sylvestre (Retz.) Schult.pdf",
+ "id": "7f9a3600-fd95-40b9-948b-db71a66337c3"
+ },
+ {
+ "filename": "2021 - Monogenic diabetes a gateway to precision medicine.pdf",
+ "id": "a7b79952-6e33-4859-9225-1d632daeb758"
+ },
+ {
+ "filename": "2019 - The clinical and genetic characteristics of permanent neonatal diabetes PNDM in the state of Qatar.pdf",
+ "id": "8b0bd019-d86b-4c7d-bfa1-e8016d283e56"
+ },
+ {
+ "filename": "2020 - Gut Microbiome Fermentation Determines the Efficacy of Exercise.pdf",
+ "id": "1d36ca52-e275-4788-93a4-a2143184e513"
+ },
+ {
+ "filename": "2018 - Refining the accuracy of validated target identification through coding variant.pdf",
+ "id": "fdb1fd2e-2bf6-4a25-a78d-f8002ce466fc"
+ },
+ {
+ "filename": "2020 - Functional informed genome-wide interaction analysis of body mass index.pdf",
+ "id": "e904332c-5d6e-4c01-b58f-5d992422a513"
+ },
+ {
+ "filename": "2021 - Genome-Wide Meta-analysis.pdf",
+ "id": "38c95330-afa3-42a5-9c51-d1b5a91cdb51"
+ },
+ {
+ "filename": "2016 - An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy.pdf",
+ "id": "02a9d5a9-41a4-4d70-b828-c4bda13fa01c"
+ },
+ {
+ "filename": "2021 - The First Genome-Wide Association Study for Type.pdf",
+ "id": "fd36ceb0-07e9-4bd1-b6ac-bc50f29f6bc4"
+ },
+ {
+ "filename": "2021 - Estimating genetic and environmental contributions to complex traits and diseases..pdf",
+ "id": "6eb4f17d-ef52-4c1d-a71f-42414f97f21e"
+ },
+ {
+ "filename": "2018 - Human perforin gene variation is geographically distributed.pdf",
+ "id": "bc40ff4f-794d-4ad2-9780-73cf06903a3a"
+ },
+ {
+ "filename": "2016 - Medical genetics and genomic medicine in the Dominican Republic.pdf",
+ "id": "b1ff2990-cb5b-48a0-b502-7dc277186b2e"
+ },
+ {
+ "filename": "2017 - Gene-based genome-wide association study identified 19p13.3 for lean body mass.pdf",
+ "id": "36db242b-65d4-4f06-818a-a3043cdabb05"
+ },
+ {
+ "filename": "2019 - Altered Genome-Wide DNA Methylation in Peripheral Blood of South African Women with Gestational Diabetes Mellitus.pdf",
+ "id": "71e5be87-28c0-41dc-9d6a-e181e42fa6ab"
+ },
+ {
+ "filename": "2020 - A novel gene in early childhood diabetes EDEM2 silencing decreases.pdf",
+ "id": "36858807-1395-4b2f-a3ee-e054f9b0149d"
+ },
+ {
+ "filename": "2022 - Clinical evaluation and etiologic diagnosis of hearing.pdf",
+ "id": "efe72885-181b-4765-8fe1-ab623372ab70"
+ },
+ {
+ "filename": "2020 - MTNR1B gene on susceptibility to gestational diabetes mellitus a two-stage hospital-based study in Southern China.pdf",
+ "id": "f1c14ecb-5bef-457e-a381-531616566173"
+ },
+ {
+ "filename": "2016 - Epigenome-wide association study identifies TXNIP.pdf",
+ "id": "c3a664f0-9689-485d-a9db-d97bd0664e95"
+ },
+ {
+ "filename": "2019 - The Association between Genomic DNA Methylation and Diabetic.pdf",
+ "id": "7a9c869f-5a48-4751-b915-ce6737231d41"
+ },
+ {
+ "filename": "2021 - Heritability and genome‐wide association study of blood pressure in Chinese adult twins.pdf",
+ "id": "55f4c3f7-b278-4390-acde-e50574044d39"
+ },
+ {
+ "filename": "2020 - Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy.pdf",
+ "id": "d3680301-01e7-47cf-8d48-8e48d7f90c3f"
+ },
+ {
+ "filename": "2019 - Genome-Wide Assessment forResting Heart Rate and Shared GeneticsWith Cardiometabolic Traits andType 2 Diabete.pdf",
+ "id": "21a5df08-280a-4097-8290-93037d674d2d"
+ },
+ {
+ "filename": "2018 - Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes.pdf",
+ "id": "53742f18-da70-4774-b687-f4db964974b4"
+ },
+ {
+ "filename": "2021 - Genome-Wide Association Study of Peripheral Artery Disease.pdf",
+ "id": "424a3a92-022d-4dab-8b21-6cf07204f4ad"
+ },
+ {
+ "filename": "2019 - Comparative genomic and functional analysis of Akkermansia muciniphila and closely related species.pdf",
+ "id": "53b0490d-1234-48de-b688-69a297427bc3"
+ },
+ {
+ "filename": "2020 - Laboratory screening and diagnosis of open neural tube defects, 2019 revision a technical standard of the American College of Medical Genetics and Genomics (ACMG).pdf",
+ "id": "a9fe781e-7c73-4c98-827a-120b563d2b46"
+ },
+ {
+ "filename": "2016 - The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5.pdf",
+ "id": "2dade65a-5d31-4839-b2c9-4c6cd3056f58"
+ },
+ {
+ "filename": "2020 - Functional Genomics in Pancreatic β Cells Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research.pdf",
+ "id": "b72eb0d1-50e3-4def-94bc-abf77891f519"
+ },
+ {
+ "filename": "2022 - Association of Polymorphisms.pdf",
+ "id": "e0cb390f-a0b5-475c-8ebe-69d640bd0193"
+ },
+ {
+ "filename": "2018 - Type 2 Diabetes–Associated Genetic Variants Regulate.pdf",
+ "id": "c3c83137-5643-491b-845e-5af845d9fe4a"
+ },
+ {
+ "filename": "2019 - HDAC4 mutations cause diabetes and induce ‐cell FoxO1 nuclear exclusion.pdf",
+ "id": "787e2a2c-be24-4970-94b1-0f872a8cd684"
+ },
+ {
+ "filename": "2018 - Human Genetics of Obesity and Type 2 Diabetes Mellitus.pdf",
+ "id": "1e65fbdd-8146-4543-8907-9f929fae72a8"
+ },
+ {
+ "filename": "2016 - Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes.pdf",
+ "id": "168bd65a-68d9-4f3d-a176-6262817c2992"
+ },
+ {
+ "filename": "2021 - Research advances and prospects of spinach breeding, genetics.pdf",
+ "id": "3391f536-4547-4341-a358-4a15f6d0778a"
+ },
+ {
+ "filename": "2017 - Exploring Relationships Among Belief in Genetic Determinism, Genetics Knowledge, and Social Factors.pdf",
+ "id": "b494e59c-0edc-451c-8fe0-fccf1ec4ea52"
+ },
+ {
+ "filename": "2019 - Adiponectin Levels and Risk of Type 2 Diabetes.pdf",
+ "id": "678fb0b1-d0b4-410e-8764-348ec93b1e1b"
+ },
+ {
+ "filename": "2017 - Age at natural menopause and risk of type 2 diabetes a prospective cohort study.pdf",
+ "id": "b21bbbce-b53f-416b-8378-b635f4270ace"
+ },
+ {
+ "filename": "2016 - Telomere length change plateaus at 4 years of age in Latino children associations with baseline length and maternal change.pdf",
+ "id": "c9fda811-1e12-480c-b432-987fa1d24fce"
+ },
+ {
+ "filename": "2021 - Investigating the ACE2 polymorphisms in COVID‐19 susceptibility An in silico.pdf",
+ "id": "56297401-fde7-40f0-a178-88672973822e"
+ },
+ {
+ "filename": "2016 - Genome wide association study of uric acid in Indian population and interaction of identified variants with Type 2 diabetes.pdf",
+ "id": "155c2238-a2ca-44a5-aacc-6aeb8664bff1"
+ },
+ {
+ "filename": "2020 - 33rd international mammalian genome conference meeting.pdf",
+ "id": "40c30ce7-909d-4f40-9848-9e225f902bc1"
+ },
+ {
+ "filename": "2019 - Bioinformatic prediction of critical genes and pathways.pdf",
+ "id": "b73e3bb4-fe8d-48ef-855b-f0faafeb1352"
+ },
+ {
+ "filename": "2021 - Direct-to-consumer prenatal testing for multigenic or polygenic disorders a position statement of the American College of Medical Genetics and Genomics (ACMG).pdf",
+ "id": "843f216d-8278-4505-8e40-cc1597e1e4e9"
+ },
+ {
+ "filename": "2019 - Multiethnic Genome-Wide Association Study of Diabetic.pdf",
+ "id": "dcd88798-0248-45e0-8d45-8614c7697266"
+ },
+ {
+ "filename": "2021 - Adiponectin gene polymorphisms associated with diabetes mellitus.pdf",
+ "id": "f28818ac-fb82-496a-b46f-86138fdcd107"
+ },
+ {
+ "filename": "2018 - Novel subgroups of adult-onset diabetes and their association.pdf",
+ "id": "ab32e261-658c-4a8b-94fc-857826b29f5a"
+ },
+ {
+ "filename": "2019 - Genome-wide association study identifies novel loci for type 2 diabetes-attributed end-stage kidney disease in African Americans.pdf",
+ "id": "3db3cae6-93e8-4424-82e6-81c4c3f33395"
+ },
+ {
+ "filename": "2020 - Identification of novel functional CpG-SNPs associated with type 2 diabetes and coronary artery disease..pdf",
+ "id": "d93a7f4b-2704-4515-9a8b-1975578f89b3"
+ },
+ {
+ "filename": "2019 = Phenotypic relationships, genetic parameters, genome-wide associations,.pdf",
+ "id": "d38ac31f-45c8-476a-b7d9-2fcd845cb010"
+ },
+ {
+ "filename": "2021 - Genomic analyses reveal distinct genetic architectures.pdf",
+ "id": "1918a20b-a594-463e-819a-d1be14405ff5"
+ },
+ {
+ "filename": "2016 - The Role of Host Genetics (and Genomics) in Tuberculosis.pdf",
+ "id": "a80fdb7f-4ba9-43a0-a423-9df9b83da372"
+ },
+ {
+ "filename": "2017 - Differentiation of Diabetes by Pathophysiology.pdf",
+ "id": "9c9cc0b3-5dde-4077-ae41-1410db9aeb24"
+ },
+ {
+ "filename": "2018 - Genome-wide interaction with the insulin secretion locus.pdf",
+ "id": "af69cd19-2155-43b9-a866-da6957156662"
+ },
+ {
+ "filename": "2018 - The Genetics and Genomics of Asthma.pdf",
+ "id": "0df24827-df9f-46ee-a43d-dc5465c62f0d"
+ },
+ {
+ "filename": "2021 - Novel susceptibility loci identified in a genome-wide association study of type 2 diabetes complications in population of Latvia.pdf",
+ "id": "45cdaf79-d881-43e6-8555-ff47f04ae3d4"
+ },
+ {
+ "filename": "2019 - Polymorphism of MTHFR 1298AC in relation to adverse pregnancy outcomes in Chinese populations.pdf",
+ "id": "b8377494-6c44-41b4-8b1a-24724a9d4c2c"
+ },
+ {
+ "filename": "2018 - Laboratory analysis of amino acids, 2018 revision a technical standard of the American College of Medical Genetics and Genomics (ACMG).pdf",
+ "id": "d56f56c8-ae7e-49e1-9d32-15e981d51d5f"
+ },
+ {
+ "filename": "2020 - Nutrigenetics Nutrigenomics, Personalized Nutrition.pdf",
+ "id": "6002ff5b-83b0-4118-8de6-8fe7d778ffa8"
+ },
+ {
+ "filename": "2019 - Identification of rare copy number variations reveals PJA2.pdf",
+ "id": "78886d26-b31a-460d-9a7c-6046b020518d"
+ },
+ {
+ "filename": "2016 - Genetic variations in the PSMA3, PSMA6 and PSMC6 genes are associated with type 1 diabetes in Latvians and with expression level of number of UPS-related and T1DM-su.pdf",
+ "id": "38f00352-359f-4efb-aa5c-4a434e384324"
+ },
+ {
+ "filename": "2019 - Methylation of HIF3A promoter CpG islands contributes to insulin resistance.pdf",
+ "id": "000ed756-21e2-422e-9455-87932bb5916c"
+ },
+ {
+ "filename": "2020 - Genetic variants associated with exercise performance.pdf",
+ "id": "c86752e6-aada-4a1e-9182-abfa5b298889"
+ },
+ {
+ "filename": "2021- Genome‐wide search for genes affecting the age at diagnosis of type 1.pdf",
+ "id": "83a34294-d942-476f-be2f-ff8d7ec3dec4"
+ },
+ {
+ "filename": "2016 - Genome-wide survey and expression analysis.pdf",
+ "id": "4c1adf85-c06e-43ef-90e5-9a80ba7d6392"
+ },
+ {
+ "filename": "2016- Gene-Based Genome-Wide Association.pdf",
+ "id": "c8404542-9eac-43e4-9331-e3c9066f3cd4"
+ },
+ {
+ "filename": "2019 - Gene-based genome-wide association studies.pdf",
+ "id": "7d89c8f6-8741-4cc3-bdfb-e382dfb9c4c8"
+ },
+ {
+ "filename": "2020 - The genetics and genomics of cystic fibrosis.pdf",
+ "id": "27ed8ba4-ec5a-40a0-b839-a3bc5fe5f554"
+ },
+ {
+ "filename": "2021 - Genetic and Genomic Prospects for Camel Meat Production.pdf",
+ "id": "def4866d-aa57-4033-84e5-0c4a817dd9d6"
+ },
+ {
+ "filename": "2023 - Causal associations between cardiorespiratory fitness and type 2 diabetes.pdf",
+ "id": "c406e629-b6a3-4f24-8300-7192cdfb0ba9"
+ },
+ {
+ "filename": "2022 - Exploring and exploiting genetics and genomics.pdf",
+ "id": "e5cf067c-8be0-4b0a-b376-7882cdc9d96c"
+ },
+ {
+ "filename": "2022 - Measurement of lysosomal enzyme activities.pdf",
+ "id": "d093aecb-9fe1-41b9-802c-21b75bcffb9b"
+ },
+ {
+ "filename": "2018 - Meta-genome-wide association studies identify a locus on chromosome 1 and multiple variants in the MHC region for serum C-peptide in type 1 diabetes.pdf",
+ "id": "246946ff-3b83-4c39-8146-3d48b5d498f6"
+ },
+ {
+ "filename": "2004 - Absence of PRSS1 mutations and association of SPINK1.pdf",
+ "id": "497ff4e6-aae7-45ec-a752-c850f5f06f94"
+ },
+ {
+ "filename": "2022 - Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations.pdf",
+ "id": "5a72ab80-edf3-4f7d-a049-3951c6ca99f9"
+ },
+ {
+ "filename": "2022 - Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data.pdf",
+ "id": "f9b65334-56b7-43e9-9fda-b778c18c1c67"
+ },
+ {
+ "filename": "2022 - Identification of 90 NAFLD GWAS loci.pdf",
+ "id": "42268e13-e204-46d5-ae9c-0d87f3f4c553"
+ },
+ {
+ "filename": "2021 - Trans-ancestry genome-wide association study.pdf",
+ "id": "d1a32f3c-9ad2-487f-a5ef-0bd9708ef538"
+ },
+ {
+ "filename": "2017 - Genomic regulation of type 2 diabetes endophenotypes Contribution.pdf",
+ "id": "90015638-c92d-4506-95b5-b789f08d613a"
+ },
+ {
+ "filename": "2022 - Evaluating Primary Care Providers’ Readiness.pdf",
+ "id": "634e46d2-d778-447e-a6d8-3850d7c08687"
+ },
+ {
+ "filename": "2022 - Valuing genetic and genomic testing in France current challenges.pdf",
+ "id": "030ceea6-139c-4917-b4a9-6e615a083a31"
+ },
+ {
+ "filename": "2022 - Islet autoantibody seroconversion in type-1 diabetes.pdf",
+ "id": "e34eb78b-2998-4f94-8893-8fca1fedc4d9"
+ },
+ {
+ "filename": "2008 - SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes.pdf",
+ "id": "3675ae2a-18d5-4f2b-97e1-1827eddc0f6f"
+ },
+ {
+ "filename": "2023 - Clinical, technical, and environmental biases.pdf",
+ "id": "f97246cb-7a71-409b-bb1a-dd01a5ef5c5e"
+ },
+ {
+ "filename": "2022 - Novel pathogenic variants and quantitative phenotypic analyses.pdf",
+ "id": "398fe5a6-f3f8-41e7-9d3e-9f5f2d055485"
+ },
+ {
+ "filename": "2008 - Detecting AIDS restriction genes From candidate genes to genome-wide association discovery.pdf",
+ "id": "82353dbc-bbd0-4bcf-a5d4-81cd909969de"
+ },
+ {
+ "filename": "2022 - Genetic and genomic architecture in eight strains of the laboratory opossum.pdf",
+ "id": "d793d0ae-9b2d-4f54-8be2-3dfa76127217"
+ },
+ {
+ "filename": "2007 - Genome–wide association studies provide new insights into type 2 diabetes aetiology..pdf",
+ "id": "16e272af-f687-4261-99cf-8125a9e7cdc7"
+ },
+ {
+ "filename": "2012 - Large-scale association analysis provides insights.pdf",
+ "id": "3e53b34f-5bdf-43d5-9594-736cf83071db"
+ },
+ {
+ "filename": "2020 - Clinical Genetics and Genomics of Aging.pdf",
+ "id": "7f23af74-95a3-46aa-bd61-629d2cfc2073"
+ },
+ {
+ "filename": "2017 - Genome-wide association study of coronary artery calcified atherosclerotic plaque in African Americans with type 2 diabetes.pdf",
+ "id": "4d8353a9-d4b0-4a49-ba3f-7fbab75b520b"
+ },
+ {
+ "filename": "2012 - Wiki-Pi A Web-Server of Annotated Human ProteinProtein Interactions to Aid in Discovery of Protein.pdf",
+ "id": "e0252c29-4a8b-4b51-bd9d-e7a5de5b558a"
+ },
+ {
+ "filename": "2017 - Painting a new picture of personalised medicine for diabetes.pdf",
+ "id": "07b2ec5d-6b36-4ce5-8af1-21835e405ef3"
+ },
+ {
+ "filename": "2014 - Rare variants inPPARGwith decreased activity inadipocyte differentiation are associated with increasedrisk of type 2 diabetes.pdf",
+ "id": "3903033f-f38a-49b9-b373-ecfbfe4a43ec"
+ },
+ {
+ "filename": "2023 - Genetic Link Between Type 2 Diabetes Mellitus and Cardiovascular Disease.pdf",
+ "id": "28e57dda-9fc6-4cbd-a83e-4c87946bccc8"
+ },
+ {
+ "filename": "2022 - PiER web-based facilities tailored for genetic target.pdf",
+ "id": "56f184b6-f5d7-4246-bf52-2c6e6dc5af56"
+ },
+ {
+ "filename": "2022 - Genome-Wide Association Study Identifies Genetic Loci.pdf",
+ "id": "ce61ebeb-9200-4b3d-9ac7-c9439a28d1cf"
+ },
+ {
+ "filename": "2008 - Defining the Role of the MHC in Autoimmunity A Review.pdf",
+ "id": "8c526a48-6b4a-42a7-b27e-550a4fbc6e26"
+ },
+ {
+ "filename": "2004 - Genome-wide Scan for Type 2 Diabetes Loci in Hong Kong Chinese and Confirmation of a Susceptibility Locus on Chromosome 1q21-q25.pdf",
+ "id": "ccf067f1-8b96-4004-9c95-2624e15e192e"
+ },
+ {
+ "filename": "2017 - Primer in Genetics and Genomics, Article 1 DNA, Genes, and Chromosomes.pdf",
+ "id": "96f13e8e-633e-4728-853f-81ffbad6c58a"
+ },
+ {
+ "filename": "2016 - Ranking factors involved in diabetes remission after bariatric surgery using machine-learning integrating clinical and genomic biomarkers.pdf",
+ "id": "635d1b7f-81d6-46ec-9ed1-28aea38e28e9"
+ },
+ {
+ "filename": "2022 - Genome-wide association and Mendelian randomization study of fibroblast.pdf",
+ "id": "d18e1df5-afd9-4ded-8ead-ba5a704d6a38"
+ },
+ {
+ "filename": "2022 - Stability of polygenic scores across.pdf",
+ "id": "4de8b42d-a983-4b52-a582-edee07dbaa61"
+ },
+ {
+ "filename": "2011 - A Database of Gene-Environment Interactions Pertaining to Blood Lipid Traits.pdf",
+ "id": "0af8f2bf-8caf-4459-823b-06e22e637cc8"
+ },
+ {
+ "filename": "2022 - The relationship between polymorphism of insulin-like growth factor I gene and susceptibility to type 2 diabetes in Uygur population, Xinjiang, China.pdf",
+ "id": "eabd3649-6fa6-4c1c-966a-0d9d5309c158"
+ },
+ {
+ "filename": "2022 - Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease.pdf",
+ "id": "2a2a279f-ecbc-46e3-9d4e-76d4a0a4c678"
+ },
+ {
+ "filename": "2022 - Genomics and Epigenomics of Gestational Diabetes Mellitus Understanding the Molecular Pathways of the Disease Pathogenesis.pdf",
+ "id": "d98495dc-25c4-4e1a-b7e4-017c96951ef0"
+ },
+ {
+ "filename": "2015 - A positive genotype phenotype correlation in a large cohort of patients with.pdf",
+ "id": "a4ff494b-fa3e-4481-858c-6c7dab4e97ea"
+ },
+ {
+ "filename": "2000 - Digging the Genome for Diabetes Mellitus The 2nd ADA Research Symposium on the Genetics of Diabetes, San Jose, CA, USA, 17 19 October 1999.pdf",
+ "id": "fb69c588-b333-443e-936d-7862188c2b0b"
+ },
+ {
+ "filename": "1991 - Gene for non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome20q.pdf",
+ "id": "586c913d-9294-456e-b662-acba24a7a97e"
+ },
+ {
+ "filename": "2022 - Transethnic analysis of psoriasis susceptibility.pdf",
+ "id": "be6abf85-9214-4c7e-ac2d-450dfb53a268"
+ },
+ {
+ "filename": "2017 - PCSK9 genetic variants and risk of type 2.pdf",
+ "id": "1e175ac4-bbe7-4673-9185-33a73ba35d68"
+ },
+ {
+ "filename": "2023 - Childhood adiposity and novel subtypes of adult-onset diabetes a Mendelian randomisation and genome-wide genetic correlation study.pdf",
+ "id": "ab545ee2-3aff-45a2-a4e8-088cd79deeac"
+ },
+ {
+ "filename": "2006 - From genetical genomics to systems genetics potential applications in quantitative genomics and animal breeding.pdf",
+ "id": "7c763113-f03d-4afd-a1aa-7008cfad975e"
+ },
+ {
+ "filename": "2015 - Recent Trends in Therapeutic Approaches for Diabetes Management A Comprehensive Updat.pdf",
+ "id": "961f88ba-2090-4904-942c-f0e014bbe53f"
+ },
+ {
+ "filename": "2022 - Multi-ancestry genome-wide association study.pdf",
+ "id": "2a44f131-be1d-4566-affa-1966fa3029f6"
+ },
+ {
+ "filename": "2020 - Preimplantation Genetic Testing for Polygenic Disease Relative Risk Reduction Evaluation of Genomic Index Performance in 11,883 Adult Sibling Pairs.pdf",
+ "id": "4fefc332-e618-41c0-b6e7-5839a60a6f44"
+ },
+ {
+ "filename": "2017 - Identification and functional analysis of c 422 423InsT a novel mutation of.pdf",
+ "id": "ed74a165-fd2c-456c-ae68-1a4d824cf3c8"
+ },
+ {
+ "filename": "2017 - Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug.pdf",
+ "id": "c9d3cf1b-a7ba-46da-a416-dc36dc5b713e"
+ },
+ {
+ "filename": "2023 - Peripheral and central control of obesity by primary cilia.pdf",
+ "id": "b514440a-128c-41a3-9b93-6f23354dc859"
+ },
+ {
+ "filename": "2022 - Recessive Genome-Wide Meta-analysis Illuminates Genetic Architecture of Type 2 Diabetes.pdf",
+ "id": "4a593a09-25f6-4caf-8ed5-f120bf56cdd8"
+ },
+ {
+ "filename": "1993 - Genomic Damage and Its Repair.pdf",
+ "id": "9fe2f814-3375-45c1-b9e1-6ac5a6ecccb8"
+ },
+ {
+ "filename": "1990 - Extrachromosomal circular DNAs and genomic sequence plasticity.pdf",
+ "id": "185c1bd4-711e-4a41-947f-f82e2dbf6e94"
+ },
+ {
+ "filename": "1991 - Detection of Epstein-Barr virus genomes in Hodgkin's disease relation to age.pdf",
+ "id": "2561a7c9-cf43-43cd-bc5f-a8b37c5e959e"
+ },
+ {
+ "filename": "1992 - New evidence for the insertion of mitochondrial D N A into the human.pdf",
+ "id": "4a17ce5c-55df-4aa0-a664-f6a03238d332"
+ },
+ {
+ "filename": "1982 - Is Cell Aging Caused by Respiration-Dependent Injury to the Mitochondrial Genome.pdf",
+ "id": "1a1b9da4-a230-4bc7-94c6-ff803242613d"
+ },
+ {
+ "filename": "1989 - Genetic instability and aging theories, facts, and future perspectives.pdf",
+ "id": "a733a920-9896-4ca4-910d-d6f0184a0777"
+ },
+ {
+ "filename": "1994 - Marked Changes in Mitochondrial DNA Deletion Levels in Alzheimer Brains.pdf",
+ "id": "32461927-8022-462a-b1a0-13c11dbf6862"
+ },
+ {
+ "filename": "1995 - Decreased Cytochrome-c Oxidase Activity and Lack of Age-Related Accumulation of Mitochondrial DNA Deletions in the Brains of Schizophrenics.pdf",
+ "id": "75b6122b-213d-4fc6-a779-c7a44c74ec9d"
+ },
+ {
+ "filename": "2002 - Population Genomics Ageing.pdf",
+ "id": "dbf4c446-7c25-470a-9532-a564b8683eef"
+ },
+ {
+ "filename": "2001 - The genetics of aging.pdf",
+ "id": "03a4f57c-3a11-4d3d-a1e9-6d0d8bdb7cb7"
+ },
+ {
+ "filename": "2001 - Plant Systematics in the Age of Genomics.pdf",
+ "id": "e02ea82c-1e15-4f06-a0fc-18943799559c"
+ },
+ {
+ "filename": "2003 - Molecular mechanisms of reduced adrenergic signaling.pdf",
+ "id": "38aaad4f-c06c-4e64-9962-a69b7ffb9b15"
+ },
+ {
+ "filename": "2001 - Comet-Assay Analysis Identifies Genomic Damage in Lymphocytes.pdf",
+ "id": "98676960-3cef-42df-8143-faa4da1be8a3"
+ },
+ {
+ "filename": "1998 - Microarrays biotechnology’s discovery.pdf",
+ "id": "ec8e3403-5bf0-47b2-8a36-f5058617f73f"
+ },
+ {
+ "filename": "2002 - Retroelement Distributions in the Human.pdf",
+ "id": "a2e92c37-e0f3-41d8-950c-0dcaceeed7e9"
+ },
+ {
+ "filename": "2000 - A Major Gene Affecting Age-Related Hearing Loss Is Common.pdf",
+ "id": "6c6d5c30-211b-4d74-9d0f-02c877016212"
+ },
+ {
+ "filename": "1998 - Neurodegeneration and Aging Role.pdf",
+ "id": "1f65141c-40f9-426f-bb15-adebacf4d3a4"
+ },
+ {
+ "filename": "1995 - Rearranged Mitochondrial Genomes Are Present in Human.pdf",
+ "id": "e5a6191f-6682-4abb-80b3-38a5b6f4ca5f"
+ },
+ {
+ "filename": "2001 - Mitochondrial genome instability in human cancers.pdf",
+ "id": "d95b7bec-b4a7-4600-9a38-859dede780df"
+ },
+ {
+ "filename": "1999 - The caenorhabditis elegans genome.pdf",
+ "id": "75638595-32f5-4b2c-a7dd-bbe64f95728c"
+ },
+ {
+ "filename": "2003 - Functional Genomics of Ageing.pdf",
+ "id": "6005d141-8758-44b5-9baa-d553da68d167"
+ },
+ {
+ "filename": "1998 - The bottleneck mitochondrial imperatives in oogenesis and ovarian.pdf",
+ "id": "a12388bc-0a2c-4cf4-aa39-39eebabe9a7e"
+ },
+ {
+ "filename": "2002 - Human mitochondrial DNA with large deletions.pdf",
+ "id": "ddc57e64-2b93-41e5-baac-6bdb52e7b6e6"
+ },
+ {
+ "filename": "2002 - Large genome rearrangements as a primary cause of aging.pdf",
+ "id": "4406f0d4-9983-47d6-b7e3-1620ae09654d"
+ },
+ {
+ "filename": "2002 - Genomic Priorities in Aging.pdf",
+ "id": "5f434783-db8a-409e-a1c6-1dc1c5e2ba1c"
+ },
+ {
+ "filename": "2001 - Statistical tests of selective neutrality.pdf",
+ "id": "a280f957-98e0-4098-bc4b-fa3bdc25558d"
+ },
+ {
+ "filename": "2002 - Signatures of Domain Shuffling.pdf",
+ "id": "63be1ce8-c2cc-48e5-96e5-e905d8791e37"
+ },
+ {
+ "filename": "1998 - Molecular archaeology of the Escherichia coli genome.pdf",
+ "id": "9df1e17a-a45c-4946-b532-18a3d26f303f"
+ },
+ {
+ "filename": "2001 - Demography in the age of genomics.pdf",
+ "id": "98ce73c6-a53b-486f-8326-4b0bd47ec22e"
+ },
+ {
+ "filename": "2002 - Influence of age, sex, and strength training.pdf",
+ "id": "010bb1e3-60aa-48d5-8aaa-83ae33a8de14"
+ },
+ {
+ "filename": "2000 - A full genome scan for age-related maculopathy.pdf",
+ "id": "1d5ad0c4-29bb-45d7-b599-c561703e6d3d"
+ },
+ {
+ "filename": "2003 - Epigenetic regulation of gene expression how the genome integrates intrinsic and environmental signals.pdf",
+ "id": "d3d37b06-8621-424e-9de5-462e4b28adf6"
+ },
+ {
+ "filename": "1996 - Isolation and characterization of genomic and cDNA clones encoding.pdf",
+ "id": "a40987df-f8c9-49ce-a985-acb6744dd6dc"
+ },
+ {
+ "filename": "2001 - From Cot Curves to Genomics. How Gene Cloning.pdf",
+ "id": "80dab45e-186d-4a72-b0fe-31d13ea5b8ab"
+ },
+ {
+ "filename": "2003 - From basepairs to birdsongs phylogenetic data.pdf",
+ "id": "1be27fe5-1908-47cb-a7c9-a789326c207e"
+ },
+ {
+ "filename": "2000 - From life to death – the struggle between chemistry and biology during.pdf",
+ "id": "672bff43-055b-4b7d-bc8f-3b1688584b98"
+ },
+ {
+ "filename": "2006 - Mechanisms of RecQ helicases in pathways of DNA metabolism.pdf",
+ "id": "711ef37f-d365-4d14-b6f4-8967d8c5ab7c"
+ },
+ {
+ "filename": "2009 - A Genome-Wide Association Study in Chronic.pdf",
+ "id": "9097389c-9bd7-4bf2-a4cb-5b37891ccc68"
+ },
+ {
+ "filename": "2003 - Genetics, genes, genomics and g.pdf",
+ "id": "68256db6-e537-4630-9f07-84ca8873273d"
+ },
+ {
+ "filename": "2007 - The skin as a mirror of the aging process in the human organism.pdf",
+ "id": "aff67cef-4bf7-42dc-826b-2a259722008d"
+ },
+ {
+ "filename": "2007 - Evolutionary History of Mammalian Transposons.pdf",
+ "id": "36664800-972c-4f1a-9b58-673dd69365a5"
+ },
+ {
+ "filename": "2002 - Ahl2, a Second Locus Affecting Age-Related.pdf",
+ "id": "2f6a5948-c165-44b6-904b-72b54cac2b65"
+ },
+ {
+ "filename": "2007 - Cdc42 GTPase-activating protein deficiency promotes.pdf",
+ "id": "f377428d-564d-4d5b-b86c-515b9325134f"
+ },
+ {
+ "filename": "2010 - Age-dependent chromosomal distribution.pdf",
+ "id": "7d451e79-b698-4744-aeb2-ff319f430d96"
+ },
+ {
+ "filename": "2003 - Risk Factors for Hodgkin’s Lymphoma by EBV.pdf",
+ "id": "bc9b208a-126d-44a3-b5b8-0d40c562bc38"
+ },
+ {
+ "filename": "2010 - Distinctive patterns of age-dependent hypomethylation.pdf",
+ "id": "9716cfe1-4885-4c16-92c8-87fead7cb6a9"
+ },
+ {
+ "filename": "2009 - Genome-wide association study identifies sequence.pdf",
+ "id": "64fe1490-95f6-4191-aeb9-65f816cf6e3d"
+ },
+ {
+ "filename": "2004 - Nutritional genomics.pdf",
+ "id": "1b0ceedf-6500-47d1-a9e9-195f81f35ab3"
+ },
+ {
+ "filename": "1997 - Age associated alterations of the mitochondrial genome.pdf",
+ "id": "67ec2631-aa17-436e-800b-1bc046fb5b19"
+ },
+ {
+ "filename": "2004 - A genome scan for diabetic nephropathy in African Americans.pdf",
+ "id": "b35f15cd-ed5d-4aae-a948-92c4f847c661"
+ },
+ {
+ "filename": "2009 - Mother’s Genome or Maternally-Inherited Genes.pdf",
+ "id": "b4b65968-74b4-4130-9cb3-c0aee689595c"
+ },
+ {
+ "filename": "2006 - Genome-Wide Scan for White Matter Hyperintensity.pdf",
+ "id": "a2462fad-e20d-498c-8dd2-0e7214e08e38"
+ },
+ {
+ "filename": "2007 - Genome-Wide Association Scan.pdf",
+ "id": "94e8620c-2fb8-4143-b397-a561e61535e2"
+ },
+ {
+ "filename": "2009 - The Relationship of DNA Methylation with Age, Gender.pdf",
+ "id": "a0fcfb05-6fb2-4359-b849-a5f2b515ef2e"
+ },
+ {
+ "filename": "2007 - Profile of chromosomal aberrations in different gestational.pdf",
+ "id": "c10ff8e0-81ff-4ac2-b1cc-2fdc89640166"
+ },
+ {
+ "filename": "2005 - The Rice Nuclear Genome Continuously Integrates.pdf",
+ "id": "6bf4ca4d-b158-49fd-a7d1-7955e4dd78f6"
+ },
+ {
+ "filename": "2001 - Genomic profiling of short- and long-term caloric.pdf",
+ "id": "71cc1ce5-d23c-42cf-97b8-bb6110ed8d72"
+ },
+ {
+ "filename": "2008 - Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes.pdf",
+ "id": "63308275-a453-415d-8814-6f2932148ecd"
+ },
+ {
+ "filename": "2008 - Genome-Wide Association Scan of the Time to Onset.pdf",
+ "id": "2d3b74ec-9aff-42c7-9afb-74fc93d212f3"
+ },
+ {
+ "filename": "2005 - Cancer and aging the importance of telomeres.pdf",
+ "id": "5c814c02-7157-40db-968d-98ac062744d6"
+ },
+ {
+ "filename": "2009 - Epigenetic Control of MicroRNA Expression and Aging.pdf",
+ "id": "ac98b39e-2526-4f1b-a07e-fa2d42470fba"
+ },
+ {
+ "filename": "2002 - Toward High-Throughput Synthesis.pdf",
+ "id": "19306130-17a1-4689-b986-bae15b111bf6"
+ },
+ {
+ "filename": "2002 - Micronutrients and genomic stability a new paradigm.pdf",
+ "id": "5935ecaa-13ed-4d45-9707-67e1268a040c"
+ },
+ {
+ "filename": "2005 - Genomic instability in laminopathy-based premature aging.pdf",
+ "id": "3f62c6ad-37c6-45ed-92ac-fafaf86a08d3"
+ },
+ {
+ "filename": "2000 - Genomics Comes of Age.pdf",
+ "id": "abe4a37a-4aee-41fa-8b0b-b88bb5d6aa89"
+ },
+ {
+ "filename": "2004 - Genome-Wide Scan for a Healthy Aging.pdf",
+ "id": "7291ceb2-482a-4f9b-a116-2b68ff24854f"
+ },
+ {
+ "filename": "1999 - Functional Genomics and Rat Models.pdf",
+ "id": "76711672-61e4-4988-90a7-ddfd34bf22d7"
+ },
+ {
+ "filename": "2010 - Genomic Comparison of the Ants.pdf",
+ "id": "f3b66ba6-48f5-440b-b5e1-6d83468db425"
+ },
+ {
+ "filename": "2008 - Genome-Wide Association Studies.pdf",
+ "id": "70b52a1e-834b-43c0-9e6a-3010bc3a06ae"
+ },
+ {
+ "filename": "2000 - Transgenic mice carrying large human genomic.pdf",
+ "id": "bd0f30e8-81e1-4553-bf88-762bc49197a3"
+ },
+ {
+ "filename": "2003 - Telomeres in the chicken genome stability and chromosome ends.pdf",
+ "id": "f08c0391-2d72-491c-a472-5db71bf11ac8"
+ },
+ {
+ "filename": "2007 - From seedling to mature plant Arabidopsis plastidial genome copy number, RNA accumulation and transcriptionare differentially regulated during leaf development.pdf",
+ "id": "ecc1326c-4239-48a6-afff-7a8d06c4b123"
+ },
+ {
+ "filename": "2006 - Genome-wide significance for a modifier of age at neurological onset in Huntington's Disease at 6q23-24 the HD MAPS study.pdf",
+ "id": "9dc13a98-21d3-4dab-8d10-a41c59b822b9"
+ },
+ {
+ "filename": "2004 - Genome-scale expression profiling of Hutchinson.pdf",
+ "id": "09af1dfa-d131-4ad5-84e6-b120200d0dcb"
+ },
+ {
+ "filename": "2007 - Transcriptional profiling of MnSOD-mediated lifespan extension.pdf",
+ "id": "4b091b62-13fe-4996-8866-e8764610ac15"
+ },
+ {
+ "filename": "2009 - Genome-wide association study of blood pressure.pdf",
+ "id": "b1832c4f-ed59-42e7-b787-a83b37263aa2"
+ },
+ {
+ "filename": "2007 - Characterization of a bidirectional promoter shared between two human.pdf",
+ "id": "04405b2b-901a-423c-9f08-418f5514c535"
+ },
+ {
+ "filename": "1999 - Functional integrity of mitochondrial genomes in human plateletsand autopsied brain tissues from elderly patients withAlzheimer’s disease.pdf",
+ "id": "e32f0904-bb14-43ec-be99-edd327fbd072"
+ },
+ {
+ "filename": "2005 - Growth, metabolism, and blood pressure disturbances during aging.pdf",
+ "id": "cf41dd3c-1f6d-4800-84a0-868a2bcb54f4"
+ },
+ {
+ "filename": "2009 - NRXN3 Is a Novel Locus for Waist Circumference.pdf",
+ "id": "81341f40-5066-4944-af85-21a96ca3bb22"
+ },
+ {
+ "filename": "2004 - Prevalence and correlates of orthostatic.pdf",
+ "id": "ed422ead-ff75-46f2-9b00-3ccbbb5d3cd0"
+ },
+ {
+ "filename": "2003 - Imaging genomics.pdf",
+ "id": "5830026d-dd78-4271-aa59-bfc997dace24"
+ },
+ {
+ "filename": "2002 - Functional genomics the coming.pdf",
+ "id": "b2506939-4d34-4345-b11e-395b76e4c049"
+ },
+ {
+ "filename": "2001 - Genomics food and nutrition.pdf",
+ "id": "d2bbd79c-672b-4c18-8b37-717b9be32877"
+ },
+ {
+ "filename": "2005 - The mitochondrial genome in human adaptive radiation and disease.pdf",
+ "id": "aa942230-9a43-4b5f-90d9-96d364861a57"
+ },
+ {
+ "filename": "2002 - Mitochondrial dysfunction leads to telomere attrition.pdf",
+ "id": "b47e2055-8573-46ac-aec5-c2697df4d4b9"
+ },
+ {
+ "filename": "2006 - Mutation of Succinate Dehydrogenase Subunit C Results.pdf",
+ "id": "54a4546b-117d-4950-b75f-5cfda3f7f453"
+ },
+ {
+ "filename": "2008 - An update on chloroplast genomes.pdf",
+ "id": "d459f3e1-8242-4334-9cb8-db4969acb164"
+ },
+ {
+ "filename": "2009 - A Genomic Approach to Yeast Chronological Aging.pdf",
+ "id": "03718264-02e2-4e4b-a2ac-ef82029f6bc0"
+ },
+ {
+ "filename": "2004 - Additive regulation of hepatic gene expression by dwarfism.pdf",
+ "id": "ddd79d05-8140-48d7-a7fe-5685bb6b50f8"
+ },
+ {
+ "filename": "1997 - Bioinformatics in a post-genomics age.pdf",
+ "id": "befa4dae-380f-41f5-9e7a-58349cb0b104"
+ },
+ {
+ "filename": "2005 - Characterization of the monomethylarsonate reductase.pdf",
+ "id": "415c3edb-c00f-44fb-a260-69bb996c76ff"
+ },
+ {
+ "filename": "2007 - Global expression profiles from C57BL 6J and DBA 2J mouse lungs.pdf",
+ "id": "99453f85-eaeb-41da-b97b-8729554dcbfc"
+ },
+ {
+ "filename": "2009 - The role of epigenetics in aging and age-related diseases.pdf",
+ "id": "e4609e13-7046-45a8-bf4f-242d84c8bac0"
+ },
+ {
+ "filename": "2003 - A Whole-Genome Screen of a Quantitative Trait of Age-Related.pdf",
+ "id": "046184a9-f062-4da2-9900-641aab9468e1"
+ },
+ {
+ "filename": "2007 - Sex-specific regulation of gene expression in the aging monkey aorta.pdf",
+ "id": "ae8ee9dc-aa7c-450c-87cf-06694d28471c"
+ },
+ {
+ "filename": "2008 - Canada Public Health Genomics.pdf",
+ "id": "4eea3cf1-d67b-4ae8-b585-a002aff76f9c"
+ },
+ {
+ "filename": "2009 - Adaptation, aging, and genomic information.pdf",
+ "id": "4a8820d5-7cb3-4883-9ae1-35c99b29cd4d"
+ },
+ {
+ "filename": "2005 - Uncovering regulatory pathways that affect hematopoietic.pdf",
+ "id": "0b6d1fe0-e041-4764-8b87-40b141fd16c0"
+ },
+ {
+ "filename": "2006 - Genomic Instability.pdf",
+ "id": "246942c7-3ea0-446e-a4f5-cb1e060c33b5"
+ },
+ {
+ "filename": "2003 - Age-related impairment of the transcriptional.pdf",
+ "id": "f2a907a8-298a-433f-8d61-01731824b7de"
+ },
+ {
+ "filename": "2010 - Ancestry and Disease in the Age.pdf",
+ "id": "2c71b513-2040-4d28-82a5-1997913ffd5a"
+ },
+ {
+ "filename": "2001 - Human Genome and Diseases.pdf",
+ "id": "8aa54f40-80f7-42f5-b7ff-1e91334db2c1"
+ },
+ {
+ "filename": "2005 - DNA Repair, Genome Stability.pdf",
+ "id": "2f3f259f-716a-4b40-af69-e5df5a21b862"
+ },
+ {
+ "filename": "2006 - Sex-specific telomere length profiles.pdf",
+ "id": "eea4020b-1e14-4af9-9d67-f75d1802fdcd"
+ },
+ {
+ "filename": "2007 - Trends in oxidative aging theories.pdf",
+ "id": "0381d0d4-717f-470b-a8d4-562475cf58bb"
+ },
+ {
+ "filename": "2010 - Environmental biosafety in the age.pdf",
+ "id": "a5154017-1607-499f-9d85-9fdbb47f4623"
+ },
+ {
+ "filename": "2007 - Heritable rather than age-related environmental.pdf",
+ "id": "74bfe52f-840b-4022-8122-b2d9c583ea5d"
+ },
+ {
+ "filename": "1999 - Molecular Biology of Aging.pdf",
+ "id": "3bf70612-23e6-41b8-9b88-ce9ba23c1edf"
+ },
+ {
+ "filename": "2001 - A Genome Scan for Renal Function among Hypertensives.pdf",
+ "id": "c11ed7a9-f8b0-41e8-97e3-0756c3e721f4"
+ },
+ {
+ "filename": "2008 - Genome-wide SNP-Based Linkage Scan.pdf",
+ "id": "e4473845-c00a-48b6-8a98-4062aba353f8"
+ },
+ {
+ "filename": "2010 - Genomic Variation Associated With Mortality Among Adults of European and African Ancestry With Heart Failure.pdf",
+ "id": "2e2ca797-e122-4d79-a058-21fea5d823ab"
+ },
+ {
+ "filename": "2003 - Life-long reduction in MnSOD activity results.pdf",
+ "id": "b67847d5-d5f7-4c4d-9713-4b42e6cefe14"
+ },
+ {
+ "filename": "2004 - Age-Related Macular Degeneration A High-Resolution Genome Scan.pdf",
+ "id": "22aa5462-abf8-4b1e-9391-ff8afb85a83e"
+ },
+ {
+ "filename": "2004 - Proinflammatory phenotype of coronary arteries promotes endothelial.pdf",
+ "id": "d54db58c-5e5f-4552-a0cb-4e27787aee00"
+ },
+ {
+ "filename": "2007 - Telomere dysfunction as a cause of genomic.pdf",
+ "id": "0f6d520d-9874-4e28-bf0a-d562ea244565"
+ },
+ {
+ "filename": "2004 - Genome-wide RNA interference screen identifies.pdf",
+ "id": "35702811-a454-400a-ad4b-fa269af823e1"
+ },
+ {
+ "filename": "2009 - Neurodegenerative diseases lessons.pdf",
+ "id": "3ea25157-b80f-4ef1-ba04-f8238294dba7"
+ },
+ {
+ "filename": "2009 - Genomic instability and DNA damage responses in progeria arising.pdf",
+ "id": "7ce1d264-5ae0-49cc-945c-68945bd2f67a"
+ },
+ {
+ "filename": "2003 - The Dawning era of polymer.pdf",
+ "id": "8eeeac28-3955-416f-8185-14e6bebeca48"
+ },
+ {
+ "filename": "2002 - PARK3 Influences Age at Onset in Parkinson Disease A Genome Scan.pdf",
+ "id": "1d5215ad-2882-4cb3-9424-09853bcdc543"
+ },
+ {
+ "filename": "2009 - Twenty bone-mineral-density loci identified.pdf",
+ "id": "a92f3f91-728a-40f2-8810-e5df2ec972f4"
+ },
+ {
+ "filename": "1997 - Genetic and functional changes in mitochondria associated with aging.pdf",
+ "id": "4f010a74-a9b4-4538-94f7-ae8f35c8b96e"
+ },
+ {
+ "filename": "2007 - Combined Genome Scans for Body Stature.pdf",
+ "id": "c15aadd7-adc7-4998-aae7-00f428e68340"
+ },
+ {
+ "filename": "2002 - Genome Dynamics in Aging Mice.pdf",
+ "id": "e4541c0c-53fb-4c2c-b550-40728c356549"
+ },
+ {
+ "filename": "2010 - Genome-scale approaches to the epigenetics of common.pdf",
+ "id": "5a12dd61-c085-4de4-8b59-386813753a02"
+ },
+ {
+ "filename": "2009 - Genes and gene expression modules associated with caloric.pdf",
+ "id": "45765a4b-f153-48af-8041-03e623579925"
+ },
+ {
+ "filename": "2009 - High tandem repeat content in the genome of the short-lived.pdf",
+ "id": "4a8a6975-b710-4db0-8061-104e25760239"
+ },
+ {
+ "filename": "2009 - Unraveling a Multifactorial.pdf",
+ "id": "3f41e709-4cf1-472b-b12b-804c6ebb07c9"
+ },
+ {
+ "filename": "2010 - Genome-wide Analysis of Genetic Loci.pdf",
+ "id": "c59757a9-deea-491e-a93c-3dfdb3d217f8"
+ },
+ {
+ "filename": "2007 - Immunosenescence comes of age.pdf",
+ "id": "9cb6af34-60b1-4f60-bd83-5a8fc2f22842"
+ },
+ {
+ "filename": "2001 - Marked differences in unilateral isolated retinoblastomas.pdf",
+ "id": "9387c2d5-61cf-4f22-869d-29f5ee760c3c"
+ },
+ {
+ "filename": "2005 - Diverse aging rates in metazoans targets for functional genomics.pdf",
+ "id": "0917c1ee-0dcb-4b6b-a424-5db3d61f8a2c"
+ },
+ {
+ "filename": "2007 - Two faces of p53 aging and tumor suppression.pdf",
+ "id": "31b4f021-4bb8-4489-8ced-b65539cbe285"
+ },
+ {
+ "filename": "2008 - Genome-wide analysis of aging and learning-related genes.pdf",
+ "id": "ee850069-4957-4159-97b9-38253ef00b18"
+ },
+ {
+ "filename": "2004 - Age-associated alteration of gene expression.pdf",
+ "id": "ed9ff7d5-f842-454a-b7f9-02a720459913"
+ },
+ {
+ "filename": "2008 - Rising from the RecQ-age the role.pdf",
+ "id": "0994b822-ee9e-4fbd-8438-e0d9b4ed1a39"
+ },
+ {
+ "filename": "2004 - Genomic DNA methylation of juvenile and mature Acacia mangium.pdf",
+ "id": "f0849937-dc25-42f4-a512-99783761674d"
+ },
+ {
+ "filename": "2003 - The Naturalist in a World of Genomics.pdf",
+ "id": "70168ffc-cef2-48a3-ab93-90f5146730f2"
+ },
+ {
+ "filename": "2004 - RNA-interference-based functional genomics in mammalian cells.pdf",
+ "id": "6a53805f-4f6f-49a8-8c28-935ce41e5560"
+ },
+ {
+ "filename": "2006 - BDNF-mediated enhancement of inflammation and injury in the aging heart.pdf",
+ "id": "781e94c1-0fbd-41cc-a3fb-1a3a35fc3f9e"
+ },
+ {
+ "filename": "2007 - Contributions of genomics.pdf",
+ "id": "82d3ceec-9dcc-4d08-8121-bd48fcbee9e9"
+ },
+ {
+ "filename": "2002 - Genome-Wide Transcript Profiles in Aging.pdf",
+ "id": "1ad95d2f-52ea-4f5a-b9ab-33ee217644a0"
+ },
+ {
+ "filename": "2007 - Gastric cancers in young and elderly patients show.pdf",
+ "id": "1d2ddb01-93f1-47bd-934f-4cf76ae820bf"
+ },
+ {
+ "filename": "2006 - Genomic dissection of behavioral maturation.pdf",
+ "id": "ae831b22-137e-443b-b722-f5d650ca05b7"
+ },
+ {
+ "filename": "2008 - DNA damage and ageing.pdf",
+ "id": "1e2d93e8-a0a4-4f4a-a470-2dfdd26fa846"
+ },
+ {
+ "filename": "1999 - Qualitative assessment of Genotoxicity.pdf",
+ "id": "fabfccb1-4ba7-47b4-8415-941742ddea40"
+ },
+ {
+ "filename": "1997 - Multi-organ characterization of mitochondrial.pdf",
+ "id": "fd5edd5b-25d5-41ef-b9ad-7599905b844f"
+ },
+ {
+ "filename": "2006 - Specific age related signatures in Drosophila body parts.pdf",
+ "id": "fe32b103-5dba-4cf0-b8af-762a71a5f5e6"
+ },
+ {
+ "filename": "2002 - Parkinson’s Disease and Apolipoprotein E Possible.pdf",
+ "id": "c22a8591-7422-4bed-a75b-7ad1000e1ee8"
+ },
+ {
+ "filename": "2001 - A genome-wide scan for linkage to human.pdf",
+ "id": "4a27da1c-b184-47e8-bef2-de6435d7c3f5"
+ },
+ {
+ "filename": "2003 - A Method for Detecting Recent Selection in the Human Genome.pdf",
+ "id": "e2ae5136-6b5c-4d91-b6f4-522345085d06"
+ },
+ {
+ "filename": "2009 - Neuroplasticity, Psychosocial Genomics.pdf",
+ "id": "c6cba282-84b5-4eb9-8d84-9aa5d8467c56"
+ },
+ {
+ "filename": "2003 - Lifelong voluntary exercise in the mouse prevents.pdf",
+ "id": "568742e6-18f8-4163-a31f-a23de9fd256e"
+ },
+ {
+ "filename": "2005 - Identification of a molecular signature of sarcopenia.pdf",
+ "id": "a11e6040-b902-47d4-9a5b-dcb851b13fb8"
+ },
+ {
+ "filename": "2009 - Genetic Variants Associated.pdf",
+ "id": "eb38cf4d-c8d9-4c4b-bcd7-8022211433d3"
+ },
+ {
+ "filename": "2010 - Exacerbated Innate Host Response to SARS-CoV in Aged.pdf",
+ "id": "4475c8be-18cb-434c-919d-58ac2590f2e4"
+ },
+ {
+ "filename": "2009 - Age-associated cognitive decline.pdf",
+ "id": "8555fab6-5674-4bfa-b5e5-335c564a9e02"
+ },
+ {
+ "filename": "2001 - Methylation meets genomics.pdf",
+ "id": "6ec33801-5ba6-46c6-86db-687f4749916c"
+ },
+ {
+ "filename": "2002 - Genomic DNA methylation–demethylation during aging.pdf",
+ "id": "0d6572db-a7d2-46c5-840b-ff88f791af4f"
+ },
+ {
+ "filename": "2002 - Pharmacology, Genomics, and the Evolutionary Biology.pdf",
+ "id": "efd5747f-9e8b-45e8-9e04-bb31131d44fa"
+ },
+ {
+ "filename": "1997 - Tumour-suppressor genes evolving definitions in the genomic age.pdf",
+ "id": "fcdb7fa8-6ac7-40bb-8272-0fc7dd599bf3"
+ },
+ {
+ "filename": "2009 - Genome instability, cancer and aging.pdf",
+ "id": "ccf08675-bbd4-498a-8c26-17cc0cd3e5b5"
+ },
+ {
+ "filename": "2008 - DNA deletions and clonal.pdf",
+ "id": "d3b803ac-491d-4011-bad5-8dfba254d58b"
+ },
+ {
+ "filename": "2010 - Functional Genomics of Brain Aging and Alzheimer’s Disease.pdf",
+ "id": "65fa5ee9-44fb-4864-865a-02cab50dfba1"
+ },
+ {
+ "filename": "2010 - A Meta-analysis of Four Genome-Wide Association Studies.pdf",
+ "id": "f4e2fa75-559b-4fa9-b722-bdac03f7715a"
+ },
+ {
+ "filename": "2009 - Hippocampal Atrophy as a Quantitative Trait.pdf",
+ "id": "07bc540a-58b7-4907-8dbe-32d98618c5df"
+ },
+ {
+ "filename": "2007 - Impaired Genome Maintenance Suppresses.pdf",
+ "id": "c2df1cd8-c962-4fac-88c9-cad52f7753b0"
+ },
+ {
+ "filename": "2006 - Genomics and Cardiac Arrhythmias.pdf",
+ "id": "b639b9e7-02e5-4c54-81f6-42e80c40ea6c"
+ },
+ {
+ "filename": "2003 - The age of the Arabidopsis thaliana genome duplication.pdf",
+ "id": "aa902d92-468c-4007-ad31-45aaa77d5de0"
+ },
+ {
+ "filename": "2007 - Crop evolution from genetics to genomics.pdf",
+ "id": "c64e358e-f7a8-4b15-9852-bf3a644178c2"
+ },
+ {
+ "filename": "2005 - MITOMAP a human mitochondrial genome.pdf",
+ "id": "68a39578-ff44-4b37-9168-bf079c3808b0"
+ },
+ {
+ "filename": "2004 - Genomic instability, aging.pdf",
+ "id": "bd1e682b-b5c0-43ac-9e5a-d922560f9ace"
+ },
+ {
+ "filename": "2009 - Aging and Replicative Senescence Have Related Effects.pdf",
+ "id": "9f2895a4-086c-4eed-8558-9e047bde41a9"
+ },
+ {
+ "filename": "2007 - Gene expression atlas of the mouse central nervous system impact.pdf",
+ "id": "113cb521-b79d-4b44-8250-dc1013ea2cb3"
+ },
+ {
+ "filename": "2008 - Genome-wide tracking of unmethylated DNA.pdf",
+ "id": "7a0e513b-c41b-4e8c-8123-9e3e58b6200f"
+ },
+ {
+ "filename": "2004 - The emergence of epidemiology.pdf",
+ "id": "b7732bf6-6d94-42ba-b4a2-65ea1e438512"
+ },
+ {
+ "filename": "2008 - SIRT1 Redistribution on Chromatin.pdf",
+ "id": "45e6e891-e190-42a4-878f-4a5ca3e06ef1"
+ },
+ {
+ "filename": "2009 - Potential benefit of genomic selection in sheep.pdf",
+ "id": "2c5c74b5-e435-423e-9686-50cce8749f02"
+ },
+ {
+ "filename": "2010 - Heritability and Genome-Wide Linkage.pdf",
+ "id": "9aaf4db6-44c7-4083-a1af-3892693cf68f"
+ },
+ {
+ "filename": "1999 - Rothmund–Thomson Syndrome Responsible Gene, RECQL4.pdf",
+ "id": "c27fcebe-d4ff-4a18-8bf8-ad1bfde28485"
+ },
+ {
+ "filename": "2010 - Genome-wide analysis reveals mechanisms.pdf",
+ "id": "b95accd9-0ce8-464e-9de4-49aea32cf3b7"
+ },
+ {
+ "filename": "2006 - Beyond the evolutionary theory.pdf",
+ "id": "1ccb0d11-1c88-4b08-b40d-4039a954745f"
+ },
+ {
+ "filename": "2004 - Ageing, repetitive genomes and DNA.pdf",
+ "id": "bff81d81-874a-4b4f-aef3-40b1dd93a852"
+ },
+ {
+ "filename": "2010 - Biobank governance in the post-genomic age.pdf",
+ "id": "c60bf03f-0735-4575-a02d-886b4e1889e4"
+ },
+ {
+ "filename": "2007 - The Application of Proteomics and Genomics to the Study.pdf",
+ "id": "b3969584-ff7f-4b64-8de7-79d6a60e9457"
+ },
+ {
+ "filename": "2001 - Age-Related Maculopathy An Expanded.pdf",
+ "id": "7a7d4607-f2a0-4c69-82bf-a016ba250603"
+ },
+ {
+ "filename": "2007 - Viral Evolution in the Genomic Age.pdf",
+ "id": "965d5bf3-c68f-4339-a643-870bb0b273dd"
+ },
+ {
+ "filename": "2005 - Genome Screen for Loci Influencing Age at Onset.pdf",
+ "id": "8881b5b0-fd7a-400d-9dd2-d4c3f9b012b4"
+ },
+ {
+ "filename": "2007 - Primary laminopathy fibroblasts display altered genome.pdf",
+ "id": "a68762fb-d3d0-4589-80a2-24ad1fca73a9"
+ },
+ {
+ "filename": "2001 - Genome maintenance mechanisms.pdf",
+ "id": "3dfe0ec3-b3a6-4a08-8929-e54cab3ec262"
+ },
+ {
+ "filename": "2008 - Age to survive DNA damage and aging.pdf",
+ "id": "f6823249-1934-4f36-87f0-27a06a42c041"
+ },
+ {
+ "filename": "2010 - Genetics of bronchopulmonary dysplasia in the age of genomics.pdf",
+ "id": "86f3ad99-5b3a-4d70-b1de-a42b97c072fc"
+ },
+ {
+ "filename": "1999 - Cell-by-cell scanning of whole mitochondrial genomes.pdf",
+ "id": "5d133558-fc58-42c7-8407-b3e734e8db9c"
+ },
+ {
+ "filename": "2004 - A Transcriptional Profile of Aging.pdf",
+ "id": "dc322053-2672-4c26-b739-5b58c50476ed"
+ },
+ {
+ "filename": "2008 - Whole-genome microarray and targeted analysis of angiogenesis-.pdf",
+ "id": "c115a753-78ae-49b9-aed4-0ef4cea7d47a"
+ },
+ {
+ "filename": "2008 - Genetic and Epigenetic Contributions to Human.pdf",
+ "id": "070cac79-e1c1-450a-955b-bac2b730b3e5"
+ },
+ {
+ "filename": "2007 - Genome Dynamics and Transcriptional Deregulation.pdf",
+ "id": "be8d8300-2a5b-4121-9ff3-31bb52c5603a"
+ },
+ {
+ "filename": "2010 - Differential genomic responses in old vs. young humans despite similar levels.pdf",
+ "id": "4ec6d6c4-9908-4619-91a6-c66d7f1f6a6a"
+ },
+ {
+ "filename": "2003 - Gene expression profile of aging in human muscle.pdf",
+ "id": "930832a7-4402-40e0-8df6-420a649e1f57"
+ },
+ {
+ "filename": "2007 - Epigenetics and aging the targets.pdf",
+ "id": "1e9e819d-203b-4da7-ac20-c081acc73280"
+ },
+ {
+ "filename": "2010 - Genome-wide gene expression regulation as a function.pdf",
+ "id": "dbfe8986-e861-496f-a534-7bb9ca061ad6"
+ },
+ {
+ "filename": "2004 - Mitochondrial Genome Single Nucleotide.pdf",
+ "id": "07a65640-5673-4f13-8f8f-080c387cfc53"
+ },
+ {
+ "filename": "2010 - Age-dependent DNA methylation of genes that are suppressed.pdf",
+ "id": "12a8e7de-7d85-4a89-b90e-0f59b58f9114"
+ },
+ {
+ "filename": "2003 - Results of a high-resolution genome screen.pdf",
+ "id": "3641c4cb-cff0-4678-9c1d-70008be8e871"
+ },
+ {
+ "filename": "2002 - Medical genetics Clinical.pdf",
+ "id": "5028edee-f846-4819-aa94-28b36b5bb3f9"
+ },
+ {
+ "filename": "2002 - Telomere dysfunction provokes regional amplification.pdf",
+ "id": "3f4b83bb-072a-4040-8a96-7dd0580f1ccf"
+ },
+ {
+ "filename": "2005 - Genomic and Proteomic Profiling of Lung Cancers.pdf",
+ "id": "b2f8ed5d-05c9-4a1e-8bf6-9d273a646a11"
+ },
+ {
+ "filename": "2007 - Caloric restriction and genomic stability.pdf",
+ "id": "c93ceb60-ed9b-4e1a-ab3c-f82aa7d70fca"
+ },
+ {
+ "filename": "2005 - Biological aging and the etiology of aneuploidy.pdf",
+ "id": "769c658b-76c2-4192-91d8-177b4d8c6ffa"
+ },
+ {
+ "filename": "2007 - The short-lived fish Nothobranchius furzeri as a new model system.pdf",
+ "id": "50756157-d596-4c90-8f3b-cec31507b97d"
+ },
+ {
+ "filename": "2005 - Rapid and reversible induction of the longevity, anticancer.pdf",
+ "id": "3b4e2d29-59aa-4df8-8782-64219b918fd2"
+ },
+ {
+ "filename": "2009 - Genome-wide association study identifies eight loci.pdf",
+ "id": "a7401384-f646-4d9d-b50d-658c9c556016"
+ },
+ {
+ "filename": "2006 - Does the mitochondrial genome play a role in the etiology.pdf",
+ "id": "43a28b54-22e0-4083-802e-b999df0b4a40"
+ },
+ {
+ "filename": "2006 - Invited Review Microbial ecology in the age of genomics and metagenomics concepts, tools, and recent advances.pdf",
+ "id": "6dd749e0-ebe7-45b9-ad69-731581460f6f"
+ },
+ {
+ "filename": "2009 - MitoInteractome Mitochondrial protein interactome database.pdf",
+ "id": "ca184a2f-f84b-40a1-86c2-b7886bed4612"
+ },
+ {
+ "filename": "2000 - Genome-wide study of aging and oxidative stress.pdf",
+ "id": "e562a7f1-f43a-4ca4-bf18-4196276b6170"
+ },
+ {
+ "filename": "2001 - Vitamins minerals and genomic stability in humans.pdf",
+ "id": "4b86a8fb-344e-4726-a8d5-355c317a1c33"
+ },
+ {
+ "filename": "2008 - Informed Consent in the Genomics Era.pdf",
+ "id": "c9acd489-6022-4cc4-a209-262c9cc996a8"
+ },
+ {
+ "filename": "2005 - Genomes, phylogeny, and evolutionary systems biology.pdf",
+ "id": "6c865bbb-b27e-4faa-b6ee-619e17cf6dcd"
+ },
+ {
+ "filename": "2018 - Integrative functional genomic.pdf",
+ "id": "b5ae2bff-612d-496d-aa2d-09e6ee22d76c"
+ },
+ {
+ "filename": "2011 - Genome-wide association study identifies loci influencing.pdf",
+ "id": "c07bba46-9a4c-408c-8a8a-f7107e43e216"
+ },
+ {
+ "filename": "2009 - Genome-wide Association Study.pdf",
+ "id": "bee76c7e-f8e1-42b5-bd14-0c3958e74553"
+ },
+ {
+ "filename": "2007 - Drosophila Biology in the Genomic Age.pdf",
+ "id": "ed7143b5-5071-4dd2-b427-601b83c8e7cd"
+ },
+ {
+ "filename": "2009 - DNA Damage, Aging, and Cancer.pdf",
+ "id": "8d9cfa59-b9e7-43d9-99ed-38df1827706f"
+ },
+ {
+ "filename": "2005 - Prevalence of restless legs syndrome and associated.pdf",
+ "id": "10fb9a99-9ee1-435e-b909-de3e59ffb85c"
+ },
+ {
+ "filename": "2010 - Consumer perceptions of direct-to-consumer.pdf",
+ "id": "739fa29e-6012-4f81-bf31-7437340e7d8d"
+ },
+ {
+ "filename": "2007 - Polycomb comes of age genome-wide profiling of target sites.pdf",
+ "id": "f98d8320-363e-4bd0-b9db-ef63076dffd0"
+ },
+ {
+ "filename": "2010 - Genetics and genomics of human ageing.pdf",
+ "id": "f3610ccc-2831-42f6-a3d3-1a0feeba4902"
+ },
+ {
+ "filename": "2005 - An Evaluation of the Current State of Genomic Data Privacy.pdf",
+ "id": "5c9aed30-dec7-49af-9401-3ec6fa0e1334"
+ },
+ {
+ "filename": "2007 - Genetic correlates of brain aging on MRI and cognitive test measures a genome-wide association and linkage analysis in the Framingham study.pdf",
+ "id": "33aa67fd-36fd-4f57-92ec-70c1f32fe1cf"
+ },
+ {
+ "filename": "2004 - Endosymbiotic gene transfer.pdf",
+ "id": "2aff9645-9903-469c-b4c5-61a25d39d302"
+ },
+ {
+ "filename": "2004 - Microbial Genomics and the Periodic Table.pdf",
+ "id": "945d2a33-0919-4140-92f1-5fc48aff0fc8"
+ },
+ {
+ "filename": "2009 - MicroRNAs in C. elegans Aging Molecular Insurance for Robustness.pdf",
+ "id": "7ab437d0-0276-46d5-8905-ce774ae452d2"
+ },
+ {
+ "filename": "2010 - The Teleost Anatomy Ontology Anatomical Representation for the Genomics Age.pdf",
+ "id": "de28144e-045c-42b7-b969-3d27a125aab4"
+ },
+ {
+ "filename": "2008 - A new role of the rDNA.pdf",
+ "id": "d4ce3a65-6e25-4561-aee1-2715edc1c35d"
+ },
+ {
+ "filename": "2008 - The genomic response of the ipsilateral.pdf",
+ "id": "6f38cfff-88f1-4333-bc97-293200855bbf"
+ },
+ {
+ "filename": "2010 - Age- and Sex-Specific Genomic Profiles.pdf",
+ "id": "5864b124-77f0-4bb2-9c7e-7223b81037a0"
+ },
+ {
+ "filename": "2004 - A New Resource for Cereal Genomics 22K Barley.pdf",
+ "id": "af3230f3-0b27-4767-a91c-e639a8ef1c9b"
+ },
+ {
+ "filename": "2010 - Genome-wide association study of advanced.pdf",
+ "id": "24fcd5e0-0df3-408b-bebd-07b7f7b272b8"
+ },
+ {
+ "filename": "2008 - Gene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension.pdf",
+ "id": "8ac5e1a9-093d-436c-bd4d-f070640c63de"
+ },
+ {
+ "filename": "2007 - The role of nuclear architecture.pdf",
+ "id": "76cf7c7b-78ec-4502-8939-ca36fb104ec0"
+ },
+ {
+ "filename": "2006 - Informed Consent and Subject Motivation.pdf",
+ "id": "ebf39506-7edf-4b27-8ab1-b1c30e76c17a"
+ },
+ {
+ "filename": "2008 - HGPS and related premature aging disorders From genomic identification.pdf",
+ "id": "9c9ea233-2346-4471-acbf-c74691e99677"
+ },
+ {
+ "filename": "2009 - Severity of Meningococcal Disease Associated.pdf",
+ "id": "e91ce172-bee4-4874-a7f2-d6d5a6b262aa"
+ },
+ {
+ "filename": "2011 - A genome-wide association study of aging.pdf",
+ "id": "932ef21b-9235-4210-a99c-6153a901bb89"
+ },
+ {
+ "filename": "2007 - Biological Aging Is No Longer.pdf",
+ "id": "5e157c2e-91b8-466d-a9fd-f91f8f432f0c"
+ },
+ {
+ "filename": "2003 - Precise determination of mitochondrial DNA copy.pdf",
+ "id": "b547b680-8602-4a15-8d91-6a6d3ffa19d2"
+ },
+ {
+ "filename": "2010 - Meta-analyses of genome-wide association studies identify.pdf",
+ "id": "606b60e3-32f4-4daf-9088-43e42f40ddd4"
+ },
+ {
+ "filename": "2007 - The Domestication of Artichoke and Cardoon From Roman Times.pdf",
+ "id": "b82d6db0-c25a-45eb-ae8f-e9a83e461ddb"
+ },
+ {
+ "filename": "2007 - A High Quality Draft Consensus Sequence.pdf",
+ "id": "c3ea569f-31e0-4061-8dd6-a9b02246511b"
+ },
+ {
+ "filename": "2010 - Higher-order Genome Organization.pdf",
+ "id": "5dedbd70-deac-4652-ac8e-6c768ad49a73"
+ },
+ {
+ "filename": "2005 - Genome-wide linkage analysis to age at natural.pdf",
+ "id": "bf11c54e-7cc4-4fe2-97b0-70c464263846"
+ },
+ {
+ "filename": "2011 - Retrotransposition is associated with genome instability during chronological aging.pdf",
+ "id": "c3c70600-e133-45a6-98cc-5aac2decd171"
+ },
+ {
+ "filename": "2009 - Loss of A-type lamins and genomic instability.pdf",
+ "id": "a1df6e72-7e5b-4bcf-bcb0-54b5bf5dc05e"
+ },
+ {
+ "filename": "2011 - Imputation of sequence variants for identification of genetic.pdf",
+ "id": "24ce8a0c-393a-4e27-b2e5-69b4675b2fa7"
+ },
+ {
+ "filename": "2008 - Genomic Association Analysis Suggests Chromosome 12.pdf",
+ "id": "2cbd68a5-90b6-4740-8f1b-5fa8e77f11e4"
+ },
+ {
+ "filename": "2006 - Cancer screening in older adults.pdf",
+ "id": "82437393-a1b1-4d2c-888c-43cc0b983f9d"
+ },
+ {
+ "filename": "2011 - A Role for the MS Analysis of Nucleic Acids.pdf",
+ "id": "db69a0c9-d16f-40ff-b0ed-10ebeccf2857"
+ },
+ {
+ "filename": "2010 - Gene-culture coevolution in the age of genomics.pdf",
+ "id": "b690d3d2-3e07-4b43-b4bd-dac859d8f1b2"
+ },
+ {
+ "filename": "2005 - Meta-analysis of genome scans of age-related.pdf",
+ "id": "cbd28940-51f7-4ca6-9ee9-75834117470d"
+ },
+ {
+ "filename": "2009 - Predicting human height by Victorian and genomic.pdf",
+ "id": "4f0c4753-f320-417c-a9e7-8cb013763242"
+ },
+ {
+ "filename": "2009 - Agrobacterium in the Genomics Age.pdf",
+ "id": "a091f1b1-ee5a-4607-872d-db26a2d67f87"
+ },
+ {
+ "filename": "2010 - Chromatin remodeling in the aging genome.pdf",
+ "id": "64dc1669-193e-43ec-ad7b-6ad934f823e6"
+ },
+ {
+ "filename": "2007 - DNA replication stress, genome instability and aging.pdf",
+ "id": "c89f6c23-d5ac-4352-9b82-2ba559b20c0b"
+ },
+ {
+ "filename": "2007 - Gene expression profiles in anatomically and functionally distinct regions.pdf",
+ "id": "df272e44-8335-4287-84f5-3244134896c0"
+ },
+ {
+ "filename": "2010 - Roles of Werner syndrome protein in protection of genome integrity.pdf",
+ "id": "0df3c32c-ac79-45d0-a846-331bae5a7daf"
+ },
+ {
+ "filename": "2006 - Global DNA demethylation in gastrointestinal cancer is age.pdf",
+ "id": "7d57d11b-ffda-4206-bd55-382540c98a79"
+ },
+ {
+ "filename": "2007 - Linking Brain Imaging and Genomics.pdf",
+ "id": "58b305ff-7c05-4e31-aafe-7fb16a8a8049"
+ },
+ {
+ "filename": "2004 - Human blood genomics distinct profiles for gender, age.pdf",
+ "id": "13e29c44-5cb1-4661-86bd-025e0b993f9a"
+ },
+ {
+ "filename": "2011 - Analysis of alternative splicing associated with aging.pdf",
+ "id": "82f4e593-8f80-45d7-9de0-dbe9d6f234b8"
+ },
+ {
+ "filename": "2011 - Distinct DNA methylation changes highly correlated.pdf",
+ "id": "da8e56fb-a05a-413a-aca0-89361bcc283b"
+ },
+ {
+ "filename": "2008 - Shaping segments Hox gene.pdf",
+ "id": "2de167f7-5804-43f0-8fa7-25df2f0567ab"
+ },
+ {
+ "filename": "2003 - The application of functional genomics.pdf",
+ "id": "f22e0d51-2f94-4786-b87d-41ed530a6f61"
+ },
+ {
+ "filename": "2004 - Whole Genome Scan for Obstructive Sleep Apnea.pdf",
+ "id": "0eb74d71-2ff8-48ff-a7e4-c8b2dad370f9"
+ },
+ {
+ "filename": "2009 - Genome-Wide Association Scan Meta-Analysis Identifies.pdf",
+ "id": "430d5170-6200-40e8-a697-fc72dde0b8a5"
+ },
+ {
+ "filename": "2010 - Genome-wide association analysis identifies.pdf",
+ "id": "819d4a80-2b09-4c7e-a7e1-47d5606e96af"
+ },
+ {
+ "filename": "2004 - Comparative analysis of processed pseudogenes.pdf",
+ "id": "f0db8a37-76fc-4eaf-a667-4d2422ecc32f"
+ },
+ {
+ "filename": "2007 - microRNA expression in the aging mouse lung.pdf",
+ "id": "643a40b7-3f1c-4a11-a9cf-d70e678c14b8"
+ },
+ {
+ "filename": "2010 - Genome-wide association study (GWAS)-identified disease risk alleles do not compromisehuman longevity.pdf",
+ "id": "e21986c6-0d1a-4489-a20b-9ac1901b2a5d"
+ },
+ {
+ "filename": "2011 - A genome-wide association study confirms APOE as the major gene influencing.pdf",
+ "id": "db90a971-e55a-4ab0-a3b1-05908d6771a4"
+ },
+ {
+ "filename": "2009 - Cohorts for Heart and Aging Research in Genomic.pdf",
+ "id": "1681b372-e51f-4489-889b-37e74c284e0c"
+ },
+ {
+ "filename": "2006 - Increased genomic instability is not a prerequisite for shortened.pdf",
+ "id": "f4762690-64e9-4f6d-9031-c249dc4a6d85"
+ },
+ {
+ "filename": "2004 - Major events in the genome evolution of vertebrates.pdf",
+ "id": "f11c49bd-1a54-4ea4-bcc6-cd589806311f"
+ },
+ {
+ "filename": "2011 - Cell cycle and aging, morphogenesis.pdf",
+ "id": "1795d0e2-b0e9-4801-8537-c0e64f728ae5"
+ },
+ {
+ "filename": "2010 - Age and sex dependent changes in liver gene.pdf",
+ "id": "0bc591e0-bd1c-4c15-9e1e-3aa4499ad270"
+ },
+ {
+ "filename": "2009 - SIRT6 Links Histone H3 Lysine 9 Deacetylation.pdf",
+ "id": "5b60f0ee-e224-4052-bc93-47b97532837b"
+ },
+ {
+ "filename": "2009 - MicroRNA Implications for Alzheimer Disease and other Human CNS.pdf",
+ "id": "d95f3bff-219f-462a-876f-b46a8c8482ae"
+ },
+ {
+ "filename": "2011 - Meta-analysis of genome-wide association studies identifies common variants.pdf",
+ "id": "7b2d11d3-b8fd-4c6c-ab43-a690860a5e5b"
+ },
+ {
+ "filename": "2005 - Novel Anticancer Targets and Drug Discovery in Post Genomic Age.pdf",
+ "id": "67f8bcbb-7d4b-47de-967f-d341b0b110cb"
+ },
+ {
+ "filename": "2010 - Genetic variants near TIMP3 and high-density.pdf",
+ "id": "3cbce5b1-fc62-4995-9902-c92c532dc11c"
+ },
+ {
+ "filename": "2004 - Cytonuclear coevolution the genomics.pdf",
+ "id": "3f72832b-fad9-4d38-aed8-d22e5bd12a22"
+ },
+ {
+ "filename": "2009 - Genome-Wide Linkage and Admixture Mapping of Type 2.pdf",
+ "id": "46cf6ed6-e4e2-471f-a397-05c69ced5fcd"
+ },
+ {
+ "filename": "2010 - Longitudinal Genome-Wide Association.pdf",
+ "id": "6fe20ab6-f924-4d4c-8183-1bd099d6a8b0"
+ },
+ {
+ "filename": "2008 - The Aging Brain.pdf",
+ "id": "2186130e-2523-4fcc-a52f-fc2bdd986230"
+ },
+ {
+ "filename": "2005 - Aging and Genome Maintenance.pdf",
+ "id": "3965fada-3e65-4db0-adc3-bf9931d62223"
+ },
+ {
+ "filename": "2005 - Genomes Optimize Reproduction Aging as a Consequence of the Developmental Program.pdf",
+ "id": "996e02bf-91b2-4e81-89ba-1f661dfc662a"
+ },
+ {
+ "filename": "2007 - Gene expression profiling of long-lived dwarf mice.pdf",
+ "id": "29c57767-2e2c-4fbe-a8b2-629e1abd5628"
+ },
+ {
+ "filename": "2007 - Deficiencies in DNA damage repair limit the function.pdf",
+ "id": "4556f5ae-5b0b-4a30-87dc-fd8b28b6af92"
+ },
+ {
+ "filename": "2010 - Common genetic determinants of vitamin D insufficiency.pdf",
+ "id": "73ff075a-f4fc-4d12-96ba-55135ac99fb0"
+ },
+ {
+ "filename": "2011 - Genetic Loci Associated with Plasma Phospholipid n-3.pdf",
+ "id": "4e3da469-3cb1-4779-8d92-fc9a55e2ca93"
+ },
+ {
+ "filename": "2007 - Alterations to Nuclear Architecture.pdf",
+ "id": "1f644643-0c87-4eaa-864a-4e7210ab6d1b"
+ },
+ {
+ "filename": "2006 - Common variation in three genes, including a noncoding.pdf",
+ "id": "4c059136-5a0c-4e60-8f22-89b3af002a99"
+ },
+ {
+ "filename": "2007 - The quest for natural selection in the age.pdf",
+ "id": "ef8257bf-b7bd-4a0b-a6c8-3cbf35c522f9"
+ },
+ {
+ "filename": "2011 - Genome-wide association study identifies a single major locus contributing to survival into old age the APOE locus revisited.pdf",
+ "id": "5fefb0e4-e7f9-4df3-a984-ad4f61756cf7"
+ },
+ {
+ "filename": "2008 - Genomic Methylation of Leukocyte DNA in Relation to Colorectal.pdf",
+ "id": "01aa3979-60ed-4c76-bd6b-e2e9df1c4ce3"
+ },
+ {
+ "filename": "2003 - Whole-genome screening indicates a possible burst of formation.pdf",
+ "id": "f2f55df4-7e90-4600-90a4-fa30a4c91c5f"
+ },
+ {
+ "filename": "2007 - Physcomitrella patens mosses enter the genomic age.pdf",
+ "id": "17de4c01-75e9-4e65-ae2e-603fb645905a"
+ },
+ {
+ "filename": "2006 - ChIP-chip Comes of Age for Genome-wide Functional Analysis.pdf",
+ "id": "d1e53c55-903a-49ed-b550-47d52e10d1cc"
+ },
+ {
+ "filename": "2007 - Gene expression profiling of aging reveals activation.pdf",
+ "id": "85500890-8c3c-4c43-9cc7-d702c6a44626"
+ },
+ {
+ "filename": "2004 - Linking nutrition to genomics.pdf",
+ "id": "e9258233-a175-4a28-a93e-713314fbd6c3"
+ },
+ {
+ "filename": "2009 - Genome-Wide Association Study of Plasma.pdf",
+ "id": "48c2223a-b294-4c12-aee4-fae5d88c6b4d"
+ },
+ {
+ "filename": "2005 - Genome-wide search for genes affecting serum uric acid levels.pdf",
+ "id": "625ffe89-d64b-4675-adc3-c333feddcd60"
+ },
+ {
+ "filename": "2010 - Large-scale genomic studies reveal central role.pdf",
+ "id": "4b11f852-d426-4b43-90da-e8e5549428ad"
+ },
+ {
+ "filename": "2009 - Roles of RECQ helicases in recombination based DNA.pdf",
+ "id": "927f16f6-f2b3-47cc-a503-6aa9d254caac"
+ },
+ {
+ "filename": "2010 - Genes, Mutations, and Human Inherited Disease.pdf",
+ "id": "81c3edc4-f625-45f2-bf78-e49faf118c88"
+ },
+ {
+ "filename": "2007 - Longevity Genomics Across Species.pdf",
+ "id": "520b36a2-4c9c-4894-a818-9917bd357982"
+ },
+ {
+ "filename": "2006 - Health Is Still Social Contemporary.pdf",
+ "id": "a1a0b714-7c68-425a-bf73-68dab6fa806c"
+ },
+ {
+ "filename": "2007 - Aging impacts transcriptomes but not genomes.pdf",
+ "id": "d68e6278-f0d0-4cf3-9b0a-d29ec81f3267"
+ },
+ {
+ "filename": "2007 - Decline of nucleotide excision repair capacity in aging.pdf",
+ "id": "6748ddcc-8878-48af-93fa-1d4adfc41638"
+ },
+ {
+ "filename": "2008 - Evolution of the Aging Brain Transcriptome and Synaptic.pdf",
+ "id": "7bad9274-7ebe-4c6c-9dab-35565106efc2"
+ },
+ {
+ "filename": "2010 - A genome-wide association study for age-related hearing impairment in the Saami.pdf",
+ "id": "14268c6a-80b6-4406-936d-56036293a896"
+ },
+ {
+ "filename": "2011 - Sequencing projects bring age-old wisdom to genomics.pdf",
+ "id": "71968c06-7fbb-4ebd-8b67-5b76268bdf4d"
+ },
+ {
+ "filename": "2009 - Meta-analysis of age-related gene expression profiles identifies.pdf",
+ "id": "2ebf48f0-d28d-46c3-a020-387cc3d4d1be"
+ },
+ {
+ "filename": "2011 - Genome-wide association studies establish that human.pdf",
+ "id": "bbbea92f-b985-40a6-8792-d84941177ed3"
+ },
+ {
+ "filename": "2011 - Evidence for widespread changes in promoter.pdf",
+ "id": "9292750d-3941-465c-8e2c-bb041f6bea0b"
+ },
+ {
+ "filename": "2009 - Assessing Susceptibility to Age-related.pdf",
+ "id": "ede27960-89ab-4018-a66f-f81a3cbcc3c1"
+ },
+ {
+ "filename": "2008 - A genome-wide association study for late-onset Alzheimer's disease.pdf",
+ "id": "7355cae7-85c3-4a35-b413-b9db7906c374"
+ },
+ {
+ "filename": "2004 - Comparing genomic expression patterns across species.pdf",
+ "id": "c41e0da8-d5b3-4ea0-bc0a-36de600b25ff"
+ },
+ {
+ "filename": "2008 - Telomeres and Aging.pdf",
+ "id": "5a8540de-d034-4dc4-b08b-e96e22f47ff8"
+ },
+ {
+ "filename": "2007 - The Framingham Heart Study 100K SNP genome-wide association.pdf",
+ "id": "691c2efc-e01c-4d95-aea9-23adf84faa04"
+ },
+ {
+ "filename": "2011 - A comparison of dairy cattle breeding designs that use genomic selection.pdf",
+ "id": "ac1729e4-095b-48f5-9074-410b67c8ff4d"
+ },
+ {
+ "filename": "2010 - Chromosome 9p21 in amyotrophic lateral sclerosis.pdf",
+ "id": "4b22c8f7-e928-40fe-a55c-57f4272af594"
+ },
+ {
+ "filename": "2011 - Breeding value prediction for production traits.pdf",
+ "id": "bc738c00-2e7d-4296-8d03-6733395a70ac"
+ },
+ {
+ "filename": "2005 - Mutational Decay and Age of Chloroplast.pdf",
+ "id": "35da53cd-498d-4d4a-b24b-6e8b9b8e8eac"
+ },
+ {
+ "filename": "2008 - Genomic DNA Methylation among Women.pdf",
+ "id": "d5979641-a7e8-4b37-a224-87bb0bf093b6"
+ },
+ {
+ "filename": "2005 - A novel VNTR enhancer within the SIRT3 gene, a human homologue.pdf",
+ "id": "616ddc34-12a0-4ca7-920f-f09a66ee7a4c"
+ },
+ {
+ "filename": "2010 - Somatic Genome Variations in Health and Disease.pdf",
+ "id": "7fea81f0-193c-47c6-81b9-98ffb872fe1b"
+ },
+ {
+ "filename": "2010 - One Hundred Years of Pleiotropy A Retrospective.pdf",
+ "id": "24042f63-48c8-4ebd-8b91-92d6b34a0fcf"
+ },
+ {
+ "filename": "2012 - Peroxiredoxins, gerontogenes linking.pdf",
+ "id": "646fe236-5194-47c0-a57c-2ef687cc402d"
+ },
+ {
+ "filename": "2013 - A genome-wide association study of early.pdf",
+ "id": "7472e747-5eb2-46df-846e-4a7a667a7185"
+ },
+ {
+ "filename": "2016 - Coming of age ten years of next.pdf",
+ "id": "b4134824-93ea-42a1-9d39-24cc4b6d775c"
+ },
+ {
+ "filename": "2013 - Insights into phylogeny, sex function and age of Fragaria based on whole.pdf",
+ "id": "d5ff1163-b394-4374-81e7-21a53d4f8527"
+ },
+ {
+ "filename": "2012 - Genomics and Successful Aging Grounds for Renewed.pdf",
+ "id": "c8fbb24d-0a72-4a45-a552-6cd98a4a25a2"
+ },
+ {
+ "filename": "2015 - Genomic epidemiology of age-associated meningococcal.pdf",
+ "id": "9ac30292-7d7f-4dbd-aa3e-bf6292977373"
+ },
+ {
+ "filename": "2012 - Genome-wide association Scan of dental caries.pdf",
+ "id": "c4a14c11-9cd3-4ae6-af0c-9002cf0b5a8a"
+ },
+ {
+ "filename": "2012 - Aging, Rejuvenation, and Epigenetic.pdf",
+ "id": "5030cbc8-e02c-4e3a-8cbc-0156ce123c99"
+ },
+ {
+ "filename": "2011 - Personalizing Cancer Treatment in the Age.pdf",
+ "id": "1f1c65bc-d563-4720-a801-8f44954044ea"
+ },
+ {
+ "filename": "2011 - Genome-Wide Association Study Identifies Novel.pdf",
+ "id": "ce884e9f-5165-4fc1-8f13-e3be4f923acf"
+ },
+ {
+ "filename": "2012 - Systems-level analysis of age-related macular.pdf",
+ "id": "daf409ff-a4e3-4fe8-8b13-dd191ed4bb01"
+ },
+ {
+ "filename": "2011 - Adaptation in the age of ecological.pdf",
+ "id": "988adc2c-d622-4b18-9a9c-1e413eaf4f82"
+ },
+ {
+ "filename": "2011 - Genomics and the Eye.pdf",
+ "id": "282b000f-cc20-43c8-bd80-4eff37099ca7"
+ },
+ {
+ "filename": "2015 - Lifetime stress accelerates epigenetic aging.pdf",
+ "id": "567f810a-930f-415b-928c-a7bc47e922c9"
+ },
+ {
+ "filename": "2013 - Role of epigenetics in human aging and longevity genome-wide.pdf",
+ "id": "64117a6f-8f79-4d73-8d60-449314d1f56c"
+ },
+ {
+ "filename": "2014 - Validation of genome-wide association study.pdf",
+ "id": "e117552b-06d5-4ad4-9520-39e1c5c1f587"
+ },
+ {
+ "filename": "2016 - Genomic selection in commercial pig breeding.pdf",
+ "id": "732b2909-43e6-4565-b6c3-48d5313dfaa5"
+ },
+ {
+ "filename": "2011 - DNA methylation shows genome-wide.pdf",
+ "id": "85cf192b-938e-4751-ab8f-36e41c6fb5ce"
+ },
+ {
+ "filename": "2011 - Trace elements and ageing, a genomic perspective using selenium as an example.pdf",
+ "id": "6df20592-9856-49a6-8bf3-f6a701ff3b56"
+ },
+ {
+ "filename": "2010 - Genomic Duplication and Overexpression of TJP2 ZO-2.pdf",
+ "id": "9ee491f4-5f16-4cb2-b803-54f2fdee1dba"
+ },
+ {
+ "filename": "2013 - Continuous Aging of the Human DNA Methylome.pdf",
+ "id": "2c5d0c52-fe84-4d0d-8c79-33422aad3084"
+ },
+ {
+ "filename": "2010 - Voxelwise genome-wide association study (vGWAS).pdf",
+ "id": "0c80320f-bca2-4f46-858e-bd3fba2f67a2"
+ },
+ {
+ "filename": "2015 - Ageing-associated changes in the human DNA.pdf",
+ "id": "1c1f2541-c4ff-407a-b541-0e7859f5b49a"
+ },
+ {
+ "filename": "2010 - Genome-Wide Association Studies of MRI-Defined Brain Infarcts.pdf",
+ "id": "26900821-64cd-48dd-a5d0-dbb4a71d1cf0"
+ },
+ {
+ "filename": "2015 - The age factor in Alzheimer’s disease.pdf",
+ "id": "8275b075-735b-44dc-b549-32ee94dec32e"
+ },
+ {
+ "filename": "2016 - Genome Stability Requires p53.pdf",
+ "id": "f2e7e775-6e18-4cd1-95fa-40cde42fbee7"
+ },
+ {
+ "filename": "2012 - Extensive somatic L1 retrotransposition.pdf",
+ "id": "9605f23b-0620-4c0c-8f38-d9e0171e7e64"
+ },
+ {
+ "filename": "2013 - Genome-wide association study for inhibin, luteinizing hormone,insulin-like growth factor 1,testicular size and semen traits inbovine species.pdf",
+ "id": "fe46b532-2124-4eff-bbce-a38bfd60a217"
+ },
+ {
+ "filename": "2015 - Predictive genomics A cancer hallmark network framework.pdf",
+ "id": "641e6306-3b0d-4b02-9dc4-0480325bfb9c"
+ },
+ {
+ "filename": "2011 - Dichloromethane-degrading bacteria in the genomic age.pdf",
+ "id": "b7d0ddf0-aec3-4510-a360-07365a83c2ca"
+ },
+ {
+ "filename": "2012 - Beyond the blot cutting edge tools for genomics.pdf",
+ "id": "d83ef54e-7cb6-4bc7-9d18-ea31022b676b"
+ },
+ {
+ "filename": "2016 - Genotype distribution-based inference.pdf",
+ "id": "05346fc4-57eb-424f-8c9f-cc144e600cb6"
+ },
+ {
+ "filename": "2015 - Revisiting classic clines in Drosophila.pdf",
+ "id": "8b95c7a6-0ca5-445e-8776-14d1e6550fa0"
+ },
+ {
+ "filename": "2016 - Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air.pdf",
+ "id": "5cd6c6b4-ccfb-4771-9ea9-9b157f3b37ff"
+ },
+ {
+ "filename": "2015 - Erratum to DNA methylation age of human.pdf",
+ "id": "486a8d03-9100-4f66-a0f7-8cbdaf30b804"
+ },
+ {
+ "filename": "2010 - Whole genome association study of brain-wide imaging phenotypes for identifying.pdf",
+ "id": "01e0b7d9-78b2-4227-b79c-ae29e1444c5d"
+ },
+ {
+ "filename": "2013 - Activation of transposable.pdf",
+ "id": "ec4d1082-9077-4b81-a683-fb8ff4bf7939"
+ },
+ {
+ "filename": "2012 - Transcriptome remodeling associated with chronological aging in the dinoflagellate.pdf",
+ "id": "eb0d2e45-eeda-4022-a541-3b8015c9ee55"
+ },
+ {
+ "filename": "2016 - DNM3 and genetic modifiers of age of onset in LRRK2.pdf",
+ "id": "81dbf2ac-29c3-4e7c-88af-be3e67c9feb1"
+ },
+ {
+ "filename": "2011 - How pleiotropic genetics of the musculoskeletal system.pdf",
+ "id": "18e216d9-ea5c-4dfe-a30d-632163fcf39e"
+ },
+ {
+ "filename": "2016 - Reciprocal interactions between circadian clocks and aging.pdf",
+ "id": "26d254cc-5533-4adc-967a-caa754c715d8"
+ },
+ {
+ "filename": "2011 - Whole genome association scan for genetic polymorphisms influencing.pdf",
+ "id": "b72caae5-bb5a-4317-8d4d-21b41d60df21"
+ },
+ {
+ "filename": "2015 - H3K4me1 marks DNA regions hypomethylated.pdf",
+ "id": "0cadf172-639c-4943-b8ca-1add209cf039"
+ },
+ {
+ "filename": "2016 - Menopause accelerates biological aging.pdf",
+ "id": "5653ca57-53fc-41d8-868c-e65e207d21b4"
+ },
+ {
+ "filename": "2015 - An atlas of genetic correlations across human diseases.pdf",
+ "id": "167857de-de5a-4d74-80a8-557f9a3bbe9e"
+ },
+ {
+ "filename": "2015 - A Genome-Wide Association Study Identifies.pdf",
+ "id": "300a4571-5e16-4245-a116-b45b7095e757"
+ },
+ {
+ "filename": "2013 - Genome-wide linkage analysis for human longevity Genetics of Healthy Ageing.pdf",
+ "id": "690a2ae6-962a-438c-91ca-60425a0c8d02"
+ },
+ {
+ "filename": "2015 - The overlooked fact fundamental need of spike-in controls.pdf",
+ "id": "f9395d9c-814c-46dd-a857-780a33746cf2"
+ },
+ {
+ "filename": "2012 - Genetic mechanisms and age-related macular.pdf",
+ "id": "b44331fe-e1b6-4685-9aa6-c8633ba3890e"
+ },
+ {
+ "filename": "2011 - Regulation of ribosomal RNA gene copy number and its role.pdf",
+ "id": "b9c40a53-ffe7-4965-a961-7e23e318c417"
+ },
+ {
+ "filename": "2011 - Genome-Wide association Study.pdf",
+ "id": "8a5428b2-db20-41a4-890c-8dc8a4a2c17e"
+ },
+ {
+ "filename": "2012 - Measuring Genome Instability in Aging.pdf",
+ "id": "516fb027-d7ef-481b-95b2-89c25f4e4f8d"
+ },
+ {
+ "filename": "2013 - Sex-stratified Genome-wide Association Studies.pdf",
+ "id": "f9b13bea-b89c-4eb5-8f6b-00409a2f1c8d"
+ },
+ {
+ "filename": "2010 - Prelamin A Acts to Accelerate Smooth Muscle Cell.pdf",
+ "id": "d7ce756e-ec30-48fa-94e9-c1bd62d6b5d9"
+ },
+ {
+ "filename": "2013 - Linkage analysis identifies a locus for plasma.pdf",
+ "id": "cf5810e3-cbc8-4fe0-9411-87feba94f987"
+ },
+ {
+ "filename": "2012 - Population-based screening in the era of genomics.pdf",
+ "id": "35e7b535-f3ed-4de4-a323-f1880a5873c2"
+ },
+ {
+ "filename": "2013 - Differential DNA methylation with age displays.pdf",
+ "id": "1bdbb53c-4d41-4006-a914-b1d7830feaae"
+ },
+ {
+ "filename": "2012 - Genome-wide association studies of tuberculosis.pdf",
+ "id": "5af250e7-afa6-4d32-80ee-7cd01d8a71b2"
+ },
+ {
+ "filename": "2015 - Morphological Phylogenetics in the Genomic Age.pdf",
+ "id": "f954b8d1-aa1a-4dd9-a7af-bbb4f4759c0f"
+ },
+ {
+ "filename": "2016 - Iron Age and Anglo-Saxon genomes from East.pdf",
+ "id": "998c7a89-697c-4d3a-a430-a756218eebb3"
+ },
+ {
+ "filename": "2010 - MicroRNA, mRNA, and protein expression link.pdf",
+ "id": "97290894-086d-438a-bbd2-907dd4cea2ab"
+ },
+ {
+ "filename": "2013 - Genome maintenance and transcription integrity in aging and disease.pdf",
+ "id": "6a791749-060e-44db-b4c1-1a0182d0dedf"
+ },
+ {
+ "filename": "2012 - Genomic basis of aging and life-history.pdf",
+ "id": "198bd45c-e3a3-4937-b83a-61914b64e43b"
+ },
+ {
+ "filename": "2012 - Age-dependent accumulation of genomic aberrations.pdf",
+ "id": "6e353c51-355c-4cfd-82b4-77f800823a89"
+ },
+ {
+ "filename": "2015 - The Influence of Age and Sex on Genetic.pdf",
+ "id": "efbf0489-7712-4774-9c85-554e33499b3f"
+ },
+ {
+ "filename": "2015 - Genome-wide sperm DNA methylation.pdf",
+ "id": "c23cce14-7b6d-44f2-9ccd-da4f1cd9f9fa"
+ },
+ {
+ "filename": "2011 - The genome of the fire ant Solenopsis invicta.pdf",
+ "id": "19d75e36-9f4a-4981-bbb7-994dd324f286"
+ },
+ {
+ "filename": "2012 - Genome-Wide DNA Methylation Differences.pdf",
+ "id": "239674dc-36f1-4e19-ad18-967f791617e8"
+ },
+ {
+ "filename": "2013 - A Genome-Wide Association Study.pdf",
+ "id": "b7ec3595-e4dd-4ace-98d7-8488d2fa6f3e"
+ },
+ {
+ "filename": "2016 - Genome-wide methylation profile following prenatal and postnatal.pdf",
+ "id": "3adac8b3-be3a-4cf6-8791-c6e912beae9a"
+ },
+ {
+ "filename": "2015 - Comorbidity of Physical and Mental.pdf",
+ "id": "f6377ad6-4347-4044-9b73-71d282e20585"
+ },
+ {
+ "filename": "2015 - Age and sun exposure-related widespread.pdf",
+ "id": "ce75bcf2-cd1d-440a-8e97-b7c18dcc2f8d"
+ },
+ {
+ "filename": "2011 - Genome-Wide Analysis Identifies a Quantitative Trait.pdf",
+ "id": "34f29ab8-f82a-4ed8-b42f-1a2280e21589"
+ },
+ {
+ "filename": "2011 - Clinical aspects and molecular diagnostics of skin aging.pdf",
+ "id": "42cbc297-d57c-4c1f-8d3f-f9e52748b823"
+ },
+ {
+ "filename": "2016 - Nucleolar organizer regions genomic ‘dark.pdf",
+ "id": "ab0a3234-c3b3-46be-8954-01eda9bc962e"
+ },
+ {
+ "filename": "2016 - Genetic and environmental influences interact with age and sex in shaping the human methylome.pdf",
+ "id": "f4dfb05a-9c42-4290-b687-db31010e6449"
+ },
+ {
+ "filename": "2011 - Mitochondrial complex I.pdf",
+ "id": "e9c5e256-7d7c-4669-8558-1d75a112b078"
+ },
+ {
+ "filename": "2010 - The renaissance of continuous culture in the post-genomics age.pdf",
+ "id": "d741ee86-3a67-47fd-a0d8-918f77c6213d"
+ },
+ {
+ "filename": "2012 - Distinct DNA methylomes of newborns.pdf",
+ "id": "18a8aa08-64fc-4903-8b57-b9b1a8b2f4e7"
+ },
+ {
+ "filename": "2011 - Genome-wide association study of smoking.pdf",
+ "id": "d4812e6a-9248-404e-a79d-1201618a3ffb"
+ },
+ {
+ "filename": "2015 - Insights into the Evolution of Longevity.pdf",
+ "id": "704b2d84-20df-49ba-a3be-43beac3070af"
+ },
+ {
+ "filename": "2016 - A genomic approach to therapeutic target validation.pdf",
+ "id": "e165505a-b91d-44d1-8c5b-b187989711d3"
+ },
+ {
+ "filename": "2013 - Clinical, polysomnographic and genome-wide association.pdf",
+ "id": "dbe60580-192b-414a-ade2-f816d8fc67e5"
+ },
+ {
+ "filename": "2016 - Slowed aging during reproductive.pdf",
+ "id": "51448621-edf6-483d-8590-e7faab197b49"
+ },
+ {
+ "filename": "2016 - Attitudes towards personal genomics among older Swiss adults.pdf",
+ "id": "d03b4942-3fe7-400a-a499-d3a1f1a979fc"
+ },
+ {
+ "filename": "2012 - Oxidative Stress, Mitochondrial Dysfunction, and Aging.pdf",
+ "id": "ab6a47ba-2131-4fc5-be5e-b81dd80d2a65"
+ },
+ {
+ "filename": "2011 - A genomic analysis of chronological longevity.pdf",
+ "id": "19578c9d-2f03-4ef0-86e8-2c79a5666815"
+ },
+ {
+ "filename": "2014 - Transcriptional and epigenetic responses.pdf",
+ "id": "37d7c321-8967-44f4-b7c0-e1f1f2a5ce9f"
+ },
+ {
+ "filename": "2013 - Polar body analysis by array.pdf",
+ "id": "f3c57cf2-da42-4833-ab8d-99517f987aea"
+ },
+ {
+ "filename": "2012 - Structural, functional and molecular analysis.pdf",
+ "id": "853d242b-8c12-49f6-a89a-abc5a89f96d1"
+ },
+ {
+ "filename": "2011 - AGE defining breakpoints of genomic structural variants.pdf",
+ "id": "1b0d41a8-0da5-415e-9a68-60356cb15d79"
+ },
+ {
+ "filename": "2013 - Genome-wide Methylation Profiles Reveal.pdf",
+ "id": "eee20298-e8e6-42e5-98ed-1674c5b43e56"
+ },
+ {
+ "filename": "2012 - Systems Biology in Aging Linking the Old and the Young.pdf",
+ "id": "c25a2141-adaa-475e-a803-9b477a1b89ae"
+ },
+ {
+ "filename": "2013 - A genome-wide association study for reading.pdf",
+ "id": "b3345afc-b81b-4eb6-8cea-cfa7e1ce8930"
+ },
+ {
+ "filename": "2015 - Lamins Nuclear Intermediate.pdf",
+ "id": "1d770027-0c56-4466-84dd-e22d9a5db1f4"
+ },
+ {
+ "filename": "2016 - Telomeres, Reproductive Aging.pdf",
+ "id": "f251fa79-021a-43e2-bae0-c143da964657"
+ },
+ {
+ "filename": "2016 - Bacterial genomics Microbial GWAS coming of age.pdf",
+ "id": "a9d0369f-c2bd-49f0-9053-3ece8d05d44c"
+ },
+ {
+ "filename": "2012 - Aging effects on DNA methylation modules.pdf",
+ "id": "4ea59e0f-e254-4988-a69f-6c5d251fa174"
+ },
+ {
+ "filename": "2016 - A large genome-wide association study of age-related.pdf",
+ "id": "c06fdbcb-08c0-4f57-896e-356ef11b46fb"
+ },
+ {
+ "filename": "2012 - Oxidative genome damage and its repair Implications in aging.pdf",
+ "id": "5bc7fbd4-c0b9-46d3-bb3b-aba3f61374fb"
+ },
+ {
+ "filename": "2015 - Comprehensive transcriptional landscape.pdf",
+ "id": "a50460cc-c759-4d59-880a-2f1238136b1b"
+ },
+ {
+ "filename": "2011 - The nature, scope and impact of genomic.pdf",
+ "id": "52c7f16a-71e5-4ae7-b932-87c1099b7571"
+ },
+ {
+ "filename": "2011 - Clinical validation of a genetic model.pdf",
+ "id": "68226f15-da47-470c-9dd2-fceddcdc1e7c"
+ },
+ {
+ "filename": "2011 - Mitochondrial genome deletions and minicircles.pdf",
+ "id": "f0023238-b0f5-476f-a7dd-76f79f7b4719"
+ },
+ {
+ "filename": "2016 - Genome-wide quantification of rare somatic mutations.pdf",
+ "id": "803004df-ea88-4a7d-b1db-3cef30cf1f62"
+ },
+ {
+ "filename": "2016 - Population genomic structure and linkage disequilibrium analysis.pdf",
+ "id": "a6d53b68-dbe7-464f-91dc-2750d78cce93"
+ },
+ {
+ "filename": "2012 - Genomics and Genetics of Aging.pdf",
+ "id": "74f7aec5-e757-428b-8d8c-a72ec47a6164"
+ },
+ {
+ "filename": "2011 - Genome-Wide Association Analysis Identifies Variants.pdf",
+ "id": "55c80b9a-9289-4a39-a5c3-33c05c04d224"
+ },
+ {
+ "filename": "2015 - Genome-wide studies of verbal declarative.pdf",
+ "id": "26c9a758-1768-44bc-8fc2-2998a62bfe47"
+ },
+ {
+ "filename": "2015 - Age-related somatic mutations in the cancer genome.pdf",
+ "id": "b69beead-2813-4ee2-a93c-f9e2210b1072"
+ },
+ {
+ "filename": "2016 - Genome Integrity in Aging.pdf",
+ "id": "de13986a-50d9-4ba7-a12a-97bddf774ba9"
+ },
+ {
+ "filename": "2012 - Genome-Wide RNAi Longevity Screens in Caenorhabditis elegans.pdf",
+ "id": "c1df5fa6-1d3b-4085-9248-683c9666faa5"
+ },
+ {
+ "filename": "2011 - Genome-wide promoter DNA methylation dynamics of human hematopoietic.pdf",
+ "id": "d31cd645-82d6-4f06-b766-50d334ec6d5b"
+ },
+ {
+ "filename": "2010 - Unfurling Fern Biology.pdf",
+ "id": "7ecfbaee-5c40-40eb-a5c8-cc59267e1d1f"
+ },
+ {
+ "filename": "2014 - Uncovering the defence responses of Eucalyptus to pests.pdf",
+ "id": "9ed8e340-25f2-49e2-9833-d2b035b4de4d"
+ },
+ {
+ "filename": "2015 - Population genomics of Bronze Age Eurasia.pdf",
+ "id": "3c5be623-22a8-41f7-9a44-2f6fc809ee94"
+ },
+ {
+ "filename": "2015 - The Psychiatric Genomics Consortium Posttraumatic Stress.pdf",
+ "id": "d0b9b9ea-7eb7-46e6-8c46-4b71dd347c5c"
+ },
+ {
+ "filename": "2013 - Post-Genome-Wide Association Study Challenges for Lipid.pdf",
+ "id": "ef2c9e1b-fce6-4649-aa06-8cad94740f79"
+ },
+ {
+ "filename": "2013 - Inference of Genome Duplications from Age Distributions.pdf",
+ "id": "e287d50a-1e47-4721-a165-72f1e5a094df"
+ },
+ {
+ "filename": "2016 - Loss of p53-mediated cell-cycle arrest, senescence.pdf",
+ "id": "64ab90a9-700a-4166-b7c3-ad57adafa4e2"
+ },
+ {
+ "filename": "2013 - Genome-wide association study of primary tooth.pdf",
+ "id": "60025cc7-4720-4a17-968d-22f2f67b688b"
+ },
+ {
+ "filename": "2013 - DNA methylation age of human tissues.pdf",
+ "id": "57aca40b-8cdf-43ef-b6e6-b9b477d46265"
+ },
+ {
+ "filename": "2011 - Age Differences in Genetic Knowledge.pdf",
+ "id": "59805231-0bd9-4cde-8043-f4a006dc244d"
+ },
+ {
+ "filename": "2012 - Human Ageing Genomic Resources Integrated.pdf",
+ "id": "8ebc0bfe-ca43-4bd1-8ddc-f6fad608c10a"
+ },
+ {
+ "filename": "2015 - Altered Levels of Mitochondrial DNA.pdf",
+ "id": "65c8287b-eb19-437a-b9ca-5aaa8664d429"
+ },
+ {
+ "filename": "2013 - Insights into the Genetic Architecture of Early Stage Age.pdf",
+ "id": "a0a4c2f9-b64b-47a5-a8cd-095be90f6abe"
+ },
+ {
+ "filename": "2011 - Genome-Wide Association Study for Coronary Artery Calcification With Follow-Up in Myocardial Infarction.pdf",
+ "id": "b9c2f906-2807-4e96-af2c-5625628a540f"
+ },
+ {
+ "filename": "2012 - Genome-wide association analysis of age-at-onset.pdf",
+ "id": "8b03aabf-8965-42c9-a054-44592bd98e86"
+ },
+ {
+ "filename": "2012 - Application of genomics to breakthroughs in the cosmetic.pdf",
+ "id": "6a47ecdd-8613-4412-b905-92607e303946"
+ },
+ {
+ "filename": "2017 - A genomic lifespan program.pdf",
+ "id": "eff15911-d490-4f72-b336-ae2d826fdb93"
+ },
+ {
+ "filename": "2012 - Pleiotropic Cellular Functions of PARP1 in Longevity.pdf",
+ "id": "448f8e9a-ae98-4553-bc96-130b14aa61b3"
+ },
+ {
+ "filename": "2016 - Genomics and CSF analyses implicate thyroid hormone.pdf",
+ "id": "57178200-243a-4962-af90-5e6b40e16237"
+ },
+ {
+ "filename": "2010 - Ontogenetic Variation of the Human Genome.pdf",
+ "id": "a4cac151-7037-46e4-b810-0e40a1fe100d"
+ },
+ {
+ "filename": "2011 - Dating the age of admixture via wavelet.pdf",
+ "id": "955d01ac-1cd3-4b93-946e-cf49bee70689"
+ },
+ {
+ "filename": "2010 - Water Buffalo Genome Science Comes of Age.pdf",
+ "id": "5f96bea4-a48f-456c-87f0-8ef2bc715d79"
+ },
+ {
+ "filename": "2016 - Menopause Genome stability as new paradigm.pdf",
+ "id": "99b48cbb-bcd3-4c55-a4a6-a74bc8b54522"
+ },
+ {
+ "filename": "2015 - Great Is Their Sin.pdf",
+ "id": "99445b90-1950-4299-815d-e912c5ae06ac"
+ },
+ {
+ "filename": "2011 - Using Epidemiology and Genomics.pdf",
+ "id": "9dc88325-cbca-4697-acb4-0b10a1cd5cdd"
+ },
+ {
+ "filename": "2015 - Rare Coding Mutations Identified.pdf",
+ "id": "653bc5a7-ce8a-4fa0-b074-a295e3b80ceb"
+ },
+ {
+ "filename": "2014 - Whole-Genome Sequencing of the World’s Oldest People.pdf",
+ "id": "c7361625-831a-44a2-b04d-157a49d00c6a"
+ },
+ {
+ "filename": "2015 - Measuring individual inbreeding in the age of genomics.pdf",
+ "id": "1ccffff6-b4c3-4dc5-abb9-2cd5937382ae"
+ },
+ {
+ "filename": "2013 - SIRT1 collaborates with ATM and HDAC1 to maintain.pdf",
+ "id": "e9d26638-68c1-4223-b884-e35a6e94f8ac"
+ },
+ {
+ "filename": "2016 - Computational genomics at BGRS SB-2016.pdf",
+ "id": "6f84efc7-4215-459d-a790-c653f831eb5f"
+ },
+ {
+ "filename": "2016 - Age-related accrual of methylomic.pdf",
+ "id": "d73bb52b-b382-4450-919c-c4abeeb01344"
+ },
+ {
+ "filename": "2016 - Progress on the role of DNA methylation in aging.pdf",
+ "id": "aae7b412-75d9-4e03-8def-922049559a69"
+ },
+ {
+ "filename": "2016 - The genome-wide role of HSF-1.pdf",
+ "id": "97208bfc-8a54-409d-aa40-843a3cfde618"
+ },
+ {
+ "filename": "2011 - Phylogenetic-based propagation.pdf",
+ "id": "51fa2d0a-262a-4e5b-9b48-bf0a4a8ee1f8"
+ },
+ {
+ "filename": "2016 - Genome editing comes of age.pdf",
+ "id": "1942712a-a39d-44f7-9b2d-609926374cbd"
+ },
+ {
+ "filename": "2015 - DNA repair defects and genome instability.pdf",
+ "id": "f69bcfb9-d0e0-44c5-871d-2a6880950eed"
+ },
+ {
+ "filename": "2013 - ACMG recommendations for reporting of incidental findings.pdf",
+ "id": "936ddcae-95ca-496a-9ef0-182a6aa62a33"
+ },
+ {
+ "filename": "2011 - Genomics of human longevity.pdf",
+ "id": "ae9d5a74-24c1-43f1-b514-5e3f10c91284"
+ },
+ {
+ "filename": "2013 - Social genomics and the life course.pdf",
+ "id": "44814475-77c2-4dc5-bdf0-499431f14479"
+ },
+ {
+ "filename": "2015 - A Genome-Wide Association Study of Myasthenia Gravis.pdf",
+ "id": "50b8428e-114f-47a4-b96f-edb19cf9d09f"
+ },
+ {
+ "filename": "2012 - Genetic risk factors for ischaemic stroke and its subtypes.pdf",
+ "id": "1a5b8458-1372-4e98-ae82-b18537afc952"
+ },
+ {
+ "filename": "2013 - Longitudinal, genome-scale analysis of DNA.pdf",
+ "id": "6636b1f6-bc4c-4952-b526-b7f8298ef8f1"
+ },
+ {
+ "filename": "2012 - Meta-analyses identify 13 loci associated with age.pdf",
+ "id": "b96e07c6-2312-4c56-ab32-27acf984c7e5"
+ },
+ {
+ "filename": "2015 - Multi-Ethnic Genome-Wide Association Study of Cerebral White.pdf",
+ "id": "743d9277-f395-48ba-8acf-953e0b8ed117"
+ },
+ {
+ "filename": "2015 - How Well Do Customers of Direct-to-Consumer.pdf",
+ "id": "20f0a8d3-f2eb-4635-b2b3-76714a37f043"
+ },
+ {
+ "filename": "2016 - Genome-Wide Association Study for Incident.pdf",
+ "id": "ad9d1f0d-9064-4b3d-a76b-b5591952c666"
+ },
+ {
+ "filename": "2012 - A genome-wide association study of venous thromboembolism.pdf",
+ "id": "a4113d0f-5cb1-420d-97a4-463c488a2d56"
+ },
+ {
+ "filename": "2016 - Aging-associated DNA methylation changes.pdf",
+ "id": "f28aef80-335a-4631-a178-f9b0b588478e"
+ },
+ {
+ "filename": "2011 - Alzheimer disease pathology in cognitively healthy elderly.pdf",
+ "id": "57e13f29-e003-4802-a8a3-93f75390b8b3"
+ },
+ {
+ "filename": "2015 - Self-reported race or ethnicity in the age of genomic.pdf",
+ "id": "0e27d15f-e4a2-4902-b4a4-1e72c4202346"
+ },
+ {
+ "filename": "2015 - The role of the retromer complex in aging‑related.pdf",
+ "id": "6c2da9d6-ca7a-41a8-a8bc-072ba03d3e82"
+ },
+ {
+ "filename": "2016 - Enacting the molecular imperative How gene-environment.pdf",
+ "id": "87e2ac5a-bbdb-42a0-80d5-3438d54e32c9"
+ },
+ {
+ "filename": "2015 - Association of Alzheimer disease GWAS loci with MRI-markers of brain aging.pdf",
+ "id": "b684132e-10ca-40b3-b7de-2d97762f9d28"
+ },
+ {
+ "filename": "2016 - Resistance training and redox homeostasis Correlation with age.pdf",
+ "id": "b4a3e096-ad2f-46e0-9482-101fc08c0b51"
+ },
+ {
+ "filename": "2010 - Preparing for a Consumer-Driven Genomic Age.pdf",
+ "id": "e8be2280-10e9-4b62-af14-0772947d2d7e"
+ },
+ {
+ "filename": "2011 - 5-hmC–mediated epigenetic dynamics during.pdf",
+ "id": "08f00cca-702a-4570-9d76-8aae947ce6f9"
+ },
+ {
+ "filename": "2015 - Genetic Risk and Age.pdf",
+ "id": "ee2d049c-3ef6-4507-aede-e7b503c24c86"
+ },
+ {
+ "filename": "2012 - Genome-wide association study of Alzheimer’s disease.pdf",
+ "id": "ef3eb166-c397-4f39-a35c-ec7965934f30"
+ },
+ {
+ "filename": "2016 - Microglial Physiology and Pathophysiology.pdf",
+ "id": "adf0d2cf-95ab-4bbb-92b1-f8d6489b6b5f"
+ },
+ {
+ "filename": "2011 - Identification of ADAMTS7 as a novel locus for coronary.pdf",
+ "id": "e52068b3-bc21-48b4-9e22-6d720df79a73"
+ },
+ {
+ "filename": "2016 - Global genome splicing analysis reveals an increased number.pdf",
+ "id": "1aa8d948-0416-4081-b822-933c817ef817"
+ },
+ {
+ "filename": "2013 - Early life socioeconomic factors and genomic DNA methylation in mid-life.pdf",
+ "id": "30284f3b-068c-49d1-b2e6-cbf7e10a20ea"
+ },
+ {
+ "filename": "2013 - Genomes of replicatively senescent cells undergo global.pdf",
+ "id": "1b1ff8af-26d0-46de-874e-a8b1da9485ac"
+ },
+ {
+ "filename": "2013 - Age-associated bidirectional modulation of gene.pdf",
+ "id": "68555763-71b0-4935-83ac-143f1d610e66"
+ },
+ {
+ "filename": "2011 - Rejuvenating senescent and centenarian human cells.pdf",
+ "id": "28412831-a9d0-4399-a2cd-17e619843062"
+ },
+ {
+ "filename": "2011 - Different differences The use of 'genetic ancestry' versus race in biomedical.pdf",
+ "id": "f3802c23-8f2b-49c4-81a5-22d1612d5157"
+ },
+ {
+ "filename": "2012 - Chromatin Remodeling, DNA Damage Repair and Aging.pdf",
+ "id": "5b5c0c2f-0b8b-43d0-b96a-3c7ddf68cead"
+ },
+ {
+ "filename": "2011 - Genome-wide analysis of miRNA expression reveals a potential role.pdf",
+ "id": "940d5894-6bc8-49ed-920c-a6539bfdb0ac"
+ },
+ {
+ "filename": "2013 - Neolithic mitochondrial haplogroup H genomes.pdf",
+ "id": "f6f76837-b1cc-4fa0-bb1f-d82de2f2b950"
+ },
+ {
+ "filename": "2016 - International Genome-Wide Association Study Consortium Identifies Novel Loci Associated With Blood Pressure in Children and Adolescents.pdf",
+ "id": "75618dec-c752-4ca4-a10a-54fc79f666f6"
+ },
+ {
+ "filename": "2015 - Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish.pdf",
+ "id": "ce2dac58-c393-4892-9fd3-2d08fdb3e592"
+ },
+ {
+ "filename": "2016 - A genetic method for dating ancient genomes provides.pdf",
+ "id": "7f90614f-ea9d-496d-9ea2-da42a3a37d84"
+ },
+ {
+ "filename": "2017 - Large meta-analysis of genome-wide association.pdf",
+ "id": "b7fe7316-588d-42ef-a13d-3064e7867a02"
+ },
+ {
+ "filename": "2017 - Analysis of 100,000 human cancer.pdf",
+ "id": "8a08e602-d3ab-4bcf-b60c-c5b64a3a9e71"
+ },
+ {
+ "filename": "2012 - Genome-wide miRNA signatures of human longevity.pdf",
+ "id": "d174ea46-2c88-4047-a333-cb66e483a51f"
+ },
+ {
+ "filename": "2015 - Phylostratigraphic Bias Creates Spurious Patterns.pdf",
+ "id": "682fd742-1e20-4069-afd8-ab01e81c7603"
+ },
+ {
+ "filename": "2011 - The eMERGE Network A consortium.pdf",
+ "id": "c03fc930-5c7b-4efd-9e5a-bb6f41748081"
+ },
+ {
+ "filename": "2015 - Cohort Profile Estonian Biobank of the Estonian.pdf",
+ "id": "f1f44b89-1d22-42b3-87e3-ed5eb93fca31"
+ },
+ {
+ "filename": "2016 - Association Between Younger Age and Targetable Genomic.pdf",
+ "id": "357d61f4-8edb-46ba-8d66-7b4a0c4182e8"
+ },
+ {
+ "filename": "2017 - Transcriptome profiling of aging Drosophila.pdf",
+ "id": "271236e4-60b1-4fe9-a3cc-11748e3cc718"
+ },
+ {
+ "filename": "2012 - Age-associated DNA methylation in pediatric.pdf",
+ "id": "5c7e6804-3675-40f7-9683-fe9d57573638"
+ },
+ {
+ "filename": "2017 - Genome-wide meta-analysis associates HLA.pdf",
+ "id": "022c37a3-3ea8-4bb7-9997-98ed87635770"
+ },
+ {
+ "filename": "2012 - Genome-Wide Analysis of Yeast Aging.pdf",
+ "id": "3c78c2be-0bd2-4954-bb47-8b48f6125ed7"
+ },
+ {
+ "filename": "2013 - Clinical Genomic Database.pdf",
+ "id": "57aaccd2-a35a-4adc-8964-78be89c77275"
+ },
+ {
+ "filename": "2016 - Single-cell genomics coming of age.pdf",
+ "id": "64416b51-ed3d-40ab-b76c-06bc5f371d9e"
+ },
+ {
+ "filename": "2012 - O-GlcNAcase is essential for embryonic development.pdf",
+ "id": "80391b85-fdde-44ab-9116-c9301df544c8"
+ },
+ {
+ "filename": "2016 - Next Generation Transcriptomics.pdf",
+ "id": "98851dd4-ceae-4ee6-918e-6da8dee2a8d5"
+ },
+ {
+ "filename": "2013 - Genome Instability and Aging.pdf",
+ "id": "2e22b52d-1a13-48d8-aab8-01a1840aa749"
+ },
+ {
+ "filename": "2013 - A Genome-Wide Association Study for Venous.pdf",
+ "id": "dc4b7f28-1419-4ff6-89f9-a5414844d2e5"
+ },
+ {
+ "filename": "2017 - Evolution of cancer suppression as revealed.pdf",
+ "id": "a3e4a848-0617-4b01-a3db-428b393cf786"
+ },
+ {
+ "filename": "2012 - Resolution of ray-finned fish.pdf",
+ "id": "54f64f33-f040-4b06-b48d-a68c7aa02d41"
+ },
+ {
+ "filename": "2017 - A Perspective on CRN Proteins in the Genomics Age Evolution, Classification, Delivery and Function Revisited.pdf",
+ "id": "d14d0d85-f955-4ea4-b6f0-eefedc38e054"
+ },
+ {
+ "filename": "2016 - Genome-wide association study using.pdf",
+ "id": "3c70a01a-7f94-48a8-ab46-2553cb3797ef"
+ },
+ {
+ "filename": "2013 - Identifying the genomic determinants of aging and longevity in human population studies Progress and challenges.pdf",
+ "id": "f6bde053-64e5-42d9-966d-9d5d5d82a068"
+ },
+ {
+ "filename": "2015 - Age and prior blood feeding of Anopheles.pdf",
+ "id": "f84b9349-49e3-4428-8fb3-a286ddac62ac"
+ },
+ {
+ "filename": "2015 - Genome-wide patterns of selection.pdf",
+ "id": "0b642c38-c37b-48fb-bbff-9d943316691c"
+ },
+ {
+ "filename": "2011 - Metabolism, Genomics, and DNA Repair in the Mouse Aging Liver.pdf",
+ "id": "056c64d1-4d77-4e79-bd91-28c328bba156"
+ },
+ {
+ "filename": "2012 - Detectable clonal mosaicism and its relationship.pdf",
+ "id": "cb6fce33-33fe-4cf2-83fd-ed2d56bfaa6b"
+ },
+ {
+ "filename": "2017 - Infection control in the new age of genomic epidemiology.pdf",
+ "id": "a33f1707-3056-4885-b2d9-4084b71a96e8"
+ },
+ {
+ "filename": "2015 - A new age in functional genomics using CRISPR Cas9 in arrayed library screening.pdf",
+ "id": "d14e93b5-01de-4208-8255-baae7898a7bb"
+ },
+ {
+ "filename": "2016 - Epigenetics and aging.pdf",
+ "id": "3b5eb994-bede-47bd-a02d-f0da02cc0190"
+ },
+ {
+ "filename": "2013 - The Emerging Field of Human Social.pdf",
+ "id": "35088b89-641f-4905-9e1c-76177f7178ab"
+ },
+ {
+ "filename": "2013 - Identifying Personal Genomes by Surname Inference.pdf",
+ "id": "6041a1eb-5376-4e06-a4df-0563f1b8a724"
+ },
+ {
+ "filename": "2013 - A Genome-Wide Association Study (GWAS).pdf",
+ "id": "db651cee-b5d0-4e41-a1d0-c9004678ee44"
+ },
+ {
+ "filename": "2018 - Aging and neurodegeneration.pdf",
+ "id": "8ce5a291-7ced-4160-a3dd-6d44ad2a922b"
+ },
+ {
+ "filename": "2012 - Genome-wide meta-analysis points to CTC1.pdf",
+ "id": "0d1d3a3a-bf49-49a1-9989-eaa2ff3064b9"
+ },
+ {
+ "filename": "2012 - Molecular mechanisms involved in the aging.pdf",
+ "id": "87288e58-c644-4a83-a246-138b44e1982a"
+ },
+ {
+ "filename": "2017 - Analysis commons, a team approach.pdf",
+ "id": "4264b184-d608-4a6f-9f94-4e2804aeb399"
+ },
+ {
+ "filename": "2015 - Genome-wide association study revealed.pdf",
+ "id": "856cc013-7bdf-4331-9448-2ce94ef2b6f5"
+ },
+ {
+ "filename": "2017 - A Fantastic Voyage in Genomics.pdf",
+ "id": "dd7d0036-dbbf-4b21-97d6-55d8ad6a791a"
+ },
+ {
+ "filename": "2015 - Impact of age, BMI and HbA1c levels on the genome.pdf",
+ "id": "44d310dd-620f-4c6d-a79a-e3fcc6237998"
+ },
+ {
+ "filename": "2016 - Single-cell genome-wide bisulfite.pdf",
+ "id": "c6b165b1-a39e-4278-9615-8285c1999e7e"
+ },
+ {
+ "filename": "2013 - Genome Engineering.pdf",
+ "id": "39304a1d-c6fd-4188-b6e9-6ef473466f18"
+ },
+ {
+ "filename": "2013 - Causes of Genome Instability.pdf",
+ "id": "9d82958a-45b0-4f1d-b765-38d018e4b140"
+ },
+ {
+ "filename": "2017 - The population genomics of archaeological.pdf",
+ "id": "144b7844-af9b-4873-a4de-b84f228258af"
+ },
+ {
+ "filename": "2012 - Age-Related Somatic Structural Changes.pdf",
+ "id": "b3304b0d-bebb-487f-beae-f5fb9026d9de"
+ },
+ {
+ "filename": "2012 - Genome-Scale Studies of Aging Challenges and Opportunities.pdf",
+ "id": "0d6942b4-e75f-4f44-98ac-b8378ef1d3c7"
+ },
+ {
+ "filename": "2017 - Epigenetic aging signatures in mice livers.pdf",
+ "id": "4851405f-bb2b-4406-a218-ffe408d257f8"
+ },
+ {
+ "filename": "2011 - Systems biology-based analysis implicates.pdf",
+ "id": "1c8416b0-bcd2-44ef-88aa-1182f5155336"
+ },
+ {
+ "filename": "2016 - Neolithic and Bronze Age migration to Ireland.pdf",
+ "id": "85680aef-3057-4498-be29-7eead0750234"
+ },
+ {
+ "filename": "2018 - Genomic 5-mC contents in peripheral.pdf",
+ "id": "f9002547-db31-4f9e-abc1-7aace5c8ea18"
+ },
+ {
+ "filename": "2016 - Analysis of cancer genomes reveals basic features.pdf",
+ "id": "a2468a32-95fb-4e3e-af0d-37d243d09d86"
+ },
+ {
+ "filename": "2012 - Replicative and Chronological Aging.pdf",
+ "id": "e397ac93-f115-4cee-8b87-59137a017985"
+ },
+ {
+ "filename": "2013 - Modeling Population Health.pdf",
+ "id": "797d7ed3-c7fe-4c8d-a3a3-be34726c9567"
+ },
+ {
+ "filename": "2015 - Cellular and Molecular Biology of Aging Endothelial Cells.pdf",
+ "id": "eebe82fc-8030-48d5-b4b6-dc27d4c324f1"
+ },
+ {
+ "filename": "2015 - miR-10b-5p expression in Huntington’s disease.pdf",
+ "id": "19187e76-fefd-46bc-8138-ee08f91aa293"
+ },
+ {
+ "filename": "2012 - DNA methylation shows genome-wide.pdf",
+ "id": "e3fb894d-a9ac-4845-b0db-51de5652f74f"
+ },
+ {
+ "filename": "2015 - Partitioning heritability by functional annotation.pdf",
+ "id": "d6d7d5ad-dba8-4f78-beed-6437c3e72059"
+ },
+ {
+ "filename": "2016 - Integrated genomics and proteomics define.pdf",
+ "id": "1e4d8679-eb56-44fa-90b1-85dec34b7c36"
+ },
+ {
+ "filename": "2013 - Genomic and Proteomic Profiling Reveals.pdf",
+ "id": "182674fa-8553-428d-9dcc-3113cb15f492"
+ },
+ {
+ "filename": "2016 - Multi-ethnic genome-wide association study identifies.pdf",
+ "id": "22468c04-e85e-4d8f-9e2b-4d2d0c50f0d2"
+ },
+ {
+ "filename": "2015 - Associations of circulating plasma.pdf",
+ "id": "5897be80-8424-4b15-94b3-892b9811c6bc"
+ },
+ {
+ "filename": "2017 - Identification of individuals by trait prediction usingwhole-genome sequencing data.pdf",
+ "id": "69298301-70d0-402d-8db2-baa7e2fbc7e8"
+ },
+ {
+ "filename": "2017 - The Aging Cardiovascular System.pdf",
+ "id": "c2096285-f52d-4cf9-a42c-00b5bd2306b8"
+ },
+ {
+ "filename": "2017 - Diverse interventions that extend mouse.pdf",
+ "id": "844ab36b-9239-4d73-a61c-68f68acc4fd1"
+ },
+ {
+ "filename": "2016 - Werner syndrome through the lens.pdf",
+ "id": "80fc751c-9dfc-4364-a5f7-c857c5ff718d"
+ },
+ {
+ "filename": "2012 - Clinical utility of array comparative genomic.pdf",
+ "id": "b3044cc4-22d5-451c-81cf-8a3650afe16d"
+ },
+ {
+ "filename": "2012 - A genome-wide scan for common variants affecting the rate.pdf",
+ "id": "136c7bb8-2970-474a-8855-6db7e2b47591"
+ },
+ {
+ "filename": "2015 - A Genome-Wide Chronological Study of Gene.pdf",
+ "id": "9c664a26-4eea-46bb-b58b-618f4faa0da6"
+ },
+ {
+ "filename": "2016 - Epigenetic Mechanisms of Longevity and Aging.pdf",
+ "id": "da4a9500-831f-48ab-acea-5ec7097276ed"
+ },
+ {
+ "filename": "2015 - How the genome got a life span.pdf",
+ "id": "669d840a-7340-43eb-8a99-30b58b15ba0a"
+ },
+ {
+ "filename": "2016 - How retrotransposons shape genome regulation.pdf",
+ "id": "e2ed975e-78b6-45c9-b8e1-bb17b976722d"
+ },
+ {
+ "filename": "2017 - Genome-Wide Polygenic Scores Predict Reading PerformanceThroughout the School Years.pdf",
+ "id": "c0e97d6a-8945-46e9-af6e-04e80d945c58"
+ },
+ {
+ "filename": "2016 - An epigenetic clock analysis of race ethnicity, sex.pdf",
+ "id": "6421312e-6e85-4ff2-977c-a2f0b91d3c6a"
+ },
+ {
+ "filename": "2016 - Sequence Capture and Phylogenetic Utility.pdf",
+ "id": "147b69a0-1397-4b1a-aa01-fa310677edb9"
+ },
+ {
+ "filename": "2015 - NeuroX, a fast and efficient genotyping platform for investigation.pdf",
+ "id": "ac27125c-9d08-40e3-a16f-099ee397bb3f"
+ },
+ {
+ "filename": "2012 - MicroRNA in Aging From Discovery to Biology.pdf",
+ "id": "e934de49-36e3-4a85-a822-28c3532be918"
+ },
+ {
+ "filename": "2012 - Genetics of migraine in the age of genome-wide association studies.pdf",
+ "id": "13d03658-3d79-4ae8-92d3-cd6d9f479b41"
+ },
+ {
+ "filename": "2013 - Effects of Age, Sex, Body Mass Index.pdf",
+ "id": "bf942243-0dab-4e4d-8362-3bd4c5f29746"
+ },
+ {
+ "filename": "2013 - Marsupials in the Age.pdf",
+ "id": "e913e8b9-7a8a-4a5e-9794-a947d94654a5"
+ },
+ {
+ "filename": "2018 - A-to-I RNA editing in the rat brain is age.pdf",
+ "id": "ab6b54c8-364d-427a-b892-016adfd85dcc"
+ },
+ {
+ "filename": "2015 - Transcriptomic profiles of aging in purified.pdf",
+ "id": "cfa366b2-1f94-472a-9096-db9338e27735"
+ },
+ {
+ "filename": "2018 - Genome-wide analysis of disease progression.pdf",
+ "id": "1ca8585c-da20-470e-958a-4ffda9603834"
+ },
+ {
+ "filename": "2016 - Genome-wide DNA methylation profiling.pdf",
+ "id": "7fee50dc-7172-4574-a3e7-4961060a655b"
+ },
+ {
+ "filename": "2015 - Genetic contributions to variation in general cognitive.pdf",
+ "id": "83f8e645-1ebd-4b72-8f86-53abb2603246"
+ },
+ {
+ "filename": "2013 - Age-associated epigenetic drift implications.pdf",
+ "id": "2251b0b8-3cc8-46ac-94f9-5296e53c2abc"
+ },
+ {
+ "filename": "2012 - Genome-wide association study of age-related.pdf",
+ "id": "d318e18d-dd1c-4660-a906-c242c87acaa4"
+ },
+ {
+ "filename": "2017 - Aging increases cell-to-cell transcriptional variability upon immune stimulation.pdf",
+ "id": "c378bf6f-1896-4100-940e-4618a993730d"
+ },
+ {
+ "filename": "2012 - RECQL4 in genomic instability.pdf",
+ "id": "a573908f-008a-46f1-a88a-c6cd32557ed7"
+ },
+ {
+ "filename": "2013 - Transposable elements become active and mobile in the genomes.pdf",
+ "id": "d1550acb-9504-4d2b-a2b9-e3ab2df92efb"
+ },
+ {
+ "filename": "2015 - Whole-genome fingerprint of the DNA methylome.pdf",
+ "id": "45b992a8-b973-4316-82da-376b9addf7d7"
+ },
+ {
+ "filename": "2012 - Mitochondrial Genomic Analysis of Late Onset.pdf",
+ "id": "38f806a9-f265-4854-b86b-38cf56b57dd8"
+ },
+ {
+ "filename": "2016 - Epigenetic drift in the aging genome a ten-year.pdf",
+ "id": "1786c59d-b771-440d-b6fd-4dc5a0ad686e"
+ },
+ {
+ "filename": "2015 - Breeding-assisted genomics.pdf",
+ "id": "9cd585e3-7b20-4f3c-8bf8-36689039aa8a"
+ },
+ {
+ "filename": "2012 - A greatly extended PPARGC1A genomic locus.pdf",
+ "id": "0a4c8041-059f-46a9-8212-d859dfeadd2a"
+ },
+ {
+ "filename": "2013 - Gene expression changes with age in skin.pdf",
+ "id": "6ac32a33-e2af-40bb-aad6-9971c46023d4"
+ },
+ {
+ "filename": "2015 - Genome-Wide Association Study (GWAS).pdf",
+ "id": "61ddd7e2-8b42-46a5-9f50-f64d4ffe5f04"
+ },
+ {
+ "filename": "2017 - Genome-wide Association for Major Depression.pdf",
+ "id": "ec30a36c-fae2-48f3-971f-868fc837ebeb"
+ },
+ {
+ "filename": "2017 - The Importance of Bacterial Culture to Food Microbiology in the Age of Genomics.pdf",
+ "id": "d9e4044a-7d17-4b49-9f00-5408fc312ed9"
+ },
+ {
+ "filename": "2016 - Shared Genetic Contribution to Ischemic.pdf",
+ "id": "6197ffbe-0114-430e-9be6-5f3d4d09f9a4"
+ },
+ {
+ "filename": "2012 - Genome-wide meta-analysis identifies 56 bone mineral.pdf",
+ "id": "e2a18728-4c25-4c11-bb19-0b0cf2462a24"
+ },
+ {
+ "filename": "2017 - Independent impacts of aging.pdf",
+ "id": "2f39f55f-2604-49d4-9589-0e1403b84d7a"
+ },
+ {
+ "filename": "2016 - Whole-Genome Sequencing of a Healthy Aging Cohort.pdf",
+ "id": "593b752f-f448-47be-8b83-13bc5e9eb0d4"
+ },
+ {
+ "filename": "2013 - Genomics of human health and aging.pdf",
+ "id": "555a1533-2905-4d91-a3b6-2fca3679ab02"
+ },
+ {
+ "filename": "2013 - 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction.pdf",
+ "id": "52317cf1-f1e8-4692-904d-4bcd6f86ee61"
+ },
+ {
+ "filename": "2013 - Meta-analysis of 74,046 individuals identifies 11 new.pdf",
+ "id": "cc48e751-9e81-4869-897e-dc26bf4c96fa"
+ },
+ {
+ "filename": "2012 - Common variants at 12q14 and 12q24 are associated.pdf",
+ "id": "e2a02184-d59a-4884-b67e-67209b9b9ae2"
+ },
+ {
+ "filename": "2017 - An integrative metabolomics.pdf",
+ "id": "cd6e1167-80f7-43c2-94ba-079bf767cf90"
+ },
+ {
+ "filename": "2016 - Impaired DNA double-strand break repair contributes.pdf",
+ "id": "3c56b3cd-bb3c-4174-888f-e7d48a6fdca7"
+ },
+ {
+ "filename": "2013 - Analysis of epigenetic changes in survivors.pdf",
+ "id": "e267bad6-2123-48b3-924b-f97ebd998adc"
+ },
+ {
+ "filename": "2015 - Immunoinformatics and epitope prediction.pdf",
+ "id": "fb31688e-c581-4b96-8246-cdae69b9c898"
+ },
+ {
+ "filename": "2016 - An epigenetic clock for gestational age at birth based on blood methylation data.pdf",
+ "id": "2bc3e5cf-1eaf-4bc3-917a-72b38a19fbeb"
+ },
+ {
+ "filename": "2015 - A comparison of genomic selection models across time.pdf",
+ "id": "bd3604a5-eb48-4c23-bb69-4b2c99e90499"
+ },
+ {
+ "filename": "2013 - Supportive evidence for 11 loci from genome-wide association studies.pdf",
+ "id": "4d58cc2a-6a33-4bec-890d-4c817b7412f2"
+ },
+ {
+ "filename": "2012 - Genome-Environment Interactions That Modulate.pdf",
+ "id": "a95e6806-06d3-4775-8287-fda4cf6ac42f"
+ },
+ {
+ "filename": "2018 - Age Estimation with DNA From Forensic.pdf",
+ "id": "387a02e4-9c08-4b45-a857-4e0a13274f97"
+ },
+ {
+ "filename": "2015 - Oxidative Stress, Bone Marrow Failure, and Genome Instability.pdf",
+ "id": "6e7196b0-003a-4f4e-baea-3c4d2f56029a"
+ },
+ {
+ "filename": "2012 - Rate of de novo mutations.pdf",
+ "id": "7598244a-83a8-40b1-808b-bb2fef5afd47"
+ },
+ {
+ "filename": "2017 - Endogenous DNA Damage as a Source of Genomic.pdf",
+ "id": "321d2f0d-1650-4230-89df-cbda022d37bc"
+ },
+ {
+ "filename": "2015 - Somatic mutation in cancer.pdf",
+ "id": "f198eb32-5753-4013-bca3-c9b26e5cce9c"
+ },
+ {
+ "filename": "2018 - Genome-wide association meta-analysis.pdf",
+ "id": "95cac2d3-a5ae-4439-8c23-60b70e542dd0"
+ },
+ {
+ "filename": "2017 - A genome-wide profiling of brain DNA hydroxymethylation.pdf",
+ "id": "e455e87b-952e-4cce-a2e6-b2dda71b2ba0"
+ },
+ {
+ "filename": "2018 - Germline de novo mutation clusters arise.pdf",
+ "id": "66821b8c-9b35-411e-bde4-aba9acfe3e93"
+ },
+ {
+ "filename": "2019 - A meta-analysis of genome-wide association.pdf",
+ "id": "57e2d0f5-c5eb-4ba6-8101-5bacaed53cb4"
+ },
+ {
+ "filename": "2017 - Multi-tissue DNA methylation age predictor.pdf",
+ "id": "114f7a93-a26e-488d-bbef-2cc21c7488f8"
+ },
+ {
+ "filename": "2017 - Common genetic variation and risk of gallbladder cancer.pdf",
+ "id": "0a5af96d-1409-46ae-bd52-31fbbcca0549"
+ },
+ {
+ "filename": "2020 - Identification of Risk Loci for Parkinson Disease in Asians.pdf",
+ "id": "08d5bc93-bc25-432e-9079-7d0cb35ed983"
+ },
+ {
+ "filename": "2016 - The dog aging project translational geroscience in companion.pdf",
+ "id": "3043efd1-4b13-4300-b2a7-d1992c8d4e47"
+ },
+ {
+ "filename": "2020 - NTHL1 in genomic integrity, aging and cancer.pdf",
+ "id": "bde7dc93-b9c5-4695-a867-092a1d178f78"
+ },
+ {
+ "filename": "2018 - Mechanisms of Vascular Aging.pdf",
+ "id": "535c4b3c-75f4-4ec4-a758-92f82b227176"
+ },
+ {
+ "filename": "2020 - A transcriptome-wide association.pdf",
+ "id": "96ed23a8-7d89-4bb2-8433-f34dc6923a76"
+ },
+ {
+ "filename": "2017 - Genome-wide transcriptomics of aging.pdf",
+ "id": "846ae0a9-165f-4b25-8bcb-310c7da5eb44"
+ },
+ {
+ "filename": "2016 - Prediction of gestational age based.pdf",
+ "id": "3077bd52-8450-4a43-be53-cb5d45a30d72"
+ },
+ {
+ "filename": "2019 - Parkinson’s Disease Age at Onset Genome-Wide Association Study.pdf",
+ "id": "4cb0c33b-e92a-4ef0-a630-6d153f4372b8"
+ },
+ {
+ "filename": "2021 - Has translational genomics come of age in Africa.pdf",
+ "id": "481af5fa-c34b-4d72-8bee-439aedb74136"
+ },
+ {
+ "filename": "2019 - Functional genomics applications and therapeutic implications in sarcopenia.pdf",
+ "id": "3776e53f-5f7d-4cf4-ab7c-5fe06a1c0570"
+ },
+ {
+ "filename": "2018 - Revisiting the genomic hypomethylation hypothesis.pdf",
+ "id": "8148a0fe-aec5-4326-ae36-5b2de0f8c8c9"
+ },
+ {
+ "filename": "2018 - Biological Processes Modulating Longevity across Primates.pdf",
+ "id": "0fc75a0d-3aa3-481a-8c0f-689bd7ae6104"
+ },
+ {
+ "filename": "2021 - Correlational selection in the age of genomics.pdf",
+ "id": "d42e38fe-0cb2-4128-8e1a-de481be026e4"
+ },
+ {
+ "filename": "2020 - The genomics of acute myeloid leukemia in children.pdf",
+ "id": "f61d9614-5caf-4fc5-ad83-6de6cf19cdcd"
+ },
+ {
+ "filename": "2023 - A transcriptome-based single-cell biological age model.pdf",
+ "id": "8b352d30-87c2-4f4b-8cac-2f3f90c3a0a7"
+ },
+ {
+ "filename": "2019 - Giant tortoise genomes provide insights into longevity and age-related disease.pdf",
+ "id": "e363bc90-3aa6-44af-ba2e-bb2ad19438d5"
+ },
+ {
+ "filename": "2020 - Conservation and Management.pdf",
+ "id": "16de415c-edd5-4bf7-9e6d-e8fcae3985f5"
+ },
+ {
+ "filename": "2016 - MET Exon 14 Mutations in Non–Small-Cell Lung.pdf",
+ "id": "dc38aee3-49b9-47a7-ae86-74e389bb0b91"
+ },
+ {
+ "filename": "2018 - Multiancestry genome-wide association study.pdf",
+ "id": "bf3255cf-b2c7-40ad-8cfc-ec9ac21346bf"
+ },
+ {
+ "filename": "2017 - Genetics genomics education for nongenetic health.pdf",
+ "id": "0d85f688-0b8c-4dbe-af56-ffbd3be73ab4"
+ },
+ {
+ "filename": "2022 - Immunity and lifespan answering.pdf",
+ "id": "5d98d831-62f5-4763-8576-5333367b4fe2"
+ },
+ {
+ "filename": "2022 - A review on the application of the exposome.pdf",
+ "id": "a6bc2efd-61a7-4e07-ad5c-49234aa89431"
+ },
+ {
+ "filename": "2019 - The Burden of Breast Cancer Predisposition Variants Across.pdf",
+ "id": "575ac4f2-a56f-46bf-9b00-ec7f723b129b"
+ },
+ {
+ "filename": "2016 - Unraveling the message insights into comparative genomics.pdf",
+ "id": "e4773b3b-814d-4306-8250-59dc03f09bc2"
+ },
+ {
+ "filename": "2018 - Human Ageing Genomic Resources new and updated.pdf",
+ "id": "adf2d31e-e83d-47df-97af-3764e42aa80e"
+ },
+ {
+ "filename": "2017 - NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen.pdf",
+ "id": "aef3b1d1-d19b-4060-9c24-88adc47523f1"
+ },
+ {
+ "filename": "2019 - Genome aging somatic mutation in the brain links.pdf",
+ "id": "f7ab9d4f-add7-4534-8714-367a338a09d2"
+ },
+ {
+ "filename": "2023 - DNA methylome and transcriptome.pdf",
+ "id": "f4f4d7de-2089-46ac-8e89-dd6e5734649d"
+ },
+ {
+ "filename": "2019 - Aging in the Drosophila ovary contrasting.pdf",
+ "id": "0eeae7ac-b00c-4012-aae8-152382ecaf9b"
+ },
+ {
+ "filename": "2017 - A silver bullet in a golden age of functional genomics the impact of Agrobacterium-mediated transformation of fungi.pdf",
+ "id": "ff7cafce-aec0-4f59-91c2-4438a963c6bf"
+ },
+ {
+ "filename": "2019 - Remodeling of epigenome and transcriptome.pdf",
+ "id": "41036c17-1873-41ba-8880-cc659722640e"
+ },
+ {
+ "filename": "2020 - Penetrance of Parkinson's Disease in LRRK2 p.G2019S.pdf",
+ "id": "236f046c-e69d-4aca-98fa-6ecf65c426c6"
+ },
+ {
+ "filename": "2018 - Selfish mutations dysregulating RAS-MAPK signaling.pdf",
+ "id": "02b1c922-a9cf-470d-b036-52c367fc1ca9"
+ },
+ {
+ "filename": "2020 - Dissecting Murine Muscle Stem Cell Aging.pdf",
+ "id": "d70fa4ef-9c42-4bdd-ac01-fc2b94fe9de6"
+ },
+ {
+ "filename": "2020 - Insights into the loss of the Y chromosome with age in control.pdf",
+ "id": "0d18db8a-c31f-4dc9-9a6c-fc6be5136e72"
+ },
+ {
+ "filename": "2019 - Improved precision of epigenetic clock.pdf",
+ "id": "b2738553-3bf2-4c8c-9660-52e939bf82a1"
+ },
+ {
+ "filename": "2022 - Coming of Age Human Genomics.pdf",
+ "id": "d4b27764-77a9-43b0-982b-cec8d5e016cb"
+ },
+ {
+ "filename": "2018 - Nuclear Genomic Instability.pdf",
+ "id": "99a35e24-bbd2-495b-82dc-53d7e2075191"
+ },
+ {
+ "filename": "2018 - DNA methylation in the APOE genomic.pdf",
+ "id": "f7dfab8c-2887-42d8-9035-c7460128553a"
+ },
+ {
+ "filename": "2017 - Genomics and Epigenomics of Tumor and Aging Cells.pdf",
+ "id": "920f00c8-4c5d-48f9-9fef-fc882e13ceb1"
+ },
+ {
+ "filename": "2019 - Towards Understanding Genomic Instability, Mitochondrial.pdf",
+ "id": "01e6d406-3302-41c3-9a94-7cd54e75b376"
+ },
+ {
+ "filename": "2017 - DNA Methylation Profiling of Human Prefrontal.pdf",
+ "id": "595489bf-eea2-47be-a1d2-485b73bc1819"
+ },
+ {
+ "filename": "2021 - Million-year-old DNA sheds light.pdf",
+ "id": "b21c0391-b441-4842-a2df-8d2f2fca6485"
+ },
+ {
+ "filename": "2021 - Disentangling the aging gene expression.pdf",
+ "id": "c172e7ea-3a3a-4970-9e00-ad720177264f"
+ },
+ {
+ "filename": "2017 - Genome instability in Alzheimer disease.pdf",
+ "id": "be3bfb7f-565c-49c9-8565-e6e1f95ed211"
+ },
+ {
+ "filename": "2020 - Age-related gene expression and DNA methylation changes in rhesus.pdf",
+ "id": "7afe318e-a854-4e06-90e9-73ef0a8a8917"
+ },
+ {
+ "filename": "2018 - A C6orf10 LOC101929163 locus is associated.pdf",
+ "id": "1bcec33b-75bd-46e0-836e-dc13c7ab6f94"
+ },
+ {
+ "filename": "2020 - Uterine transcriptome analysis reveals.pdf",
+ "id": "53b0c014-8502-4883-8808-d796e80fc24f"
+ },
+ {
+ "filename": "2022 - Parallel bimodal single-cell sequencing of transcriptome and methylome.pdf",
+ "id": "76e0f906-ebff-46d2-9680-a8e1f9d97acf"
+ },
+ {
+ "filename": "2017 - Parental influence on human germline de novo.pdf",
+ "id": "f9f5fac9-b1df-41b3-ad49-e413209510bd"
+ },
+ {
+ "filename": "2018 - Paternal germ line aging DNA methylation.pdf",
+ "id": "63066483-f708-4376-8121-f76dff8423e1"
+ },
+ {
+ "filename": "2019 - Genome-wide meta-analysis of macronutrient intake of 91,114.pdf",
+ "id": "d4d7ce96-1483-41d5-ab5c-aab652b48dc9"
+ },
+ {
+ "filename": "2020 - Epigenome-wide meta-analysis of blood.pdf",
+ "id": "cc42391c-97ac-42df-a7c2-9b707d7fd238"
+ },
+ {
+ "filename": "2019 - Aging, Melatonin Biosynthesis and Circadian Clockworks in the2.pdf",
+ "id": "2097c8d2-5d54-4f45-82d4-bcea7f328d40"
+ },
+ {
+ "filename": "2019 - Transcriptome-wide analysis of differentially.pdf",
+ "id": "1e92aeb2-376b-48da-87b1-21e29b31a863"
+ },
+ {
+ "filename": "2017 - Genome surgery using Cas9 ribonucleoproteins.pdf",
+ "id": "a7f21808-dce3-4110-8e7c-ceb2437e72ff"
+ },
+ {
+ "filename": "2023 - Dynamic 3D genome reorganization during senescence.pdf",
+ "id": "3221196c-3a63-4cb3-9d8b-c16b755375ff"
+ },
+ {
+ "filename": "2016 - Variation of global DNA methylation levels.pdf",
+ "id": "58f36772-b82e-437e-a5dd-2442277089f5"
+ },
+ {
+ "filename": "2020 - Phylogenetic tree building.pdf",
+ "id": "38971a48-9ad6-4719-b99b-b327ca12f543"
+ },
+ {
+ "filename": "2017 - Human female meiosis revised new.pdf",
+ "id": "b014e368-d0d5-4eff-a9af-abd4a4ed6d29"
+ },
+ {
+ "filename": "2022 - Comparative genomics of mortal and immortal cnidarians unveils novel keys behind rejuvenation.pdf",
+ "id": "f55a0a7f-aac4-4fa1-941a-0f929e779d9a"
+ },
+ {
+ "filename": "2020 - Integrating Metabolomics, Genomics.pdf",
+ "id": "18c54ca8-54ee-4eb9-9a36-53d33609c2df"
+ },
+ {
+ "filename": "2017 - Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism.pdf",
+ "id": "9fb05e3b-1422-48f7-8db9-8476336accdb"
+ },
+ {
+ "filename": "2018 - Epigenetic Modifications in Cardiovascular Aging and Diseases.pdf",
+ "id": "4d871970-9d84-47e8-8de3-66fd0d7d5b8b"
+ },
+ {
+ "filename": "2018 - Human genetic variants and age.pdf",
+ "id": "a8c4b4d7-b31d-46cc-9676-a2123b975428"
+ },
+ {
+ "filename": "2020 - Ancient genomes from northern China suggest.pdf",
+ "id": "27b471ec-acc3-4624-9050-57516328da07"
+ },
+ {
+ "filename": "2022 - Predict the role of lncRNA in kidney aging.pdf",
+ "id": "896b3cbd-0799-4305-9acd-79f163e2bdff"
+ },
+ {
+ "filename": "2021 - Epigenetics of Aging and Aging-Associated Diseases.pdf",
+ "id": "29d09d03-fd2f-48b3-a020-ea574d583dc4"
+ },
+ {
+ "filename": "2017 - Age-related alterations.pdf",
+ "id": "b6bbc3ee-60b8-4a4b-8feb-e93e7645e364"
+ },
+ {
+ "filename": "2019 - RiboTag translatomic profiling of Drosophila.pdf",
+ "id": "98725edc-19e7-4bbc-bf28-7566de590791"
+ },
+ {
+ "filename": "2018 - A Large Multiethnic Genome-Wide Association Study.pdf",
+ "id": "b4e5d2bd-8a65-4315-a13b-9376cebed8a8"
+ },
+ {
+ "filename": "2020 - Visualizing and interpreting cancer genomics.pdf",
+ "id": "9919b119-c026-4b78-9b56-ba54239834b3"
+ },
+ {
+ "filename": "2018 - Sex Differences in Aging Genomic Instability.pdf",
+ "id": "1ac23aae-2a51-4846-81ec-6db70ab6e5a4"
+ },
+ {
+ "filename": "2019 - Integrated multi-omics analysis of genomics, epigenomics.pdf",
+ "id": "78e2b7dd-40e5-4e23-b696-49b9ef950486"
+ },
+ {
+ "filename": "2021 - N6-methyladenosine dynamics.pdf",
+ "id": "39613edb-cfdb-4103-8c9a-c90c1bc9f802"
+ },
+ {
+ "filename": "2017 - Genome-wide methylation analysis reveals.pdf",
+ "id": "593652be-f82c-40f6-9ef1-20cda9e02f98"
+ },
+ {
+ "filename": "2021 - Genome sequencing analysis identifies new loci.pdf",
+ "id": "9ca7f8e9-056f-498b-a932-f94d6936eb3b"
+ },
+ {
+ "filename": "2019 - Y chromosome mosaicism is associated with age-related macular degeneration.pdf",
+ "id": "20b466c6-004b-484f-96a1-c1b4651bc856"
+ },
+ {
+ "filename": "2020 - Comprehensive assessment of PINK1 variants in Parkinson’s.pdf",
+ "id": "1a1132fa-f194-4b7d-b66d-5c8f97d84154"
+ },
+ {
+ "filename": "2019 - Downregulation of miR-542-3p promotes.pdf",
+ "id": "7194da7c-b022-4f43-9007-e057e6a53b0a"
+ },
+ {
+ "filename": "2019 - Single-cell whole-genome sequencing reveals thefunctional landscape of somatic mutations in Blymphocytes across the human lifespan.pdf",
+ "id": "1d3e4c58-773a-453a-8780-6fef5f34c5bc"
+ },
+ {
+ "filename": "2021 - Transcriptional features of biological age maintained in human cultured.pdf",
+ "id": "f534f9da-64a3-4037-b8b9-0a101f6c71ee"
+ },
+ {
+ "filename": "2018 - The molecular landscape of pediatric acute myeloid.pdf",
+ "id": "f5efe2cf-7b2b-4622-b9f1-8a6085616db1"
+ },
+ {
+ "filename": "2019 - Neurons with Complex Karyotypes Are Rare in Aged.pdf",
+ "id": "35f6efe9-dff7-40e0-becb-c7b1e704a9fc"
+ },
+ {
+ "filename": "2021 - Career Retrospective Tom Johnson—Genetics, Genomics.pdf",
+ "id": "4ca8d070-8b58-4bd5-86be-127089b70324"
+ },
+ {
+ "filename": "2018 - Genomic atlas of the human plasma.pdf",
+ "id": "e7f715f5-b543-4cf0-8105-a856d6bffb8c"
+ },
+ {
+ "filename": "2018 - Long non-coding RNAs have age.pdf",
+ "id": "e1adc142-658a-4b67-8629-eedf66eb2989"
+ },
+ {
+ "filename": "2017 - Virus-Mediated Genome Editing via Homology.pdf",
+ "id": "c3ae2186-ef48-46a5-b214-dc944366df8f"
+ },
+ {
+ "filename": "2020 - The Genomics of Auditory.pdf",
+ "id": "f7c05225-4e5a-4aac-90a5-f658b6ea70a9"
+ },
+ {
+ "filename": "2018 - Ancient genomes document multiple waves of migration in SoutheastAsian prehistory.pdf",
+ "id": "d678e8b9-c772-4b44-9e96-ca60fdac5be9"
+ },
+ {
+ "filename": "2017 - Antimicrobial resistance surveillance in the genomic age.pdf",
+ "id": "332293e6-ab80-4a52-bd95-2d3c6b3a8a1d"
+ },
+ {
+ "filename": "2022 - Understanding climate change response in the age of genomics.pdf",
+ "id": "37acd7d4-e934-4920-8043-aaa13f7b4258"
+ },
+ {
+ "filename": "2020 - Genomics of aging Genes, adducts, and telomeres.pdf",
+ "id": "ca76f85d-9f72-4e15-8ba9-3bf94308c449"
+ },
+ {
+ "filename": "2023 - Genomic Aging, Clonal Hematopoiesis.pdf",
+ "id": "15d2da46-ff2e-4400-a2ae-ec2d9a067cde"
+ },
+ {
+ "filename": "2022 - Genome-wide screens in yeast models towards.pdf",
+ "id": "7c2732db-ed6e-419a-8256-537b4dc68072"
+ },
+ {
+ "filename": "2017 - Maternal BMI as a predictor of methylation.pdf",
+ "id": "ca19d030-1ebd-422e-b1ab-310e3b1c7f55"
+ },
+ {
+ "filename": "2020 - Mitonuclear genomics and aging.pdf",
+ "id": "253fad94-3be6-4362-b56f-f00c9c5705e6"
+ },
+ {
+ "filename": "2019 - Genomics of 1 million parent lifespans.pdf",
+ "id": "78a43a45-84b0-4d73-9396-95b99cfd3983"
+ },
+ {
+ "filename": "2017 - Four Genome-Wide Association Studies Identify New.pdf",
+ "id": "79ae7122-3716-498b-9b9a-dd0960e33f99"
+ },
+ {
+ "filename": "2018 - Reconceptualizing harms and benefits.pdf",
+ "id": "da113334-5b9d-46f6-b47d-b51c2070eb78"
+ },
+ {
+ "filename": "2017 - A common haplotype lowers PU.1 expression.pdf",
+ "id": "b83fc539-d909-4569-84cb-cd5d9d837e3c"
+ },
+ {
+ "filename": "2023 - A noninvasive method for whole-genome skin methylome.pdf",
+ "id": "cc1d0153-590d-434b-a1cd-0046213417ac"
+ },
+ {
+ "filename": "2017 - Genetic pleiotropy between age-related.pdf",
+ "id": "7f926324-f561-4292-8681-643978127d92"
+ },
+ {
+ "filename": "2017 - A female Viking warrior confirmed by genomic.pdf",
+ "id": "c23e7f99-6e3a-4150-854e-f5a4a8abf21d"
+ },
+ {
+ "filename": "2020 - A multidimensional systems biology.pdf",
+ "id": "3a9e80fc-b20d-4828-aaed-1a6ad490020a"
+ },
+ {
+ "filename": "2021 - Co-expression of the SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in.pdf",
+ "id": "bb15afa8-8165-4d45-899f-7f00c4e465b6"
+ },
+ {
+ "filename": "2022 - Genomics and Functional Genomics of Alzheimer’s Disease.pdf",
+ "id": "135b00ce-bd98-4aa2-b137-053b9bedf5a9"
+ },
+ {
+ "filename": "2020 - Conceptualizing Race.pdf",
+ "id": "9551c76a-d296-43cc-b3c2-5be11bc17d72"
+ },
+ {
+ "filename": "2018 - Genomics New Light on Alzheimer’s.pdf",
+ "id": "85a1c882-0cf4-4843-84df-3fba96d27d6c"
+ },
+ {
+ "filename": "2019 - A comprehensive biomedical variant catalogue based on whole.pdf",
+ "id": "7e22bd8c-7c81-445a-a964-ed9ead149c7a"
+ },
+ {
+ "filename": "2018 - Metabolomic pathways to osteoporosis in middle-aged women A genome-metabolome-wide.pdf",
+ "id": "c4f336ea-a7c0-4c53-8f39-2ac74279b61c"
+ },
+ {
+ "filename": "2018 - Ancient genomes suggest the eastern Pontic-Caspian.pdf",
+ "id": "e6b18c09-2ad7-42d9-9dba-d9c3cfc52950"
+ },
+ {
+ "filename": "2020 - Multivariate genomic scan implicates novel loci.pdf",
+ "id": "9fed8fd1-fce5-4fc1-9911-05d312f88521"
+ },
+ {
+ "filename": "2019 - Systematic underestimation.pdf",
+ "id": "bc192876-83b8-4d58-9c71-e16a4fe0d210"
+ },
+ {
+ "filename": "2023 - Genomic Instability Evolutionary Footprints on Human Health.pdf",
+ "id": "7e84354b-8a0a-4e1b-9691-86dde5c86f0e"
+ },
+ {
+ "filename": "2020 - Genomics to accelerate genetic improvement in tilapia.pdf",
+ "id": "15f38c8b-b864-4b96-87c0-acb9223622fb"
+ },
+ {
+ "filename": "2019 - Extensive Unexplored Human Microbiome Diversity.pdf",
+ "id": "f60ba055-fc78-4903-a34e-68a52724d9d4"
+ },
+ {
+ "filename": "2017 - Wheat genomics comes of age.pdf",
+ "id": "f28111d5-fe88-4668-8699-f02f907af80a"
+ },
+ {
+ "filename": "2017 - Bee conservation in the age of genomics.pdf",
+ "id": "78cf9b6c-7729-40e8-861f-2b7df6a0def3"
+ },
+ {
+ "filename": "2019 - Genomics of circadian rhythms in health.pdf",
+ "id": "64ecf4a8-193f-4811-ac82-85573b0d6bc9"
+ },
+ {
+ "filename": "2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf",
+ "id": "395a51ba-bd2a-4160-8396-b13a3bf762ff"
+ },
+ {
+ "filename": "2021 - Genome-wide association studies identify.pdf",
+ "id": "0942fb8b-731c-4d6e-9b5a-8a303012eec6"
+ },
+ {
+ "filename": "2017 - Molecular modeling in the age of clinical genomics, the enterprise.pdf",
+ "id": "c553328b-fc5a-47e0-8e2a-7456004fa218"
+ },
+ {
+ "filename": "2021 - Transcriptome analysis provides genome.pdf",
+ "id": "b119b2dd-14f2-439d-b42a-c37541d64391"
+ },
+ {
+ "filename": "2019 - Novel methods for integration and visualization of genomics.pdf",
+ "id": "d343a1b9-f9d3-49e3-a13b-a41eead992c4"
+ },
+ {
+ "filename": "2017 - Genome-wide significant risk factors for Alzheimer’s disease.pdf",
+ "id": "6c0a5d18-6bb2-4483-8e5d-4285043fc51f"
+ },
+ {
+ "filename": "2020 - The Parkinson’s Disease Genome-Wide Association Study Locus Browser.pdf",
+ "id": "4ef81e6c-5a77-4800-9cfb-30af590d32f5"
+ },
+ {
+ "filename": "2017 - Mutation and catastrophe in the aging genome.pdf",
+ "id": "cac4696c-511a-448f-ae7c-b91ec64be2be"
+ },
+ {
+ "filename": "2019 - Human gene expression variability.pdf",
+ "id": "49e78c89-14fd-4c52-8710-51a023bbb3b4"
+ },
+ {
+ "filename": "2019 - Population genomic screening of all young adults.pdf",
+ "id": "30eabd29-2f48-459a-b162-bd90d99f1411"
+ },
+ {
+ "filename": "2017 - Continuity and Admixture in the Last Five Millennia.pdf",
+ "id": "3d015864-19e0-428f-ad32-a96c8c1d33bd"
+ },
+ {
+ "filename": "2020 - Advances of single‑cell genomics and epigenomics in human disease.pdf",
+ "id": "b688664f-f506-4a4a-b5fd-0b352b8d492b"
+ },
+ {
+ "filename": "2022 - Investigating the genomic alteration.pdf",
+ "id": "3ae91519-34e6-4c06-8126-1156eb9da47b"
+ },
+ {
+ "filename": "2021 - Methylation of 45S Ribosomal DNA (rDNA) Is Associated.pdf",
+ "id": "e44ac473-04c5-4568-97c7-6f2f622e5690"
+ },
+ {
+ "filename": "2023 - Comprehensive genomics analysis of aging related gene signature to predict the prognosis and drug resistance of colon adenocarcinoma.pdf",
+ "id": "4e12ee96-7532-4fc7-b836-a21f68a8f8d6"
+ },
+ {
+ "filename": "2018 - 137 ancient human genomes from across.pdf",
+ "id": "88855917-864e-4b74-bc7e-e4fedbae829a"
+ },
+ {
+ "filename": "2019 - The somatic mutation landscape.pdf",
+ "id": "cfe77366-42e2-4960-bf96-01a3e0a61ff4"
+ },
+ {
+ "filename": "2020 - Dating genomic variants and shared ancestry.pdf",
+ "id": "f12f0ae0-db63-40cd-826b-b4fb1d704f1c"
+ },
+ {
+ "filename": "2020 - Transposable elements, circular RNAs and mitochondrial.pdf",
+ "id": "60a48b32-ac3c-461b-9add-b48fb75af25e"
+ },
+ {
+ "filename": "2019 - A modular analysis of microglia gene.pdf",
+ "id": "c4962ed0-1d95-4763-bdac-752eb2ba743e"
+ },
+ {
+ "filename": "2018 - Multiple large-scale gene and genome duplications.pdf",
+ "id": "4cf93c52-524e-48ab-b485-77928ca67b40"
+ },
+ {
+ "filename": "2020 - Pathogenic Mechanisms of Somatic Mutation.pdf",
+ "id": "f4dd6a1d-062b-42bc-8e22-83fcb3135578"
+ },
+ {
+ "filename": "2019 - GWAS Identifies 44 Independent.pdf",
+ "id": "40397283-906e-4c54-933c-336648fb1ba0"
+ },
+ {
+ "filename": "2018 - Global accumulation of circRNAs.pdf",
+ "id": "6d77ee5f-f4b7-412b-abd6-527666af6bbf"
+ },
+ {
+ "filename": "2021 - Designing Future Crops Genomics-Assisted.pdf",
+ "id": "4fc73c30-054c-4e22-a8c3-7c38812a21d4"
+ },
+ {
+ "filename": "2017 - Genome instability and aging cause or effect.pdf",
+ "id": "35a178e9-6bb8-46a9-a720-a726a9d2c439"
+ },
+ {
+ "filename": "2018 - Runs of homozygosity reveal genome-wide autozygosity in Italian.pdf",
+ "id": "cdcd26cf-e76a-4e00-88ea-235c46bddf31"
+ },
+ {
+ "filename": "2022 - AMD Genomics Non-Coding RNAs as Biomarkers.pdf",
+ "id": "80e1b2af-be79-4d9b-852f-46bf3e23c963"
+ },
+ {
+ "filename": "2017 - Genomic Variants, Genes, and Pathways.pdf",
+ "id": "4c2f8dcb-02a1-4968-a117-bdf505cad02f"
+ },
+ {
+ "filename": "2020 - Inherited causes of clonal haematopoiesis.pdf",
+ "id": "f58f52a1-a704-49c1-b3b6-fde6ebdec9fc"
+ },
+ {
+ "filename": "2018 - Comprehensive functional genomic resource and integrative model forthe human brain.pdf",
+ "id": "c53c3cab-7bcd-45fb-9562-b8c0797e32f4"
+ },
+ {
+ "filename": "2020 - Genomic and Clinicopathologic Characteristics.pdf",
+ "id": "48fc05db-21f8-4493-897b-1ee2c6cec417"
+ },
+ {
+ "filename": "2023 - Genome-wide RNA polymerase stalling.pdf",
+ "id": "aa48c641-3db1-4cf4-bb71-b1d57c24e13f"
+ },
+ {
+ "filename": "2018 - The development of large-scale.pdf",
+ "id": "104a9a2e-c356-44d9-8d64-83f0d34a258b"
+ },
+ {
+ "filename": "2019 - Genomic prediction of cognitive traits in childhood and adolescence.pdf",
+ "id": "5a147c5d-3723-4075-93c7-abd6db7cec85"
+ },
+ {
+ "filename": "2019 - Whole-genome mapping identified novel.pdf",
+ "id": "6e834383-7260-4601-b5b3-e33a99f2796a"
+ },
+ {
+ "filename": "2022 - Genetic Stratification of Age-Dependent Parkinson’s Disease Risk byPolygenic Hazard Score.pdf",
+ "id": "369947e3-fcda-43ac-a7f6-a847ef802b04"
+ },
+ {
+ "filename": "2021 - Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2.pdf",
+ "id": "cec1b19a-112a-4dd1-bbc3-6c9a6b761a4a"
+ },
+ {
+ "filename": "2018 - Life-Course Genome-wide Association Study.pdf",
+ "id": "e1589e7c-180f-48b5-adfb-4c5231b3eaf7"
+ },
+ {
+ "filename": "2021 - Radiation-related genomic profile of papillary thyroid.pdf",
+ "id": "267a769c-6cd2-4a78-9e30-c2a4d7fc421f"
+ },
+ {
+ "filename": "2020 - Mitochondria as central characters in a complex narrative.pdf",
+ "id": "21d2cb60-92ab-4fbb-a3a1-85d3424881c1"
+ },
+ {
+ "filename": "2019 - Shared and distinct genetic risk factors for childhood-onset.pdf",
+ "id": "98d443c7-8d99-4139-a27d-e447b0f6630f"
+ },
+ {
+ "filename": "2022 - Systems genomics in age-related macular degeneration.pdf",
+ "id": "3577a2ff-34c0-47c4-98ea-830bfc5f7c83"
+ },
+ {
+ "filename": "2020 - Cognitive Genomics Recent Advances and Current Challenges.pdf",
+ "id": "e2d5bf4e-e581-43ee-ab78-c7e374d2a582"
+ },
+ {
+ "filename": "2019 - Data privacy in the age of personal genomics.pdf",
+ "id": "fb4a3fbd-61b7-492e-b0f7-8cdd2ab559d6"
+ },
+ {
+ "filename": "2018 - Genomic Instabilities, Cellular Senescence, and Aging In Vitro, In Vivo and Aging-Like Human Syndromes.pdf",
+ "id": "7e93a30f-cc3d-4334-a09f-f0ab6b488b0e"
+ },
+ {
+ "filename": "2021 - Functional genomics study of protein inhibitor of activated STAT1.pdf",
+ "id": "1a4db3fb-f4eb-475f-bed9-b2b8413f707f"
+ },
+ {
+ "filename": "2020 - Protecting the Aging Genome.pdf",
+ "id": "d05f2105-e665-426c-8a7b-1ee57c89f23d"
+ },
+ {
+ "filename": "2018 - Prevalence of Clonal Hematopoiesis Mutations in Tumor-Only.pdf",
+ "id": "3fa77aa5-669d-4fe6-9d41-ddc6d7b81488"
+ },
+ {
+ "filename": "2018 - Analysis of 3800-year-old Yersinia pestis genomes.pdf",
+ "id": "80d88597-0ee7-4987-96b1-e3f0a8553810"
+ },
+ {
+ "filename": "2019 - Murine single-cell RNA-seq reveals cell-identity.pdf",
+ "id": "f199fa4c-bee6-4377-a099-bb6e2f01a40e"
+ },
+ {
+ "filename": "2022 - Functional genomics analysis identifies.pdf",
+ "id": "df13fc2f-7b11-4e56-bde6-cf5e232dfdad"
+ },
+ {
+ "filename": "2019 - Leveraging genomics to uncover.pdf",
+ "id": "14cad5a7-e53a-4ab8-9d4f-8f0b827ae427"
+ },
+ {
+ "filename": "2020 - Blood-based epigenetic estimators.pdf",
+ "id": "34640a37-31e0-481a-8207-930a9773fd72"
+ },
+ {
+ "filename": "2020 - Genome-wide association meta-analysis.pdf",
+ "id": "e6477600-b71b-4c02-b64a-d2c87b65ea79"
+ },
+ {
+ "filename": "2019 - SNCA and mTOR Pathway Single Nucleotide Polymorphisms Interact.pdf",
+ "id": "8bc64d64-8b96-44ff-992b-8d1cbb6d2e52"
+ },
+ {
+ "filename": "2018 - Investigating the modulation of genetic.pdf",
+ "id": "87542bdd-1a9a-470f-857f-5d62abed0446"
+ },
+ {
+ "filename": "2022 - Single-cell genomics identifies distinct.pdf",
+ "id": "46ab6068-b9d7-49d2-817d-024c3da50866"
+ },
+ {
+ "filename": "2018 - Spontaneous DNA damage to the nuclear genome promotes senescence.pdf",
+ "id": "22404673-8980-436f-a8c4-1e725bad6dd8"
+ },
+ {
+ "filename": "2020 - Large‑scale pathway specific polygenic risk and transcriptomic.pdf",
+ "id": "98af081d-5ee4-45ad-aa7d-007fbda7a0b0"
+ },
+ {
+ "filename": "2023 - Genome-Wide Methylation Profiling in 229 Patients With Crohn's.pdf",
+ "id": "7e78b25e-b8c7-4bd6-87d8-0b745a5d0829"
+ },
+ {
+ "filename": "2021 - Plant Pan-Genomics.pdf",
+ "id": "0915838e-097d-4347-a500-55b011556eab"
+ },
+ {
+ "filename": "2021 - Finding genetically-supported drug targets.pdf",
+ "id": "a07c987b-1969-4437-b0f8-81b411e7716f"
+ },
+ {
+ "filename": "2019 - Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular.pdf",
+ "id": "29677e8a-16e6-41d3-aba6-e47ba55da611"
+ },
+ {
+ "filename": "2021 - A genome-wide association study with 1,126,563.pdf",
+ "id": "213afab9-b2fb-40ed-abb7-d80853a0fbf3"
+ },
+ {
+ "filename": "2018 - Precision oncology in the age of integrative.pdf",
+ "id": "a13e2333-f810-4266-b967-250dd80c98dc"
+ },
+ {
+ "filename": "2020 - Precision and Personalized Medicine How Genomic.pdf",
+ "id": "a538ceb8-32c0-49d2-ace9-6f949f94b6fc"
+ },
+ {
+ "filename": "2019 - Uncovering genetic mechanisms of kidney aging.pdf",
+ "id": "0db70db5-a507-449c-8e4e-9e1af08ff510"
+ },
+ {
+ "filename": "2019 - Genome-wide prediction and prioritization.pdf",
+ "id": "0af83a97-18ef-47f4-9f0c-872633ca3414"
+ },
+ {
+ "filename": "2021 - Protective chromosome 1q32 haplotypes.pdf",
+ "id": "78660b91-b9cf-431c-a025-02c8c576d2c3"
+ },
+ {
+ "filename": "2020 - Clinical Genetics and Genomics of Aging.pdf",
+ "id": "4f709611-ea0b-4bcc-a634-df5d518ccb54"
+ },
+ {
+ "filename": "2018 - Symposium review Possibilities in an age of genomics.pdf",
+ "id": "37802d53-9c3d-4947-9518-85f588ccacf0"
+ },
+ {
+ "filename": "2020 - Primary ciliary dyskinesia in the genomics age.pdf",
+ "id": "7c27cf21-f894-4963-8c8c-f01c3a5b1d94"
+ },
+ {
+ "filename": "2019 - Comprehensive Genomic Landscapes in Early.pdf",
+ "id": "102dd64c-5038-445b-b076-5dbb5a94a20a"
+ },
+ {
+ "filename": "2019 - Genomic Analysis in the Age.pdf",
+ "id": "b1656249-5f62-428f-8b71-7549cc2886ff"
+ },
+ {
+ "filename": "2023 - Genome-wide Association Study of Susceptibility.pdf",
+ "id": "2e306ac0-ccbe-4503-9b9a-4656d8588ddf"
+ },
+ {
+ "filename": "2019 - Sexual Dimorphism in the Age of Genomics How, When, Where.pdf",
+ "id": "05527d81-7242-43ce-821f-7e86460c3288"
+ },
+ {
+ "filename": "2021 - Footprints in the Sand Deep Taxonomic Comparisons in Vertebrate Genomics to Unveil the Genetic Programs of Human Longevity.pdf",
+ "id": "b0e49b4c-954d-476a-ba3a-0215e63c98b6"
+ },
+ {
+ "filename": "2019 - Mosaicism, aging and cancer.pdf",
+ "id": "efdc861a-4758-4d2d-9d09-f19f0be32c2f"
+ },
+ {
+ "filename": "2018 - Predicting age from the transcriptome.pdf",
+ "id": "463527bf-6270-40f6-a76d-460bab1cdf38"
+ },
+ {
+ "filename": "2020 - Genomic History of Neolithic to Bronze Age Anatolia.pdf",
+ "id": "73eb0686-a14c-4ed4-a705-8a7c1ae168cf"
+ },
+ {
+ "filename": "2021 - Accelerated hematopoietic mitotic aging.pdf",
+ "id": "a16d0947-4bc8-4086-84bb-395a2e127eb4"
+ },
+ {
+ "filename": "2022 - Functional genomics of inflamm-aging.pdf",
+ "id": "f862901e-b2ae-4f2f-b162-ed5cf1e50704"
+ },
+ {
+ "filename": "2018 - Learning and Age-Related Changes in Genome-wide.pdf",
+ "id": "dfac5bad-5587-4fa8-a547-ccd6b9914176"
+ },
+ {
+ "filename": "2022 - Surgical approaches to intramedullary spinal cord astrocytomas in the age of genomics.pdf",
+ "id": "9bcf8a0d-af94-4d86-9b64-018ffd4ea6bb"
+ },
+ {
+ "filename": "2020 - Lung transcriptomic clock predicts.pdf",
+ "id": "c5ccc4c8-ef81-4059-a889-7b5b0922a040"
+ },
+ {
+ "filename": "2019 - Undulating changes in human plasma proteome.pdf",
+ "id": "c8befe34-3270-4c99-81cb-ee1d63c66045"
+ },
+ {
+ "filename": "2023 - Genome-Scale Methylation Analysis Identifies Immune.pdf",
+ "id": "9a606159-b219-4a1a-a06e-387ebb884357"
+ },
+ {
+ "filename": "2010 - Genome-Wide Association Scan of Trait Depression.pdf",
+ "id": "32693e00-d7b1-40b0-8700-462d0fd3d5a3"
+ },
+ {
+ "filename": "2008 - A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23 ahl underlie.pdf",
+ "id": "100a4670-4b27-4528-bdba-5b5e38c82c8a"
+ },
+ {
+ "filename": "2015 - Stem Cell-Specific Mechanisms Ensure Genomic.pdf",
+ "id": "5b2f5728-7e9d-42d8-a2f4-23dcab32364f"
+ },
+ {
+ "filename": "2022 - Proteomic analysis reveals that aging rabbit.pdf",
+ "id": "7f3e13d3-d0a2-4aee-8705-c6802009d850"
+ },
+ {
+ "filename": "2016 - Genome-wide alteration of 5.pdf",
+ "id": "35851b7a-d1b7-4d25-a974-83c0a185ed0f"
+ },
+ {
+ "filename": "2015 - DNA methylation age of blood predicts all-cause.pdf",
+ "id": "e2bf7711-6ec5-4f8a-a79b-ea4a2e58a94b"
+ },
+ {
+ "filename": "2011 - Meta-Analysis of Genome-Wide Association Studies in larger than 80 000 Subjects Identifies Multiple Loci for C-Reactive Protein Levels.pdf",
+ "id": "74a45855-570c-45cc-bcde-20f53924cb70"
+ },
+ {
+ "filename": "2010 - Genomic biomarkers and cellular pathways.pdf",
+ "id": "d7a4ce3a-9bd0-4f31-b27f-e425e2298b9f"
+ },
+ {
+ "filename": "2011 - Genetics and genomics of human ageing.pdf",
+ "id": "5e6ad994-9cad-4b8b-903d-2d5c350e25dc"
+ },
+ {
+ "filename": "2012 - Divergent Whole-Genome Methylation Maps.pdf",
+ "id": "d1ef18b1-ee0b-487f-9c81-c21c26d6c9c8"
+ },
+ {
+ "filename": "2008 - Molecular profiling in the age of cancer genomics.pdf",
+ "id": "54ba3fb1-7ed0-4211-8f15-9c45fea8d3e3"
+ },
+ {
+ "filename": "1983 - Mitochondrial DNA in Mortal and Immortal Human Cell.pdf",
+ "id": "612a70c6-2f42-492f-9f23-0d5e9296919e"
+ },
+ {
+ "filename": "2012 - GeneFriends An online co-expression analysis.pdf",
+ "id": "b1ffece8-f805-4d99-8e3b-402df309f1ed"
+ },
+ {
+ "filename": "2008 - Longevity mutation in SCH9 prevents recombination.pdf",
+ "id": "3859c73d-e251-4c17-81f1-a42fba99ace9"
+ },
+ {
+ "filename": "2012 - Quantitative proteomic analysis reveals novel mitochondrial targets.pdf",
+ "id": "c9f18682-826f-486c-a634-1ac8b27e0800"
+ },
+ {
+ "filename": "2010 - Arsenic Exposure Induces Genomic Hypermethylation.pdf",
+ "id": "ba779513-74ff-46e0-988e-72ed0355d173"
+ },
+ {
+ "filename": "2022 - First report on genome wide association study in western Indian population.pdf",
+ "id": "7eef5f7a-f18d-4793-b2aa-e0ccdfd779be"
+ },
+ {
+ "filename": "2020 - Integrative genomics approach identifies conserved.pdf",
+ "id": "e54182ac-551b-4293-95eb-3f235efa1ec5"
+ },
+ {
+ "filename": "2020 - Animal domestication in the era of ancient genomics.pdf",
+ "id": "14a15ff3-706d-44be-aca5-4bad24a5e4ec"
+ },
+ {
+ "filename": "2019 - Genome-wide methylation is modified.pdf",
+ "id": "e3b8b9aa-9702-43a1-ac44-3d1198e04217"
+ },
+ {
+ "filename": "2010 - A genome-wide association analysis of serum iron concentrations.pdf",
+ "id": "cdeda6d2-1371-4ceb-bdcd-50375746d775"
+ },
+ {
+ "filename": "2020 - Pleiotropic Locus 15q24.1 Reveals a Gender-Specific.pdf",
+ "id": "94f15a3c-4099-4a5b-8280-b56c31d8876b"
+ },
+ {
+ "filename": "2019 - Turner syndrome New insights from prenatal genomics.pdf",
+ "id": "96cb840e-747f-4849-8354-e8764aa0a1ce"
+ },
+ {
+ "filename": "2019 - Ancient cattle genomics, origins.pdf",
+ "id": "150c550c-5c6f-4f73-b2ed-62daba7a81ed"
+ },
+ {
+ "filename": "2021 - New Technologies to Study Functional Genomics of Age-Related Macular Degeneration.pdf",
+ "id": "9a12db75-1efa-46b1-9da4-d2fc8d828f42"
+ },
+ {
+ "filename": "2019 - Integration of heterogeneous functional.pdf",
+ "id": "7025797f-8718-4dd5-a7f3-1fe68e08057e"
+ },
+ {
+ "filename": "2020 - Whole-genome sequencing of Chinese.pdf",
+ "id": "04c5378f-40dc-4690-af03-e5205779b881"
+ },
+ {
+ "filename": "2018 - Somatic mutant clones colonize.pdf",
+ "id": "84a43249-4f36-466a-88ad-c8bf23786fb9"
+ },
+ {
+ "filename": "2020 - Genome-wide assessment of genetic risk for systemic.pdf",
+ "id": "805fb332-212e-494a-954c-89eb7d66589e"
+ },
+ {
+ "filename": "2003 - Age-related changes in the transcriptional profile of mouse RPE choroid.pdf",
+ "id": "945b78ad-5465-4cd2-8dfa-1b1c879b5994"
+ },
+ {
+ "filename": "2013 - Increased paternal age and the influence on burden of genomic.pdf",
+ "id": "ff9b57df-b8ae-419a-a9f8-72644d4f0360"
+ },
+ {
+ "filename": "2011 - Genome-wide association and large-scale follow up.pdf",
+ "id": "8d3493d8-aa00-440e-8a3d-8209d0b39d19"
+ },
+ {
+ "filename": "2011 - Characterization of age-related gene expression.pdf",
+ "id": "39d31a16-b437-40d3-bef5-5b8c9b092c14"
+ },
+ {
+ "filename": "2013 - gH2AX as a marker of DNA double strand breaks and genomic instability.pdf",
+ "id": "c60615df-e397-483c-a29e-b0228a01a796"
+ },
+ {
+ "filename": "2019 - Ribosomal DNA harbors an evolutionarily conserved.pdf",
+ "id": "52c101dd-4131-4e7d-b914-478836a05edf"
+ },
+ {
+ "filename": "2013 - Comprehensive molecular characterization of clear cell renal cell carcinoma.pdf",
+ "id": "309bf5c6-d154-4a8e-8f8a-1bc67040fc1d"
+ },
+ {
+ "filename": "2013 - Studying Plant Secondary Metabolism in the Age.pdf",
+ "id": "2e4ba062-fd80-4813-bd9a-9131750a8dc1"
+ },
+ {
+ "filename": "2021 - Extremes of age are associated.pdf",
+ "id": "4680871d-7ef5-47e3-a1dd-8865b8142d1d"
+ },
+ {
+ "filename": "2009 - The Human Ageing Genomic Resources online.pdf",
+ "id": "f2b8524b-501d-4ec7-a3d7-048aab67ce05"
+ },
+ {
+ "filename": "2001 - Fungal virulence studies come of age.pdf",
+ "id": "bc81ff69-8a8e-4909-8ec6-a76748048df9"
+ },
+ {
+ "filename": "2003 - Caloric restriction promotes genomic stability by induction.pdf",
+ "id": "572e2eb6-2b8a-446c-a288-d4857bfd56b3"
+ },
+ {
+ "filename": "2003 - Mitochondrial DNA modifies cognition in interaction.pdf",
+ "id": "1152aa3c-a9df-4745-b262-97c03ccf0e1a"
+ },
+ {
+ "filename": "2015 - The mechanism of ageing primary role of transposable elements.pdf",
+ "id": "870798fd-2c26-4819-9403-fe52836770eb"
+ },
+ {
+ "filename": "2008 - Aging alters gene expression of growth and remodeling factors in human.pdf",
+ "id": "10489887-2cc9-427a-b707-1fbbf8ddc7fb"
+ },
+ {
+ "filename": "2011 - Aging and microRNA expression in human skeletal muscle a microarray.pdf",
+ "id": "5622b7c1-d1fd-4986-8df6-de681204e96d"
+ },
+ {
+ "filename": "2016 - Evidence for Genetic Overlap Between Schizophrenia.pdf",
+ "id": "f1176abf-031c-492d-8f2d-d8415096edbc"
+ },
+ {
+ "filename": "2009 - Gene expression profiling to characterize sediment toxicity – a pilot.pdf",
+ "id": "969a6399-d5d3-46c8-99ee-ca3ce5c77c4f"
+ },
+ {
+ "filename": "2004 - Evolutionary history of Oryza sativa LTR retrotransposons.pdf",
+ "id": "9c67c910-b78d-418a-b20a-50e680d282d6"
+ },
+ {
+ "filename": "2008 - Gene expression analysis of glioblastomas identifies the major.pdf",
+ "id": "3c447365-bdf9-44f0-b518-10c8afdbfb60"
+ },
+ {
+ "filename": "2016 - Age-dependent differences in microglial responses to systemic inflammation.pdf",
+ "id": "9ba69cb9-b1c9-483d-87c5-011d8802a67b"
+ },
+ {
+ "filename": "2015 - Single cell RNA-seq reveals changes in cell cycle and differentiation programs.pdf",
+ "id": "f116ee1c-b275-4239-98e9-c2032b8f05c5"
+ },
+ {
+ "filename": "2005 - Hypothetical LOC387715 is a second major.pdf",
+ "id": "f62cda8c-0758-4fab-bdbe-3639b7a86267"
+ },
+ {
+ "filename": "2016 - Genome-wide analysis of genetic correlation in dementia with Lewy.pdf",
+ "id": "3c219a32-3e0b-45db-ad42-c4d00cede32d"
+ },
+ {
+ "filename": "2016 - Mutational Strand Asymmetries in Cancer Genomes.pdf",
+ "id": "a1d2b2eb-8466-42a8-8fb0-a6b5119039f1"
+ },
+ {
+ "filename": "2015 - Polygenic Risk of Parkinson Disease Is Correlated with Disease Age at Onset.pdf",
+ "id": "7a8556d9-6e49-47e8-8f7b-9b3e7623e86a"
+ },
+ {
+ "filename": "2003 - Molecular profiling in the age.pdf",
+ "id": "02349115-481d-40d2-a975-27f358934403"
+ },
+ {
+ "filename": "2012 - Whole genome sequences of a male and female supercentenarian, ages greater than 114 years.pdf",
+ "id": "1386c8ad-297d-48b1-aa34-41659a9f6544"
+ },
+ {
+ "filename": "1987 - Genomic 5-Methyldeoxycytidine.pdf",
+ "id": "c6657ed9-ad01-4b8b-9f2b-6202b07fce82"
+ },
+ {
+ "filename": "2007 - Temporal and spatial transcriptional profiles.pdf",
+ "id": "9ddecf72-cb4e-47ce-9f18-47f45a6e582e"
+ },
+ {
+ "filename": "2007 - Functional genomic approach to identify novel genes.pdf",
+ "id": "8a8bea99-d3b9-4109-88e4-ad459dcd7173"
+ },
+ {
+ "filename": "2010 - Do different neurons age differently Direct genome-wide analysis of aging in single identified cholinergic neurons.pdf",
+ "id": "0572247e-821d-4cdc-a417-c430d241c2d8"
+ },
+ {
+ "filename": "2010 - Genome-wide association identifies OBFC1as a locus involved in human leukocyte telomere biology.pdf",
+ "id": "4a5716f3-cd44-4c1c-a165-7dff0e077bd9"
+ },
+ {
+ "filename": "2006 - Constancy of organellar genome copy numbers during leaf development.pdf",
+ "id": "f6429dfc-47a3-4635-beb4-35c05bee003a"
+ },
+ {
+ "filename": "2018 - Precision medicine screening using whole-genomesequencing and advanced imaging to identifydisease risk in adults.pdf",
+ "id": "92004cb7-4f79-4dde-a8e7-d1e93a253dc3"
+ },
+ {
+ "filename": "2010 - Age-related molecular genetic changes of murine.pdf",
+ "id": "9729da69-0a02-456b-aa99-80134d12ed9a"
+ },
+ {
+ "filename": "2012 - The Role of DNA Methylation in Aging, Rejuvenation.pdf",
+ "id": "be7b40f2-4d4a-41d5-9e58-19a30b63ee06"
+ },
+ {
+ "filename": "2009 - Decline in genomic DNA methylation through aging in a cohort of elderly subjects.pdf",
+ "id": "e7d6f95c-4575-4b55-a359-fcbf998896f5"
+ },
+ {
+ "filename": "2010 - Novel Associations of Multiple Genetic Loci With Plasma Levels of Factor VII, Factor VIII, and von Willebrand Factor.pdf",
+ "id": "7a284237-8394-4cdb-9154-ebdbc55ea327"
+ },
+ {
+ "filename": "2006 - Studies on genomic DNA topology and stability.pdf",
+ "id": "2b93a596-0842-40ae-86bb-36edf9a2d23d"
+ },
+ {
+ "filename": "2003 - Population Screening in the Age.pdf",
+ "id": "50146ca4-1b2c-4585-b797-61dbe573ae70"
+ },
+ {
+ "filename": "2003 - Welcome to the Genomic Era.pdf",
+ "id": "f7fe5d02-ee7c-4ec2-b6c4-ca9aa5efb41f"
+ },
+ {
+ "filename": "1993 - Age distribution of latent herpes simplex virus 1 and varicella-zoster.pdf",
+ "id": "b3c92c3b-7cbf-41af-bc0a-2b969b7c29ef"
+ },
+ {
+ "filename": "2016 - Age-related macular degeneration genome-wide association.pdf",
+ "id": "41c9da42-4f25-4f43-90f2-90cab36b35f3"
+ },
+ {
+ "filename": "2015 - The Human Genome Project, and recent advances in personalized genomics.pdf",
+ "id": "448ebb84-7e31-4306-ba08-83c5f492a2ad"
+ },
+ {
+ "filename": "2010 - Somatic evolutionary genomics Mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration.pdf",
+ "id": "2d0d839d-e526-4fd0-8f20-7558f2eed389"
+ },
+ {
+ "filename": "2002 - Roles of the Werner syndrome protein in pathways required.pdf",
+ "id": "b045a3ea-ed22-47d7-ae01-2e038f1f8fb0"
+ },
+ {
+ "filename": "1996 - Livestock Genomics Comes of Age.pdf",
+ "id": "f8703b19-e43f-4a38-85c7-084d4ea23dee"
+ },
+ {
+ "filename": "2008 - Estrogen, not intrinsic aging, is the major regulator of delayed.pdf",
+ "id": "0f75ea41-9d44-4374-ace4-8eab70be0960"
+ },
+ {
+ "filename": "2017 - Genome-wide association analysis identifies novel.pdf",
+ "id": "8445153f-6286-49a3-b85f-791310383034"
+ }
+ ]
+}
diff --git a/gnqa/src/apis/doc_ids.json b/gnqa/src/apis/doc_ids.json
new file mode 100644
index 00000000..c7429624
--- /dev/null
+++ b/gnqa/src/apis/doc_ids.json
@@ -0,0 +1,1409 @@
+{
+ "713ad3a2-efa9-44af-8639-f4e67efc7001": "2001 Nadkarni BayesCausal Approach.txt",
+ "87e43e53-85e4-4ad6-8e5f-c6b5e3b99202": "2022 -Tabbaa- Mouse pop genetics.pdf",
+ "152b2818-67d3-4041-a347-d1b355ca4ce8": "2003 -WebQTL rapid exploratory analysis of gene_expression and genetic networks for brain and_behavior.txt",
+ "9c8e07d4-2d6f-4e0b-8cf1-6920047554fa": "2022 -Yu- Sex Diff Key Genes Mouse.pdf",
+ "26abfbd2-7c02-4696-b208-039f8ec5a287": "2003 - WebQTL rapid exploratory analysis of gene_expression and genetic networks for brain and_behavior.txt",
+ "b3e8c6d4-fc8b-4a1c-b6d8-7c0252101571": "2003 - webQtl Web-Based Complex Trait Analysis.txt",
+ "2bcad6d5-7514-4055-960a-23daee498bc4": "2001 -Manly- MapManagerQTX.pdf",
+ "9161eaca-9841-4097-8dcd-4ea73ae81188": "2003 -Wang- WebQTL.pdf",
+ "28aeee87-848c-472b-b501-d4bdec208554": "2003 -Williams- WebQTL_A_Tour_of_Transcriptional_Networks.pdf",
+ "40942b18-1e6f-40c1-a610-aac94150808a": "2003 -chesler-Genetic inbred strains:pdf.pdf",
+ "81230775-5deb-499d-97bc-aa17301583e1": "2004 -Chesler- WebQTL_rapid_exploratory_analysis_of_gen.pdf",
+ "df96e60b-2d45-4386-b4b9-fffb936a1146": "2004 -Scott- P2p0r.pdf",
+ "ecfd1645-b4d8-4f60-9faa-b00d5537066b": "2005 -Bennett- Genetics_of_body_weight_in_the_LXS_recom.pdf",
+ "4f2a7fac-7cfb-4a08-9587-60b9f10870f2": "2005 -Bystrykh- Uncovering_regulatory_pathways_that_affe.pdf",
+ "213ac463-1d1f-41c3-b136-d67b368f25c5": "2005 -Chesler- WebQTL pain related phenotypes.pdf",
+ "f079736d-7559-40fb-98dd-978f07136f22": "2005 -Chesler- geneexpression.pdf",
+ "052e6a72-41b6-49d3-b37d-eb6664b0afe8": "2005 -Lariviere- QTL neuropathic mech allodynia.pdf",
+ "5a6ff51b-b429-47e4-8dc7-756e418cd3a6": "2005 -Tao- Spinal density-93.pdf",
+ "b7bfdfa6-8547-47b8-aef5-51316f351b60": "2005 -Yeomans- Antihyperalgesic.pdf",
+ "0e46a0b6-1005-49ad-ac3d-0e409e0d2027": "2005 -galhardo- Cognitive impairment.pdf",
+ "325ace7b-4d46-4119-a96b-076eb0c13832": "2014 -Wei- Fluorosis Mice.pdf",
+ "bc2b855f-5177-4304-b142-bfceaa4a7b9f": "2016 -Loos- BXDs Home cage.pdf",
+ "5b4350f1-779d-4763-a0e1-23008db25633": "2021 -Feng- Hierarchical regulation.pdf",
+ "5b2055ca-65c0-49a5-a442-e4ea8d5e8efb": "2021 -Mozhui- Epigenetic aging.pdf",
+ "2a75f967-c007-416c-a697-bf588de39272": "2021 -Potter-Dickey- Genetic Susceptibility.pdf",
+ "d125b837-65d0-4ab3-a608-6df832ae9eae": "2022 -Ashbrook- Genomic Basis Neurotoxic.pdf",
+ "8cd05a43-557d-4347-8ce3-acaa40d12423": "2022 -Bagley- Behavioral Phenotypes.pdf",
+ "b7f409c2-5328-4bd5-94f5-cc7456252ef6": "2022 -Baker- Effects BXD Mouse.pdf",
+ "e5bb942c-89a9-4fb8-a78d-1234bf486ba9": "2022 -Batten- Guix.pdf",
+ "45392de6-e26e-453d-b0f6-4a0688816a3e": "2022 -Batten- guix-gem5.pdf",
+ "6ca3f66a-4d54-4de8-b003-312a478c9fc1": "2022 -Bender- Inborn Errors.pdf",
+ "2d5cbb59-5330-4915-99e8-327450aa0c86": "2022 -Benegiamo- COX7A2L heart fitness.pdf",
+ "e965439e-e3bb-4b0c-b483-61ee9b175d6c": "2022 -Chanpaisaeng- Diet X Gene Interactions Control Femoral Bone Adaptation to Low Dietary Calcium.pdf",
+ "1a041a89-4da8-4ad5-b241-da36df917930": "2022 -Chunduri- Drugs Animal Models.pdf",
+ "6cb5f2c1-ad3f-4a94-ab85-16bacad9f87b": "2022 -Dong- Beta-caryophyllene klotho.pdf",
+ "ebd922bc-a95d-40bc-91e2-d6034571f7f4": "2022 -Feng- A hierarchical regulatory network ensures stable albumin transcription under various.pdf",
+ "fcd522a5-43ad-413b-abd9-5e3c9ccaca9f": "2022 -Gunturkun- GeneCup.pdf",
+ "305eff75-5950-46fe-8be6-a6a143aa11cc": "2022 -Hao- Integrative systems.pdf",
+ "38594391-2185-4636-9735-b7f92dc98981": "2015_GN_Diabetes.pdf",
+ "9e828c9f-5e04-4df7-b6c3-92825634e603": "2015_GN_Diabets_notheses.pdf",
+ "1f2060d9-353b-4de8-9172-edf15881f40f": "2022 -Jia- Alzheimers disease pathways.pdf",
+ "305bac54-2df3-420e-bf4e-9f9da6af53a3": "2022 -Katashima- Neuromuscular circuit.pdf",
+ "5cf156b3-26c4-4a07-b561-82b7bb820f61": "2022 -Lima- Leptin et al.pdf",
+ "b97b1f36-4944-4ab6-809f-de4b409462b3": "2022 -Liu- Quantitative proteomics approach reveals novel biomarkers and pathological.pdf",
+ "4a3d7317-5e32-473d-8c97-ea6071200724": "2022 -Madadi- AI RNA.pdf",
+ "64df9b7f-6b7a-490e-b24f-826e7bb9db2d": "2022 -Neuner- Resilient Alzheimers.pdf",
+ "0929a93b-3aab-4904-8e1b-0c45ef7638ac": "2022 -Restrepo- Predict impulsivity in children.pdf",
+ "d1547fa3-b174-489f-807e-12af3ff3da73": "2022 -Senko- Hippocampal neurogenesis serum glucose.pdf",
+ "72877628-70b1-4ca7-8503-08c36d5fec04": "2023 -Dietrich- Striatum-specific re-entry.pdf",
+ "d69e22cd-3bfd-43e1-b549-ca36adac1f92": "2003 - WebQTL rapid exploratory analysis of gene_expression and genetic networks for brain and_behavior.pdf",
+ "561145bb-7fe6-4941-9f02-5e6c73839100": "2003_WebQTL_docs.pdf",
+ "c12e853e-4f0d-48f9-93af-15db9ad2dfae": "2003 -Barnes- Bioinformatics_for_Geneticists.txt",
+ "217ca05d-0628-416f-994b-825a051b7565": "2003 -chesler-Genetic inbred strains:pdf.txt",
+ "b95934dd-cce2-4f9f-b685-0a43abbb4c1b": "2004 - Genetic regulation of endotoxin induced.txt",
+ "a29d8a64-30ac-4a7d-bd61-069f0b414963": "2004 -Chesler- WebQTL_rapid_exploratory_analysis_of_gen.txt",
+ "8a708ac9-bc57-4291-98a4-84e57080cab4": "2005 - A QTL resource and comparison tool for pigs PigQTLDB_Zhi-Liang Hu.txt",
+ "33081049-88ed-43fa-9684-3986a50f9421": "2005 - Collagen IX A molecular candidate for the pathogenesis of osteoporosis and frail bone microarchitecture.txt",
+ "7713bd3a-4d0a-41f4-b378-43c271ee35b1": "2005 - Ethanol-Responsive Brain Region Expression Networks.txt",
+ "f8872efb-31cc-4c88-9ad3-277e752588f3": "2005 - Gene Expression Differences in Mice.txt",
+ "387dcae5-4287-487f-82a5-d4809c7d44cb": "2005 - Genetic analysis of barrel field size in the first somatosensory area (SI) in inbred and recombinant inbred strains of mice.txt",
+ "0950746d-90b5-484d-853d-70026e85c9ce": "2005 - Genomics of the future Identification of quantitative trait loci in the mouse.txt",
+ "e3bc81a3-6cdb-42b1-a055-1df5b65a7538": "2005 - Large conductance Ca2 -activated K+ channels are differentially distributed among IB4+ and IB4- rat DRG neurons.txt",
+ "658a02ad-07d5-4f76-952f-5a4bc249448c": "2005 - Molecular characterization of mesocorticolimbic brain regions in DBA2J mice sensitized to the locomotor activating effects of ethanol.txt",
+ "58714c13-954b-46b3-bd0e-69ccadd9dc6a": "2005 - Part I Previous Research Track Record.txt",
+ "ff35f4c8-b78b-4dad-9aa8-1bb16479872d": "2005 - Replication of Small Effect Quantitative Trait Loci for Behavioral Traits Facilitated by Estimation of Effect Size from Independent Cohorts.txt",
+ "634fbbd1-bc7a-4d9d-aaf5-276a33f8811a": "2005 - Spinal cord postsynaptic density-93 protein contributes to the development of opioid tolerance and dependence.txt",
+ "3565f684-6ff7-443e-894e-f1b2dff0dbf7": "2005 - The_genetic_dissection_of_immune_respons.txt",
+ "19921792-5b31-4260-a78a-8da42746a861": "2005 -Alberts- Short-Oligonucleotide Arrays.txt",
+ "9e51c1b5-d7d4-4430-ac92-08fa3b2e9f42": "2006 - An Integrated Approach to Mouse Functional Genomic Data.txt",
+ "9e199fd8-c191-443a-88a1-eff59fafcaf1": "2006 - Gene networks involved in drought stress response and tolerance.txt",
+ "e438b39a-1b0c-4fef-897f-119aa81a494f": "2006 - Mouse bone marrow and peripheral blood erythroid cell counts are regulated by different autosomal genetic loci.txt",
+ "f459a8ed-b163-4ea0-a307-f186ec4350a5": "2006 - Rodent models Utility for candidate gene studies in human attention-deficit hyperactivity disorder (ADHD).txt",
+ "16879e66-dec0-4d1f-9874-298e503aff7f": "2006 - VCU BBSI Summer Proposal 2006 Effects of Ethanol on Myelin Genes in the Prefrontal Cortex in Mice A Search for a Regulatory Network.txt",
+ "f35e02a1-3314-4663-913f-38a3fc072aa8": "2007 - Bioinformatics_for_Genetices_MAZEN_SAEED.txt",
+ "ce983f99-5b2a-403a-b11a-dc2993a270f0": "2007 - Equilibrative and concentrative transport mechanisms.txt",
+ "071b4686-f5c4-4759-a038-14d79a45dac7": "2007 - Integration of mouse phenome data resources.txt",
+ "8d8b0e6a-ed02-4e58-bd55-e5d6475b9798": "2007 - Quantitative genetics of age-related retinal degeneration a second F1 intercross between the AJ and C57BL6 strains.txt",
+ "954e43d7-4261-403f-87bc-4c1ce1492cf5": "2007 - eQTL Viewer visualizing how sequence variation affects genome-wide transcription.txt",
+ "c09fd192-82f3-4d35-b945-e20dd1a490d2": "2008 - Combining transcriptional profiling and genetic linkage analysis to uncover gene networks operating in hematopoietic stem cells and their progeny.txt",
+ "47c1fa50-931b-4c4c-8cd7-097e3617b5eb": "2008 - Fine Mapping of a Major QTL Influencing Morphine Preference in C57BL6 and DBA2 Mice Using Congenic Strains.txt",
+ "46f190d1-f784-45cd-be09-d43a27ec4063": "2008 - Genome-Wide Prediction of Functional Gene-Gene Interactions Inferred from Patterns of Genetic Differentiation in Mice and Men.txt",
+ "dbfd0bc3-4632-4db8-b267-23b3c5fe02c9": "2008 - Microarray data analysis for SNP effects and inferring alternative splicing.txt",
+ "18047f55-9a4a-4360-afd1-fed7842da1ff": "2008 - THE_GENETIC_CONTRIBUTION_TO_HEART_RATE_AND_HEART_1.txt",
+ "c5ec777c-e093-4d81-baaf-7f1f214c1d80": "2008 -Kathiresan- Polymorphisms.txt",
+ "06637833-6930-48b7-acfb-4a8278085ae1": "2009 - Genetical Toxicogenomics in Drosophila Identifies Master Modulatory Loci that are Regulated by Developmental Exposure to Lead.txt",
+ "ee3d69ed-92bf-4fa2-893b-7cbadc5fb1bc": "2009 - Integrative genetics analysis of cartilage gene expression.txt",
+ "4ef6ffae-703d-49c2-bfbb-5c6b39b704e7":
+ {
+ "fname": "2009 - Systems genetics analysis of iron regulation in the brain.txt",
+ "filename": "2009-Jellen-Analysis of iron regulation in the brain.pdf",
+ "TITLE": "Systems genetics analysis of iron regulation in the brain",
+ "volume": 91,
+ "issn": "0300-9084",
+ "url": "https://www.sciencedirect.com/science/article/abs/pii/S0300908409001035",
+ "doi": "10.1016/j.biochi.2009.04.009",
+ "language": "en",
+ "number": 10,
+ "urldate": "2023-01-22",
+ "journal": "Biochimie",
+ "AUTHOR": "Jellen, Leslie C. and Beard, John L. and Jones, Byron C.",
+ "month": "Oct",
+ "year": 2009,
+ "pages": "1255--1259"
+ },
+ "834c01b2-0ff9-4996-8b25-6a0e55a69073": "2009 Agarwal Generanking.txt",
+ "0fdb6f0f-0278-425e-adf5-fee5e2784471":
+ {
+ "fname": "2010 - Genetic regulatory network analysis for Myoc based on genetical genomics approach.txt",
+ "filename": "2010-Lu-Genetic regulatory network analysis for Myoc based on genetical genomics approach.pdf",
+ "TITLE": "Genetic regulatory network analysis for Myoc based on genetical genomics approach",
+ "volume": 5,
+ "issn": "2377-9381",
+ "url": "https://ieeexplore.ieee.org/abstract/document/5639531/",
+ "doi": "10.1109/BMEI.2010.5639531",
+ "language": "en",
+ "urldate": "2023-02-01",
+ "journal": "2010 3rd International Conference on Biomedical Engineering and Informatics",
+ "AUTHOR": "Lu, Hong and Chen, Hui and Chen, Hao and Lu, Lu and Guan, Huaijin",
+ "month": "Oct",
+ "year": 2010,
+ "pages": "2201--2205"
+ },
+ "66fc5ee9-0126-431f-add0-819957499810": "2010 - Identification of a Chr 11 quantitative trait locus that modulates proliferation in the rostral migratory stream of the adult mouse brain_.txt",
+ "29f5af5f-8dc7-4e53-b0fa-66d37317a3f4": "2010 - Systems Biology Approach to Identifying Host Interactive Pathways.txt",
+ "f79056d6-1bd4-4cd8-b395-4febd74b7a7b": "2011 - Genome-Wide Association for Fear Conditioning in an Advanced Intercross Mouse Line.txt",
+ "3f87a135-cfa0-443c-a6ab-f875eb139bf7": "2011 - Systems genetics analysis of mouse chondrocyte differentiation.txt",
+ "af3ad242-afe4-43f5-9046-98388dd13177": "2011 - Using animal models to disentangle the role of genetic, epigenetic, and environmental influences on behavioral outcomes associated with maternal anxiety and depression.txt",
+ "ca55dc2b-7dc8-4ac4-8923-1b516eccdfb7": "2012 - A promoter polymorphism in the Per3 gene is associated with alcohol and stress response.txt",
+ "f3940d40-0953-4653-8598-270c6ea13936": "2006 - Databases of free expression.txt",
+ "0f478bbe-0ce7-4cc3-82d7-d1be116f7ba7": "2006 - Genetic and Structural Analysis of the Basolateral Amygdala Complex .txt",
+ "3485665e-4e33-481a-943e-d0fcb7c2f2ac": "2006 - Mouse genetic models in alcohol research.txt",
+ "6106ae32-b200-4e5d-8744-3a7c2266b705": "2006 - Selective expression of cholesterol metabolism genes in normal CD34+CD38− cells with a heterogeneous expression pattern in AML cells.txt",
+ "da46d7f0-5a30-488e-8d8c-a65aa6955c17": "2006 - β2-adrenergic receptor and UCP3 variants modulate the relationship between age and type 2 diabetes mellitus.txt",
+ "fca531d0-d45b-495f-a02c-fbd437617b20": "2007 - Bioinformatics_for_Geneticists.txt",
+ "d170b70f-5404-4823-b1c1-56679b488cb1": "2007 - Expression of murine killer immunoglobulin-like receptor KIRL1 on CD1d-independent NK1.1+ T cells.txt",
+ "5e5149e0-7bb5-4ddb-831d-e963365e8ec5": "2007 - Latexin is a newly discovered regulator of hematopoietic stem cells.txt",
+ "12c7f00e-5c03-4a9f-860d-243514d2a177": "2007 - Quantitative traits for the tail suspension test automation, optimization, and BXD RI mapping.txt",
+ "ad14b0c4-2a38-411b-9bb1-cacf9203f29d": "2008 - (Infectious Disease) Karl A. Western (auth.), Vassil St. Georgiev PhD, Karl A. Western MD, John J. McGowan PhD (eds.) - National Institute of Allergy and Infectious Diseases, NIH_ Frontiers in Researc (3).txt",
+ "0265286c-7bac-4ae3-831c-5bf5a4f758c6": "2008 - Comparing Quantitative Trait Loci.txt",
+ "489539fd-f7c5-44eb-bb58-5fc19d50a7cf": "2008 - GENETIC REGULATION OF HEMATOPOIETIC STEM CELL AGING (3).txt",
+ "17cc0220-3d8d-4457-9349-93ffe80c47fc": "2008 - Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements.txt",
+ "984b9a87-e487-4861-af85-14b2d4728d7b": "2008 - NEIBank Genomics and bioinformatics resources for vision research.txt",
+ "c09a3b78-df92-4217-baed-fb3bf10811a0": "2008 - The Diasporin Pathway a tumor progression-related transcriptional network that predicts breast cancer survival.txt",
+ "8bda5c7d-b579-4d20-afcc-5a157520a7b3": "2008 Kathiresan - Polymorphisms SNPs.txt",
+ "606c59c5-5ae4-47e9-b3eb-58afa55669d1": "2009 - Garland_and_Rose_Experimental_Evolution.txt",
+ "547ce63b-5178-45cb-ae07-12ae66aa2967":
+ {
+ "fname": "2009 - Genetics of the hippocampal transcriptome in mouse a systematic survey and online neurogenomics resource.txt",
+ "filename": "2009-Overall-Systematic survey and online neurogenomics resource.pdf",
+ "TITLE": "Genetics of the hippocampal transcriptome in mouse: a systematic survey and online neurogenomics resource",
+ "volume": 3,
+ "issn": "1662-453X",
+ "url": "https://www.frontiersin.org/articles/10.3389/neuro.15.003.2009/full",
+ "doi": "10.3389/neuro.15.003.2009",
+ "language": "en",
+ "number": 55,
+ "urldate": "2023-02-01",
+ "journal": "Frontiers in Neuroscience",
+ "AUTHOR": "Overall, Rupert W and Kempermann, Gerd and Peirce, Jeremy and Lu, Lu and Goldowitz, Dan and Gage, Fred H and Goodwin, Shirlean and Smit, August B and Airey, David C and Rosen, Glenn D",
+ "month": "Nov",
+ "year": 2009,
+ "pages": "815"
+ },
+ "914bb179-3c2c-4850-b2bd-61422794aaad": "2009 - Intra- and inter-individual genetic differences in gene expression.txt",
+ "e4692dd1-e6c4-4e32-b5ed-6763a24cef56": "2009 - TGR5-mediated bile acid sensing controls glucose homeostasis.txt",
+ "4e1c3260-acfc-4351-be75-af54549d5e5c": "2010 - Phenotype and Genetics of Progressive Sensorineural Hearing Loss (Snhl1) in the LXS Set of Recombinant Inbred Strains of Mice.txt",
+ "8aa01f11-fef5-4c53-a9af-969881ea1ebd": "2010 - Teaching Bioinformatics and Neuroinformatics by using Free Web-Based Tools.txt",
+ "548164af-e753-4545-8324-3b95e9388ebe": "2010 -Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse.txt",
+ "4ecc2642-4690-4319-8926-f06292319ad5":
+ {
+ "fname": "2011 - Global exploratory analysis of massive neuroimaging collections using Microsoft Silverlight PivotViewer.txt",
+ "filename": "2010-Yan-Neuroimaging Collections using Microsoft Silverlight.pdf",
+ "TITLE": "Global Exploratory Analysis of Massive Neuroimaging Collections using Microsoft Silverlight PivotViewer",
+ "issn": "0306-4522",
+ "url": "https://www.frontiersin.org/10.3389/conf.fnins.2010.13.00130/event_abstract",
+ "doi": "10.3389/conf.fnins.2010.13.00130",
+ "language": "en",
+ "urldate": "2023-02-06",
+ "JOURNAL": "Neuroinformatics",
+ "AUTHOR": "Yan, Lei and Williams, Robert W and Zhou Xiaodong and Lu, Lu and Centeno, Arthur and Kuan, Leonard and Hawrylycz, Michael and Rosen, Glenn D","month": "Aug",
+ "year": 2010
+ },
+ "7af2f25c-82e7-481c-b842-d7f878e9d270": "2011 - Multigenic Control and Sex Bias in Host Susceptibility to Spore-Induced Pulmonary Anthrax in Mice.txt",
+ "e74781c8-c332-4888-a2f2-7ff4089f7e8e": "2011 - Prioritization and Association Analysis of Murine-Derived Candidate Genes in Anxiety-Spectrum Disorders.txt",
+ "d608e1a6-2bf1-4ad6-993d-453a328896a0": "2012 - An Investigation Of Gene Networks Influenced By Low Dose Ionizing.txt",
+ "da60a50d-4145-4393-87e3-63dbf443c76a": "2006 - Analysis of metallothionein brain gene expression in relation to ethanol preference in mice using cosegregation and gene knockouts.txt",
+ "34473d38-3ced-4656-9572-f21169bec735": "2006 - Design of microarray experiments for genetical genomics studies.txt",
+ "7c7bd405-0749-46dd-b418-ed7289c64cb2": "2006 - Genetic characterization of a new set of recombinant inbred lines (LGXSM) formed from the intercross of SMJ and LGJ inbred mouse strains.txt",
+ "9b3b1f72-2b99-45ce-b61b-b861fcf84604": "2006 - Natural variation and genetic covariance in adult hippocampal neurogenesis.txt",
+ "f142a70e-ee38-4f02-9efe-9fb4649ab579": "2006 - Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades.txt",
+ "e863f1a9-158e-491f-ba9b-39fc12415770": "2006 -Beatty- Genomic regulation.txt",
+ "1b76f81c-6f01-4171-b2dc-f157b7d80e1c": "2007 - Genetic dissection of growth and obesity traits in a mouse congenic strain using transcript profiling and high density mapping.txt",
+ "08723f33-aa4f-44ca-8a7c-45469c82284f": "2007 - Mesencephalic Dopamine Neuron Number and Tyrosine Hydroxylase Content Genetic Control and Candidate Genes.txt",
+ "f59ba250-917b-4f86-b840-6384c670488a": "2007 - The 20th International Mammalian Genome Conference Meeting Report.txt",
+ "5e476588-dd36-4916-a09f-a3cfd255163e": "2008 - 1st INCF Workshop on Global Portal Services for Neuroscience.txt",
+ "0cffed01-3711-4c7f-94cf-6d32bc41ef66": "2008 - Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders.txt",
+ "da485354-fcdc-49b8-9a41-0f673610156a": "2008 - Gene Expression Profiling.txt",
+ "f9d93e23-292c-44b3-8f27-dc1b4d6b494f": "2008 - Genotype-phenotype relationships and the patterning of complex traits as exemplified in the mammalian dentition.txt",
+ "9ea11e01-aa2a-4df8-b356-833fdfcb3d72": "2008 - Of mice and men, periodic limb movements and iron how the human genome informs the mouse genome.txt",
+ "cb27f673-688c-4005-a4ad-214c93868491": "2008 - The role of 5-HT1A receptors in learning and memory.txt",
+ "fcec7b5e-0770-4d81-a9f4-fae66bcd27d5": "2008 McCarthy gwas_review2.txt",
+ "d3b364c4-bdd3-4c7c-8b3f-e27bd3460c37": "2009 - Gene expression in the mouse eye an online resource for genetics using 103 strains of mice.txt",
+ "d00416be-b990-4901-ad78-578ce7be0197": "2009 - Herding cats the sociology of data integration.txt",
+ "bb5ed347-0f54-431a-a125-97b9d762b003": "2009 - Modular Digital Course in Undergraduate Neuroscience Education (MDCUNE) a website offering free digital tools for neuroscience educators.txt",
+ "2b4ff747-69e6-4fe6-8d09-ca4c9495f522": "2009 - The INCF digital atlasing program report on digital atlasing standards in the rodent brain.txt",
+ "8c1078c0-7979-4009-9ed4-99a5337709ae": "2010 - Exploring neuroanatomical and genetic influences on epileptogenesis utilizing the repeated flurothyl model in mice.txt",
+ "05fbfd9b-ce25-490e-87d1-1761b33a412d": "2010 - Genetics and genomics of iron homeostasis in the brain.txt",
+ "a6a275f6-b001-41bc-837e-bcef30359f2f": "2010 - Importance of genetic background for risk of relapse shown in altered prefrontal cortex gene expression during abstinence following chronic alcohol intoxication.txt",
+ "3fb5c4ae-2498-4a98-91b2-061950df1f1e": "2011 - Designing, performing, and interpreting a microarray-based gene expression study.txt",
+ "6b827d23-96be-47aa-98f9-2ad72a947e45": "2011 - Identifying Human Disease Genes through Cross-Species Gene Mapping of Evolutionary Conserved Processes.txt",
+ "e13448fa-4108-4b72-9276-7cd1a6a19c21": "2011 - Novel Candidate Genes Associated with Hippocampal Oscillations.txt",
+ "756e6598-0823-4278-a6b5-75920b7cc621": "2011 - Using the PhenoGen Website for “In Silico” Analysis of Morphine-Induced Analgesia Identifying Candidate Genes.txt",
+ "b078162f-a48d-405b-b2cf-3559fc3338c8": "2006 - Evaluation of methods and applications for behavioural profiling of transgenic mice.txt",
+ "40cb25c4-e046-4275-8ba7-49a9773049f2": "2006 - Genetic susceptibility to radiation-induced acute myeloid leukaemia (r-AML).txt",
+ "f67f291b-2ea5-4d78-9595-2cbbc35dc415": "2006 - New aspects of statistical methods for missing data problems, with applications in bioinformatics and genetics.txt",
+ "bc83a282-2722-47b1-8326-7780732b29d2": "2006 - Statistical modeling of transcription regulation in eukaryotes.txt",
+ "0109de12-a0cd-4d41-a310-8423d6b0441a": "2006 -Fehr- Alcohol Clin Exp Res - 2006 -Fehr- The Syntaxin Binding Protein 1 Gene Stxbp1 Is a Candidate for an Ethanol.txt",
+ "83dc0ef1-fd5d-4cf1-9311-ebaaa25a5e49": "2007 - Classification of microarray data using gene networks.txt",
+ "b3c2189b-270c-4b4a-9d40-cdc0dceebd9e": "2007 - Genetic regulation of hypothalamic cocaine and amphetamine-regulated transcript (CART) in BxD inbred mice.txt",
+ "9d099959-b0d0-45b1-b2f7-0e30ad63d48e": "2007 - Morphine effects on striatal transcriptome in mice.txt",
+ "81bb21fb-1ccf-4fa1-9a60-c3b12cb99634": "2007 - The Pheno-Gen Informatics Website.txt",
+ "0de2ad4a-b7e3-484e-8778-5ea47e42a4e4": "2008 - A genome-wide panel of congenic mice reveals widespread epistasis of behavior quantitative trait loci.txt",
+ "d0edfb1d-cab7-4f2c-8640-ccc1e484df3c": "2008 - Cost-effective strategies for completing the interactome.txt",
+ "069247f3-7209-4dbb-85e3-e9f11e273812": "2008 - Genetic Analysis of Posterior Medial Barrel Subfield Size.txt",
+ "dd878d66-c3af-4e2f-a6f8-9de6edc3dc60": "2008 - High-resolution genetic mapping of mammalian motor activity levels in mice.txt",
+ "b7f1f9b3-0ee0-40d8-ad3c-74b0b189d312": "2008 - Overexpression of Scg5 increases enzymatic activity of PCSK2 and is inversely correlated with body weight in congenic mice.txt",
+ "beb7a242-21fe-4a66-8b44-7f228c0d3640": "2008 - Towards systems genetic analyses in barley Integration of phenotypic, expression and genotype data into GeneNetwork.txt",
+ "8488ee18-ce6d-4a00-a97f-f4d2ec5d5175": "2008_Modulation of voluntary ethanol consumption by Arrb2.txt",
+ "78b2381f-e66f-49a8-9dcb-8202b5fbe625": "2009 - Genes and Addictions.txt",
+ "550c099f-88d0-483f-865a-01ef7362e2be": "2009 - High‐throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains.txt",
+ "835a094d-9c2b-4686-8725-d3c4123175b0": "2009 - Multiscale Genomic Analysis of the Corticolimbic System_ Uncoveri (1).txt",
+ "793e0349-bbb7-4edb-bc2d-778ac5e3ba49": "2010 - A Transposon in Comt Generates mRNA Variants and Causes Widespread Expression and Behavioral Differences among Mice.txt",
+ "a8ebda64-b29d-4889-8b87-5cbc0bec7909": "2010 - Functional_characterization_of_tyrosine_phosphatas.txt",
+ "e7bc9d83-6c3b-405c-a552-29874b927860": "2010 - Genome-wide analysis of transcriptional regulation in the murine liver.txt",
+ "3c69df9d-414a-420b-a513-ca3860662d57": "2010 - Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.txt",
+ "79cc9995-ef16-4555-acef-6e0f28a2b5e8": "2010 - Systems genetics analyses predict a transcription role for P2P-R Molecular confirmation that P2P-R is a transcriptional co-repressor.txt",
+ "a8e16a9a-242b-492f-95f6-9e80a10e77cc": "2010 - Using expression genetics to study the neurobiology of ethanol and alcoholism.txt",
+ "c22b0145-99a3-458b-a977-d1e926985ab7": "2011 - An Evolutionary Conserved Role for Anaplastic Lymphoma Kinase in Behavioral Responses to Ethanol.txt",
+ "18da99ad-f985-4aba-831e-35de60e36949": "2011 - Genetic Analysis of the Neurosteroid Deoxycorticosterone and Its Relation to Alcohol Phenotypes Identification of QTLs and Downstream Gene Regulation.txt",
+ "6e7686d2-6d27-465b-97c2-df53f9e62d84": "2006 - Association between the Casein Kinase 1 Epsilon Gene Region and Subjective Response to D-Amphetamine.txt",
+ "89fdce49-cd76-446e-bc47-9484071f9d3e": "2006 - Expression genetics and the phenotype revolution.txt",
+ "cf380786-3792-4bb4-a7c9-59f59f071952": "2006 - Genomic regulation of natural variation in cortical and noncortical brain volume.txt",
+ "9fd01f79-126c-4f95-8fe0-50391d763e53": "2006 - Nonparametric imputation of missing values for estimating equation based inference-a full report.txt",
+ "0cff6ce0-2ccd-4ad0-b6fc-952c9157087a": "2006 - Systems biology of circadian rhythms an outlook.txt",
+ "c4097a2e-d5c7-4a9b-8b0a-51b868be7f24": "2007 - Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains.txt",
+ "bbd1d762-faab-409d-9243-bc94023e16c0": "2007 - Genome Level Analysis of Genetic Regulation.txt",
+ "6f7ca779-0421-49eb-bef8-73eb0d513c60": "2007 - Nf1 expression is dependent on strain background.txt",
+ "fef6662c-0378-4827-a142-f2898f8785ed": "2007 - The genetic basis of variation in susceptibility to infection with Histoplasma capsulatum in the mouse.txt",
+ "8ff8d5ae-5981-484f-871c-b88c9208b5dc":
+ {
+ "FNAME": "2008 - A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23ahl underlie the early onset, age-related hearing loss of DBA2J mice.txt",
+ "FILENAME": "2008-Johnson-Interaction with Cdh23ahl underlie the early onset.pdf",
+ "TITLE": "A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23ahl underlie the early onset, age-related hearing loss of DBA/2J mice",
+ "VOLUME": 92,
+ "ISSN": "0888-7543",
+ "URL": "https://www.sciencedirect.com/science/article/pii/S0888754308001456",
+ "DOI": "10.1016/j.ygeno.2008.06.007",
+ "LANGUAGE": "en",
+ "NUMBER": 4,
+ "URLDATE": "2023-02-01",
+ "JOURNAL": "Genomics",
+ "AUTHOR": "Johnson, Kenneth R and Longo-Guess, Chantal and Gagnon, Leona H and Yu, Heping and Zheng, Qing Yin",
+ "MONTH": "Oct",
+ "YEAR": 2008,
+ "PAGES": "219--225"
+ },
+ "82676ee9-4ea4-4233-835c-4a6ca96c90dd": "2008 - DACE Differential Allelic Co-Expression test for estimating regulatory associations of SNP and biological pathway.txt",
+ "2a7da18e-3756-45c5-b18c-a2231685fefd": "2008 - Genetic Effects on Environmental Vulnerability to Disease Novartis Foundation Symposium 293.txt",
+ "edbc01cb-82e1-4ee4-9e0a-124c15b0e0d8": "2008 - Insight into the genetics of hypertension, a core component of the metabolic syndrome.txt",
+ "e074ba47-cd7a-4bb2-8bcb-9a15da69cc2d": "2008 - Predicting Functional Impact of Coding and Non-Coding Single Nucleotide Polymorphisms.txt",
+ "0b0e5343-4604-43ff-bc26-c87516dda690": "2008 - Unraveling the molecular mechanisms of alcohol dependence.txt",
+ "5e3ad5bb-135a-4980-b605-208101c3b315": "2008_ModulationofethanolconsumptionbyArrb2.txt",
+ "6d98da1a-9964-4be7-bb67-47f829dcd2cf": "2009 - Genetic Regulatory Network Analysis for App Based on Genetical Genomics Approach.txt",
+ "aeb0e120-750a-4bb4-b5c4-1a48705faf7c": "2009 - Host Genetic Variation Affects Resistance to Infection with a Highly Pathogenic H5N1 Influenza A Virus in Mice.txt",
+ "eef5a903-68f2-45d5-9a27-73e5b32aa644": "2009 - Neuroscience in the era of functional genomics and systems biology.txt",
+ "dc1a2dfd-5eb5-4854-bb1f-a0c3923485c7": "2009 - To what extent is blood a reasonable surrogate for brain in gene expression studies estimation from mouse hippocampus and spleen.txt",
+ "e2eaa1f2-1a1c-42b7-ab7f-e69a0394f748": "2010 - Genetic Dissection of Dietary Restriction in Mice Supports the Metabolic Efficiency Model of Life Extension.txt",
+ "2951c489-dbc2-4327-9c66-6179ed803dee": "2010 - High-dimensional gene expression classification and genome-wide association studies of complex traits.txt",
+ "56d79cf3-50fc-4803-9c5c-6e5a8a04879b": "2010 - MBAT a scalable informatics system for unifying digital atlasing workflows.txt",
+ "de0aeb5f-dc8f-4629-b683-8c8ad3a42122": "2010 - Systems genetics, bioinformatics and eQTL mapping.txt",
+ "ed5a72d3-dc17-4812-a188-01574dbe6aa6": "2011 - Annotating individual human genomes.txt",
+ "26c6a28f-79d5-4f49-b0f4-df47acf79a8d": "2011 - Genetic Dissection of Behavioral Flexibility Reversal Learning_in Mice.txt",
+ "a4e2c0f5-be37-46de-87ad-83d7070aec69": "2011 - Genetic-based, differential susceptibility to paraquat neurotoxicity in mice.txt",
+ "8df298ea-4052-4a4a-bcd3-2e36818844f4": "2006 - Attentional performance of C57BL6 and DBA2 mice in the 5-choice serial reaction time task.txt",
+ "d9e0fe62-0bba-4c9f-a608-dca70a2454d4": "2006 - Expression profiling identifies novel candidate genes for ethanol sensitivity QTLs_.txt",
+ "810a8c3f-5ec5-4ce8-9ad1-149ce98a573d": "2006 - Geometric morphometrics defines shape differences in the cortical area map of C57BL6J and DBA2J inbred mice.txt",
+ "045d0078-0ab3-46a6-bda9-84fca8e70f89": "2006 - Online workbenches for neural network connections.txt",
+ "b70c4714-f3d2-4289-827b-d012611faadc": "2006 - Systems genetic analysis of peripheral iron parameters in the mouse_.txt",
+ "5166a577-fa2b-4aaa-8f37-1667346fd46a": "2006 -Olson- Genes Env and Dyslexia lecture.txt",
+ "eb90c74a-60f0-4485-b1b9-bb6665469828": "2007 - Combinatorial genetic regulatory network analysis tools for high throughput transcriptomic data.txt",
+ "c4000f65-4126-4cf5-b789-e23227f2e7d1": "2007 - Glutamate receptor metabotropic 7 is cis-regulated in the mouse brain and modulates alcohol drinking.txt",
+ "cb217bfd-395f-4a10-9465-a960585c46fe": "2007 - Prediction of transcription factor binding sites using genetical genomics methods.txt",
+ "00d745b4-bdf2-4777-bf6d-2db43e39090b": "2007 - The genetic contribution to heart rate and heart rate variability in quiescent mice.txt",
+ "f6b1b144-8c2c-443b-a75f-46c0a0053747": "2008 - Accurate_Discovery_of_Expression_Quantit.txt",
+ "acfbb3e9-6eeb-4541-bd1f-9f460de09958": "2008 - Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling.txt",
+ "d6085c3a-6ade-499e-9fde-4c8ea682f20e": "2008 - Insights in the genetic architecture of impulsivity in mice.txt",
+ "8f8e3312-9697-44c3-9286-70fa9d381c9a": "2008 - Regulation of TIP60 by ATF2 modulates ATM activation.txt",
+ "1b31c086-dbd1-4b0d-8b51-c33b074b8e9d":
+ {
+ "fname": "2008 - Using gene expression databases for classical trait QTL candidate gene discovery in the BXD recombinant inbred genetic reference population Mouse forebrain weight.txt",
+ "filename": "2008-Lu-Classical trait QTL candidate gene discovery.pdf",
+ "TITLE": "Using gene expression databases for classical trait QTL candidate gene discovery in the BXD recombinant inbred genetic reference population: Mouse forebrain weight",
+ "volume": 9,
+ "issn": "1471-2164",
+ "url": "https://link.springer.com/article/10.1186/1471-2164-9-444",
+ "doi": "10.1186/1471-2164-9-444",
+ "language": "en",
+ "number": 444,
+ "urldate": "2023-01-23",
+ "journal": "BMC Genomics",
+ "AUTHOR": "Lu, Lu and Wei, Lai and Peirce, Jeremy L and Wang, Xusheng and Zhou, Jianhua and Homayouni, Ramin and Williams, Robert W and Airey, David C",
+ "month": "Dec",
+ "year": 2008,
+ "pages": "1--12"
+ },
+ "b69858f3-885e-4f80-9e59-7c713c18aa10": "2009 - A Common and Unstable Copy Number Variant Is Associated with Differences in Glo1 Expression and Anxiety-Like Behavior.txt",
+ "9ac0b7e7-6294-4cfb-97e3-e5a4546af324": "2009 - Genetic architecture for hole-board behaviors across substantial time intervals in young, middle-aged and old mice.txt",
+ "febf219d-fe24-4612-9731-63b1b1631a0c": "2009 - Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice.txt",
+ "ce5142d1-5c02-4e8e-9ca5-0419389a33cd": "2009 - Processing Large-Scale, High-Dimension Genetic and Gene Expression Data.txt",
+ "f7eb4341-2ac1-46c2-aa53-f10df79fbaa8": "2009 - Use of rat genomics for investigating the metabolic syndrome.txt",
+ "63d1510a-403a-4210-8a59-02f84644e242": "2010 - Identification of Candidate Genes for Neuropathic Pain at the Pain1 Locus on Mouse Chromosome 15.txt",
+ "b73879de-43a6-48b0-ad69-98afadbfb997": "2010 - Strain Differences in Stress Responsivity Are Associated with Divergent Amygdala Gene Expression and Glutamate-Mediated Neuronal Excitability.txt",
+ "eb9f360b-8084-4749-a2e7-e9ae0f18bd08": "2010 - The NIF DISCO Framework Facilitating Automated Integration of Neuroscience Content on the Web.txt",
+ "a31cb6a7-34c4-45d4-9b4b-819122346ede": "2011 - CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability.txt",
+ "c359caaa-2db5-474b-8c55-00a55522cb43": "2011 - Genetic modulation of horizontal cell number in the mouse retina.txt",
+ "27e062d0-d5ed-4ee9-8783-f22882284865": "2011 - Independent genetic loci for sensorimotor gating and attentional performance in BXD recombinant inbred strains.txt",
+ "a45d0b06-9da2-4864-8548-37867c322dca":
+ {
+ "fname": "2011 - Peripheral reduction of β-amyloid is sufficient to reduce brain β-amyloid Implications for Alzheimer’s disease.txt",
+ "filename": "2011-Sutcliffe-Sufficient To Reduce Brain b-Amyloid.pdf",
+ "TITLE": "Peripheral Reduction of b-Amyloid Is Sufficient To Reduce Brain b-Amyloid: Implications for Alzheimer’s Disease",
+ "volume": 89,
+ "issn": "0360-4012,1097-4547",
+ "url": "https://onlinelibrary.wiley.com/doi/full/10.1002/jnr.22603",
+ "doi": "10.1002/jnr.22603",
+ "language": "en",
+ "number": 6,
+ "urldate": "2023-01-18",
+ "journal": "Journal of Neuroscience Research",
+ "AUTHOR": "Sutcliffe, J Gregor and Hedlund, Peter B and Thomas, Elizabeth A and Bloom, Floyd E and Hilbush, Brian S",
+ "month": "Jun",
+ "year": 2012,
+ "pages": "808--814"
+ },
+ "956bd526-38a3-44c4-bdac-1cafb92100dd": "2008 - Rutter_s child and adolescent psychiatry-Blackwell Pub (2008).txt",
+ "f2027d4b-0be7-4b5b-98e1-c7bb91997948": "2006 - Extracting Gene Networks for Low-Dose Radiation Using Graph Theoretical Algorithms.txt",
+ "e112d62d-d8d7-4560-ae8e-caa4e66c3401": "2006 - ITGB3 shows genetic and expression interaction with SLC6A4.txt",
+ "c319cee1-8224-46ea-a27e-26a231f9d443": "2006 - Population and systems genetics analyses of cortisol in pigs divergently selected for stress.txt",
+ "db0459f8-6602-48d7-be9b-14863a88bbe1": "2006 - THE GENETIC REGULATION OF THE RESPONSE OF HEMATOPOIETIC STEM_PROG.txt",
+ "45d48c10-def5-4b02-bc91-0bc6983ce75d": "2007 - A formal ontology of subcellular neuroanatomy.txt",
+ "abea3dd4-9492-4a2b-8904-b8052e384785": "2007 - Combining classical trait and microarray data to dissect transcriptional regulation a case study.txt",
+ "026429a1-4a80-470a-88e9-985aa037605e": "2007 - How to infer gene networks from expression profiles.txt",
+ "dc5c135e-aef4-4653-9a21-c355766285ce": "2007 - Prenatal nicotine exposure alters gene expression in a sexually dimorphic manner.txt",
+ "4d7252b9-48d1-45f2-b891-c87a2a945c5b": "2007 - The_p47_GTPases_Iigp2_and_Irgb10_Regulate_Innate_I.txt",
+ "890e3fd6-1482-43e9-891d-8598ae90baaa": "2008 - Alcohol trait and transcriptional genomic analysis of C57BL6 substrains.txt",
+ "660eeb26-fd19-4360-992f-13c499a17467": "2008 - Dynamic Visualization of Coexpression in Systems Genetics Data.txt",
+ "e6029f9d-936f-411e-b55f-828a638e68d6": "2008 - Genetic analysis reveals polygenic influences on iron, copper, and zinc in mouse hippocampus with neurobiological implications.txt",
+ "bec58804-181a-4683-8e51-0ec6d381da69": "2008 - Integrative genetic analysis of alcohol dependence using the GeneNetwork Web resources.txt",
+ "c43b0bae-6942-4b17-a598-1f92eec59251": "2011 - Deletion of alpha‐synuclein decreases impulsivity in mice.txt",
+ "55a8d55f-a11f-4a60-86ca-c2ea62c4be45": "2009 - Recent Advances in Genetics of the Spontaneously Hypertensive Rat.txt",
+ "638b3811-7054-4788-a42d-2ccc7bfce1c7": "2010 - XGAP a uniform and extensible data model and software platform for genotype and phenotype experiments.txt",
+ "621d8b0a-821b-45f8-ae91-aba0cdcdda10": "2009 - Visual analytics for relationships in scientific data (1).txt",
+ "85ee9743-b34d-4d49-9017-d7d2e5d4b996": "2009 - Detection and interpretation of expression quantitative trait loci (eQTL).txt",
+ "667f6bd2-ad5e-485a-a0e0-c065d6fea3e0": "2010 - Human and laboratory rodent low response to alcohol Is better consilience possible.txt",
+ "d45fac79-891e-4890-b8d8-4e1a60edcd2f": "2011 - Genetic Analysis of Iron Deficiency Effects.txt",
+ "cfdda570-52c3-4a7f-a36a-0b8f55913130": "2011 - Analysis of cognitive functions in recombinant inbred strains of rats produced by crossbreeding of SHR and BN Lx. lines.txt",
+ "99857e5b-0e73-4928-9ab2-eccadb50c2fd": "2009 - Hybrid mice as genetic models of high alcohol consumption.txt",
+ "7c055057-eb70-4df4-a8e2-66e90a8f174d": "2010 - Systems genetics analysis of molecular pathways underlying ethanol-induced behavioral phenotypes.txt",
+ "59829328-fc8d-4007-8109-6d114368e6fc": "2010 - Genetic Variation and Brain Gene Expression in Rodent Models of Alcoholism Implications for medication development.txt",
+ "0fafb156-8996-4942-8c90-a60dcf0dd8c9": "2009 - Genetic dissection of the mouse brain using high-field magnetic resonance microscopy.txt",
+ "e5090c99-ade7-48d3-8efe-d74bf4d5f334": "2015 - The Convergence of Systems and Reductionist Approaches.txt",
+ "6cf55c68-43c4-4c0c-a10c-e1c8b80d478a": "2010 - A catalogue of reporting guidelines for health research.txt",
+ "3711efc0-272d-4bac-b352-f77832cf624a": "2008 - Interspecies comparisons of functional genetic variations and their implications in neuropsychiatry†.txt",
+ "c17fc78e-eda6-499c-962b-3c91b2722c06": "2011 - Discovery of novel pain genes using systems genetics.txt",
+ "044124e5-5a8a-478a-a4a8-d0fce19a220e": "2010 - Semantic and Spatial Multi-Scale Information Models of the Nervous System.txt",
+ "9b830769-1d42-4dce-b529-4e07902c0743": "2010 Ehrenreich Yeast Genetic Traits.txt",
+ "47c12133-5a30-45b9-bcb8-b96f00737f31": "2007 - QTL Mapping in Aging Systems.txt",
+ "e8b25f12-846b-4504-978c-8f27ebb889c9": "2008 - SGDI system for genomic data integration.txt",
+ "ef4e1724-4b21-48f4-8b6f-aa52c9949abe": "2008 - Variation at candidate gene loci and their fuctional importance in rodent models of ethanol dependence.txt",
+ "e9d3c6a0-479f-4cc2-a0f5-a38c1dd3388d": "2005 -galhardo- Cognitive impairment.txt",
+ "d333b766-b7e4-4ab5-96a8-50a8a1d805f1": "2010 - The Genetics of Pain and Analgesia in Laboratory Animals.txt",
+ "92adc5ce-c0ec-4ae9-a671-8aa99942215e": "2006 - Integrative strategies to identify candidate genes in rodent models of human alcoholism.txt",
+ "694d4ca4-e464-4d99-997a-4f3daff5b618": "2007 - A locus on distal Chromosome 10 affecting Age-Related Hearing Loss.txt",
+ "dc920d9b-f538-460f-9ad8-7c82ea162567": "2010 - Cross-species behavioural genetics A starting point for unravelling the neurobiology of human psychiatric disorders.txt",
+ "f7a4ae8c-250f-45b5-94cb-15512485b726": "2009 - Identification of Candidate Genes and Gene Networks Specifically Associated with Analgesic Tolerance to Morphine.txt",
+ "a660c093-3ccd-4e57-8734-d25518d7c63a": "2007 - Defining the dopamine transporter proteome by convergent biochemical and in silico analyses.txt",
+ "cd11423a-8554-45f6-86c4-0fffd38cc09d": "2007 - Identifying genomic regulators of set-wise co-expression.txt",
+ "b2990ece-81f7-4411-b8cc-8941dd7c4ec4":
+ {
+ "fname": "2010 - Genetic analysis of BDNF expression cliques and adult neurogenesis in the hippocampus.txt",
+ "filename": "2010-Mulligan-BDNF Expression Cliques.pdf",
+ "TITLE": "Genetic Analysis of BDNF Expression Cliques and Adult Neurogenesis in the Hippocampus",
+ "issn": "2373-1265",
+ "url": "https://ieeexplore.ieee.org/abstract/document/5510847",
+ "doi": "10.1109/BSEC.2010.5510847",
+ "language": "en",
+ "urldate": "2023-01-24",
+ "journal": "2010 Biomedical Sciences and Engineering Conference",
+ "AUTHOR": "Mulligan, Megan K and Lu, Lu and Overall, Rupert W and Kempermann, Gerd and Rogers, Gary L and Langston, Michael A and Williams, Robert W",
+ "month": "May",
+ "year": 2010,
+ "pages": "1--4"
+ },
+ "1198b1b3-e492-4c2c-8809-2bbf7801c008": "2006 - From genetical genomics to systems genetics potential applications in quantitative genomics and animal breeding.txt",
+ "468beb66-8478-4044-852f-eb35017ff58a": "2006 - The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion.txt",
+ "4ecc93d3-af5b-4646-b40d-b557377af0b1": "2008 - Genetic control of experience‐dependent plasticity in the visual cortex.txt",
+ "1660cbf6-a5ee-4e70-9150-7d18af284daf": "2011 - Anxiety and fear in a cross of C57BL6J and DBA2J mice mapping overlapping and independent QTL for related traits_G. Sokoloff, C. C. Parker, J. E. Lim, .txt",
+ "78fd5c90-6189-498c-b22d-bc2a958af438": "2009 - eQTL analysis in mice and rats.txt",
+ "b6b75130-2f12-4c2d-9a70-72af8f8bf9a8": "2008 - EGR An ethanol-related gene resource.txt",
+ "f0bf9619-6bb9-41c7-9d2b-51d9b650d5b2": "2009 - Replication and Narrowing of Gene Expression Quantitative Trait Loci using Inbred Mice.txt",
+ "1fb6e4db-79c1-49c9-a358-3414f6a674da":
+ {
+ "fname": "2009 - Genetic modulation of striatal volume by loci on Chrs 6 and 17 in BXD recombinant inbred mice.txt",
+ "filename": "2009-Rosen-striatal volume by loci.pdf",
+ "TITLE": "Genetic modulation of striatal volume by loci on Chrs 6 and 17 in BXD recombinant inbred mice",
+ "volume": 8,
+ "issn": "1601-1848, 1601-183X",
+ "url": "https://onlinelibrary.wiley.com/doi/full/10.1111/j.1601-183X.2009.00473.x",
+ "doi": "10.1111/j.1601-183X.2009.00473.x",
+ "language": "en",
+ "number": 3,
+ "urldate": "2023-01-23",
+ "journal": "Genes, Brain and Behavior",
+ "AUTHOR": "Rosen, Glenn D and Pung, Christopher J and Owens, Cullen B and Caplow, Julie and Kim, Heejung and Mozhui, Khyobeni and Lu, Lu and Williams, Robert W",
+ "month": "Apr",
+ "year": 2009,
+ "pages": "296--308"
+ },
+ "53a0a196-385a-47ba-9509-0d4f4b157cbf": "2006 - Positional cloning of genes contributing to variability in nociceptive and analgesic phenotypes.txt",
+ "b9a57d38-9068-427e-a1d5-90e78dc9ed77": "2010 - IMMUNOGLOBULIN HEAVY CHAIN VARIABLE REGION GENES CONTRIBUTE TO THE INDUCTION OF THYROID STIMULATING ANTIBODIES IN RECOMBINANT INBRED MICE.txt",
+ "337a247f-e444-4e64-8851-7055028f4eb9": "2009 - Empirical likelihood for estimating equations with missing values.txt",
+ "ce9c656d-58a8-44ea-b4a4-36206f1177cf": "2007 - Transcriptomics and the genetics of alcohol consumption in mice.txt",
+ "8cb01ffe-ccb5-46cc-be9f-cbc85d3a470b": "2007 - Aging Hematopoietic Stem Cells Decline in Function and Exhibit Epigenetic Dysregulation.txt",
+ "e8397443-575a-4645-b161-59862203f7b4": "2007 - Using quantitative trait loci analysis to select plants for altered radionuclide accumulation.txt",
+ "e17b5b05-4676-4b3d-a625-74d453c342bd": "2006 - Marker Assisted Backcrossing .txt",
+ "4b92915e-2b8c-4d82-a8a3-5beefb7b6335": "2015 -Williams- Convergence.txt",
+ "8236098f-5bfa-4dee-a2d5-27b627347a4d": "2009 - Genetic pathways of Lyst and exfoliation syndrome.txt",
+ "425aaeb9-f6db-42e8-8613-3878131421f6": "2007 - Insights from spatially mapped gene expression.txt",
+ "8bb7e3b1-bdb0-4c54-a916-6424237616da": "2008 - Bioinformatics Analysis of Rat Muscle Microarray Gene Expression and Genetics of Pig Exterior Traits.txt",
+ "4e9e4661-4312-47d1-ad0e-eb40ac674012": "2005 -mcbride- Alcohol Effects CNS.txt",
+ "98e1aa99-f179-455d-9d0b-ab63d2bf19e6": "2011 - Cardiac physiologic and genetic predictors of hyperoxia-induced acute lung injury in mice.txt",
+ "3278febd-171a-485d-bd6e-0cbb523d73ec": "2010 - Data-driven assessment of eQTL mapping methods.txt",
+ "34424b41-1c8b-4c76-8d37-883ab85a2758": "2008 - Exploiting Regulatory Variation to identify genes underlying quantitative resistance.txt",
+ "f93a3518-76b8-4ef8-b3dd-d2131829ac97": "2006 - Confirmation and Fine Mapping of Ethanol Sensitivity Quantitative Trait Loci, and Candidate Gene Testing in the LXS Recombinant Inbred Mice.txt",
+ "a440a3fa-74e7-4fd8-8a7f-d0391300d6ed": "2009 - Experimental_Evolution.txt",
+ "16884a78-1aa3-4b33-9040-1bf417402139": "2008 - Mapping Quantitative Trait Loci in Livestock Using Simple Regression Approach.txt",
+ "92fa8f50-2923-41a1-812b-32d931c71684": "2011 - EXPLOITING NATURAL AND INDUCED GENETIC VARIATION TO STUDY HEMATOPOIESIS.txt",
+ "9981a933-8fdf-4107-a6fd-3f9ef71f5d08": "2009 - Identification of Quantitative Trait Loci in Alcoholism.txt",
+ "56b8ab20-983a-4f20-8272-c741372dd96d": "2007 - Quantitative Trait Loci Affecting Milk Yield and Protein Percentage in a Three-Country Brown Swiss Population.txt",
+ "0b719412-fb10-44fb-8620-eb4118d1194b": "2011 - A strong synergistic epistasis between FAM134B and TNFRSF19 on the susceptibility to vascular dementia.txt",
+ "3d1b9143-fd04-4b2c-b613-9fe2f9bad70a": "2007 - Differential involvement of the dorsal hippocampus in passive avoidance in C57bl6J and DBA2J mice.txt",
+ "3e0963bf-5926-4986-a4c2-a6a4afd8e3ea": "2006 - Quantitative genetic analysis of brain copper and zinc in BXD recombinant inbred mice.txt",
+ "90f040ec-ee91-4698-92cc-39fbc81f92dd": "2009 -Flint- GeneArch.txt",
+ "c01dd79e-7dbb-40e1-b493-08f8e4fe05fc": "2006 - From_gene_to_behavior_and_back_again_new.txt",
+ "e81206a2-0f93-4d28-a319-c17c3a9860ff": "2011 -The neuropeptide galanin and variants in the GalR1 gene are associated with nicotine dependence.txt",
+ "908b6626-4948-40c7-8255-f0f49855c100": "2011 - The genetic basis of adrenal gland weight and structure in BXD recombinant inbred mice.txt",
+ "3c1ac812-43c0-4e7e-bd71-7ba3a3a0f28b": "2008 - Genetic dissection of quantitative trait locus for ethanol sensitivity in long‐and short‐sleep mice.txt",
+ "07c2b888-b1b9-4f13-87c5-f33cb3c0e681": "2011 - Strain differences in seizure-induced cell death following pilocarpine-induced status epilepticus.txt",
+ "e7a99e2b-a89f-4091-b6e0-c445fd4948bb": "2009 - Sex-specific gene expression in the BXD mouse liver.txt",
+ "5f9977a0-90a1-4d17-a2ff-847ab1b33160": "2006 - Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis.txt",
+ "5e5b18da-984c-415e-b2ce-e33b3c44b731": "2010 - Genetic loci that affect aristolochic acid-induced nephrotoxicity in the mouse.txt",
+ "5ada8004-7039-4c4a-bc5d-28c802c461a9": "2007 - E science for Alzheimer Disease.txt",
+ "d4cda573-c50b-47d3-8e37-c4d3cff0c503": "2009 - Genetic regulation of hematopoietic stem cells.txt",
+ "7a7773ed-2548-4297-86ad-b7ce115448e0": "2008 - Biotools for Determining the Genetics of Susceptibility to Infectious Diseases.txt",
+ "ed140f66-fbad-4fd7-8ae3-4d9cac4f63ac": "2010 - Towards the integration of mouse databases - definition and implementation of solutions to two use-cases in mouse functional genomics.txt",
+ "0b7aefc6-ec2a-419f-b6e9-343c327a6ac9": "2006 - A new module for on-line manipulation and display of molecular information in the brain architecture management system.txt",
+ "ad7aa535-9bf7-421d-896f-5304841c6380": "2009 - Expression quantitative trait loci are highly sensitive to cellular differentiation state.txt",
+ "71470ebd-af41-416b-a7c9-fb6a5d450fab": "2007 - ZOOMING IN a new high‐resolution gene expression atlas of the brain.txt",
+ "d7e9efe9-041a-46e3-8fe1-d4b84943fc82": "2006 - Transcriptional Signatures of Cellular Plasticity in Mice Lacking the α1 Subunit of GABAA Receptors.txt",
+ "299c7b2f-4a13-4891-a62b-36d429e960cb": "2009 - Systems genetics analysis of cancer susceptibility from mouse models to humans.txt",
+ "19fe5592-288f-4af9-8300-5148b25dc063": "2008 - Systems_genetics_can_provide_new_insight.txt",
+ "f95847dd-c216-4b47-9bb1-88b88221435a": "2007 - Integrating physical and genetic maps from genomes to interaction networks.txt",
+ "498913e1-6f2b-440f-add6-892d57c0ec37": "2008 - Metabolic pathways of type 2 diabetes intersection of genetics, transcriptomics, and metabolite profiling.txt",
+ "027566e2-bdf0-438b-8104-8eb2b0b83730": "2006 - Meta-analysis for microarray studies of the genetics of complex traits.txt",
+ "b3fed034-39e7-4cf7-9b10-54e24c5d08bf": "2007 - Quantitative Trait Loci Linked to Thalamus.txt",
+ "8ec43c84-e565-4b47-a07a-0ddd99da6728": "2008 -Han- Comparing Quantitative Trait Loci.txt",
+ "d8079209-0478-417b-ab45-d0e1e4f4dd7b": "2011 - Dissecting Genetic Networks Underlying Complex Phenotypes The Theoretical Framework.txt",
+ "07d409f4-91f9-4701-bb39-1421845a6321": "2011 - Genetical genomics approaches for systems genetics.txt",
+ "47a15e69-dc83-452e-95d8-c605e61f43c0": "2007 - An Informatics Approach to Systems Neurogenetics.txt",
+ "d72cbfae-eed0-4c41-ae93-bb77a6e17e9b": "2006 - Reply to “Normalization procedures and detection of linkage signal in genetical-genomics experiments”.txt",
+ "b4713290-fd5b-4330-a8b1-7a341a9dc118": "2012 - Candidate genes in ocular dominance plasticity.txt",
+ "44cd18d6-8e57-4c16-aefa-3d5167e4619c": "2010 - Evidence for Varied Aetiologies Regulating the Transmission of Prion Disease Implications for Understanding the Heritable Basis of Prion Incubation Times.txt",
+ "9507b9ec-449e-4a79-8f04-f70d85273b74": "2006 - Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia.txt",
+ "785df64a-ebbf-4dca-94dd-0ae27f7ac815": "2011 - Investigation of Genetic and Molecular Basis of Diabetic Nephropathy Susceptibility in Mice.txt",
+ "f2ee9988-3894-48ca-98b7-ad71a95e7552": "2008 - Genetic factors influencing alcohol dependence.txt",
+ "2270910e-ece1-4428-b64e-ea428bcc6925":
+ {
+ "fname": "2008 - Expression quantitative trait loci and genetic regulatory network analysis reveals that Gabra2 is involved in stress responses in the mouse.txt",
+ "filename": "2009-Dai-Gabra2 is Involved in Stress Responses.pdf",
+ "TITLE": "Expression quantitative trait loci and genetic regulatory network analysis reveals that Gabra2 is involved in stress responses in the mouse",
+ "volume": 12,
+ "issn": "1607-8888",
+ "url": "https://www.tandfonline.com/doi/full/10.3109/10253890802666112",
+ "doi": "10.3109/10253890802666112",
+ "language": "en",
+ "number": 6,
+ "urldate": "2023-01-27",
+ "journal": "Stress",
+ "AUTHOR": "Dai, Jiajuan and Wang, Xusheng and Chen, Ying and Wang, Xiaodong and Zhu, Jun and Lu, Lu",
+ "month": "Nov",
+ "year": 2009,
+ "pages": "499--506"
+ },
+ "0eeb744b-585c-449e-918e-ebaf167715e6": "2011 - Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection II. Genetic covariation and identification of Nos1 as linking candidate gene.txt",
+ "06852861-fe65-403c-b8ce-b655c67da477": "2009 -Identification of the UBP1 Locus as a Critical Blood Pressure Determinant Using a Combination of Mouse and Human Genetics.txt",
+ "2e5ab0d5-7915-48e9-a444-d0e7c4ecff52": "2012 - Systems Biology Approaches to Nutrition.txt",
+ "ba63ee7a-e039-4751-93c5-45271e412717": "2017 - INTEGRATIVE ANALYSIS OF GENETIC, GENOMIC AND PHENOTYPIC DATA FOR ETHANOL BEHAVIORS A NETWORK-BASED PIPELINE FOR IDENTIFYING MECHANISMS AND POTENTIAL DRUG TARGETS.txt",
+ "61ae224f-b982-4461-a163-a1fd8da122a4": "2013 - Genetic Dissection of Behavioral Quantitative Trait Loci for Substances of Abuse.txt",
+ "f9893afe-c0a2-4aaa-89a7-bb1b43819711": "2016 - Integrating Multidimensional Data Sources to Identify Genes Regulating Complex Phenotypes.txt",
+ "2845fea0-7cf7-4bb8-915e-ff13c41f0176": "2011 - Genetic Regulatory Network Analysis for Rpe65 in the Eye of BXD Mice.txt",
+ "5677f7ee-d9b9-443f-b350-488e1b077007": "2012 - Age-related changes of gene expression in the neocortex preliminary data on RNA-Seq of the transcriptome in three functionally distinct cortical areas.txt",
+ "17ebe481-7ddc-4d73-a009-f83af638a480": "2012 - Genetic and Genomic Web Resources for Research on Alcohol Use and Abuse.txt",
+ "90ff8fd2-d24f-4df6-9ac8-75e38151740b": "2011 - Naturally Occurring Genetic Variability in Expression of Gsta4 is Associated with Differential Survival of Axotomized Rat Motoneurons.txt",
+ "89ebb63a-7ed1-46f1-8fd1-075d1f0cf04b": "2017 - Analyses of differentially expressed genes after exposure to acute stress, acute ethanol, or a combination of both in mice.txt",
+ "8db57089-05cb-4f1a-a873-e88217946e0d": "2011 - HPNS seizure risk A role for the Golgi-associated retrograde protein complex.txt",
+ "20ace138-7d46-40dd-9675-bffe0b90bef4": "2015 - Multipartite Graph Algorithms for the Analysis of Heterogeneous D (1).txt",
+ "67d73645-5dcc-4220-9391-f6d81db6985c": "2016 - Sex Difference of the Efrg Expression.txt",
+ "7a451204-390c-4ff2-8a1d-b4de62b73503": "2012 Flint -NIH- GWA.txt",
+ "c3034036-4dab-4ac7-8857-56e6f1ca0837": "2014 - Neuregulin-3 in the Mouse Medial Prefrontal Cortex Regulates Impulsive Action.txt",
+ "a531a8b7-336e-4e30-8386-0d8ce16f028a": "2012 - Use of the Expanded Panel of BXD Mice Narrow QTL Regions in Ethanol-Induced Locomotor Activation and Motor Incoordination.txt",
+ "9e36f49e-af4f-4c34-8588-52cf54a742f5": "2014 - Genes Brain and Behavior - Ye - Quantitative trait loci mapping and gene network analysis implicate protocadherin‐15.txt",
+ "481b8001-d5cb-477e-8d9c-33d08d5084b2": "2014 - Impulsivity and comorbid traits a multi-step approach for finding putative responsible microRNAs in the amygdala.txt",
+ "7c604451-0939-4030-b6dd-fa7dcc656d03": "2014 Xiao Gene Selection and Ranking.txt",
+ "b7ef2e02-5be5-4a76-b8d9-3f305e2982a3": "2012 - Biological Databases for Behavioral Neurobiology.txt",
+ "e79a8d1d-0375-4fcd-8a96-0636707c1bfb": "2016 - Discoveries of Targets and Novel Agents for the Treatment of Ischemic Retinopathy and Neovascular Disease.txt",
+ "6c0cb891-3a28-4553-99ae-cf84020ef888": "2013 - A locus on mouse Ch10 influences susceptibility to limbic seizure severity fine mapping and in silico candidate gene analysis.txt",
+ "3d7595c8-8632-40bc-8794-89746944cc6e": "2015 - Bioinformatics Methods for Biochemical Pathways and System Biology Analysis_.txt",
+ "2c774a55-3077-4ad9-90c9-7c59bfae54dc": "2016 - Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis.txt",
+ "2715e261-b26c-46d6-918f-c6aa47688f0c": "2013 - Pathways, Networks and Systems Medicine Conferences.txt",
+ "cf21b8d3-4a41-4b27-a21d-c5824a4acc1f": "2015 - Exploring multiple quantitative trait loci models of hepatic fibrosis in a mouse intercross.txt",
+ "b0d842e7-4c04-449a-bcff-20e7bcbfef24": "2014 - Systems biology and systems genetics — novel innovative approaches to study host–pathogen interactions during influenza infection☆_Author links open overlay panel.txt",
+ "35e79c80-e59e-47ba-8f34-9c82e03a5a33": "2016 - Genetic networks in mouse retinal ganglion cells.txt",
+ "cadf5405-2d07-4972-8b0f-0f97e00188a8": "2014 - Quantitative trait loci mapping and gene network analysis implicate protocadherin‐15.txt",
+ "0b070626-11b0-4be4-bc50-126c1d31a10b": "2012 - Development of a murine model for aerosolized ebolavirus infection using a panel of recombinant inbred mice.txt",
+ "b5c36c1e-458e-4009-818e-9c0c2ee23e45": "2012 - Systems genetic analysis of the effects of iron deficiency in mouse brain.txt",
+ "9b2a48a0-f85e-4104-944f-0c47a3b03a9b": "2011 - Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures.txt",
+ "635bfd82-c2b7-4431-ae55-7cf1163c0e3e": "2015 - Mapping of genetic loci that modulate differential colonization by Escherichia coli O157H7 TUV86-2 in advanced recombinant inbred BXD mice.txt",
+ "1a97d83f-df75-4ac5-a8e1-b2eaac903c52": "2014 -Wei- Fluorosis Mice.txt",
+ "688ecd25-fdc4-424f-97b0-fe074647a8a5": "2011 - The age of the “ome” Genome, transcriptome and proteome data set collection and analysis.txt",
+ "b04f2221-de28-4c4b-893e-9da982ff864c": "2012 - Functional genomics research in aquaculture principles and general approaches.txt",
+ "8725811e-e1aa-4aaf-98ed-f6b4a295e1fe": "2013 - Genetic Linkages for Thyroxine Released in Response to Thyrotropin Stimulation in Three Sets of Recombinant Inbred Mice Provide Evidence for Shared and Novel Genes Controlling Thyroid Function.txt",
+ "1fc0816f-fdc6-4c24-8585-b03ca5e003b6": "2015 - Identification of quantitative trait loci influencing inflammation-mediated alveolar bone loss insights into polygenic inheritance of host–biofilm disequilibria in periodontitis.txt",
+ "78acf3c9-239e-45b4-951d-a08b92663ea8": "2013 - Genome-Wide Gene Expression Profiles in Antioxidant Pathways and Their Potential Sex Differences and Connections to Vitamin C in Mice.txt",
+ "095349ec-5f83-42e4-a4a1-dcae2c7d464e": "2012 - Quantitative Trait Locus Mapping for Ethanol Teratogenesis in BXD Recombinant Inbred Mice.txt",
+ "e2d9190f-cf34-4cfe-b4ee-bd5e0b748cc0": "2013 - Glyoxalase 1 and its substrate methylglyoxal are novel regulators of seizure susceptibility.txt",
+ "cb30afe8-6efe-474b-b6b3-f73a9f5d33ee": "2011 - Quantitative and Qualitative Stem Rust Resistance Factors in Barley Are Associated with Transcriptional Suppression of Defense Regulons.txt",
+ "c3265667-d400-44d8-b8c6-2b74be34dbe1": "2012 - Chloride intracellular channels modulate acute ethanol behaviors in Drosophila, Caenorhabditis elegans and mice.txt",
+ "d2f9c5cf-835c-450a-bb42-a2454a99e058": "2012 - Genetic and Molecular Network Analysis of Behavior.txt",
+ "a4e9db98-b007-49f5-bcbd-ce0f78cbff1f": "2013 - Candidate gene association studies a comprehensive guide to useful in silicotools.txt",
+ "c3226348-ab0d-4635-91f2-4ec85b431559": "2011 -Systems genetic analysis of multivariate response to iron deficiency in mice.txt",
+ "c6170b29-248d-4fe8-abbb-3e77475b8543": "2015 - Are osteoporosis and hypertension part of the same aging process.txt",
+ "c04e1cdc-f962-4b37-a0e0-fa6021ec1f7a": "2013 - Evaluation of heritable determinants of blood and brain serotonin homeostasis using.txt",
+ "25427546-14d3-426d-a087-bed025f7b752": "2015 -Wilkinson- Nature - FAIR.txt",
+ "d9476207-1f53-4b08-b261-5c52ad191e08": "2015 - Differential regional and cellular distribution of TFF3 peptide in the human brain.txt",
+ "002bbd9a-f6f8-454b-9c3e-c63e2229ec24": "2015 - TRPC3 channels critically regulate hippocampal excitability .txt",
+ "d1c44568-c447-404f-939d-4e7a4d11ffde": "2013 - Deciphering molecular circuits from genetic variation.txt",
+ "9588738f-b0d2-4b37-9554-f0699a66c4fb": "2011 - Genetic networks in the mouse retina Growth Associated Protein 43 and Phosphatase Tensin Homolog network.txt",
+ "ae0831bd-6862-4a26-9288-e1c1bf1d2cc9": "2016 - A genetic screen identifies hypothalamic Fgf15 as a regulator of glucagon secretion.txt",
+ "cc4fd4f5-b5b8-419e-9631-2df633d53570":
+ {
+ "fname": "2012 - QTLs for bone mineral density of femurs and tibias in recombinant inbred strains derived from C57BL6J and DBA2J inbred strains.txt",
+ "filename": "2012-Wang-QTLs Recombinant inbred strains derived from C57BL/6J.pdf",
+ "TITLE": "QTLs for bone mineral density of femurs and tibias in recombinant inbred strains derived from C57BL/6J and DBA/2J inbred strains",
+ "volume": 13,
+ "issn": "1471-2105",
+ "url": "https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-S12-A7",
+ "doi": "10.1186/1471-2105-13-S12-A7",
+ "language": "en",
+ "number": 12,
+ "urldate": "2023-02-01",
+ "journal": "BMC Bioinformatics",
+ "AUTHOR": "Wang, Lishi and Lu, Wenli and Scheib, Rachel and Huang, Yue and Liu, XiaoYun and Myers, Linda and Lu, Lu and Williams, Robert W and Jiao, Yan and Gu, Weikuan",
+ "month": "Jul",
+ "year": 2012,
+ "pages": "1--1"
+ },
+ "d4e871aa-bab3-4954-b109-3b521644a8d0": "2011 - identifying-a-major-locus-that-regulates-spontaneous-arthritis-in-il-1ra-deficient-mice-and-analysis-of-potential-candidates.txt",
+ "81e5290c-cf59-4c1c-888c-53e3299b5759": "2016 - Differential Expression of Munc13-2 Produces Unique Synaptic Phenotypes in the Basolateral Amygdala of C57BL6J and DBA2J Mice.txt",
+ "72428a91-4126-451c-a6b9-8d41ea11f6af": "2011 - Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids.txt",
+ "a9308129-c197-4737-bc2b-9046e3fb94d6": "2015 - KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction.txt",
+ "5fc36313-6f0c-4bbe-8fb0-3977fdcbd829": "2012 - Advances in biotechnology and linking outputs to variation in complex traits Plant and Animal Genome meeting January 2012.txt",
+ "081924f4-cdcc-4fce-9223-744c6ecffe4e": "2014 - Scoring the collective effects of SNPs association of minor alleles with complex traits in model organisms.txt",
+ "581f83bc-3521-4cb3-ad3c-d905a90ecc29": "2013 - Host Genes and Resistance.txt",
+ "a77f7391-6c27-4861-a0ac-72f0f2cdeb31": "2016 - Impact of genetic variation on synaptic protein levels in genetically diverse mice.txt",
+ "610e17e0-933d-4cc8-a7cf-4bf89388a83d": "2012 Wu Ranking gene-drugs.txt",
+ "91ceb0b1-5cb3-4c36-a3cd-d613e044962e": "2016 Chern DoubleML.txt",
+ "8d7f6840-3de0-4e1f-952b-65443f15c58f": "2015 - Systems genetics of behavior a prelude.txt",
+ "5fda998d-7b39-4c80-a9c1-272e9d9aa72b": "2014 - Genetic and informatic resources for multi-scale brain research.txt",
+ "4d7120a6-a298-4d48-aa38-ee3474f7408f": "2015 - Genetic variation in offspring indirectly influences the quality of maternal behaviour in mice.txt",
+ "adc6d8db-4f67-4130-b5a2-3cc421d2af45": "2016 - QTL Mapping of Endocochlear Potential Differences between C57BL6J and BALBcJ mice.txt",
+ "58739762-ae96-4638-973e-4e6b45d36cae": "2015 - Variable impact of chronic stress on spatial learning and memory in BXD mice.txt",
+ "68ee5f38-46a1-4343-8af9-7746d89e8451": "2017 - Orbitofrontal Neuroadaptations and Cross-Species Synaptic Biomarkers in Heavy-Drinking Macaques.txt",
+ "a6601776-d40f-4537-b0df-2bb48303c869": "2013 - ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains.txt",
+ "93ae5769-8de9-45d4-8564-c35f624c7b28": "2011 - Measuring and Correlating Blood and Brain Gene Expression Levels Assays, Inbred Mouse Strain Comparisons, and Applications to Human Disease Assessment.txt",
+ "bd221ae3-3994-4fe2-b22d-b050b0d62bbf": "2011 - Genetic regulation of Nrnx1 expression an integrative cross-species analysis of schizophrenia candidate genes.txt",
+ "0bdb51db-25a9-48f5-95c5-8e0e9bd2c3b6": "2012 - Sex-specific modulation of gene expression networks in murine hypothalamus_.txt",
+ "505c3e21-2afe-482e-9983-9b0131f154ce": "2012 - Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits.txt",
+ "368b800d-61fa-4617-ab6a-5eb31ff00030": "2014 - Genetics of Gene Expression in CNS.txt",
+ "9f834d4a-1e18-4c3d-a28e-2a1237d590d3": "2011 - Genomic loci and candidate genes underlying inflammatory nociception.txt",
+ "43407486-b9c2-487b-b19c-b605c4d201c6": "2017 - GeneNetwork a toolbox for systems genetics.txt",
+ "ba7e3b08-be65-474d-9c8a-d132b8168722": "2016 - Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging.txt",
+ "d40f3764-9b8c-4f20-9200-a5d14cb0cf02": "2012 - Host Genetics and Chlamydia Disease Prediction and Validation of Disease Severity Mechanisms.txt",
+ "174df7ed-e149-437b-9a06-03e5c8229151": "2011 - The role of the Suprmam1 locus in responses to ionizing radiation and susceptibility to mammary tumors.txt",
+ "e56c9675-5d7a-4845-adfc-42a6c4fbc806": "2011 - Host genetic background and the innate inflammatory response of lung to influenza virus.txt",
+ "989fa01e-aef3-4a47-81ef-d74767c73b95": "2012 - The Genome Architecture of the Collaborative Cross Mouse Genetic Reference Population.txt",
+ "99bb4b2a-6c1d-46d4-8165-2201bc1f0299": "2016 -Peters- Causal inference by using.txt",
+ "1d3f76c8-87f6-402c-a488-4f6266bb7c9c": "2012 - Effects of morphine on immediate-early gene expression in the striatum of C57BL6J and DBA2J mice.txt",
+ "4c9c2f49-ce64-4d69-9f9f-d5bb2b985112": "2012 - A Novel QTL Underlying early onset, low frequency hearing loss .txt",
+ "8e69cfef-0bd4-4e7d-8e42-04c3c2ab2285": "2012 - Genetic architecture supports mosaic brain evolution and independent brain–body size regulation_(1).txt",
+ "42c24072-b7f5-4323-b992-ccef69eacf27": "2012 - Genetic variation in hippocampal microRNA expression differences in C57BL6 J X DBA2 J (BXD) recombinant inbred mouse strains.txt",
+ "64310cb2-e665-4a34-815d-633dc2be5f16": "2014 - Pharmacogenetic analysis of captopril effects on blood pressure possible role of the Ednrb (endothelin receptor type B) candidate gene.txt",
+ "b7727a79-9619-4876-a65c-e0ec743306c3": "2016 - Genome_wide_association_study_of_behaviour.txt",
+ "0dd5f2bc-ac6b-4728-b42e-557b276702d6":
+ {
+ "fname": "2016 - Mouse and Human Genetic Analyses Associate Kalirin with Ventral Striatal Activation during Impulsivity and with Alcohol Misuse.txt","filename": "Pena-2016-Genetic Analyses Associate Kalirin.pdf",
+ "TITLE": "Mouse and Human Genetic Analyses Associate Kalirin with Ventral Striatal Activation during Impulsivity and with Alcohol Misuse",
+ "volume": 7,
+ "issn": "1664-8021",
+ "url": "https://www.frontiersin.org/articles/10.3389/fgene.2016.00052/full",
+ "doi": "10.3389/fgene.2016.00052",
+ "language": "en",
+ "urldate": "2023-01-27",
+ "journal": "Frontiers in Genetics",
+ "AUTHOR": "Pena-Oliver, Yolanda and Carvalho, Fabiana M and Sanchez-Roige, Sandra and Quinlan, Erin B and Jia, Tianye and Walker-Tilley, Tom and Rulten, Stuart L and Pearl, Frances MG and Banaschewski, Tobias and Barker, Gareth J and others",
+ "month": "Apr",
+ "year": 2016,
+ "pages": "52"
+ },
+ "41b8faf1-ee34-458b-8c99-48688b2dbcc9": "2013 - Transcriptome analysis of Inbred Long Sleep and Inbred Short Sleep mice.txt",
+ "f21523aa-0c42-49c3-b2c1-4b6732c5c57f": "2014 - Genetics of low spinal muscular atrophy carrier frequency in sub-Saharan Africa.txt",
+ "e70f7c61-1734-4048-8a79-382e9b381686": "2013 - Genetic modulation of the iris transillumination defect a systems genetics analysis using the expanded family of BXD glaucoma strains.txt",
+ "dc88f26d-1c44-486a-b61f-edcb10a42be8": "2015 - Inhibition of monoacylglycerol lipase reduces nicotine withdrawal.txt",
+ "a3541fba-f802-4e93-8274-1c2c8f58fb13": "2016 - Common genes regulate food and ethanol intake in Drosophila.txt",
+ "64472bd6-af60-47c9-bfa4-3d6ea2b6cf8c": "2016 - System genetic analysis of mechanisms underlying excessive alcohol consumption.txt",
+ "c75fb144-ef57-4753-92cf-a654cbfd3079": "2015 - Tools for in-Silico Reconstruction and Visualization of Gene Regulatory Networks (GRN).txt",
+ "b034070a-267b-428e-8d6b-bda2b1727b51": "2012 - Anatomic And Genetic Correlates Of The Endocochlear Potential In Recombinant Inbred Mice.txt",
+ "11850d95-80b2-47ca-9c49-a119cdf5fd33": "2011 - Systems Genetics Approaches for the Understanding of Complex Clinical and Molecular Traits.txt",
+ "aef0c2a6-b419-431d-973c-2fd8c8995357": "2015 Williams - Convergence of Systems Complex Trait Analysis.txt",
+ "3df1bffa-3d23-4b6b-9d59-6ef8b0001f48": "2012 - Computational tools for discovery and interpretation of expression quantitative trait loci.txt",
+ "1e9785fa-50e8-4673-b658-1e0832624b1f": "2015 - GENI and GENI-ACT projects provide authentic undergraduate research experiences in genome analysis.txt",
+ "d543e168-744d-44f5-82cc-c3c1a60ee5a7":
+ {
+ "fname": "2015 - Cell cycle gene expression networks discovered using systems biology Significance in carcinogenesis.txt",
+ "filename": "2015-Scott-expression networks discovered using systems biology.pdf",
+ "TITLE": "Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis",
+ "volume": 230,
+ "issn": "1097-4652",
+ "url": "https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.24990",
+ "doi": "10.1002/jcp.24990",
+ "language": "en",
+ "number": 10,
+ "urldate": "2023-02-01",
+ "journal": "Journal of cellular physiology",
+ "AUTHOR": "Scott, RE and Ghule, PN and Stein, JL and Stein, GS",
+ "month": "Oct",
+ "year": 2015,
+ "pages": "2533--2542"
+ },
+ "421e1acd-7273-4c4a-b280-b0e5a132cbab": "2012 - Systems Genetics of the Lateral Septal Nucleus in Mouse.txt",
+ "d8d2d389-b374-41d1-9eb6-557c6c392b66": "2015 - Quantitative Trait Loci and Candidate Genes for Neutrophil Recruitment in Sterile Inflammation Mapped in AXB-BXA Recombinant Inbred Mice.txt",
+ "b71befbe-2a20-434e-907e-0ae581373243": "2013 - Pathogenesis and reversal of liver fibrosis Effects of genes and environment.txt",
+ "638b711b-cdd9-4c0b-9884-0e450fa6ed31": "2012 - Networks Modulating the Retinal Response to Injury Insights from Microarrays, Expression Genetics, and Bioinformatics.txt",
+ "268c735a-5e56-4b7b-90c3-e5925917d9b7":
+ {
+ "filename": "2014-Thompson-A Forward Phenotypically Driven Unbiased Genetic.pdf",
+ "TITLE": "A Forward Phenotypically Driven Unbiased Genetic Analysis of Host Genes That Moderate Herpes Simplex Virus Virulence and Stromal Keratitis in Mice",
+ "volume": 9,
+ "ISSN": "1932-6203",
+ "URL": "https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092342",
+ "DOI": "10.1371/journal.pone.0092342",
+ "language": "en",
+ "NUMBER": 3,
+ "urldate": "2023-02-01",
+ "journal": "PLoS ONE",
+ "AUTHOR": "Thompson, Richard L and Williams, Robert W and Kotb, Malak and Sawtell, Nancy M",
+ "month": "Mar",
+ "YEAR": 2014,
+ "PAGES": "e92342",
+ "FNAME": "2014 - A forward phenotypically driven unbiased genetic analysis of host genes that moderate herpes simplex virus virulence and stromal keratitis in mice.txt"
+ },
+ "b103d0bf-16ab-4e53-bb3b-7c2af3cfd9f6": "2013 - The genetics of gene expression in complex mouse crosses as a tool to study the molecular underpinnings of behavior traits.txt",
+ "bd93e797-5d14-4c84-ba92-e9988d46f1f4": "2017 -Watanabe- FUMA.txt",
+ "0376df42-5df7-4966-8f0d-e254b86ae743": "2016 - Social interactions and indirect genetic effects on complex juvenile and adult traits.txt",
+ "606ddac6-6250-4510-8896-f89dc9077edb": "2017 - Dissecting the brown adipogenic regulatory network using integrative genomics.txt",
+ "6ed23619-350d-48e3-9e5f-ce831889b448": "2012 - Recombinant inbred systems can advance research in behavioral ecology.txt",
+ "5e29f3d3-3602-4315-9390-5b218122e523": "2017 - Initial genetic dissection of serum neuroactive steroids following chronic intermittent ethanol across BXD mouse strains.txt",
+ "14a9de52-cff1-4397-bb2c-8c2e34bb05bf": "2011 -Aitman- Human Disease Research.txt",
+ "f9f8f648-bd40-49e9-8aee-c341faa43290": "2014 - Identification of Candidate Resistance Genes against Rhynchosporium in Barley.txt",
+ "40ebee6a-ba5a-4f21-86d1-78d421288687": "2015 - A Systems-Genetics Analyses of Complex Phenotypes.txt",
+ "70730cdd-f0c8-4835-8442-e8cdcb4cb5fa": "2013 - Effects_of_age_and_strain_on_cell_prolif.txt",
+ "e1d38edf-d807-49f6-b81f-da1d086c3136": "2014 -Carroll- Phewas Analysis.txt",
+ "a516e1d9-bd3d-4d53-aa55-9ec98c38b8ab": "2014 - Sox2 Regulates Cholinergic Amacrine Cell Positioning and Dendritic Stratification in the Retina.txt",
+ "f880f290-4cc7-43f8-a7e6-788b072efd83": "2017 - Systems Phytohormone Responses to Mitochondrial Proteotoxic Stress.txt",
+ "6dbbf0bc-eea3-4930-be75-925410bc34ea": "2015 - Genetic dissection of sleep homeostasis.txt",
+ "37aa1c77-b6ae-47f8-9fdb-80b0ef8b8810": "2016 -Parker- Nature -- Genome_wide_association_study_of_behavio.txt",
+ "23f1c487-4011-4149-9e86-ce8f77c3687e": "2016 - MPTP neurotoxicity is highly concordant between the sexes among BXD recombinant inbred mouse strains.txt",
+ "2c086fa1-4fcd-4cbb-aec5-d42e352d567b": "2016 - Epigenetic Patterns Modulate the Connection Between Developmental Dynamics of Parenting and Offspring Psychosocial Adjustment.txt",
+ "d1abbca2-03a4-4a1f-8a17-c286e546f476": "2013 - Genetic and environmental influences on alcohol behaviors Insight from the mouse transcriptome.txt",
+ "70179190-ca31-4859-a181-34641564de59": "2016 - Genome-wide search followed by replication reveals genetic interaction of CD80 and ALOX5AP associated with systemic lupus erythematosus in Asian populations.txt",
+ "fad6cdf2-6440-4fa3-a781-05c8ffa21db1": "2014 - Comparing genetic pathways variation of immunoinhibitory receptor LAIR-1 in murine vs human internal organs.txt",
+ "3f15bf2e-985a-44fa-808c-b4432930a820": "2014 - Metabolic Sensing in the Hypothalamus.txt",
+ "88bf3e0f-3251-4f63-99d3-32944b522a16": "2015 - Screening and personalizing nootropic drugs and cognitive modulator regimens in silico.txt",
+ "a2f9bcc5-d7db-4efb-9c74-dc464337e32f": "2014 - Genetic variation in the voltage-gated potassium channel genes KCNV2 and KCNV1 contributes to epilepsy susceptibility.txt",
+ "6d850ba3-9219-4250-b17f-7cf4867ca354": "2012 - Systems genetic analysis of multivariate response to iron deficiency in mice.txt",
+ "1219788a-2944-4948-a06a-f8e0297e3c3b": "2014 - Systems Genetics of Liver Fibrosis Identification of Fibrogenic and Expression Quantitative Trait Loci in the BXD Murine Reference Population.txt",
+ "45ccb967-3a5e-4274-9009-e4fda677bba0": "2013 - Systems genetics of hepatocellular damage in vivo and in vitro identification of a critical network on chromosome 11 in mouse.txt",
+ "54d63a0c-0a1f-4314-9dee-c996fbbbd7c6": "2012 - Teaching Neuroinformatics with an Emphasis on Quantitative Locus Anlaysis.txt",
+ "77cb22e8-dc82-44e9-a19c-82b666b6194a":
+ {
+ "fname": "2012 - Systems Genetics of Metabolism The Use of the BXD Murine Reference Panel for Multiscalar Integration of Traits.txt",
+ "filename": "2012-Andreux-BXDMurineReferencePanel.pdf",
+ "TITLE": "Systems Genetics of Metabolism: The Use of the BXD Murine Reference Panel for Multiscalar Integration of Traits",
+ "volume": 150,
+ "issn": "1097-4172",
+ "url": "https://www.cell.com/fulltext/S0092-8674(12)01007-0",
+ "doi": "doi.org/10.1016/j.cell.2012.08.012",
+ "language": "en",
+ "number": 6,
+ "urldate": "2023-01-23",
+ "journal": "Cell",
+ "AUTHOR": "Andreux, Penelope A. and Williams, Evan G. and Koutnikova, Hana and Houtkooper, Riekelt H. and Champy, Marie-France and Henry, Hugues and Schoonjans, Kristina and Williams, Robert W. and Auwerx, Johan",
+ "month": "Sep",
+ "year": 2012,
+ "pages": "1287--1299"
+ },
+ "28f42f39-c6a4-440b-b43a-017f622db6da": "2013 -Critical evaluation of transcription factor Atf2 as a candidate modulator of alcohol preference in mouse and human populations.txt",
+ "e8191a94-dd17-4c40-8afd-c9b7fb7266c9": "2012 - Genomic dissection and prioritizing of candidate genes of QTL for regulating spontaneous arthritis on chromosome 1 in mice deficient for interleukin-1 receptor antagonist.txt",
+ "98dfe1c7-3be6-427d-bf8f-749460667d4c": "2014 -Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders.txt",
+ "0760894c-d8de-4b3b-93fc-db0bb6d6ef8c": "2014 - An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement.txt",
+ "2278b390-3cf6-4082-a956-7b06b6cc1286": "2014 - Identification of Srp9 as a febrile seizure susceptibility gene.txt",
+ "4de669b7-da76-42ef-a88a-afebf1e86734": "2012 - Accelerating Discovery for Complex Neurological and Behavioral Disorders Through Systems Genetics and Integrative Genomics in the Laboratory Mouse.txt",
+ "6ee86c77-b359-45f1-bd54-b1cd9b260ae6": "2013 - Mitonuclear protein imbalance as a conserved longevity mechanism.txt",
+ "93820bc6-ee76-4e84-b0f1-de0d8ce9e365": "2012 - Genetic Regulation of Neuroinflammation After Infection and Injury.txt",
+ "8b4276be-c77e-4e80-a5bb-54e9ff75d2ba": "2015 - Genetic Control of Survival and Weight Loss during Pneumonic Burk.txt",
+ "8604652e-2477-4552-8f43-f5f19e421df2": "2015 - Differences between Mice and Humans in Regulation and the Molecular Network of Collagen, Type III, Alpha-1 at the Gene Expression Level Obstacles that Translational Research Must Overcome.txt",
+ "8aadf051-0956-4a48-aefe-9bcd458afdbb": "2012 - Overexpression of insulin like growth factor binding protein 5 reduces liver fibrosis in chronic cholangiopathy.txt",
+ "bb955075-4d64-49b8-97f1-e3d69ee90b45": "2014 - Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics.txt",
+ "2e0bbb7b-45cd-4208-b2f0-e229df86d8ff": "2012 - Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex functional and mechanistic implications.txt",
+ "47732768-0eee-41a7-8427-c216f53ade97": "2012 - Behavioral actions of alcohol phenotypic relations from multivariate analysis.txt",
+ "ec378fcc-c1a6-46c9-9119-f26d9814e209": "2017 - Systems genetics of liver fibrosis.txt",
+ "b19b8482-6999-4274-b194-8a53ce5cb1e5": "2012 - Treatment- and Population-Dependent Activity Patterns of Behavioral and Expression QTLs.txt",
+ "5f10ca6d-3a51-4401-a808-9a90b432ca16": "2012 - Measuring behavior of animal models faults and remedies.txt",
+ "ba1c6c7e-9355-413a-947c-0bae330b58ba": "2015 - Informatics resources for the Collaborative Cross and related mouse populations.txt",
+ "fb3905fb-2f26-4fae-b278-f4540263c602": "2013 - Evaluation of heritable determinants of blood and brain serotonin homeostasis using (1).txt",
+ "28defd12-1ab9-4579-8f30-9f049b6bc3a0": "2015 - A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder.txt",
+ "3671e038-5bb3-4e52-9ab5-550216223be5": "2015 - Multipronged approach to identify and validate a novel upstream regulator of Sncg.txt",
+ "5ff7155e-a6c9-45c4-8e0f-e551dd3ec602": "2014 - Genetic variation within the Chrna7 gene modulates nicotine reward‐like phenotypes in mice.txt",
+ "8f6e8785-25fe-44f6-89e6-7972b19a9608": "2014 - Cerebellar oxidative DNA damage and altered DNA methylation in the BTBR T+ tfJ mouse model of autism and similarities with human post mortem cerebellum.txt",
+ "138d4420-0dba-4bed-bf49-d91ad75f1e23": "2015 - Gene network of a phosphoglycerate mutase in muscle wasting in mice.txt",
+ "cf1f67cf-e0f9-4de9-82d4-100f910d0763": "2017 - Post-genomic behavioral genetics From revolution to routine.txt",
+ "3e95286d-e2f7-44e9-9178-9c5f44d65abb": "2015 - A QTL on Chr 5 modifies hearing loss associated with the fascin-2 variant of DBA2J mice.txt",
+ "08a6ce71-133e-426d-adfe-600ff52802a2": "2012 - Generating Embryonic Stem Cells from the Inbred Mouse Strain DBA2J, a Model of Glaucoma and Other Complex Diseases.txt",
+ "ae202e58-4233-4abe-9231-c17f802e8d61": "2015 - Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection.txt",
+ "86b86235-b7a8-4dfc-be13-d119dc31b377": "2018 - Born to Cry A Genetic Dissection of Infant Vocalization.txt",
+ "1e363501-86fc-451e-88df-9a76dfecaedf": "2012 - System Genetics Challenges and Strategies.txt",
+ "4a8b34bf-b6c6-4f71-b6f6-b6538001efdb": "2012 - Complex control of GABA (A) receptor subunit mRNA expression variation, covariation, and genetic regulation.txt",
+ "0a259da5-fb6d-4fe6-a06d-6e2e9e174184": "2015 - Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium.txt",
+ "aff0a2a1-516d-4d97-a3a2-350d02652e9e": "2017 - Systems genetics of obesity.txt",
+ "e7030862-fb3c-48cc-bbd1-e30ac5ed5864": "2015 - Constraint and divergence of global gene expression in the mammalian embryo.txt",
+ "19aeec76-3ae4-4039-a887-407738ad4298": "2018 - Metanalysis of genome-wide association studies for panic disorder suggest pathways and mechanisms of pathogenesis.txt",
+ "7fc7babc-51be-4358-bae4-ca1058c36da7": "2016 Gene Re ranking.txt",
+ "30f22ded-c402-47b8-a92b-85b27ef45bb8": "2013 - Impact of natural genetic variation on gene expression dynamics.txt",
+ "adfe9118-5dff-452a-9922-d782957267ea": "2016 - Genetic divergence in the transcriptional engram of chronic alcohol abuse A laser-capture RNA-seq study of the mouse mesocorticolimbic system.txt",
+ "8c75f4ad-9116-4126-9729-5062aa6bc036": "2016 - Systems genetics of intravenous cocaine self-administration in the BXD recombinant inbred mouse panel.txt",
+ "13036fc5-c31c-4d21-a5f0-5ddfe11663d2": "2017 - Genetic determinants of cholangiopathies Molecular and systems genetics.txt",
+ "8fb56fda-e1a2-4407-acb2-9a5983861202": "2012 - Genetic regulation of adult hippocampal neurogenesis A systems genetics approach using BXD recombinant inbred mouse strains.txt",
+ "69869501-1782-45bc-b66a-f8d9327c34b2": "2013 - Neural-Immune Interactions in Brain Function and Alcohol Related Disorders.txt",
+ "919b4136-a032-4f86-83ee-959609c1fb73": "2014 - A candidate syntenic genetic locus is associated with voluntary exercise levels in mice and humans.txt",
+ "7729c4cc-b1e9-48b9-be61-5b8f08b05650": "2018 - Genome-wide association for testis weight in the diversity outbred mouse population.txt",
+ "d5d41016-939f-46d7-8d9e-dce0a6f10182": "2014 - Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population.txt",
+ "6d7c89b1-9634-45ec-873b-a19f1f82dc05": "2012 - The glyoxalase system regulates GABAA receptors and downstream behaviors.txt",
+ "a0bfe92f-9abb-427e-9a6c-934f4cb68e1c": "2014 - GWA of Sex Difference in Gene Expression Profiles of Bone Formations Using sfx Mice and BXD RI Strains.txt",
+ "40e01bf9-3d65-4ee4-a2d5-b8548fccf844": "2012 - Distinct gene loci control the host response to influenza H1N1 virus infection in a time-dependent manner.txt",
+ "4262c15b-1bdf-4811-b15c-f5e4ef195f27": "2014 - Survival Motor Neuron (SMN) Copy Number Distribution in Mali, West Africa.txt",
+ "2a92d7b5-946c-4a22-a4b9-26e950b0f757": "2015 - Systems genetic analysis of hippocampal neuroanatomy and spatial learning in mice.txt",
+ "c450262d-8736-4582-ac34-1c8b375b0140": "2012 - Genetic Control of a Central Pattern Generator_ Rhythmic Oromotor (1).txt",
+ "e3cb779e-af08-4de8-8dfc-1516ec35785a":
+ {
+ "fname": "2012 - P-381 - Genetic and Correlation Analysis of Spatial Learning of the rat Hxbbxh Recombinant Inbred Strains in the Carousel Maze, a Spatial Avoidance Paradigm.txt",
+ "filename": "2012 -Stuchlik-P-381-Genetic and correlation analysis of spatial learning.pdf",
+ "TITLE": "P-381-Genetic and correlation analysis of spatial learning of the rat hxb/bxh recombinant inbred strains in the carousel maze, a spatial avoidance paradigm",
+ "volume": 27,
+ "issn": "0924-9338, 1778-3585",
+ "url": "https://www.cambridge.org/core/journals/european-psychiatry/article/p381-genetic-and-correlation-analysis-of-spatial-learning-of-the-rat-hxbbxh-recombinant-inbred-strains-in-the-carousel-maze-a-spatial-avoidance-paradigm/4B6367C5090F3C88C728B398AC44BBA6",
+ "doi": "10.1016/S0924-9338(12)74548-0",
+ "language": "en",
+ "number": 51,
+ "URLDATE": "2023-02-01",
+ "JOURNAL": "European Psychiatry",
+ "AUTHOR": "Stuchlik, A and Hatalov{'a}, H and Grzyb, AN and Petrasek, T and Prokopova, I and Overall, R and Silhavy, J and Zidek, V and Kempermann, G and Vales, K",
+ "year": 2012,
+ "pages": "1--1"
+ },
+ "09c07844-b8d8-46a9-842e-eb9c16f2ab25": "2017 - Variable cardiac α-actin (Actc1) expression in early adult skeletal muscle correlates with promoter methylation.txt",
+ "1752ff08-bac2-4d6b-b86d-bcfc69e932c4": "2014 - Analyzing_gene_expression_data_in_mice_w.txt",
+ "e6fc60c2-8651-44d7-a4aa-b4090e2d59f2": "2018 - Effects of Genetic Background on Susceptibility and the Acceleration of Hearing Loss in Mice.txt",
+ "130b4836-2fb1-432f-be62-c9d29dbd3b72": "2017 - Systems Genetics Analysis to Identify the Genetic Modulation of a Glaucoma-Associated Gene.txt",
+ "aab09eb6-a95e-4258-b35f-b9fec7b0de5c": "2016 - Sex difference in EGFR pathways in mouse kidney-potential impact on the immune system.txt",
+ "16276556-20fb-41de-8a48-16eeba247ea7":
+ {
+ "fname": "2012 - Genetic architecture supports mosaic brain evolution and independent brain–body size regulation_.txt",
+ "filename": "2012-Hager-mosaic brain evolution and independent brain.pdf",
+ "TITLE": "Genetic architecture supports mosaic brain evolution and independent brain-body size regulation",
+ "volume": 3,
+ "issn": "2041-1723",
+ "url": "https://www.nature.com/articles/ncomms2086",
+ "doi": "10.1038/ncomms2086",
+ "language": "en",
+ "number": 1,
+ "urldate": "2023-01-19",
+ "journal": "Nature Communications",
+ "AUTHOR": "Hager, Reinmar and Lu, Lu and Rosen, Glenn D. and Williams, Robert W.",
+ "month": "Jan",
+ "year": 2012,
+ "pages": "1079"
+ },
+ "43d5140a-ad39-438e-8ba6-76dd3c7c42bc": "2015 - A Chromosome 13 locus is associated with male-specific mortality in mice.txt",
+ "ee092dcc-7ebf-4733-8f07-320ad2a02b40": "2012 - Congenic dissection of a major QTL for methamphetamine sensitivity implicates epistasis.txt",
+ "5ef1d2e1-67d2-4d12-b171-d2b1bb21887f": "2014 - Trps1 Differentially Modulates the Bone Mineral Density between Male and Female Mice and Its Polymorphism Associates with BMD Differently between Women.txt",
+ "10402a43-f390-4b98-856e-da51d30e0f6b": "2017 - Complex Genetics of Behavior BXDs in the Automated Home-Cage.txt",
+ "8a41f556-cfd0-49f0-aae1-779ff89bf03f": "2015 - Gene network of a phosphoglycerate mutase in muscle wasting in mice(1).txt",
+ "39fd5075-0277-4fe8-95c0-9142777f73c8": "2012 - Expression QTL and genetic regulatory network analysis of Col11a1.txt",
+ "f9b2eeba-5f93-49c1-8828-311f0797d9e3":
+ {
+ "fname": "2016 - Joint mouse–human phenome-wide association to test gene function and disease risk.txt",
+ "filename": "2016-Wang-Phenome-wide association to test gene.pdf",
+ "TITLE": "Joint mouse-human phenome-wide association to test gene function and disease risk",
+ "volume": 7,
+ "issn": "2041-1723",
+ "url": "https://www.nature.com/articles/ncomms10464",
+ "doi": "10.1038/ncomms10464",
+ "language": "en",
+ "number": 1,
+ "urldate": "2023-01-27",
+ "journal": "Nature Communications",
+ "AUTHOR": "Wang, Xusheng and Pandey, Ashutosh K and Mulligan, Megan K and Williams, Evan G and Mozhui, Khyobeni and Li, Zhengsheng and Jovaisaite, Virginija and Quarles, L Darryl and Xiao, Zhousheng and Huang, Jinsong",
+ "month": "Feb",
+ "year": 2016,
+ "pages": "10464"
+ },
+ "639aca28-efd3-46d7-962e-32fe6b842ab6": "2016 - Genetic variation as a tool for identifying novel transducers of itch.txt",
+ "f54c7e2f-f24b-429b-9155-6d7833aa43f2": "2013 - The methylated-DNA binding protein MBD2 enhances NGFI-A (egr-1)-mediated transcriptional activation of the glucocorticoid receptor.txt",
+ "c8021173-fee9-4029-aa3c-223a99c25d4a": "2016 - A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors.txt",
+ "7ac007e5-35bf-4894-9856-67d182b0a32a": "2015 - Genomic analysis of allele-specific expression in the mouse liver.txt",
+ "d3cb3e50-af73-4320-a6c3-09400e99663e": "2014 - Limitation of Number of Strains and Persistence of False Positive Loci in QTL Mapping Using Recombinant Inbred Strains.txt",
+ "93bf860f-bcc5-4b0e-bad6-430a0599ceec": "2014 - Genome Wide Analysis of Sex Difference in Gene Expression Profiles.txt",
+ "88f53bb9-0e45-412e-832e-3b11a8221657": "2013 - Effects of Glaucoma on Chrna6 Expression in the Retina.txt",
+ "5bd8262b-b2cd-4098-a494-ede168941a9a": "2017 - Identification of quantitative trait loci associated with the susceptibility of mouse spermatozoa to cryopreservation.txt",
+ "08a01aae-9754-4eb1-a385-9fa446460c59": "2014 - Sex-dependent genetic effects on immune responses to a parasitic nematode.txt",
+ "00df208f-bec0-4f4c-b941-76a92d1c5b6c": "2013 - Expression of alcoholism-relevant genes in the liver are differently correlated to different parts of the brain.txt",
+ "8a325317-ac8d-4e4d-aede-8d83eae077c3": "2016 -Loos- BXDs Home cage.txt",
+ "dee36885-b2f4-4311-b70a-17e228034820": "2015 - What animal models can tell us about glaucoma.txt",
+ "a1ddc50c-de3e-4938-8956-0b1eab6086b0": "2014 - Sirt1 induction confers resistance to etoposide-induced genotoxic apoptosis in thyroid cancers.txt",
+ "1161637c-7c9e-494a-b063-7f82280a78c7": "2012 - Systems genetics challenges and developing strategies.txt",
+ "1024c1ee-1f36-4f06-9ae1-cd231b51d602": "2015 - Complement receptor 2 is up regulated in the spinal cord following nerve root injury and modulates the spinal cord response.txt",
+ "075d395a-e68a-4457-914e-0da307ed112c": "2016 - Identification of quantitative trait loci regulating haematopoietic parameters in B6AKRF2 mice.txt",
+ "c0d0b807-c671-4495-b874-8c315611b833": "2014 - Unique genetic loci identified for emotional behavior in control and chronic stress conditions.txt",
+ "654458c3-6932-45c2-829d-389617a9f519": "2014 - Genetic regulatory network analysis reveals that low density lipoprotein receptor-related protein 11 is involved in stress responses in mice.txt",
+ "7301ff9c-40bd-4943-8402-bceed40a117b": "2012 - Sex-specific modulation of gene expression networks in murine hypothalamus_(1).txt",
+ "53246db3-48fc-4027-9b3c-33dfaeb2db68": "2016 - Systems genetic and pharmacological analysis identifies candidate genes underlying mechanosensation in the von Frey test.txt",
+ "3f41ee30-86e5-437b-b7b2-4f4c5b9c1041": "2016 - POEM Identifying Joint Additive Effects on Regulatory Circuits.txt",
+ "5f89ab63-e167-4d41-baec-50178d0e93d0": "2014 - Effect of Fluorosis on Liver Cells of VC Deficient and Wild Type Mice.txt",
+ "8039b6dc-c179-43e9-a6ae-08b39d7840e3": "2015 - Linking traits based on their shared molecular mechanisms.txt",
+ "14796b9d-f931-4ca5-9acc-0a5c9121d21d": "2015 - Identification of candidate genes that underlie the QTL on chromosome 1 that mediates genetic differences in stress-ethanol interactions.txt",
+ "0666777d-a2c5-40f5-b506-e78888b6b121": "2017 - Extraterritorial Heat Hyperalgesia in Mice Following Infraorbital Nerve Transection.txt",
+ "1f1c086b-a965-4f42-80db-95e678171b87": "2013 - Genetic variability in the rat Aplec C-type lectin gene cluster regulates lymphocyte trafficking and motor neuron survival after traumatic nerve root injury.txt",
+ "454c6361-2274-4d5e-93b5-c0391499a682": "2016 - Coupling of LETM1 up-regulation with oxidative phosphorylation and platelet-derived growth factor receptor signaling via YAP1 transactivation.txt",
+ "4edce587-031c-439a-903f-253cf62bd9f3": "2012 A_Fast_Ranking_Algorithm_for_Predicting_Gene_Functions_in_Biomolecular_Networks.txt",
+ "024c0e0e-26ea-45ae-a9e5-3718ade3eca1": "2013 - Genetic Dissection of Quantitative Trait Loci for Substances of A.txt",
+ "5405cdac-fb5d-4e14-9bb9-83bdbf8df8c9": "2013 - Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks.txt",
+ "2b2d5893-7362-4881-a53a-55c2b01c0a26": "2016 Bush PheWas.txt",
+ "667ac3eb-7d19-4359-98b7-e76871637910": "2014 - Molecular pathways underpinning ethanol-induced neurodegeneration.txt",
+ "2a03c53c-2bf7-4086-9b2d-b0fdba2d3cf6": "2018 - Ethanol_s Effect on Coq7 Expression in the Hippocampus of Mice.txt",
+ "22bc61de-d6e9-4704-b1d6-8945ed41b427": "2012 - Genetic, morphometric, and behavioral factors linked to the midsagittal area of the corpus callosum.txt",
+ "9e26e81b-f443-4ac2-b5d2-6b19d05a968c": "2016 - A Systems-Level Understanding of Cardiovascular Disease through Networks.txt",
+ "57a57f72-7f93-46db-9388-72e4181666b4": "2017 - Offspring genes indirectly influence sibling and maternal behavioural strategies over resource share.txt",
+ "beb4fcfb-a920-470f-9c72-0e189e6b3fb0": "2013 - Prospects for advancing defense to cereal rusts through genetical genomics.txt",
+ "fe55705a-6827-4e08-841e-a72b7cfd9fdf": "2013 - Enhanced alcohol self-administration and reinstatement in a highly impulsive, inattentive recombinant inbred mouse strain.txt",
+ "b1625eb7-f7be-4161-9a11-49aa39876337": "2015 - Genetic Variation in Renal Expression of Folate Receptor 1 (Folr1) Gene Predisposes Spontaneously Hypertensive Rats to Metabolic Syndrome.txt",
+ "0a3b2a6a-c894-4bd7-9c46-339a4fbf1f16": "2012 - Systems toxicology.txt",
+ "51efbb16-ba2b-43c2-8652-f84e91601cd5": "2017 - AHCODA-DB a data repository with web-based mining tools for the analysis of automated high-content mouse phenomics data.txt",
+ "8a35f162-6a46-4c52-870a-931c8d6a123f": "2015 - The interface between genetics and psychology lessons from developmental dyslexia.txt",
+ "6cbdc6cc-ae54-41c7-ba18-8f7308d53a07":
+ {
+ "fname": "2013 - Expression, covariation, and genetic regulation of miRNA Biogenesis genes in brain supports their role in addiction, psychiatric disorders, and disease.txt",
+ "filename": "2013-Mulligan-Expression,covariation,and genetic regulation.pdf",
+ "TITLE": "Expression,covariation,and genetic regulation of miRNA Biogenesis genes in brain supports their role in addiction, psychiatric disorders,and disease",
+ "volume": 4,
+ "issn": "1664-8021",
+ "url": "https://www.frontiersin.org/articles/10.3389/fgene.2013.00126/full",
+ "doi": "10.3389/fgene.2013.00126",
+ "language": "en",
+ "urldate": "2023-02-01",
+ "journal": "Frontiers in Genetics",
+ "AUTHOR": "Mulligan, Megan K and DuBose, Candice and Yue, Junming and Miles, Michael F and Lu, Lu and Hamre, Kristin M",
+ "month": "Jul",
+ "year": 2013,
+ "pages": "126"
+ },
+ "f4e26cf0-d214-41bf-b392-9c63a903b0b8": "2012 - Identifying Gene Networks Underlying the Neurobiology of Ethanol and Alcoholism.txt",
+ "7ff645bd-dde4-4eac-a0a0-1c3469142fc2": "2016 - Differential Potassium Channel Gene Regulation in BXD Mice Reveals Novel Targets for Pharmacogenetic Therapies to Reduce Heavy Alcohol Drinking.txt",
+ "33814fad-d831-46f5-b41f-ff31626a82ca": "2014 - On the Neurobiology of Physical Activity in Mice and Human.txt",
+ "5e2ae646-2c4a-499c-a22a-6cb88c6fa49c":
+ {
+ "fname": "2013 - A Crystallin Gene Network in the Mouse Retina.txt",
+ "filename": "2013-Templeton-Crystallin Gene Network.pdf",
+ "TITLE": "A Crystallin Gene Network in the Mouse Retina",
+ "volume": 116,
+ "issn": "1096-0007",
+ "url": "https://www.sciencedirect.com/science/article/abs/pii/S0014483513002406",
+ "doi": "10.1016/j.exer.2013.08.001",
+ "language": "en",
+ "urldate": "2023-01-22",
+ "journal": "Experimental Eye Research",
+ "AUTHOR": "Templeton, Justin P. and Wang, XiangDi and Freeman, Natalie E. and Ma, Zhiwei and Lu, Anna and Hejtmancik, Fielding and Gei, Eldon E.",
+ "month": "Nov",
+ "year": 2013,
+ "pages": "129--140"
+ },
+ "4892c8a4-05c9-405e-bbbe-cfcfead84683": "2015 - Biological network inference from microarray data, current solutions, and assessments.txt",
+ "b16783a4-4380-4d4c-9f3e-f8264371f5b4": "2014 - Computational tools to aid the design and development of a genetic reference population.txt",
+ "72540038-5deb-4d24-b932-f094615d9d60": "2015 Vins Causal process diagram.txt",
+ "d09e59f1-14d1-4391-8419-90c6d6bc2fde": "2017 - Reconstructing the molecular function of genetic variation in regulatory networks.txt",
+ "083e1297-ba25-498f-b9e0-77089e04b049": "2014- A novel genetic locus linked to pro-inflammatory cytokines after virulent H5N1 virus infection in mice.txt",
+ "65d16255-3edd-46fb-a100-2ab8ba6abcdd": "2016 - Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease.txt",
+ "8b73f48b-0ecf-4d0a-93bc-b028b2725b89":
+ {
+ "FNAME": "2015 - PTPN21 exerts pro-neuronal survival .txt",
+ "FILENAME": "2015-Plani-lam-PTPN21 exerts pro-neuronal survival and neuritic elongation.pdf",
+ "TITLE": "PTPN21 exerts pro-neuronal survival and neuritic elongation viaErbB4/NRG3 signaling",
+ "VOLUME": 61,
+ "ISSN": "1357-2725",
+ "URL": "https://www.sciencedirect.com/science/article/abs/pii/S1357272515000461",
+ "DOI": "10.1016/j.biocel.2015.02.003",
+ "LANGUAGE": "en",
+ "URLDATE": "2023-01-18",
+ "JOURNAL": "The International Journal of Biochemistry & Cell Biology",
+ "AUTHOR": "Plani-Lam, Janice Hiu-Chor and Chow, Tai-Cheong and Siu, Kam-Leung and Chau, Wing Hin and Ng, Ming-Him James and Bao, Suying and Ng, Cheung Toa and Sham, Pak and Shum, Daisy Kwok-Yan and Ingley, Evan",
+ "MONTH": "Apr",
+ "YEAR": 2015,
+ "PAGES": "53--62"
+ },
+ "5774f996-3411-4ae4-993e-8d54ade94dbf": "2016 - Genetic expression analysis of E2F-associated phosphoprotein in stress responses in the mouse.txt",
+ "f92e167e-0375-45b7-9d91-f8a4d0e1fbba": "2014 - Transcript co-variance with Nestin in two mouse genetic reference populations identifies Lef1 as a novel candidate regulator of neural precursor cell proliferation in the adult hippocampus.txt",
+ "0477b96a-60c8-4ed3-860b-d4cc34370872": "2012 - The social life of neurons synaptic communication deficits as a common denominator of autism, schizophrenia and other cognitive disorders.txt",
+ "9df9dc0c-0286-4d62-b34a-b886b9ae305f": "2012 - Weighting by heritability for detection of quantitative trait loci with microarray estimates of gene expression.txt",
+ "7b278ba7-05ad-474a-992d-2493f7712927": "2014 - Genome Wide Analysis of Sex Difference in Gene Expression Profiles of Bone Formations Using sfx Mice and BXD RI Strains.txt",
+ "57943aca-38a5-4030-bf34-c760f0e7f775": "2014 - Independent Genomic Control of Neuronal Number across Retinal Cell Types.txt",
+ "1577c7cc-1c4a-45a8-8770-6638a924e6da": "2013 - Elevated Expression of H19 and Igf2 in the Female Mouse Eye.txt",
+ "77e6baa5-fc84-43f9-99b1-a37e37feb7df": "2015 - Functional Analysis of Genomic Variation and Impact on Molecular and Higher Order Phenotypes.txt",
+ "f135bf11-96d4-4c0d-b058-7b97b3dbb388": "2016 - Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers.txt",
+ "58479ce8-1153-46ae-b83a-606b446d55e2": "2016 - The Genetic Architecture of Murine Glutathione Transferases.txt",
+ "3ce6e8a4-aaf9-40c5-9a0d-d2f4e41427bb": "2020 -Witty- CIGaussianLatentConfounding.txt",
+ "219dcc39-dac7-45a5-bc1d-c08a842e8c41": "2022 - Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children.txt",
+ "52f88d2e-6e0b-47e7-99a5-fe6ff6ec4d64": "Alcohol Clin Exp Res - 2006 - Fehr - The Syntaxin Binding Protein 1 Gene Stxbp1 Is a Candidate for an Ethanol.txt",
+ "9d5d2c4d-9df1-48c8-a423-264dffa9425d": "2022 -Feng- A hierarchical regulatory network ensures stable albumin transcription under various.txt",
+ "a9e1a04c-0651-4479-88e5-4a1afefcbb39": "2018 - Genetic analysis of ATP13A2, PLA2G6 and FBXO7 in a cohort of Chinese patients with early-onset Parkinson’s disease.txt",
+ "64886b4e-8599-4f61-84e6-9add7663a1b3": "2019 - Systems genetics approaches to probe gene function.txt",
+ "823584b3-e9c5-469e-a1dc-ce7f617bd2fa": "2020 - Serotonin regulates de novo lipogenesis in adipose tissues through serotonin receptor 2A.txt",
+ "5410301d-afc6-4773-8e2c-272eb9079aa4": "2019 - A multi-omics digital research object for the genetics of sleep regulation.txt",
+ "3bd3e2e0-926a-4dad-b06e-4dafe4ab4b86": "2016 -Zeng-generank.txt",
+ "f33db3ab-2c0c-46ce-a323-4d274e0da6e5": "2022 -Senko- Hippocampal neurogenesis serum glucose.txt",
+ "2464a084-1a11-44eb-8bce-4b344de049ff": "2021 -Mozhui- Epigenetic aging.txt",
+ "44aca4d8-cd8b-4243-a79f-02a3884604c6": "2017 - Systems genetics analysis of iron and its regulation in brain and periphery.txt",
+ "eae7406a-efdd-46af-b2e2-7868ce150157": "2016 - Genotyping by sequencing for identification and mapping of QTLs for bioenergy-related traits in sweet sorghum.txt",
+ "75e0ffe8-7675-4e11-be3e-880bfeb3dabd": "2016 - Mouse genome-wide association and systems genetics identifies Lhfp as a regulator of bone mass.txt",
+ "166448b9-3757-4eab-bd31-c7d5d0d27042": "2022 - Mouse population genetics phenocopies heterogeneity of human Chd8 haploinsufficiency.txt",
+ "5a56fa6d-9e77-4b95-a836-04d0fa31ee2c": "2016 - Systems Genetics of Obesity.txt",
+ "ecf7c695-3cea-4d3a-a3b2-b99240d30bdb": "2021 - Interleukin-6 ablation does not alter morphofunctional heart characteristics but modulates physiological and inflammatory markers after strenuous exercise.txt",
+ "443efea1-ffe7-446e-b2fb-37d8ec3cb74a": "2022 -Ashbrook- Genomic Basis Neurotoxic.txt",
+ "c0db7e62-2447-410c-8e5c-74bfd2f2edfb":
+ {
+ "fname": "2019 - Genetic Influences on the Amount of Cell Death in the Neural Tube of BXD Mice Exposed to Acute Ethanol at Mid-Gestation.txt",
+ "filename": "2019-Theberge- Neural Tube of BXD Mice Exposed.pdf",
+ "TITLE": "Genetic Influences on the Amount of Cell Death in the Neural Tube of BXD Mice Exposed to Acute Ethanol at Mid-Gestation",
+ "volume": 43,
+ "issn": "0145-6008, 1530-0277",
+ "url": "https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.13947",
+ "doi": "10.1111/acer.13947",
+ "language": "en",
+ "number": 3,
+ "urldate": "2023-01-23",
+ "journal": "Alcoholism: Clinical and Experimental Research",
+ "AUTHOR": "Theberge, Emilie T and Baker, Jessica A and Dubose, Candis and Boyle, Julia K and Balce, Kristina and Goldowitz, Dan and Hamre, Kristin M.",
+ "month": "Mar",
+ "year": 2019,
+ "pages": "439--452"
+ },
+ "8ad87bba-091d-4a4a-b16a-ca1165217bf1": "2018 - A survey on machine learning approaches in gene expression classification in modelling computational diagnostic system for complex diseases.txt",
+ "7765b4ff-6e66-427c-b580-5e825c9f18f7": "2017 - Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity.txt",
+ "a7863e20-daee-45db-941e-e7ae5976569d": "2017 - Lef1-dependent hypothalamic neurogenesis inhibits anxiety.txt",
+ "158883bf-a56d-48bd-939b-8c081ff52e8c": "2018 - Interaction between leucine and palmitate catabolism in 3T3-L1 adipocytes and primary adipocytes from control and obese rats.txt",
+ "ae4fff82-4b74-4dff-bff2-6cf4bfaa06e4": "2019 -Verma- PheWAS Phenotype Map.txt",
+ "f0373711-c50a-4272-84cb-a642925be2fe":
+ {
+ "fname": "2018 - Silencing the ACAT1 Gene in Human SH-SY5Y Neuroblastoma Cells Inhibits the Expression of Cyclo-Oxygenase 2 (COX2) and Reduces β-Amyloid-Induced Toxicity Due to Activation of Protein Kinase C (PKC) and ERK.txt",
+ "filename": "2018-Chen-Silencing the ACAT1 Gene in Human.pdf",
+ "TITLE": "Silencing the ACAT1 Gene in Human SH-SY5Y Neuroblastoma Cells Inhibits the Expression of Cyclo-Oxygenase 2 (COX2) and Reduces b-Amyloid-Induced Toxicity Due to Activation of Protein Kinase C (PKC) and ERK",
+ "volume": 24,
+ "issn": "1643-3750",
+ "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299791/",
+ "doi": "10.12659/MSM.912862",
+ "language": "en",
+ "urldate": "2023-07-27",
+ "journal": "Medical Science Monitor: International Medical Journal of Experimental and Clinical Research",
+ "AUTHOR": "Chen, Ying and Zhu, Lu and Ji, Lei and Yang,Ying and Lu, Lu and Wang, Xiaodong and Zhou, Guomin",
+ "year": 2018,
+ "pages": "9007--9018"
+ },
+ "3d4d45fb-4f47-4d5d-8246-661b2f65bd9b": "2016 - Genetic Architecture of Group A Streptococcal Necrotizing Soft Tissue Infections in the Mouse.txt",
+ "4049da4d-c7cf-4e30-9a21-c77609fad23d": "2020 - Gene network a continuously updated tool for systems genetics analyses.txt",
+ "94d145e0-73b7-4da4-a900-a117b5b58713": "2016-The genetic reference population “Collaborative Cross” is a powerful resource for genetic discoveries and understanding complex genetic traits_.txt",
+ "d3d67989-3ee6-4956-84a6-d0b48bb421bc": "2018 - Data sets of eQTL loci, correlation analysis, and overlapped genes among gene sets that their expression levels are closely related to genes of Vegf family.txt",
+ "9497cd3a-8b36-46d3-be18-d9a6f4c36a27": "2017 - The allostatic impact of chronic ethanol on gene expression A genetic analysis of chronic intermittent ethanol treatment in the BXD cohort.txt",
+ "35931156-6164-4500-9972-b6541d6294e5": "2022 -Batten- guix-gem5.txt",
+ "f13924a4-cb88-45ed-a699-62b5009c0ba2": "2017 - Genome wide association study of behavioral, physiological and gene expression traits in a multigenerational mouse intercross.txt",
+ "7d866915-9d92-4401-8340-ffdef457debe": "2016 - Systems proteomics of liver mitochondria function.txt",
+ "6c545f35-f036-4e5f-8eed-19a8b048001b": "2021- Commonalities of optic nerve injury and glaucoma-induced neurodegeneration Insights from transcriptome-wide studies.txt",
+ "746d211e-4a1a-4e6e-8404-3301767c363d": "2019 - Identifying gene function and module connections by the integration of multispecies expression compendia.txt",
+ "4edf9e5c-915d-4e38-b48f-2a0b82132bd0": "2017 - Precise network modeling of systems genetics data using the Bayesian network webserver.txt",
+ "91b62c02-3993-4d6e-bfb1-b2630326f078": "2022 - Extreme Phenotypic Diversity in Operant Responding for an Intravenous Cocaine or Saline Infusion in the Hybrid Mouse Diversity Panel.txt",
+ "ba7ab85f-22bc-49d1-980c-70c221f6f7d6": "2020 - Validation of Ninein as an Ethanol-related Quantitative Trait Gen.txt",
+ "9d225f6f-e434-45a7-b199-f3a09eda1d04": "2021 - Systems genetic analysis of binge‐like eating in a C57BL6J x DBA2J‐F2 cross.txt",
+ "cbd9c023-f6ce-4aa1-863c-d11a905775fb": "2018 - Molecular Brain Adaptations to Ethanol_ Role of Glycogen Synthase (2).txt",
+ "f6abed2a-3182-46be-aae6-97d99f08e73e": "2019 - Diet modulates cecum bacterial diversity and physiological phenotypes across the BXD mouse genetic reference population.txt",
+ "c4110ad4-e33f-4bf2-8273-1cf483e34cb3": "2021 - Associations Among Parental Caregiving Quality, Cannabinoid Receptor 1 Expression-Based Polygenic Scores, and Infant-Parent Attachment Evidence for Differential Genetic Susceptibility.txt",
+ "58cc5d33-4104-416a-9bd5-72c9b7d96b2e": "2018 - Genomic loci modulating retinal ganglion cell death following elevated IOP in the mouse.txt",
+ "fe558be3-948c-4475-abbc-eb1ea36ff756": "2018 - Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models.txt",
+ "cb97a779-ee2f-44b0-a06e-995a8c74183c": "2022 -Katashima- Neuromuscular circuit.txt",
+ "2b7de368-bca5-49a5-b5d1-3eafa3844021": "2020 - ChREBP downregulates SNAT2 amino acid transporter expression through interactions with SMRT in response to a high-carbohydrate diet.txt",
+ "0ecf5586-f80d-4b5e-8687-5a0d92423597": "2019 - The expanded BXD family of mice A cohort for experimental systems genetics and precision medicine.txt",
+ "87b8410d-4032-41e3-9924-8922056ed610": "Gao_Cui_TransferLeaningAndDisparityHealth_NatureComm_2020.txt",
+ "88dc3b00-055d-45f4-bdcb-1e7320770faf": "2020 - Identification of novel genetic variants associated with cardiorespiratory fitness.txt",
+ "d8bc6949-6ca0-409e-a07d-80a93957a755": "2022 - Quantitative proteomics approach reveals novel biomarkers and pathological mechanism of keloid.txt",
+ "cc6bb2d6-54f6-4445-aec0-b48319be0c10": "2022 -Yu- Sex Diff Key Genes Mouse.txt",
+ "b314fea7-0af5-4f4c-b163-a4c6f129098d": "2021 - Integrative Analyses Reveal Tstd1 as a Potential Modulator of HDL Cholesterol and Mitochondrial Function in Mice.txt",
+ "6e5525a1-476c-4668-833e-e32bdf437ac8": "2019 -Pearl- 7 Tools of CI.txt",
+ "f041550e-5f2d-430e-8f46-15ebea6ca496":
+ {
+ "fname": "2017 - Systems genetic analysis in GeneNetwork.org.txt",
+ "filename": "2017-Parker-Systems Genetic Analysis in GeneNetwork.org.pdf",
+ "TITLE": "Systems genetic analysis in GeneNetwork.org",
+ "volume": 79,
+ "issn": "2691-1299",
+ "url": "https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpns.23",
+ "doi": "10.1002/cpns.23",
+ "language": "en",
+ "number": 1,
+ "urldate": "2023-02-01",
+ "journal": "Current Protocols in Neuroscience",
+ "AUTHOR": "Parker, Clarissa C. and Dickson, Price E.and Philip, Vivek M. and Thomas, Mary and Chesler, Elissa J.",
+ "month": "Apr",
+ "year": 2017,
+ "pages": "8-39"
+ },
+ "7b1cecf5-a2b9-4bd9-b92b-9bd6b96ed93d": "2020 - Gene network a completely updated tool for systems genetics analyses.txt",
+ "2418ad89-9f7f-4f6f-b27b-a153c7a52d96": "2023 -Keeley- Neurog2.txt",
+ "80d2f19e-b859-47fb-ae51-428e562277db": "2022 - Translational approaches to understanding resilience to Alzheimer’s disease.txt",
+ "4f7b2e71-a1e9-4e5d-bd62-f6a3d00ff965": "2022 -Restrepo- Predict impulsivity in children.txt",
+ "0e5c8923-7b94-43b0-9aa8-2b7d9736127d": "2021 -Feng- Hierarchical regulation.txt",
+ "fa8bba46-ce94-439a-a676-35187a3abcbf":
+ {
+ "fname": "2017 - Integrative functional genomics for systems genetics in GeneWeaver. org.txt",
+ "filename": "2017-Bubier-Genomics for Systems Genetics in GeneWeaver.org.pdf",
+ "TITLE": "Integrative Functional Genomics for Systems Genetics in GeneWeaver.org",
+ "volume": 1488,
+ "issn": "1940-6029",
+ "url": "https://link.springer.com/protocol/10.1007/978-1-4939-6427-7_6",
+ "doi": "10.1007/978-1-4939-6427-7_6",
+ "language": "en",
+ "urldate": "2023-02-01",
+ "journal": "Systems Genetics: Methods and Protocols",
+ "AUTHOR": "Bubier, Jason A. and Langston, Michael A. and Baker, Erich J. and Chesler, Elissa J.",
+ "year": 2017,
+ "pages": "131--152"
+ },
+ "d685bfad-fa39-4755-80d5-df87c710431f": "2019 - Stress, Alcohol, and Hippocampal Genes.txt",
+ "a1d01cac-c764-4845-9d6c-62b450a14163": "2022 - Beta-caryophyllene prevents the defects in trabecular bone caused by Vitamin D deficiency through pathways instated by increased expression of klotho.txt",
+ "966adb02-82f2-4ae1-88f5-db129eb164d5": "2018 - Genetic Networks Activated by Blast Injury to the Eye.txt",
+ "56b668c7-f98e-49bd-ad50-00065465c8aa": "2022 - Leptin receptor co-expression gene network moderates the effect of early life adversity on eating behavior in children.txt",
+ "0951ba9d-bb8f-424b-b63f-16d94cb7166c": "2020 -Tan- DiabeticCardiomyopathy Rats.txt",
+ "847973c1-9025-443b-8497-1053bce38613": "2020 - Quantitative trait locus mapping identifies Col4a6 as a novel regulator of striatal dopamine level and axonal branching in mice.txt",
+ "ee04d190-5b08-4b82-ad80-00287373b0a0": "2019 - A cross-species systems genetics analysis links APBB1IP as a candidate for schizophrenia and prepulse inhibition.txt",
+ "e8a26549-f13b-4c3f-97b1-a33bcc8baa80": "2019 - Genetic Factors Mediate the Impact of Chronic Stress and Subsequent Response to Novel Acute Stress.txt",
+ "544c1b63-6935-4c16-a884-0671deaa0608": "2018 - A Population-Guided Approach to Identify Genetic Modulators of TCDD-Elicited Toxicity.txt",
+ "419fbc53-0941-4458-97d7-f20a32cf4894": "2022 -Dong- Beta-caryophyllene klotho.txt",
+ "a98d7249-5433-47b6-be74-2efbe581e0cb": "2017 - Dissection of Z-disc myopalladin gene network involved in the development of restrictive cardiomyopathy using system genetics approach.txt",
+ "a144ec66-3723-4a2c-a7ce-78b5ed66364b": "2018 - Shaping vulnerability to addiction–the contribution of behavior, neural circuits and molecular mechanisms.txt",
+ "16cf4a95-88bc-405c-9959-ff758dd57b8c": "2018 - Integrating genetic and gene co-expression analysis identifies gene networks involved in alcohol and stress responses.txt",
+ "af4c6e19-fafe-4178-a9eb-213991f344d6": "2018 - An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function.txt",
+ "18d12255-3cc6-415b-bd30-ff94bb087813": "2020- Genome-wide transcriptome architecture in a mouse model of Gulf War Illness.txt",
+ "851eacd0-9137-4f7b-9cdb-86ebf25f008d": "2021 -Panigrahi- Survey Gene Select Strategies.txt",
+ "33c07906-39ca-4241-a50c-ddc6e0ca5fd3": "2017 - Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility.txt",
+ "fa054778-fe47-416f-828b-35b17e9064f3": "2022 - Diet X Gene Interactions Control Femoral Bone Adaptation to Low Dietary Calcium.txt",
+ "730b100f-26f5-4787-a18a-e3b68237f7c0": "2022 -Bagley- Behavioral Phenotypes.txt",
+ "29d9fa5b-7b6e-4b59-899a-5e47bf657370": "2019 - Systems genetics of sensation seeking.txt",
+ "02c7716c-71b5-4392-b204-811cbd264e81": "2019 - Genetic variability of T cell responses in hypersensitivity pneumonitis identified using the BXD genetic reference panel.txt",
+ "1a08e48e-b18a-41c5-abc4-41c8c238bac5": "2022 -Senko- System Genetics in the Rat HXB:BXH Family.txt",
+ "8d6b4c71-c766-4009-85c0-dbe0b5d3f39f": "2020 - A Multi-Omics Perspective of Quantitative Trait Loci in Precision Medicine.txt",
+ "1b7b2ec6-5cf3-41c5-a5a0-06de2bf7212e": "2020 - Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism.txt",
+ "2c7924d6-99d9-4b94-b855-72cbff6c199d":
+ {
+ "fname": "2018 - The Use of Recombinant Inbred Strains in Systems Genetics and Functional Analyses in Behavioral Pharmacology.txt",
+ "FILENAME": "2018-Adamova-Inbred Strains in Systems Genetics.pdf",
+ "TITLE": "The Use of Recombinant Inbred Strains in Systems Genetics and Functional Analyses in Behavioral Pharmacology",
+ "url": "https://www.sciencedirect.com/science/article/abs/pii/B9780128040782000064",
+ "doi": "10.1016/B978-0-12-804078-2.00006-4",
+ "language": "en",
+ "urldate": "2023-01-23",
+ "journal": "Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research",
+ "AUTHOR": "Adamova, Eva and Williams, Robert W. and Jones, Byron C.",
+ "month": "Jan",
+ "year": 2018,
+ "pages": "133--150"
+ },
+ "8cc4b750-4d64-4d36-8ed8-c8eb72d56990": "2019 - Association of Leukemia Target Genes Tet2, Bcl2, and Slc23a2 in Vitamin C Pathways.txt",
+ "0e6c370f-b514-4551-b6ed-9cc72e6f6b75": "2020 - GeneNetwork a toolbox for systems genetics.txt",
+ "429abfc1-f628-48ff-bfe8-f7be6d1419a8": "2018 - Invited review Genetic and genomic_ xmltexbreak_ mouse models for livestock research.txt",
+ "fb63cb0e-844d-4630-9ae8-da798a89ad0e": "2022 -Gunturkun- GeneCup.txt",
+ "54147a26-a71a-4e11-8f95-334df4bac365": "2018 - Genetic differences in the behavioral organization of binge eating, conditioned food reward, and compulsive-like eating in C57BL6J and DBA2J strains.txt",
+ "e091d263-6ffc-4ff0-bd1d-2a0c757b0f74": "2021 - Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children.txt",
+ "e3552ba0-71c7-4050-80f9-d710ecbf9778": "Breaking_news_thinking_may_be_bad_for_DN.txt",
+ "d8993417-3a27-4000-b693-6cb4662b9f80": "2022 - New Insights on Gene by Environmental Effects of Drugs of Abuse in Animal Models Using GN.txt",
+ "efc6d914-13a6-488d-9cd2-db9d25202833": "2022 - System Genetics in the Rat Family.txt",
+ "a63e5457-c23a-4429-8a17-e230c3c80053": "2018 - Genomic locus modulating corneal thickness in the mouse identifies POU6F2 as a potential risk of developing glaucoma.txt",
+ "fc19faa4-77b2-4883-9529-8ed898b59a61": "2022 - A Novel quantitative trait locus.txt",
+ "1dd221c6-72a9-4c5c-9061-5f2819178e62": "2021 - Systems genetic analysis of nicotine withdrawal deficits in hippocampus‐dependent learning.txt",
+ "23d6aba8-ca17-4606-9504-789b071c4923": "2018 - _Genome-wide association for testis weight in the diversity outbred mouse population.txt",
+ "918b95e1-7947-4633-baa9-d81c24227fbf": "2022 -Lima- Leptin et al.txt",
+ "1867a302-3886-4b76-9124-31440e17cbd9": "2018 - Different Effect of Sox11 in Retinal Ganglion Cells Survival and Axon Regeneration.txt",
+ "ea036684-619d-4b82-9242-c0b220f2d8df": "2020 - Cross-species analyses identify Dlgap2 as a regulator of age-related cognitive decline and Alzheimer’s dementia.txt",
+ "f7ea05c2-8ca9-4795-b8b5-3ac31bb10a70": "2020 - When research goes wrong the importance of clinical trials methodology.txt",
+ "16f3eea1-c5f6-4948-83cc-2efa10437a11": "2017 - The effect of alcohol on the differential expression of cluster of differentiation 14 gene, associated pathways, and genetic network.txt",
+ "856a0466-521e-4240-a97f-a85e3426225c": "2022 Atienza - PyBNesian Python Bayes Package.txt",
+ "06a8d056-096c-41aa-8159-4fe4a2de1d5e": "2019 - Impact of Genetic Variation on Stress-Related Ethanol Consumption.txt",
+ "dcc71b11-5668-4274-9f35-d9b7f01695a2": "2018 - Offspring genetic effects on maternal care.txt",
+ "9c77964b-6adf-4557-b53c-58dcbb83f86b": "2019 - Tlr4 participates in the responses of markers of apoptosis, inflammation, and ER stress to different acute exercise intensities in mice hearts.txt",
+ "361eb08e-d0fa-40d4-8de8-db51a3398f0c": "Gyekis_Dissertation_July14.txt",
+ "df0d61ac-395a-4a97-97dd-2d9fa16fd7b0": "2022 -Bender- Inborn Errors.txt",
+ "ed937e0a-1b83-4400-9bb3-d61ef714a797": "2020 - Identifying modifier genes for hypertrophic cardiomyopathy.txt",
+ "4cd75ea5-5e5a-44b7-95f7-93c9c9086a1e": "2019 - Different genetic mechanisms mediate spontaneous versus UVR-induced malignant melanoma.txt",
+ "90a19d89-daac-4de9-8213-d3047b1e4b65": "2021 - Characterizing modifier genes of cardiac fibrosis phenotype in hypertrophic cardiomyopathy.txt",
+ "a4508fb3-c66b-4526-b2a2-a327505d085a": "2022 - Genetic_dissection_of_glutathione_S_transferase.31.txt",
+ "fea5b928-83dd-4c4d-8f03-297865d583e3": "2019 - Discovery of early life stress interacting and sex-specific quantitative trait loci impacting cocaine responsiveness.txt",
+ "427e74a6-bd74-426a-b64b-31ac75678c22": "2022 -Benegiamo- COX7A2L heart fitness.txt",
+ "aea132e7-4758-498a-aa24-d13446dd9a91": "2019 - Novel Genetic Loci Control L5 Vertebral Trabecular Bone and the Response to Low Calcium Intake in Growing BXD Recombinant Inbred Mice.txt",
+ "49231283-041c-4cc7-b0f2-edf76c580c38": "2022 - System genetics in the rat HXBBXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose.txt",
+ "a1c91fbe-9f6c-45fe-af9a-46c162d340ed": "2022 - Genomic Basis for Individual Differences in Susceptibility to the Neurotoxic Effects of Diese Exhaust .txt",
+ "5bddecdf-df80-4c19-9422-bb6cb286d5a1": "2020 - Development of a tissue augmented Bayesian model for expression quantitative trait loci analysis.txt",
+ "a4d42abc-67da-4bd6-ad55-5a1a41d9f812": "2020 -Biological Nitrogen Potential (BNP) A New Methodology to Estimate Nitrogen Transformations During Anaerobic Digestion of Organic Substrates.txt",
+ "516cc395-4e7c-4371-9444-24edb56a7233": "2018 - Reduced complexity cross design for behavioral genetics.txt",
+ "5a6808e5-fc6c-47ae-9fca-8fed42cab3df": "2021 - Therapy Strategy of CD47 in Diffuse Large B-Cell Lymphoma (DLBCL).txt",
+ "1db45d56-6061-4add-809b-8b53357faa9e": "The FEBS Journal - 2015 - Chintalapudi - Multipronged approach to identify and validate a novel upstream regulator of Sncg.txt",
+ "ce2c68bf-878d-460c-8d9b-d45ce3034ef7": "2021 - Gene-by-environment modulation of lifespan and weight gain in the murine BXD family.txt",
+ "d769f683-20fc-443f-ab0d-9879467e81ef": "2018 - Differential Exon Expression in a Large Family of Retinal Genes Is Regulated by a Single Trans Locus.txt",
+ "0886be76-7080-4577-a40a-636a1957b5dc": "2022 - A mesocorticolimbic dopamine gene network moderates the effect of early adversity on the risk for psychiatric and cardio-metabolic comorbidities.txt",
+ "88f640f5-8c18-4d4b-be58-e6c4c8accce7": "2020 - Modeling the Genetic Basis of Individual Differences in Susceptibility to Gulf War Illness.txt",
+ "e43dfc29-b1b5-4a0e-be56-660c90e012cc": "2019 - Variable outcomes of human heart attack recapitulated in genetically diverse mice_.txt",
+ "24d8356c-9831-4f33-a725-29536bec3582": "2018 -Camacho- NextGen ML for BioNets.txt",
+ "8c1fbb5e-3e46-4ff0-90ba-bd50f736f047": "2017 - Variable Effects of Chronic Intermittent Ethanol Exposure on Ethanol Drinking in a Genetically Diverse Mouse Cohort.txt",
+ "0bcdf164-dd98-40cc-84b7-c6b44f82272b": "2022 -Liu- Quantitative proteomics approach reveals novel biomarkers and pathological.txt",
+ "5be82617-a00b-414d-9058-bfbdb2974f43": "2018 - Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies.txt",
+ "5b5a5f8d-149d-4504-99b8-f3374dadee54": "2023 - Rate of tau propagation is a heritable disease trait in genetically diverse mouse strains.txt",
+ "e9c8625b-498a-4e8d-b188-230423cfc094": "2022 -Baker- Effects BXD Mouse.txt",
+ "baacd740-efc8-42f2-af22-6f5ac9710900": "2022 - Opiate responses are controlled by interactions of Oprm1 and Fgf12 loci in the murine BXD family Correspondence to human GWAS findings.txt",
+ "dbe5a781-3561-48cb-9f63-cfb4f3246434": "2020 - Genetic Variation in CNS Myelination and Functional Brain Connectivity in Recombinant Inbred Mice.txt",
+ "c802cb60-1a15-4962-8e6d-f06608c00a54": "2022 -Hao- Integrative systems.txt",
+ "a813bad6-3435-4e24-8e41-2ea6f046790a": "2021 - Smarce1 and Tensin 4 Are Putative Modulators of Corneoscleral Stiffness.txt",
+ "fbdb3085-ad34-4d7d-bd30-9e9320789b52": "2019 - Beyond Genome-wide Significance Integrative Approaches to the Interpretation and Extension of GWAS Findings for Alcohol Use Disorder.txt",
+ "103ecfc2-2e3d-42ca-acea-34972e6788ff": "2019 - Heritability of the Mouse Brain Connectome.txt",
+ "f566d14c-9d95-4546-81f0-f62bde769080": "2018 - Genome wide association analysis in a mouse advanced intercross line.txt",
+ "f45cb472-2b22-47bf-9dba-2468b0b23a28": "2022 -Senko- System Genetics in the Rat HXBBXH Family.txt",
+ "e69ba4fa-6e30-4f66-aaae-5fde55d95d2a": "2020 - A platform for experimental precision medicine The extended BXD mouse family.txt",
+ "93ef3283-7711-4d49-923c-c8fc3afd4209": "2020 - Systems Genetics and Systems Biology Analysis of Paraquat Effects in BXD Recombinant Inbred Mice.txt",
+ "bbc7cd33-8707-43d8-9058-d68c5fee97f7": "2021 -Potter-Dickey- Genetic Susceptibility.txt",
+ "0ba1ad53-88df-4c3b-96fb-7d4e257704d9": "2019 - Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1.txt",
+ "7635a2fd-54a3-49e3-a0df-adbb97ff9613": "2021 - A Genetic differences in ethanol consumption effects on iron, copper, and zinc regulation in mouse hippocampus.txt",
+ "3da7c010-cd02-4d09-8d73-99b70bc6d81c": "2018 - Apremilast alters behavioral responses to ethanol in mice II. Increased sedation, intoxication, and reduced acute functional tolerance.txt",
+ "ce270796-8098-48e6-afe2-ad285a75bce2": "2018 - The lifespan quantitative trait locus gene Securin controls hematopoietic progenitor cell function.txt",
+ "4dfdd8cf-6210-41eb-bac4-d0fb4a4d4036": "2018 - Leveraging the cell lineage to predict cell-type specificity of regulatory variation from bulk genomics.txt",
+ "cd3a86a9-5947-4c3a-bf9d-059170f82c5d": "2022 - Effects of Genetics and Sex on Acute Gene Expression Changes in the Hippocampus Following Neonatal Ethanol Exposure in BXD Recombinant Inbred Mouse Strains.txt",
+ "fa63ca14-f181-4816-8a39-063301b748e9": "Breitling-GeneRank-2005.txt",
+ "34a57416-2154-45dc-9e75-f928db77ad86":
+ {
+ "fname": "2019 -Evaluation of Sirtuin-3 probe quality and co-expressed genes using literature cohesion.txt",
+ "filename":"2019-Roy-Evaluation of Sirtuin-3 probe quality and co-expressed genes",
+ "TITLE":"Evaluation of Sirtuin-3 probe quality and co-expressed genes using literature cohesion",
+ "AUTHOR":"Roy, Sujoy and Zaman, Kazi I and Williams, Robert W and Homayouni, Ramin",
+ "JOURNAL": "BMC bioinformatics",
+ "URL": "https://link.springer.com/article/10.1186/s12859-019-2621-z",
+ "DOI": "10.1186/s12859-019-2621-z",
+ "ISSN": "1471-2105",
+ "URLDATE": "2023-08-04",
+ "VOLUME": "20",
+ "PAGES": "31--43",
+ "YEAR": 2019,
+ "MONTH": 3,
+ "PUBLISHER": "Springer"
+ },
+ "cabbee33-cf97-448d-ae70-23e11db43614": "2022 - Systems genetics in the rat HXBBXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose.txt",
+ "0c6c0977-2cf9-4bbf-bc31-fe025f008089": "2021 - Genetic loci and metabolic states associated with murine epigenetic aging.txt",
+ "bc99b6b0-10de-4b5d-a150-92ab1a437d32": "2022 - A_hierarchical_regulatory_network_ensures_stable.12 (1).txt",
+ "c449650e-a0ac-4023-b3c8-82cf3463b0f3": "diversity-supplement-submitted-application-example.txt",
+ "5d2fa6b9-8412-43cb-bc86-e9bcda73a4ef": "2022 -Madadi- AI RNA.txt",
+ "99a1393e-3764-4c93-85d5-8d37f31b2b24": "2022 -Chanpaisaeng- Diet X Gene Interactions Control Femoral Bone Adaptation to Low Dietary Calcium.txt",
+ "3f27c6b7-2180-418d-abe8-088f6d69c0fe": "2020 - Discovery of a Role for Rab3b in Habituation and Cocaine Induced Locomotor Activation in Mice Using Heterogeneous Functional Genomic Analysis.txt",
+ "45ab337c-0a52-4bc0-ae4a-a29278644071": "2018 -Guzetta- ML in Biology.txt",
+ "4f35144b-ba67-4791-8e27-c609e6fed77a": "2023 - Striatum-specific mechanisms regulate neuronal cell cycle re-entry the choice between life and death.txt",
+ "6b2dba7c-0249-448e-9e84-92de7088109b": "2021 -Ashbrook- will PMC.txt",
+ "75813bc2-f0b5-400c-92d7-0958df97a04f": "2018 - Reproducibility and replicability of rodent phenotyping in preclinical studies.txt",
+ "dd81be0c-5ebe-4ae6-b5b0-27610d41082d": "2020 -Highlights from the Era of Open Source Web-Based Tools.txt",
+ "0ca8ca87-9b90-45db-a239-aab1106ee703": "2019 - Predicting compulsive alcohol drinking.txt",
+ "23320305-5766-48e6-8d89-fd252e47cbac": "2019 - Exploring the involvement of Tac2 in the mouse hippocampal stress response through gene networking.txt",
+ "f955b307-b7cc-4efb-a199-6055c6748826": "2022 - Identification of cyclin D1 as a major modulator of 3-nitropropionic acid-induced striatal neurodegeneration.txt",
+ "1705b972-f675-44ef-8294-c4f9d3040cd5": "2020 - Pex3 is involved in the genetic regulation.txt",
+ "f1944f5d-cbf0-4204-bf38-52750d782dfd": "2018 - Identification and Validation of Midbrain Kcnq4 Regulation of Heavy Alcohol Consumption in Rodents.txt",
+ "d70e16cb-b617-4674-91d3-81beecc170b5": "2019 - Strain differences in maternal neuroendocrine and behavioral responses to stress and the relation to offspring cocaine responsiveness..txt",
+ "7a29e7c0-7ed6-455f-b076-a0d3545b1ca3": "2020 - Postpartum psychosis an important clue to the etiology of mental illness.txt",
+ "af83c313-40dc-4b13-863a-cd32a018e610": "2022 -Neuner- Resilient Alzheimers.txt",
+ "25c1e893-5b3d-46ae-953c-30ab17934a9d": "2018 - Ifi204 as the most favored candidate gene that regulates susceptibility to spontaneous arthritis in mice deficient in IL-1ra.txt",
+ "095da902-d92c-44ab-a5c3-43a143d502bb": "2020 -Mott- HEGP Genetics.txt",
+ "44fdea8f-75e7-4ffd-9b16-80a9aa66b511": "2022 - Behavioral phenotypes revealed during reversal learning are linked with novel genetic loci in diversity outbred mice.txt",
+ "a197da56-0c3b-445f-b89d-7f249f1343f7": "2019 - Expression quantitative trait loci and genetic regulatory network analysis of Fbn1.txt",
+ "a5e25b91-4846-4a42-b9b4-838031ec19b7": "2021 -Expression of LONP1 is high in visceral adipose tissue in obesity, and is associated with glucose and lipid metabolism.txt",
+ "66baf01d-e081-4034-b7ec-03592eac90a7": "2020 - Exploring the Role of Chemokine Receptor 6 (Ccr6) in the BXD Mouse Model of Gulf War Illness.txt",
+ "7b892fc9-9f0c-47fa-ab80-1f56995404a7": "2019 -Papa- Expression Atlas.txt",
+ "c7baf2cb-4b8a-4701-9977-95e81b8df4cb": "2018 - Sex Differences in Correlation with Gene Expression Levels between Ifi200 Family Genes and Four Sets of Immune Disease-Relevant Genes.txt",
+ "dddfbbbf-c48d-47e6-be9e-484fa5591942": "2018 -Park- CN Bone Metastasis.txt",
+ "78fa6c3e-5f09-4449-939a-d1d5f4460457": "2023 -Dietrich- Striatum-specific re-entry.txt",
+ "d0deb53b-7286-4fd0-9188-b7b9f366fd76":
+ {
+ "FILENAME": "2022-Chunduri-New Insights on Gene.pdf",
+ "TITLE": "New Insights on Gene by Environmental Effects of Drugs of Abuse in Animal Models Using GeneNetwork",
+ "volume": 13,
+ "issn": " 2073-4425",
+ "url": "https://www.mdpi.com/2073-4425/13/4/614",
+ "doi": "10.3390/genes13040614",
+ "language": "en",
+ "number": 4,
+ "urldate": "2023-04-10",
+ "journal": "Genes",
+ "AUTHOR": "Chunduri, Alisha and Watson, Pamela M. and Ashbrook, David G.",
+ "month": "Mar",
+ "year": 2022,
+ "pages": "614",
+ "fname": "2022 -Chunduri- Drugs Animal Models.txt"
+ },
+ "721eafff-b103-4ad4-a1b4-340942951440": "2021 - Hippocampal Transcriptome-Wide Association Study Reveals Correlations Between Impaired Glutamatergic Synapse Pathway and Age-Related Hearing Loss in BXD-Recombinant Inbred Mice.txt",
+ "41fc22ce-f0dc-4d81-a2b5-14c563c7c767": "2022 - Transcriptome-wide association study reveals cholesterol metabolism gene Lpl is a key regulator of cognitive dysfunction.txt",
+ "52990c69-609c-448e-9f2c-36e1655ca6db": "2022 - Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis.txt",
+ "23157342-c7ff-490a-b810-e93fdb9bc4f9": "2020 - Systems Genetics of Optic Nerve Axon Necrosis During Glaucoma.txt",
+ "af6d5068-d4e5-4ac0-98fc-4185da16bb0f": "2018 - Thrombospondin-4 mediates cardiovascular remodelling in angiotensin II-induced hypertension.txt",
+ "a7f40b8e-5da0-43f5-a8dd-acbab8735211": "2019 - The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging.txt",
+ "7a5c1a3b-4bb2-4834-ba6f-4f36f12f57e0": "2004 - Mapping of genes that control the antibody response to human factor IX in mice.txt",
+ "52769f14-9d64-49a9-80ec-c41e500d8384": "2020 - An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice.txt",
+ "7686d354-e14a-423a-9db5-d5a74b0d046c": "2021 Botia Hybrid Gene Selection.txt",
+ "682683c5-7d32-4f5f-a8ae-b78078001a9c": "Double-machine-learning-causality-arxiv-2016.txt",
+ "9a882703-e0ff-4bac-b11a-d99284bf7f6c": "2003_WebQTL_docs.txt",
+ "ba770059-1ec9-448f-85c5-cf604193c225": "2021 - System genetics in the rat HXBBXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose.txt",
+ "4673d8d9-6b1e-46b9-b8b4-add9e1048b3e": "2004 -Scott- P2p0r.txt",
+ "bab65477-76ce-4506-bec8-589f1793e8af": "2004 - Genetic analysis of complex cardiovascular traits in the spontaneously.txt",
+ "dfebf2a5-8553-41f9-af2d-f781778d1342": "2020 - Growth differentiation factor 15 protects against the aging‐mediated systemic inflammatory response in humans and mice.txt",
+ "389bdbf3-0224-4edb-a4fb-71a54971ba66": "2022 -Jia- Alzheimers disease pathways.txt",
+ "6daf89f2-caee-4128-a1a0-61a5c2d37b48": "2021 - Ace2 and Tmprss2 Expressions Are Regulated by Dhx32 and Influence the Gastrointestinal Symptoms Caused by SARS-CoV-2.txt",
+ "bbfc7f30-2854-454a-87d7-39ebfd78673f": "2022 - Potential Similarities in Sex Difference in Key Genes and Their Expression, Network, EQTL and Pathways between COVID-19 and Chronic Kidney Disease Based on Mouse Model.txt",
+ "2c6178fe-c05a-42e6-aafb-7408592dcc50": "2003 -Wang- WebQTL.txt",
+ "7dc4230d-c0a3-484b-9fb4-04d5ff09956b": "2005 - Bioinformatics toolbox for narrowing rodent quantitative trait loci .txt",
+ "6482f94f-bb32-458a-bbd8-2d164efba104": "2019 - Cross-species alcohol dependence-associated gene networks Co-analysis of mouse brain gene expression and human genome-wide association data.txt",
+ "42a4ce82-d68f-4664-b7ca-7c1d6eb8022a": "2022 -Batten- Guix.txt",
+ "b7509816-3c54-4739-a209-2a3a32c3085a": "2022 - Evidence for a neuromuscular circuit involving hypothalamic interleukin-6 in the control of skeletal muscle metabolism.txt",
+ "8a60b6f4-f1fd-4a89-8a7a-77d0341063f6": "2022 -Tabbaa- Mouse pop genetics.txt",
+ "94198e8e-42f2-4b5a-bb79-7a31ff629282": "2005 - A Golden Age of Brain Exploration.txt",
+ "8e5b5131-2de8-4a9a-800b-721b4643582f": "2019 - Identification of a Functional Non-coding Variant in the GABAA Receptor α2 Subunit of the C57BL6J Mouse Reference Genome Major Implications for Neuroscience Research.txt",
+ "faf00b06-9a8a-4a7f-9cf5-a0c7d99e1922": "2005 - Data integration challenges for drug discovery.txt",
+ "41ab0b16-b3f5-47b2-9058-abd3c4f4f662": "2005 - Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function.txt",
+ "14a2380d-a51f-4f1f-bbaf-8785941fddeb": "2005 - Prediction of cis-QTLs in a pair of inbred mouse strains with the use of expression and haplotype data from public databases.txt",
+ "ec5d7978-2efe-4cba-9b7e-4dddd63cc24c": "2005 -Chona- Controlling retinal injury.txt",
+ "b8c1785f-643b-4939-8c0a-a2dbe64e7358": "2005 - Haplotypes at the Tas2r locus on distal chromosome 6 vary with quinine taste sensitivity in inbred mice.txt",
+ "09d8b848-6c07-43d7-980f-eb1c8933091d": "2005 - Genetic analysis of the antibody response to AAV2 and factor IX.txt",
+ "c787fdc3-10ec-48de-91e3-4f4f75fa696a": "2004 Pareto Optmial gene ranking.txt",
+ "f253e087-e030-40a8-8400-3b6bf50c1fd6": "2005 -Broadkin- quantitative-trait-locus-analysis-of-aggressive-behaviours-in-mi.txt",
+ "ebb66c1b-1c5a-437a-a39b-a7f2352a519a": "2005 - Cognitive impairment in animal models of persistent pain.txt",
+ "ab1a324f-3c9c-4b41-bb1d-5d5ca216a001": "2005 - Mouse phenogenomics The fast track to “systems metabolism”.txt",
+ "a402d4b4-d3a5-4809-b68c-932c6885e9f3": "2005 -Alvarez- Genetical_genomic_approaches_for_understanding.txt",
+ "56304081-0426-453f-b77b-ca2ef02a125f": "2005 - Less is More in Modeling Large Genetic Networks.txt",
+ "e3339afd-cf6d-4972-8e7a-d94e692ec630": "2005 -Cao- Gene Entrapment.txt",
+ "d0d6c5d6-36c6-45f1-9107-cef95df83bb3": "2004 - Combining QTL and Microarray Data.txt",
+ "80eb54fe-0d83-4300-9fba-e17ce5d1e5b4": "2005 -Dipetrillo- Bioinformatics toolbox QTL.txt",
+ "5043c845-5d0d-4821-992b-ee5fa043c046": "2005 - Gene Array Profiling of Large Hypothalamic CNS Regions in Lactating and Randomly Cycling Virgin Mice.txt",
+ "a6924cbc-a767-49f8-b06e-4725ba2a6198": "2005 - Genes, Environment and Dyslexia.txt",
+ "97a04cec-b2c7-4a2b-85d6-ce9f7842a0dd": "2005 - The Anp32 family of proteins containing leucine-rich repeats.txt",
+ "70bf601a-547f-47a0-a42c-faeb092e6340": "2005 - Brain gene expression profiling in mice selected for differential hypnotic sensitivity to ethanol.txt",
+ "97771992-cce1-4392-b7b3-ff3c5967d228": "2005 - Complex trait approaches to the analysis of behaviour in the mouse.txt",
+ "6b5ae9e0-ea61-45e2-9b6d-663b532c1a81": "2005 - Methodological aspects of the genetic dissection of gene expression.txt",
+ "83072278-19ab-4b08-9892-6dec72d766d6": "2005 - The impact of Neuroinformatics.txt",
+ "a64778cd-bff8-43dd-b5a3-d608ab8f4828": "2005 - Using Progenitor Strain Information to Identify Quantitative Trait Nucleotides in Outbred Mice.txt",
+ "5e47c149-228e-41fb-b93b-3ea5bef15d6c": "2004 - Uncovering_regulatory_pathways_that_affe.txt",
+ "3a0e87fe-47b3-482b-b114-cfce59265288": "2005 - Expression and function of the cold channels in urinary bladder urothelium TRPM8 and TRPA1.txt",
+ "6f44583d-c019-4a89-8779-784d8c3894d8": "2005 - Genetics of body weight in the LXS recombinant inbred mouse strains.txt",
+ "15be5741-361d-4857-9770-d927523a7a30": "2005 - Selection Experiments as a Tool in Evolutionary and Comparative Physiology Insights into Complex Traits An Introduction to the Symposium.txt",
+ "3cafb9e7-b3d9-4e8e-a727-da79282d2b14": "2005 - Applications of gene targeting technology to mental retardation and developmental disability research.txt",
+ "a9f319e8-f1a4-471e-b2d8-36fe965ba725": "2005 - The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion.txt",
+ "a31098c9-984f-4095-b84c-5f84f0e5719e": "2005 - WebQTL An Internet resource for the integrative genetic analysis of gene expression and pain related phenotypes.txt",
+ "ddb46b49-97a2-4d06-951b-9fcab8278599": "2005 - Genetic Analysis of the Hypothalamic CorticotropinReleasing Factor System.txt",
+ "4e2485fb-8490-4422-a794-592b28a956b9": "2005 - Nonparametric imputation of missing values for estimating equation based inference.txt",
+ "644157d6-d149-4994-87fb-3c45e6fd5e0a": "2005 - Sp1 and NFkB pathways are regulated in brain inresponse to acute and chronic ethanol.txt",
+ "60e08224-f0e8-409c-b00a-b9e7358d3548": "2005 - Cerebellar Gene Expression Profiling and eQTL Analysis in Inbred Mouse Strains Selected for Ethanol Sensitivity.txt",
+ "a7aa1a3e-4681-4596-b9d0-384dbb260857": "2005 - Metastasis Predictive Signature Profiles Pre-exist in Normal Tissues.txt",
+ "62a4ee72-b305-4027-be68-1c156fb7adbe": "2005 - Genetic tests of biologic systems in affective disorders.txt",
+ "7ab1ee39-84b7-4def-91d6-5d79c4d46598": "2005 - Inbred mouse strains C57BL6J and DBA2J vary in sensitivity to a subset of bitter stimuli.txt",
+ "16f93624-6e07-44bb-ae0c-1404994f31ae": "2005 - Sensitivity to the locomotor-stimulant effects of ethanol and allopregnanolone a quantitative trait locus study of common genetic influence.txt",
+ "54881d38-e18b-41a8-90d5-b1f990859811": "2005 - Genetic networks controlling retinal injury.txt",
+ "eee1f302-d85d-4445-8845-772c46ed7821": "2004 - Generalized genetical genomics.txt",
+ "aff3c087-be9c-41db-b5ba-2f8beade5a92": "2005 -Chesler- geneexpression.txt",
+ "e2448847-c4aa-44a1-b921-aae1bdc4e6c5": "2003 -Williams- WebQTL_A_Tour_of_Transcriptional_Networks.txt",
+ "159bdc9a-8d2f-4ada-81b4-2184cb385820": "2005 - Meeting report for the 4th Annual Complex Trait Consortium Meeting From QTLs to Systems Genetics .txt",
+ "7cf7a43f-96e6-4ddf-9992-22dfdbbb9e33": "2005 -Bennett- Genetics_of_body_weight_in_the_LXS_recom.txt",
+ "169a5bbe-a787-4b56-a112-485c127dc3db": "2004 Yu -bioinf- BayesCausal.txt",
+ "8dad24f7-b658-44fa-af65-6f33db69c15a": "2005 - Genetic Segregation of Spontaneous Erosive Arthritis and Generalized Autoimmune Disease in the BXD2 Recombinant Inbred Strain of Mice.txt",
+ "3f8db22e-d5f9-44ba-8f78-fc77ccf024ce": "2005 - quantitative-trait-locus-analysis-of-aggressive-behaviours-in-mi.txt",
+ "bbf4a07f-b30d-4bd6-ba32-16ad470231b1": "2005 -Carlborg- Methodological aspects gene expression.txt",
+ "cca308ca-7b04-443a-9125-34a62e14064b": "2005 - RESEARCH GROUP COMMITTEE REPORTS_.txt",
+ "95b99c09-c336-44fd-b378-f41991edb3aa": "2005 - Complex_Genetics_of_Interactions_of_Alco.txt",
+ "2dfc2b82-b8eb-4e73-957a-0ea8a4401a84": "2005 - GENETIC REGULATION OF HEMATOPOIETIC STEM CELL NUMBERS IN MICE.txt",
+ "30b1b054-c969-47a3-899d-063485e05ef8": "2005 - Spinal and supraspinal expression of PKC isoforms following excitotoxic spinal cord Spinal injury and implications for chronic pain management.txt",
+ "99eb95e6-f439-453e-b90f-4752f1b66d0b": "2005 - How replicable are mRNA expression QTL.txt",
+ "8244e2c7-d48d-4a2a-bd89-339e6d580d12": "2005 - Finding Fibrosis Genes.txt",
+ "0c732155-1349-41d1-9f72-fa98cb6f1466": "2005 - Genetic Correlates of Gene Expression.txt",
+ "958b37c9-9bd5-4e84-939d-8f12dccf1055": "2004 - The_Positive_Regulatory_Effect_of_TGF-_2_on_Primit (1).txt",
+ "2f6601d5-3f89-478e-9015-b45ea2daaf20": "2005 - Noise Propagation in Gene Networks.txt",
+ "6d926b1e-e103-4efd-b566-3440be33d947": "2001 Bayesian Causal Maps.txt",
+ "89f8a359-2d4a-4907-a840-ff4209966572": "2005 - Author-attended APS poster sessions are 4-6 PM Thursday and Friday. Posters are avail-able for viewing Wednesday, 6-8 PM_ Thursday, 10. 15-11.15 AM and 4-6 PM_ Friday, 9.45.txt",
+ "3bae277a-538d-4ae7-9d57-62a254d02515": "2005 -Nelson- Haplotypes Tas2r locus.txt",
+ "9a5c3e73-8270-400f-8a2d-4f36b757188c": "2006 - DNA Microarray and Proteomic Strategies for Understanding Alcohol Action.txt",
+ "cd7061ee-0596-4c33-abb9-d9fd6888d0aa": "2009 - Functional coding variation in recombinant inbred mouse lines reveals multiple serotonin transporter-associated phenotypes.txt",
+ "4a34fec8-ff56-4ec0-b51c-c21c130e53dd": "2005 -Pomp- GenomeExploitation.txt",
+ "23dcf284-7c19-4335-91e1-50c3b85e6bad": "2006 - An Integrative Genomic Approach to Uncover Molecular Mechanisms of Prokaryotic Traits.txt",
+ "61b00e6b-5eb5-417f-8a1d-4f51310fe8ef": "2010 - A B2 SINE insertion in the Comt1 gene (Comt1B2i) results in an overexpressing, behavior modifying allele present in classical inbred mouse strains.txt",
+ "b9eef266-9941-4644-a49b-b6fac22cca99": "2005 - Antihyperalgesic effect of herpes vector mediated knock-down of Nav1.7 sodium shannels in a rodent inflammatory model.txt",
+ "b1a1282d-421f-494a-b9df-5c3c9e1e2540": "1967 -Coleman- DiabetesMouse.txt",
+ "0a30029f-fa8f-49e3-9a68-82d1a8ae3157": "2005 - Numerical Algorithms for Mapping of Multiple Quantitative Trait Loci in Experimental Populations.txt",
+ "cb3f9967-9762-4a9b-96cb-0acccdc316d2": "2003 - The nature and identification of quantitative trait loci.txt",
+ "669283c7-22b1-45fe-9ea7-d17acdb5ad6d": "1471-2202-7-16-1.txt",
+ "5edf84d0-c2d9-45eb-91b9-c35743b6a463": "003 -Barnes- Bioinformatics_for_Geneticists.txt",
+ "a3b95558-785a-4338-a7d4-798edd26995b": "2005 -Matilla- Anp32 family leucine-rich repeats.txt",
+ "624ba3ed-0965-4451-a5e1-2150b68ae1b3": "2005 -Flaherty- Genomics of the future.txt",
+ "229f364d-9f9c-4c48-a8ec-fbe39cffe11f": "2005 -Lariviere- QTL neuropathic mech allodynia.txt",
+ "9c266a06-68f9-4e25-8de4-87d8ee02d929": "2005 -Liang- GENETIC REGULATION OF HEMATOPOIETIC STEM CELL NUMBERS IN MICE.txt",
+ "ef7565ef-c6e5-44e4-9628-43fa58f49826": "2003 -chesler-Genetic inbred strains.txt",
+ "3b1fe8ff-a6c5-4f0b-b824-9a854297f6f0": "2005 -Gewin- Golden Age Brain Exploration.txt",
+ "8bac5167-f777-4abe-a221-16dd818fc2c2": "2005 - The Syntaxin Binding Protein 1 Gene (Stxbp1) Is a Candidate for an Ethanol Preference Drinking Locus on Mouse Chromosome 2.txt",
+ "3490ee08-29dd-4c88-8e58-fd47fb8f0413": "2005 -Chesler- WebQTL pain related phenotypes.txt",
+ "17690cd7-3e21-47df-b697-06726b3f0b69": "2005 -Knott- Regression based QTL mapping.txt",
+ "83a4ab87-f4a5-40b9-9297-5a3596e3636f": "2005 -Ljungberg- Numerical algos for Multi QTL.txt",
+ "969427e9-5901-402d-9d30-216c3c2f528c": "2005 -Bystrykh- Uncovering_regulatory_pathways_that_affe.txt",
+ "0022bfa1-c2e9-41e9-a96a-0e89688bcbe0": "2005 -Hu- QTL PigQTLDB.txt",
+ "4439ac39-e421-482f-9aa9-9ad11fa641c1": "2005 -Integrated gene expression profiling and linkage analysis in the rat.txt",
+ "682c5755-d492-46f6-80e7-fc3055450028": "2005 -Boughter- Inbred mouse strains better stimuli.txt",
+ "d1f04d58-2589-4183-aee4-569820dae052": "2005 - quantitative-trait-analysis-in-the-investigation-of-function-and.txt",
+ "447fc5a6-3f29-475e-9e88-a422f0fe03d3": "2005 -Lovinger- Lab models of alcoholism.txt",
+ "fdd4c745-dacc-4cef-b7b9-05b774ba930d": "2005 -Searls- DataIntegration.txt",
+ "12a26064-293b-41ff-93c3-763dc2a160df": "2005 -Tao- Spinal density-93.txt",
+ "945d04d0-6650-470f-a2ef-f88142749087": "2007 - Brain region gene expression responds discretely to chronic alcohol withdrawal with specific disruption of the hippocampus during intoxication.txt",
+ "b39d2e94-33be-426a-98f7-2ccf01e559b6": "2005 -Shalkwyk- Complex trait in the mouse.txt",
+ "da4f25f3-bb89-4eb8-8fe7-5a77753b984f": "2006 - Animal models in biomedical research ethics, challenges, and opportunities.txt",
+ "9de4364a-3da5-4a76-a68c-cddba815af1c": "2009 - The genetic control of neocortex volume and covariation with neocortical gene expression in mice.txt",
+ "8dc20713-5876-42a2-8396-65b52c2bdcca": "2006 -Gelegen- Behavioural, physiological and molecular differences in response to dietary restriction.txt",
+ "c2efeeee-f71a-4292-8240-80a4518f820d": "2005 -Yalcin- Using Progenitor Strain Information to Identify Quantitative Trait Nucleotides in Outbred Mice.txt",
+ "27e14ff3-b5a5-4f60-80a2-eaa2ab53e991": "2008 - Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression.txt",
+ "7eec6895-b939-4f1c-a689-e05f4d6fd7a5": "2010 - _Systems genetics analysis of cardiovascular traits in a mouse intercross Integration of expression data, clinical traits and functional information.txt",
+ "cc715f3d-98fc-404b-9ade-ad6af24c2181": "2005 -Yeomans- Antihyperalgesic.txt",
+ "4443620a-33a8-42d3-a193-54d6adbb48c5": "2006 - Behavioural, physiological and molecular differences in response to dietary restriction.txt",
+ "09cad84f-bc56-430e-861a-b2cad49af9d9": "2001 -Manly- MapManagerQTX.txt",
+ "8ed4ec84-8c84-4b52-bf20-65bcdf9fd64c": "2005 - A Statistical Multiprobe Model for Analyzing cis and trans Genes in Genetical Genomics Experiments With Short-Oligonucleotide Arrays.txt",
+ "831b5b65-0767-4a8f-ac18-306a14e95185": "2012 - Genetic_Control_of_a_Central_Pattern_Gen.txt",
+ "b87bb1b6-8f39-4e64-ab9b-db07b1d91867": "2017 - Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol-response Behaviors in Model Organisms.txt",
+ "3d08f31c-2fa4-422b-9ade-47a7b1d0b212": "2012 -Bryant- Genes Brain and Behavior Congenic dissection of a major QTL for methamphetamine sensitivity implicates.txt",
+ "d8ebd966-e24f-4695-a712-8cac1993ea9b": "2016 - Quantitative Trait Loci and a Novel Genetic Candidate for Fear Learning.txt",
+ "843c0ab9-0a56-49f7-9be0-681b386cbbc5": "2005 - Laboratory models of alcoholism treatment target identification and insight into mechanisms.txt",
+ "76277089-7d88-4c97-b76a-a669bb398cd0": "2014 - A candidate syntenic genetic locus is associated with voluntary exercise levels in mice and humans(1).txt",
+ "9292f4ab-191e-4e8f-af39-68099158fd32": "2008 - Analysis of Natural Allelic Variation Controlling Arabidopsis thaliana Seed Germinability in Response to Cold and Dark Identification of Three Major Quantitative Trait Loci.txt",
+ "6db3871a-9370-4438-bf74-560d2dfc7151": "2012 - Genome‐wide association for methamphetamine sensitivity in an advanced intercross mouse line.txt",
+ "57a3fa09-8f10-49fe-99f7-04add25c1804": "2005 - Alcohol Effects on Central Nervous System.txt",
+ "b58ddaa8-9d41-4dc5-97d7-aca64de3685b": "2009 - In Silico Whole Genome Association Scan for Murine Prepulse Inhibition.txt",
+ "fee26613-3228-4e76-80a5-db316980c43c": "2014 - Identification of a QTL in Mus musculus for Alcohol Preference, Withdrawal, and Ap3m2 Expression Using Integrative Functional Genomics and Precision Genetics.txt",
+ "80a77e9d-0d80-4548-9253-c14b8bb5cff7": "2014 - Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle.txt",
+ "d3dae048-6a34-4ab5-9c47-4f11da232b97": "2008 - Studies on Syntaxin 12 and Alcohol Preference Involving C57BL6J and DBA2J Strains of Mice.txt",
+ "0140d814-c394-4293-89bf-81f94fd22012": "2006 - Characterization of genetic differences within the centrally projecting Edinger–Westphal nucleus of C57BL6J and DBA2J mice by expression profiling_William J Giardino, Dawn M Cote, Ju Li, Andrey.txt",
+ "32338b01-15af-4ec9-9bc4-e9c58b53068e": "2015 - Genetic properties of the MAGIC maize population a new platform for high definition QTL mapping in Zea mays.txt",
+ "a68c1746-5f14-4226-af75-10c0988b2d38": "2005 - Quantitative Trait Locus (QTL) mapping of mechanical sensitivity and peripheral nerve injury-induced neuropathic mechanical allodynia in Recombinant Inbred (RI) mice using www.webqtl.org.txt",
+ "5964906e-b016-4a60-b043-db826b438048": "2008 - Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning.txt",
+ "12780adb-bba7-43fe-9e36-2dc6b13afa93": "2016 - Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CASTEiJ mice.txt",
+ "3517925b-cdcd-477c-9632-09dadec2dffd": "2016 - Decreased expression levels of Ifi genes is associated to the increased resistance to spontaneous arthritis disease in mice deficiency of IL-1RA.txt",
+ "e70edf15-a163-4db3-9346-6d3b69cdc6d3": "2012 - Hepatocellular carcinoma as extracolonic manifestation of Lynch syndrome indicates SEC63 as potential target gene in hepatocarcinogenesis.txt",
+ "a6c28701-9fcd-4e0a-9d1d-26c63b28a6e7": "2012 - Genetic Control of a Central Pattern Generator Rhythmic Oromotor Movement in Mice Is Controlled by a Major Locus near Atp1a2.txt",
+ "7a81de58-67b5-4185-bc89-bcf50a7032d4": "2017 - Sex difference in the expression and gene network of epidermal growth factor receptor in pituitary gland in mice.txt",
+ "7ca1b7d0-cbae-4c68-b8e8-610435d84f9f": "2013 - Congenic Mice Provide Evidence for a Genetic Locus That Modulates Spontaneous Arthritis Caused by Deficiency of IL-1RA.txt",
+ "d2749f7d-2943-4c3e-ae5a-ac3999aad956": "2005 - Regression-based quantitative trait loci mapping robust, efficient and effective.txt",
+ "e2799196-122f-4b4f-a2a6-68adf24a236f": "2008 - Using hippocampal microRNA expression differences between mouse inbred strains to characterise miRNA function.txt",
+ "adf2ef89-dd1c-4b90-8eea-9d14a3952f6a": "2013 - Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli_Irit Gat-Viks, Nicolas Chevrier, [...], and Aviv.txt",
+ "448232de-41b9-4c26-82fc-d3e2126ad1dd": "2011 - THREE APPROACHES TO INVESTIGATING AN EPIGENETIC BASIS TO NICOTINE CONSUMPTION IN ADOLESCENT MICE AGOUTI VIABLE YELLOW PROGRAMMING, METHYL DONOR SUPPLEMENTATION, AND MATERNAL CARE.txt",
+ "a67372ac-02b7-41c4-bb55-5152444c5479": "2006 - Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes.txt",
+ "91f1c2e6-da3e-4709-ab7f-117297f1aea8": "2012 - Using Genome-Wide Expression Profiling to Define Gene Networks Relevant to the Study of Complex Traits From RNA Integrity to Network Topology.txt",
+ "dee4f645-0cce-42f8-8cb5-66efb1378d82": "2004 - P2P-R expression is genetically coregulated with components of the translation machinery and with PUM2, a translational repressor that associates with the P2P-R mRNA.txt",
+ "6d78d290-1edb-40aa-9bf9-a77998e47671": "2012 - Methods for scoring the collective effect of SNPs Minor alleles of common SNPs quantitatively affect traits diseases and are under both positive and negative selection.txt",
+ "e34e7f49-66e0-4c99-8f7d-efe109589bf3": "53b7b8006154d7cb2f4be3d20696a79d.pdf",
+ "d74b9d37-258f-440c-afdd-cb3ed7c14f34": "glm.pdf"
+} \ No newline at end of file
diff --git a/gnqa/src/apis/gnqaclient.py b/gnqa/src/apis/gnqaclient.py
new file mode 100644
index 00000000..0024c314
--- /dev/null
+++ b/gnqa/src/apis/gnqaclient.py
@@ -0,0 +1,226 @@
+# pylint: skip-file
+import json
+import string
+import os
+import datetime
+import time
+import requests
+
+from requests.adapters import HTTPAdapter
+from requests.packages.urllib3.util.retry import Retry
+from requests import HTTPError,Session
+from urllib.parse import urljoin,quote
+from urllib.request import urlretrieve
+from errors.rag_err import UnprocessableEntity, LLMError
+
+basedir = os.path.join(os.path.dirname(__file__))
+
+
+class TimeoutHTTPAdapter(HTTPAdapter):
+ def __init__(self, timeout, *args, **kwargs):
+ """TimeoutHTTPAdapter constructor.
+ Args:
+ timeout (int): How many seconds to wait for the server to send data before
+ giving up.
+ """
+ self.timeout = timeout
+ super().__init__(*args, **kwargs)
+
+ def send(self, request, **kwargs):
+ """Override :obj:`HTTPAdapter` send method to add a default timeout."""
+ timeout = kwargs.get("timeout")
+ if timeout is None:
+ kwargs["timeout"] = self.timeout
+
+ return super().send(request, **kwargs)
+
+
+class GeneNetworkQAClient(Session):
+ """GeneNetworkQA Client
+
+ This class provides a client object interface to the GeneNetworkQA API.
+ It extends the `requests.Session` class and includes authorization, base URL,
+ request timeouts, and request retries.
+
+ Args:
+ account (str): Base address subdomain.
+ api_key (str): API key.
+ version (str, optional): API version, defaults to "v3".
+ timeout (int, optional): Timeout value, defaults to 5.
+ total_retries (int, optional): Total retries value, defaults to 5.
+ backoff_factor (int, optional): Retry backoff factor value, defaults to 30.
+
+ Usage:
+ from genenetworkqa import GeneNetworkQAClient
+ gnqa = GeneNetworkQAClient(account="account-name", api_key="XXXXXXXXXXXXXXXXXXX...")
+ """
+
+ BASE_URL = 'https://genenetwork.fahamuai.com/api/tasks'
+
+ def __init__(self, account, api_key, version="v3", timeout=30, total_retries=5, backoff_factor=30):
+ super().__init__()
+ self.headers.update(
+ {"Authorization": "Bearer " + api_key})
+ self.answer_url = f"{self.BASE_URL}/answers"
+ self.feedback_url = f"{self.BASE_URL}/feedback"
+
+ adapter = TimeoutHTTPAdapter(
+ timeout=timeout,
+ max_retries=Retry(
+ total=total_retries,
+ status_forcelist=[429, 500, 502, 503, 504],
+ backoff_factor=backoff_factor,
+ ),
+ )
+
+ self.mount("https://", adapter)
+ self.mount("http://", adapter)
+
+ @staticmethod
+ def format_bibliography_info(bib_info):
+
+ if isinstance(bib_info, str):
+ # Remove '.txt'
+ bib_info = bib_info.removesuffix('.txt')
+ elif isinstance(bib_info, dict):
+ # Format string bibliography information
+ bib_info = "{0}.{1}.{2}.{3} ".format(bib_info.get('author', ''),
+ bib_info.get('title', ''),
+ bib_info.get('year', ''),
+ bib_info.get('doi', ''))
+ return bib_info
+
+ @staticmethod
+ def ask_the_documents(extend_url, my_auth):
+ try:
+ response = requests.post(
+ base_url + extend_url, data={}, headers=my_auth)
+ response.raise_for_status()
+ except requests.exceptions.RequestException as e:
+ # Handle the exception appropriately, e.g., log the error
+ raise RuntimeError(f"Error making the request: {e}")
+
+ if response.status_code != 200:
+ return negative_status_msg(response), 0
+
+ task_id = get_task_id_from_result(response)
+ response = get_answer_using_task_id(task_id, my_auth)
+
+ if response.status_code != 200:
+
+ return negative_status_msg(response), 0
+
+ return response, 1
+
+ @staticmethod
+ def negative_status_msg(response):
+ return f"Error: Status code -{response.status_code}- Reason::{response.reason}"
+ # return f"Problems\n\tStatus code => {response.status_code}\n\tReason => {response.reason}"
+
+ def ask(self, exUrl, *args, **kwargs):
+ askUrl = self.BASE_URL + exUrl
+ res = self.custom_request('POST', askUrl, *args, **kwargs)
+ if (res.status_code != 200):
+ return self.negative_status_msg(res), 0
+ task_id = self.getTaskIDFromResult(res)
+ return res, task_id
+
+ def answer(self, taskid, *args, **kwargs):
+ query = self.answer_url + self.extendForTaskID(taskid)
+ res = self.custom_request('GET', query, *args, **kwargs)
+ if (res.status_code != 200):
+ print('The result is {0}',format(res))
+ return self.negative_status_msg(res), 0
+ return res, 1
+
+ def get_answer(self, taskid, *args, **kwargs):
+ query = self.answer_url + self.extendTaskID(taskid)
+ res = self.custom_request('GET', query, *args, **kwargs)
+ if (res.status_code != 200):
+ print('The result is {0}',format(res))
+ return self.negative_status_msg(res), 0
+ return res, 1
+
+ def custom_request(self, method, url, *args, **kwargs):
+
+ max_retries = 50
+ retry_delay = 3
+
+ for i in range(max_retries):
+ try:
+ response = super().request(method, url, *args, **kwargs)
+ response.raise_for_status()
+
+ except requests.exceptions.HTTPError as error:
+ if error.response.status_code ==500:
+ raise LLMError(error.request, error.response, f"Response Error,status_code:{error.response.status_code},Reason: Use of Invalid Token")
+ elif error.response.status_code ==404:
+ raise LLMError(error.request,error.response,f"404 Client Error: Not Found for url: {self.BASE_URL}")
+ raise error
+
+ except requests.exceptions.RequestException as error:
+ raise error
+
+
+ if response.ok:
+ if method.lower() == "get" and response.json().get("data") is None:
+ time.sleep(retry_delay)
+ continue
+ else:
+ return response
+ else:
+ time.sleep(retry_delay)
+ return response
+
+ @staticmethod
+ def get_task_id_from_result(response):
+ task_id = json.loads(response.text)
+ result = f"?task_id={task_id.get('task_id', '')}"
+ return result
+
+ @staticmethod
+ def get_answer_using_task_id(extend_url, my_auth):
+ try:
+ response = requests.get(
+ answer_url + extend_url, data={}, headers=my_auth)
+ response.raise_for_status()
+ return response
+ except requests.exceptions.RequestException as error:
+ # Handle the exception appropriately, e.g., log the error
+ raise error
+
+ @staticmethod
+ def filter_response_text(val):
+ """
+ Filters out non-printable characters from the input string and parses it as JSON.
+
+ Args:
+ val (str): Input string to be filtered and parsed.
+
+ Returns:
+ dict: Parsed JSON object.
+ # remove this
+ """
+ return json.loads(''.join([str(char) for char in val if char in string.printable]))
+
+ def getTaskIDFromResult(self, res):
+ return json.loads(res.text)
+
+ def extendTaskID(self, task_id):
+ return '?task_id=' + str(task_id['task_id'])
+
+ def extendForTaskID(self, task_id):
+ return '?task_id=' + str(task_id)
+
+ def get_gnqa(self, query):
+ qstr = quote(query)
+ res, task_id = api_client.ask('?ask=' + qstr)
+ res, success = api_client.get_answer(task_id)
+
+ if success == 1:
+ resp_text = filter_response_text(res.text)
+ answer = resp_text.get('data', {}).get('answer', '')
+ context = resp_text.get('data', {}).get('context', '')
+ return answer, context
+ else:
+ return res, "Unfortunately, I have nothing."
diff --git a/gnqa/src/apis/process.py b/gnqa/src/apis/process.py
new file mode 100644
index 00000000..37f2d73c
--- /dev/null
+++ b/gnqa/src/apis/process.py
@@ -0,0 +1,152 @@
+"""this module contains code for processing response from fahamu client.py"""
+import os
+import string
+import json
+
+from urllib.parse import urljoin
+from urllib.parse import quote
+import logging
+import requests
+
+from apis.gnqaclient import GeneNetworkQAClient
+from apis.resp import DocIDs
+
+
+BASE_URL = 'https://genenetwork.fahamuai.com/api/tasks'
+
+
+# pylint: disable=C0301
+
+
+def format_bibliography_info(bib_info):
+ """Function for formatting bibliography info"""
+ if isinstance(bib_info, str):
+ return bib_info.removesuffix('.txt')
+ elif isinstance(bib_info, dict):
+ return f"{bib_info['author']}.{bib_info['title']}.{bib_info['year']}.{bib_info['doi']} "
+ return bib_info
+
+
+def filter_response_text(val):
+ """helper function for filtering non-printable chars"""
+ return json.loads(''.join([str(char)
+ for char in val if char in string.printable]))
+
+
+def parse_context(context, get_info_func, format_bib_func):
+ """function to parse doc_ids content"""
+ results = []
+ for doc_ids, summary in context.items():
+ combo_txt = ""
+ for entry in summary:
+ combo_txt += "\t" + entry["text"]
+ doc_info = get_info_func(doc_ids)
+ bib_info = doc_ids if doc_ids == doc_info else format_bib_func(
+ doc_info)
+ results.append(
+ {"doc_id": doc_ids, "bibInfo": bib_info, "comboTxt": combo_txt})
+ return results
+
+
+def rate_document(task_id, doc_id, rating, auth_token):
+ """This method is used to provide feedback for a document by making a rating."""
+ # todo move this to clients
+ try:
+ url = urljoin(BASE_URL,
+ f"""/feedback?task_id={task_id}&document_id={doc_id}&feedback={rating}""")
+ headers = {"Authorization": f"Bearer {auth_token}"}
+
+ resp = requests.post(url, headers=headers)
+ resp.raise_for_status()
+
+ return {"status": "success", **resp.json()}
+ except requests.exceptions.HTTPError as http_error:
+ raise RuntimeError(f"HTTP Error Occurred:\
+ {http_error.response.text} -with status code- {http_error.response.status_code}") from http_error
+ except Exception as error:
+ raise RuntimeError(f"An error occurred: {str(error)}") from error
+
+
+def load_file(filename, dir_path):
+ """function to open and load json file"""
+ file_path = os.path.join(dir_path, f"{filename}")
+ if not os.path.isfile(file_path):
+ raise FileNotFoundError(f"{filename} was not found or is a directory")
+ with open(file_path, "rb") as file_handler:
+ return json.load(file_handler)
+
+
+def fetch_pubmed(references, file_name, data_dir=""):
+ """method to fetch and populate references with pubmed"""
+
+ try:
+ pubmed = load_file(file_name, os.path.join(data_dir, "gn-meta/lit"))
+ for reference in references:
+ if pubmed.get(reference["doc_id"]):
+ reference["pubmed"] = pubmed.get(reference["doc_id"])
+ return references
+
+ except FileNotFoundError:
+ logging.error("failed to find pubmed_path for %s/%s",
+ data_dir, file_name)
+ return references
+
+
+def get_gnqa(query, auth_token, tmp_dir=""):
+ """entry function for the gn3 api endpoint()"""
+
+ api_client = GeneNetworkQAClient(requests.Session(), api_key=auth_token)
+ res, task_id = api_client.ask('?ask=' + quote(query), auth_token)
+ if task_id == 0:
+ raise RuntimeError(f"Error connecting to Fahamu Api: {str(res)}")
+ res, success = api_client.get_answer(task_id)
+ if success == 1:
+ resp_text = filter_response_text(res.text)
+ if resp_text.get("data") is None:
+ return task_id, "Please try to rephrase your question to receive feedback", []
+ answer = resp_text['data']['answer']
+ context = resp_text['data']['context']
+ references = parse_context(
+ context, DocIDs().getInfo, format_bibliography_info)
+ #references = fetch_pubmed(references, "pubmed.json", tmp_dir)
+
+ return task_id, answer, references
+ else:
+ return task_id, "Please try to rephrase your question to receive feedback", []
+
+def get_response_from_taskid(auth_token, task_id):
+ api_client = GeneNetworkQAClient(requests.Session(), api_key=auth_token)
+ res, success = api_client.answer(task_id)
+ if success == 1:
+ resp_text = filter_response_text(res.text)
+ if resp_text.get("data") is None:
+ return task_id, "Please try to rephrase your question to receive feedback", []
+ answer = resp_text['data']['answer']
+ context = resp_text['data']['context']
+ references = parse_context(
+ context, DocIDs().getInfo, format_bibliography_info)
+ #references = fetch_pubmed(references, "pubmed.json", tmp_dir)
+
+ return task_id, answer, references
+ else:
+ return task_id, "Please try to rephrase your question to receive feedback", []
+
+
+def fetch_query_results(query, user_id, redis_conn):
+ """this method fetches prev user query searches"""
+ result = redis_conn.get(f"LLM:{user_id}-{query}")
+ if result:
+ return json.loads(result)
+ return {
+ "query": query,
+ "answer": "Sorry No answer for you",
+ "references": [],
+ "task_id": None
+ }
+
+
+def get_user_queries(user_id, redis_conn):
+ """methods to fetch all queries for a specific user"""
+
+ results = redis_conn.keys(f"LLM:{user_id}*")
+ return [query for query in [result.partition("-")[2] for result in results] if query != ""]
diff --git a/gnqa/src/apis/resp.py b/gnqa/src/apis/resp.py
new file mode 100644
index 00000000..5d6ee24a
--- /dev/null
+++ b/gnqa/src/apis/resp.py
@@ -0,0 +1,75 @@
+
+# pylint: skip-file
+import string
+import json
+import os
+
+
+basedir = os.path.abspath(os.path.dirname(__file__))
+
+
+class DocIDs():
+ def __init__(self):
+ # open doc ids for GN refs
+ self.doc_ids = self.loadFile("doc_ids.json")
+ # open doc ids for Diabetes references
+ self.sugar_doc_ids = self.loadFile("all_files.json")
+ # format is not what I prefer, it needs to be rebuilt
+ self.formatDocIDs(self.sugar_doc_ids)
+
+ def loadFile(self, file_name):
+ file_path = os.path.join(basedir, file_name)
+ if os.path.isfile(file_path):
+ f = open(file_path, "rb")
+ result = json.load(f)
+ f.close()
+ return result
+ else:
+ raise Exception("\n{0} -- File does not exist\n".format(file_path))
+
+ def formatDocIDs(self, values):
+ for _key, _val in values.items():
+ if isinstance(_val, list):
+ for theObject in _val:
+ docName = self.formatDocumentName(theObject['filename'])
+ docID = theObject['id']
+ self.doc_ids.update({docID: docName})
+
+ def formatDocumentName(self, val):
+ result = val.removesuffix('.pdf')
+ result = result.removesuffix('.txt')
+ result = result.replace('_', ' ')
+ return result
+
+
+ def getInfo(self, doc_id):
+ if doc_id in self.doc_ids.keys():
+ return self.doc_ids[doc_id]
+ else:
+ return doc_id
+
+class RespContext():
+ def __init__(self, context):
+ self.cntxt = context
+ self.theObj = {}
+
+ def parseIntoObject(self, info):
+ # check for obj, arr, or val
+ for key, val in info.items():
+ if isinstance(val, list):
+ self.parseIntoObject(val)
+ elif isinstance(val, str) or isinstance(val, int):
+ self.theObj[key] = val
+ self.theObj[key] = self.val
+
+
+def createAccordionFromJson(theContext):
+ result = ''
+ # loop thru json array
+ ndx = 0
+ for docID, summaryLst in theContext.items():
+ # item is a key with a list
+ comboTxt = ''
+ for entry in summaryLst:
+ comboTxt += '\t' + entry['text']
+ return result
diff --git a/gnqa/src/config.example b/gnqa/src/config.example
new file mode 100644
index 00000000..f82fc420
--- /dev/null
+++ b/gnqa/src/config.example
@@ -0,0 +1,11 @@
+[API]
+rag_key = asdfadsfjlak;dsjflkajdsf;kl
+DATA_DIR = './data/'
+
+
+[out.response.human]
+dataset_dir = ${PD}/data/datasets/human/
+[out.response.gpt4o]
+dataset_dir = ${PD}/data/datasets/gpt4o/
+
+
diff --git a/gnqa/src/errors/__init__.py b/gnqa/src/errors/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/gnqa/src/errors/__init__.py
diff --git a/gnqa/src/errors/__pycache__/rag_err.cpython-310.pyc b/gnqa/src/errors/__pycache__/rag_err.cpython-310.pyc
new file mode 100644
index 00000000..240b7613
--- /dev/null
+++ b/gnqa/src/errors/__pycache__/rag_err.cpython-310.pyc
Binary files differ
diff --git a/gnqa/src/errors/rag_err.py b/gnqa/src/errors/rag_err.py
new file mode 100644
index 00000000..e9f7c02e
--- /dev/null
+++ b/gnqa/src/errors/rag_err.py
@@ -0,0 +1,62 @@
+
+# pylint: skip-file
+import json
+
+from requests import HTTPError
+
+
+class UnprocessableEntity(HTTPError):
+ """An HTTP 422 Unprocessable Entity error occurred.
+
+ https://help.helpjuice.com/en_US/api-v3/api-v3#errors
+
+ The request could not be processed, usually due to a missing or invalid parameter.
+
+ The response will also include an error object with an explanation of fields that
+ are missing or invalid. Here is an example:
+
+ .. code-block::
+
+ HTTP/1.1 422 Unprocessable Entity
+
+
+ {
+ "errors": [
+ {
+ "email": "is not valid."
+ }
+ ]
+ }
+ """
+
+ def __init__(self, request, response):
+ """UnprocessableEntity constructor.
+
+ Parses out error information from the error object and passes on to the
+ :obj:`HTTPError` constructor.
+
+ Args:
+ exc (:obj:`HTTPError`): Original exception.
+ """
+ rq_json = next(iter(json.loads(request.body.decode()).values()))
+ errors = response.json()
+
+ for field, error in errors.items():
+ rq_field = rq_json.get(field, None)
+ if not rq_field:
+ continue
+
+ if isinstance(error, list):
+ error = error.insert(0, rq_field)
+ elif isinstance(error, str):
+ error = f"{rq_field} {error}"
+
+ msg = json.dumps(errors)
+ super(HTTPError, self).__init__(
+ msg, request=request, response=response)
+
+
+class LLMError(HTTPError):
+ def __init__(self, request, response, msg):
+ super(HTTPError, self).__init__(
+ msg, request=request, response=response)
diff --git a/gnqa/src/ingest_my_data.py b/gnqa/src/ingest_my_data.py
new file mode 100755
index 00000000..2e696844
--- /dev/null
+++ b/gnqa/src/ingest_my_data.py
@@ -0,0 +1,72 @@
+from os import listdir
+from os.path import isfile, join
+import sys
+import time
+import datetime
+import configparser
+from r2r import R2RClient, R2RException
+
+cfg = configparser.ConfigParser()
+cfg.read('_config.cfg')
+
+client = R2RClient("http://localhost:7272/")
+client.documents.create_sample(hi_res=True)
+
+data_dir = cfg['DEFAULT']['PDF_DIR']
+
+dir_paths = [
+ data_dir+cfg['genetics']['diabetes'],
+ data_dir+cfg['genetics']['aging']
+]
+
+print("The defined directory paths {0}".format(dir_paths))
+
+def ingest_files(client, sleep_time, doc_list):
+ responses = []
+ resp = ()
+ for the_doc in doc_list:
+ #print(the_doc)
+ try:
+ resp = client.documents.create(file_path=the_doc)
+ print("Ingested {0} with the following response {1}".format(the_doc,resp))
+ except R2RException:
+ print("Problem ingesting {0}\n\t{1}".format(the_doc, sys.exception()))
+ #except:
+ #responses.append(resp)
+ # brace against pinging API too quickly
+ time.sleep(sleep_time)
+ return responses
+
+def create_file_list(the_dir):
+ return [ join(the_dir, f) for f in listdir(the_dir) if isfile(join(the_dir, f))]
+ #print("The list has {0} files".format(len(result)))
+ '''
+ # subroutine to test list content
+ for the_pdf in the_pdfs:
+ print('{0} -> {1}'.format(ndx, the_pdf))
+ ndx += 1
+ '''
+ return result
+
+def ingest_all_files(client, dir_list):
+ result = []
+ sleep_time = 3
+ print(datetime.datetime.now())
+ begin_ingesting = datetime.datetime.now()
+
+ for the_dir in dir_list:
+ the_list = create_file_list(the_dir)
+ result.append(ingest_files(client, sleep_time, the_list))
+
+ #ingest_resp = ()
+ #resps = ingest_files(client, sleep_time, file_list)
+ end_ingesting = datetime.datetime.now()
+
+ # show results of ingesting documents
+ #print("Entry [{0}]\t{1} {2}\n\t\t{3}".format(ndx,file_list, (end_ingesting-begin_ingesting), ingest_response))
+
+ # brace against pinging API too quickly
+ #time.sleep(sleeptime)
+
+
+ingest_all_files(client, dir_paths) \ No newline at end of file
diff --git a/gnqa/src/notebooks/Vanilla_RAG.ipynb b/gnqa/src/notebooks/Vanilla_RAG.ipynb
new file mode 100644
index 00000000..52270d6c
--- /dev/null
+++ b/gnqa/src/notebooks/Vanilla_RAG.ipynb
@@ -0,0 +1,743 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "mz33G3t6gbOl"
+ },
+ "source": [
+ "# RAG\n",
+ "\n",
+ "Retrieval-Augmented Generation (RAG) is a technique that combines the strengths of pre-trained language models with the ability to retrieve information from a large corpus of documents. RAG **enables the language model to produce more informed, accurate, and contextually relevant answers** than by relying on its pre-trained knowledge alone.\n",
+ "\n",
+ "At Cohere, all RAG calls come with... **precise citations**! 🎉\n",
+ "The model cites which groups of words, in the RAG chunks, were used to generate the final answer. \n",
+ "These citations make it easy to check where the model’s generated response claims are coming from and they help users gain visibility into the model reasoning. \n",
+ "\n",
+ "RAG consists of 3 steps:\n",
+ "- Step 1: Indexing and given a user query, retrieve the relevant chunks from the index\n",
+ "- Step 2: Optionally, rerank the retrieved chunks\n",
+ "- Step 3: Generate the model final answer with **precise citations**, given the retrieved and reranked chunks\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "nSB0pnt0gbOo"
+ },
+ "source": [
+ "## Step 0 - Imports & Getting some data\n",
+ "\n",
+ "In this example, we'll use a recent piece of text, that wasn't in the training data: the Wikipedia page of the movie \"Dune 2\". \n",
+ "\n",
+ "In practice, you would typically do RAG on much longer text, that doesn't fit in the context window of the model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "H787BXXYvD0a",
+ "outputId": "04ef5e04-7760-4d40-deeb-663536b38f20"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
+ "r2r 0.2.59 requires fsspec<2025.0.0,>=2024.6.0, but you have fsspec 2024.2.0 which is incompatible.\u001b[0m\u001b[31m\n",
+ "\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# we'll use Cohere to cover all building blocks of RAG\n",
+ "# TODO: upgrade to \"cohere>5\"\n",
+ "%pip install \"cohere<5\" --quiet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "rACbepFGgbOo"
+ },
+ "outputs": [],
+ "source": [
+ "import cohere\n",
+ "API_KEY = \"TyvblqFywENUXIPgS0aT2Z3FdaxStqh6NpMgp4et\" # fill in your Cohere API key here\n",
+ "co = cohere.Client(API_KEY)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "QdvbqfFrgbOq",
+ "outputId": "3882c95c-46bf-4dcc-99a2-453b3c2fc7c4"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ " Building wheel for wikipedia (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
+ ]
+ }
+ ],
+ "source": [
+ "# we'll get some wikipedia data\n",
+ "!pip install wikipedia --quiet\n",
+ "import wikipedia"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "xP-bWt9XgbOq",
+ "outputId": "72276fb2-0d6b-415d-af74-452a013ae84b"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The text has roughly 5323 words.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# let's get the wikipedia article about Dune Part Two\n",
+ "article = wikipedia.page('Dune Part Two')\n",
+ "text = article.content\n",
+ "print(f\"The text has roughly {len(text.split())} words.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "-1aJ7hKGgbOr"
+ },
+ "source": [
+ "## Step 1 - Indexing and given a user query, retrieve the relevant chunks from the index\n",
+ "\n",
+ "We index the document in a vector database. This requires getting the documents, chunking them, embedding, and indexing them in a vector database. Then we retrieved relevant results based on the users' query.\n",
+ "\n",
+ "### We split the document into chunks of roughly 512 words"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "ZUph1JX41665",
+ "outputId": "6c63a93f-6999-47af-e704-d4a88727bc75"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m256.9/256.9 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.6/66.6 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.5/138.5 kB\u001b[0m \u001b[31m14.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h"
+ ]
+ }
+ ],
+ "source": [
+ "# For chunking let's use langchain to help us split the text\n",
+ "%pip install -qU langchain-text-splitters --quiet\n",
+ "from langchain_text_splitters import RecursiveCharacterTextSplitter"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "uhXW7iHC1-Q6",
+ "outputId": "d68ac348-4b73-4c6a-a445-6c510bdb0881"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The text has been broken down in 91 chunks.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Create basic configurations to chunk the text\n",
+ "text_splitter = RecursiveCharacterTextSplitter(\n",
+ " chunk_size=512,\n",
+ " chunk_overlap=50,\n",
+ " length_function=len,\n",
+ " is_separator_regex=False,\n",
+ ")\n",
+ "\n",
+ "# Split the text into chunks with some overlap\n",
+ "chunks_ = text_splitter.create_documents([text])\n",
+ "chunks = [c.page_content for c in chunks_]\n",
+ "print(f\"The text has been broken down in {len(chunks)} chunks.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "P8g0sE2hgbOs"
+ },
+ "source": [
+ "### Embed every text chunk\n",
+ "\n",
+ "Cohere embeddings are state-of-the-art."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "KEarMPEqgbOs",
+ "outputId": "7da0e06d-f637-4470-8e01-6de8249be64b"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "We just computed 91 embeddings.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Because the texts being embedded are the chunks we are searching over, we set the input type as search_doc\n",
+ "model=\"embed-english-v3.0\"\n",
+ "response = co.embed(\n",
+ " texts= chunks,\n",
+ " model=model,\n",
+ " input_type=\"search_document\",\n",
+ " embedding_types=['float']\n",
+ ")\n",
+ "embeddings = response.embeddings.float\n",
+ "print(f\"We just computed {len(embeddings)} embeddings.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "HM6vKeypgbOs"
+ },
+ "source": [
+ "### Store the embeddings in a vector database\n",
+ "\n",
+ "We use the simplest vector database ever: a python dictionary using `np.array()`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "sdW7M8HLvB-9"
+ },
+ "outputs": [],
+ "source": [
+ "# We use the simplest vector database ever: a python dictionary\n",
+ "!pip install numpy --quiet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "H2srFH-IgbOs"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "vector_database = {i: np.array(embedding) for i, embedding in enumerate(embeddings)}\n",
+ "# { 0: array([...]), 1: array([...]), 2: array([...]), ..., 10: array([...]) }"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "q6NGVurZgbOs"
+ },
+ "source": [
+ "## Given a user query, retrieve the relevant chunks from the vector database\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "eC05yJQ7jlek"
+ },
+ "source": [
+ "### Define the user question"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Y2HTxspKgbOs"
+ },
+ "outputs": [],
+ "source": [
+ "query = \"Name everyone involved in writing the script, directing, and producing 'Dune: Part Two'?\"\n",
+ "\n",
+ "# Note: the relevant passage in the wikipedia page we're looking for is:\n",
+ "# \"[...] Dune: Part Two was originally scheduled to be released on October 20, 2023, but was delayed to November 17, 2023, before moving forward two weeks to November 3, 2023, to adjust to changes in release schedules from other studios. It was later postponed by over four months to March 15, 2024, due to the 2023 Hollywood labor disputes. After the strikes were resolved, the film moved once more up two weeks to March 1, 2024. [...]\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "9oULg1tOjjOW"
+ },
+ "source": [
+ "### Embed the user question\n",
+ "\n",
+ "Cohere embeddings are state-of-the-art."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "yrUuS6vXgbOs",
+ "outputId": "0c64a930-f817-43c2-d775-1d9145cb304e"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "query_embedding: [-0.068603516, -0.02947998, -0.06274414, -0.015449524, -0.033294678, 0.0056877136, -0.047210693, 0.04714966, -0.024871826, 0.008148193, 0.0770874, 0.023880005, -0.058685303, -0.052520752, 0.012832642, 0.024398804, 0.0053215027, 0.035491943, 0.02961731, -0.0069847107, 0.01083374, -0.0011358261, -0.002199173, 0.018417358, 0.027389526, -0.002691269, -0.026535034, 0.015197754, 0.024368286, 0.03729248, 0.0057754517, -0.02229309, -0.014694214, 0.019989014, -0.0036315918, -0.013793945, 0.02835083, 0.006011963, 0.011428833, 0.008682251, 0.046142578, -0.040039062, -0.032196045, -0.002653122, -0.012580872, -0.0041618347, 0.03111267, -0.016799927, 0.014801025, -0.00030636787, -0.033050537, 0.033966064, -0.016021729, -0.025009155, -0.007534027, -0.017074585, 0.008415222, -0.10620117, 0.019195557, -0.015686035, -0.0043182373, -0.045440674, 0.05404663, 0.030776978, -0.014129639, -0.01499939, -0.007286072, 0.009933472, 0.06390381, 0.02444458, -0.010345459, 0.041931152, 0.032989502, -0.04522705, 0.056610107, 0.0068893433, -0.008911133, 0.012489319, 0.01675415, 0.020065308, 0.018753052, 0.022659302, -0.051849365, -0.04925537, 0.046325684, -0.005268097, 0.0026874542, -0.036712646, 0.009437561, -0.0037841797, -0.01473999, -0.034179688, -0.0011606216, 0.05026245, 0.0020771027, -0.016021729, -0.0044898987, 0.04168701, -0.015205383, 0.019210815, -0.012374878, -0.031311035, 0.03111267, -0.040100098, -0.016479492, 0.020446777, 0.010192871, 0.0037841797, -0.0023765564, 0.015220642, -0.016571045, -0.006454468, 0.037384033, -0.044555664, -0.008262634, 0.019546509, 0.009460449, 0.014701843, 0.02658081, -0.02078247, 0.015571594, 0.013153076, -0.010375977, 0.047912598, 0.005393982, -0.007911682, -0.019378662, 0.023529053, -0.0033550262, -0.04598999, -0.0052871704, 0.040252686, 0.011375427, 0.01550293, -0.004508972, 0.006515503, 0.003370285, -0.022766113, 0.00062561035, -0.0007596016, -0.0015277863, 0.0149002075, 0.061401367, 8.261204e-05, 0.06359863, -0.01537323, 0.007446289, 0.018814087, 0.02507019, 0.024215698, 0.006122589, 0.005886078, -0.03829956, 0.029037476, 0.07720947, 0.016921997, 0.022109985, 0.005958557, 0.028793335, 0.019485474, 0.015174866, 0.026153564, 0.032318115, 0.034210205, 0.027145386, -0.019515991, -0.018661499, 0.020477295, 0.008598328, -0.06573486, -0.037109375, 0.04043579, 0.030471802, -0.0010843277, 0.009757996, 0.026947021, 0.037017822, -0.018234253, -0.0115356445, 0.099365234, 0.027816772, -0.019927979, 0.0020961761, 0.013198853, -0.019073486, 2.7656555e-05, 0.041259766, 0.029510498, -0.016204834, 0.028137207, 0.039489746, 0.034698486, -0.03918457, -0.029418945, 0.02041626, 0.0073432922, -0.018569946, -0.009849548, 0.002861023, 0.030319214, -0.012886047, 0.014671326, -0.035827637, 0.007247925, -0.027709961, -0.022079468, 0.0012960434, 0.015426636, -0.01725769, 0.01525116, 0.025360107, -0.0077400208, -0.039916992, 0.029037476, -0.011154175, 0.007736206, -0.041748047, 0.05343628, 0.007286072, 0.0435791, 0.034301758, -0.047210693, 0.03552246, -0.015327454, 0.029922485, -0.018859863, 0.013053894, -0.028060913, 0.07757568, -0.020462036, 0.070739746, -0.010223389, 0.03604126, 0.02758789, -0.023284912, 0.012184143, 0.029144287, 0.023880005, -0.019378662, -0.0051116943, 0.0048675537, 0.01864624, -0.04397583, -0.007598877, 0.0713501, 0.0115737915, 0.002922058, 0.011619568, 0.017364502, 0.031921387, -0.0019664764, -0.008575439, 0.003484726, -0.09466553, 0.03475952, 0.026611328, -0.039520264, -0.0104522705, -0.005443573, -0.008392334, 0.012908936, 0.0043792725, -0.002456665, -0.028396606, -0.02027893, -0.0005569458, 0.027786255, 0.03427124, -0.0062332153, -0.018203735, 0.019241333, 0.07244873, -0.0028057098, 0.01234436, -0.0018787384, -0.027496338, 0.0015287399, -0.004032135, -0.013748169, -0.01878357, 0.0018053055, -0.01159668, 0.028213501, 0.004776001, 0.042388916, 0.0024280548, 0.017471313, -0.038085938, 0.026321411, 0.02973938, 0.06213379, 0.006401062, 0.036102295, -0.028121948, -0.00869751, -0.016693115, 0.029190063, 0.016784668, -0.008628845, 0.0039634705, -0.0035381317, 0.019500732, 0.025009155, -0.04547119, -0.003572464, 0.05215454, 0.067871094, -0.04257202, -0.02293396, -0.027175903, 0.05340576, 0.019226074, 0.039978027, 0.056121826, -0.028320312, -0.020217896, -0.035003662, 0.03225708, 0.028656006, 0.062347412, 0.12915039, -0.0137786865, 0.0022201538, -0.057434082, -0.04397583, -0.049865723, -0.013160706, -0.03353882, 0.006427765, -0.014823914, -0.008201599, -0.036346436, -0.037353516, -0.010528564, -0.015930176, -0.027572632, 0.0074272156, 0.004547119, -0.024414062, -0.018859863, -0.020095825, 0.029632568, -0.00067043304, -0.044036865, -0.0043411255, -0.005256653, -0.019195557, 0.022262573, -0.00020956993, -0.013877869, -0.011108398, -0.020324707, -0.015808105, -0.025039673, -0.009498596, 0.05090332, 0.0046195984, -0.017150879, 0.04309082, -0.029067993, 0.002670288, -0.00026249886, -0.032409668, -0.053100586, 0.012481689, -0.014633179, 0.0013475418, -0.034332275, 0.038330078, 0.014892578, -0.046936035, 0.021591187, -0.020385742, -0.0052604675, 0.02796936, 0.0014333725, 0.012077332, -0.0118255615, -0.005569458, 0.008491516, 0.009841919, 0.0031318665, -0.003408432, -0.007144928, 0.040374756, -0.0038928986, 0.005279541, -0.008415222, 0.031707764, 0.0140686035, -0.015029907, -0.02810669, -0.0078125, -0.030853271, -0.03201294, 0.021316528, -0.036193848, -0.0423584, 0.0072784424, 0.014801025, 0.0019607544, -0.012367249, -0.009056091, -0.021438599, -0.02645874, 0.038726807, -0.007549286, 0.0049591064, 0.019012451, 0.017791748, -0.009185791, 0.04006958, 0.003107071, -0.0075302124, -0.010375977, -0.009246826, -0.02130127, -0.0056762695, -0.0076789856, 0.010009766, -0.010536194, 0.041107178, 0.0021133423, 0.029891968, 0.01626587, 0.042236328, -0.02784729, -0.032836914, 0.0317688, 0.045715332, 0.000116825104, 0.028030396, 0.007205963, 0.012512207, -0.035583496, -0.048034668, -0.023529053, -0.04953003, 0.0345459, -0.048339844, -0.060272217, -0.004512787, 0.04425049, 0.0076141357, 0.029510498, 0.007396698, 0.003353119, -0.038726807, 0.07183838, -0.026901245, -0.023529053, -0.038085938, 0.068725586, 0.018096924, -0.013534546, 0.05883789, -0.016113281, 0.017944336, 0.041046143, 0.022918701, 0.036499023, 0.015296936, -0.04916382, 0.0075683594, -0.011390686, 0.009735107, -0.0070152283, 0.003129959, -0.032562256, 0.0003478527, -0.0036640167, -0.006893158, -0.016098022, -0.034332275, 0.037750244, -0.010269165, 0.016494751, -0.02394104, 0.03753662, -0.022644043, -0.0008234978, 0.001001358, -0.048217773, 0.04989624, 0.0078125, 0.0044937134, 0.027038574, 0.04736328, -0.02973938, -0.011726379, 0.01348114, 0.021408081, 0.00844574, -0.03741455, -0.015686035, -0.040893555, 0.001452446, -0.025405884, 0.07348633, 0.038238525, -0.019958496, 0.023071289, -0.016403198, -0.08105469, 0.0071029663, -0.019088745, 5.8174133e-05, -0.005569458, 0.01399231, 0.02255249, 0.011222839, 0.00028824806, 0.0066184998, 0.0017499924, -0.009864807, -0.0115737915, 0.053100586, 0.0065231323, 0.001865387, -0.026428223, 0.03692627, 0.025390625, 0.022613525, 0.018722534, 0.007675171, -0.03439331, 0.041625977, -0.01789856, -0.041046143, 0.0051460266, 0.04144287, 0.048553467, 0.054595947, -0.01108551, -0.033935547, -0.026275635, -0.0118255615, -0.021362305, -0.009841919, -0.00724411, 0.028900146, 0.009887695, -0.023803711, 0.016311646, 0.018798828, -0.03668213, 0.046844482, 0.010696411, -0.014717102, -0.008110046, -0.004589081, -0.0028076172, -0.050811768, -0.017196655, -0.03491211, 0.0074005127, -0.038909912, 0.032440186, -0.034362793, -0.008682251, 0.032928467, -0.04626465, -0.009666443, 0.018951416, 0.031951904, -0.003791809, 0.02015686, -0.05532837, -0.005683899, -0.00054216385, -0.0034332275, 0.008659363, 0.02130127, -0.038879395, -0.0033397675, -0.03866577, -0.0049934387, 0.017944336, 0.001496315, 0.019485474, -0.004348755, 0.00046491623, 0.0007157326, 0.035614014, -0.027694702, 0.03692627, -0.008491516, 0.0524292, -0.016662598, -0.0017795563, -0.021575928, -0.018753052, -0.049346924, -0.06652832, 0.04272461, 0.03186035, 0.0011978149, 0.03463745, 0.024002075, 0.02607727, 0.020446777, 0.0256958, 0.026855469, 0.0074005127, -0.067993164, 0.017944336, -0.0039482117, 0.05496216, -0.041412354, 0.014175415, 0.02444458, -0.026412964, 0.057403564, -0.026779175, 0.023254395, 0.03945923, 0.033569336, -0.030258179, -0.039093018, -0.036468506, 0.017105103, 0.009635925, 0.025497437, 0.04156494, -0.02571106, -0.0010414124, -0.005630493, -0.016448975, -0.026733398, 0.001326561, -0.042022705, 0.0012521744, -0.041259766, -0.12182617, -0.03857422, 0.12548828, -0.005947113, -0.020736694, -0.0033855438, 0.03778076, -0.033813477, 0.038970947, 0.003921509, 0.011810303, 0.031982422, -0.032562256, -0.002653122, -0.025009155, -0.03805542, -0.016998291, 0.018173218, 0.0158844, 0.0011739731, 0.048217773, -0.020401001, 0.044708252, -0.017318726, 0.014457703, -0.041809082, 0.010543823, 0.041931152, 0.076293945, -0.054779053, 0.060272217, -0.046936035, 0.02949524, 0.00554657, 0.041534424, -0.013046265, -0.056152344, 0.010406494, 0.02973938, -0.023727417, -0.022476196, -0.024734497, -0.013168335, 0.060424805, 0.011787415, 0.018997192, -0.043426514, -0.00077724457, -0.010154724, 0.017150879, -0.01171875, -0.022476196, 0.0034255981, -0.0026454926, 0.004837036, -0.0043296814, 0.02619934, -0.021560669, -0.039733887, -0.022415161, -0.06817627, -0.023223877, -0.018585205, -0.015319824, 0.012588501, 0.0064353943, -0.013748169, 0.043304443, 0.002626419, -0.029373169, -0.016784668, -0.026184082, 0.05847168, 0.034179688, 0.03842163, -0.05493164, -0.017486572, 0.016540527, 0.03164673, 0.089904785, 0.013534546, -0.07684326, -0.024108887, 0.07434082, 0.030395508, 0.007091522, 0.07373047, 0.012527466, -0.010856628, -0.01828003, -0.045196533, 0.00065279007, -0.0637207, 0.010726929, 0.023880005, -0.0030708313, -0.012298584, 0.027236938, -0.04928589, 0.023071289, 0.008674622, -0.023529053, -0.015838623, -0.010543823, 0.012168884, 0.014854431, -0.05834961, -0.06088257, -0.012313843, 0.035461426, 0.02027893, 0.019348145, -0.014602661, -0.02104187, -0.0309906, 0.001405716, -0.019973755, -0.00157547, -0.003944397, 0.0009326935, -0.02078247, -0.015731812, -0.044433594, 0.03390503, 0.057159424, 0.018585205, -0.023895264, -0.0057029724, 0.0049552917, 0.013412476, 0.022399902, 0.010154724, 0.0519104, 0.06591797, 0.018341064, 0.012161255, -0.05810547, -0.043304443, -0.031173706, 0.0023860931, -0.003944397, 0.11425781, -0.031036377, 0.019989014, -0.038635254, -0.025939941, 0.035064697, 0.041168213, 0.03161621, -0.069885254, -0.04537964, 0.028945923, -0.023162842, 0.019226074, -0.028442383, 0.015594482, -0.019256592, -0.0046463013, 0.034240723, 0.009124756, 0.05718994, 0.031219482, 0.02154541, 0.009590149, 0.00076818466, 0.04849243, -0.029129028, -0.03375244, -0.023391724, -0.028381348, -0.029708862, -0.0132369995, 0.010353088, 0.020263672, -0.030807495, 0.01007843, -0.03704834, 0.023376465, -0.03665161, 0.03741455, 0.015144348, 0.057281494, 0.03137207, 0.048431396, 0.021194458, 0.008110046, -0.03540039, -0.015312195, 0.022384644, 0.0065956116, 0.008056641, 0.0018348694, -0.009246826, 0.030380249, 0.0003862381, 0.0051841736, 0.04486084, 0.017807007, 0.0026130676, 0.07977295, 0.05419922, 0.062194824, 0.02633667, 0.024841309, -0.041625977, -0.005897522, 0.04031372, -0.055908203, 0.0026226044, -0.05340576, -0.05496216, 0.011474609, -0.006954193, -0.013122559, 0.019714355, -0.07159424, 0.031173706, 0.0034255981, -0.0034103394, 0.0440979, 0.011779785, -0.007827759, -0.03173828, -0.020950317, -0.030166626, -0.035308838, 0.030792236, 0.04525757, -0.028701782, -0.011100769, -0.02331543, -0.0357666, -0.025680542, 0.0011911392, 0.01940918, 0.05706787, 0.028381348, 0.007133484, -0.07733154, -0.007686615, 0.03869629, 0.0066833496, 0.008842468, 0.03439331, -0.014282227, 0.0357666, -0.004737854, -0.039794922, -0.0070381165, 0.02670288, 0.0107421875, 0.016189575, -0.06555176, -0.0138549805, 0.0008363724, -0.016693115, 0.006904602, -0.020263672, -0.030426025, 0.008453369, -0.046173096, -0.01802063, -0.013595581, -0.0044288635, -0.0039978027, -0.0044898987, 0.0007619858, 0.003921509, 0.0053977966, 0.020385742, -0.012329102, -0.023803711, -0.0057525635, 0.038330078, -0.014549255, -0.06298828, -0.047607422, 0.039245605, -0.06781006, -0.035217285, -0.009056091, 0.019927979, -0.003932953, -0.020309448, -0.017044067, 0.018127441, -8.624792e-05, -0.043182373, 0.009590149, 0.035308838, 0.031951904, 0.0011615753, -0.042022705, 0.079956055, 0.026687622, 0.013542175, -0.0074157715, -0.00983429, -0.0022563934, 0.07373047, 0.059387207, 0.03488159, 0.0071372986, -0.06427002, -0.0546875, -0.02482605, 0.11071777, -0.021072388, 0.01626587, -0.049713135, 0.061553955, -0.016860962, 0.051971436, -0.012962341, -0.0011711121, -0.014198303, -0.0061149597, -0.005836487, 0.00022387505, -0.027618408, 0.019836426, 0.009933472, 0.02368164, -0.020309448, -0.0049591064, -0.008628845, -0.03253174, -0.017684937, 0.02468872, -0.0023498535, 0.01448822, 0.061920166, 0.031707764, -0.0026416779, -0.040985107, -0.06335449, -0.036071777, 0.05404663, -0.0044136047, -0.0146102905, -0.0033416748, 0.028671265, -0.012771606, -0.0016565323, -0.0038909912, -0.02407837, -0.009857178, 0.0014467239, -0.008720398, -0.006011963, 0.032073975, -0.033325195, 0.014862061, -0.017227173, -0.018753052, -0.0060424805, 0.022567749, -0.017654419, -0.017562866, -0.07244873, -0.0881958, 0.050476074, 0.02609253, -0.032409668, 0.07458496, 0.009399414, 0.009117126, -0.031051636, -0.03451538, -0.004219055, -0.05718994, 0.020080566, -0.025421143, -0.010948181, 0.06341553, -0.009231567, -0.021697998, -0.009719849, 0.012802124, -0.020370483, 0.0034389496, 0.018859863, -0.025680542, 0.0013141632, 0.068603516, -0.021026611, 0.021881104, -0.0395813, -0.0019073486, 0.0056037903, -0.032348633]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Because the text being embedded is the search query, we set the input type as search_query\n",
+ "response = co.embed(\n",
+ " texts=[query],\n",
+ " model=model,\n",
+ " input_type=\"search_query\",\n",
+ " embedding_types=['float']\n",
+ ")\n",
+ "query_embedding = response.embeddings.float[0]\n",
+ "print(\"query_embedding: \", query_embedding)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "8K8B87CGgbOt"
+ },
+ "source": [
+ "### Retrieve the most relevant chunks from the vector database\n",
+ "\n",
+ "We use cosine similarity to find the most similar chunks"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "nik3es32gbOt",
+ "outputId": "a1c30024-52e1-42c7-8836-a2c590559aca"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "similarity scores: [0.6953257882233425, 0.3713410510180273, 0.46501499776898964, 0.5448546916785195, 0.4014738351361969, 0.3231420292334584, 0.3179003053384008, 0.42799691553367775, 0.18882594531435784, 0.36868801306504106, 0.3404040737300553, 0.3852837621219358, 0.2600249419491577, 0.3723244353775111, 0.3631492691137214, 0.47574774051439606, 0.40415422750911745, 0.4149923346201023, 0.5014741934381444, 0.3549433331883204, 0.32072714802512714, 0.14770872479410424, 0.585277816615252, 0.6999636953772764, 0.7722295084104617, 0.4895347049465806, 0.5170096485954725, 0.7137817366881455, 0.5224900699612323, 0.5914632581598285, 0.2657897083381463, 0.6462342489537262, 0.6317222315431096, 0.5982303530756702, 0.5138265091630297, 0.41385121172723643, 0.4293941094100836, 0.4173182546482015, 0.42621236706314475, 0.4428474375355954, 0.35058541576139896, 0.3578709652019502, 0.3930157841938308, 0.3564608202848675, 0.23016661533167404, 0.4933441863421645, 0.41037089239250985, 0.39993051898770193, 0.3119997063424595, 0.2677143729521374, 0.3700866951454496, 0.46727994925061545, 0.4393343280374425, 0.42111290117172434, 0.4485349189824285, 0.4710573736688592, 0.24169956903740436, 0.3840442910806355, 0.14284631817675886, 0.5381588054138154, 0.431113882725076, 0.5189547209048608, 0.3950667224233914, 0.32429768756510174, 0.4370358125161736, 0.18727062244331039, 0.5206375682478743, 0.5175737635701252, 0.5326043981628349, 0.45586923626994363, 0.21667338125532032, 0.16459878595959285, 0.22236726481673777, 0.5187259906958807, 0.2884444442338396, 0.286407544555338, 0.2313840178160818, 0.2057731158935257, 0.5973876998341746, 0.42904243401792086, 0.4081217538000544, 0.5330523063972133, 0.45080561486977405, 0.414703452285757, 0.2569028899107211, 0.5087916806929323, 0.14159076456040554, 0.46505779053352697, 0.556364222182839, 0.35464351181035236, 0.40174477023626]\n",
+ "Here are the indices of the top 10 chunks after retrieval: [24 27 23 0 31 32 33 78 29 22]\n",
+ "Here are the top 10 chunks after retrieval: \n",
+ "== stunt coordinator. Dune: Part Two was produced by Villeneuve, Mary Parent, and Cale Boyter, with Tanya Lapointe, Brian Herbert, Byron Merritt, Kim Herbert, Thomas Tull, Jon Spaihts, Richard P. Rubinstein, John Harrison, and Herbert W. Gain serving as executive producers and Kevin J. Anderson as creative consultant. Legendary CEO Joshua Grode confirmed in April 2019 that they plan to make a sequel, adding that \"there's a logical place to stop the [first] movie before the book is over\".In December 2020,\n",
+ "== that.\"On October 26, 2021, Legendary officially greenlit Dune: Part Two, with a spokesperson for the company stating, \"We would not have gotten to this point without the extraordinary vision of Denis and the amazing work of his talented crew, the writers, our stellar cast, our partners at Warner Bros., and of course the fans! Here's to more Dune.\" Production work had occurred back-to-back with the first film, as Villeneuve and his wife Lapointe immediately took a flight to Budapest in order to begin\n",
+ "== series. Villeneuve ultimately secured a two-film deal with Warner Bros. Pictures, in the same style as the two-part adaption of Stephen King's It in 2017 and 2019. In January 2019, Joe Walker was confirmed to be serving as the film's editor. Other crew included Brad Riker as supervising art director, Patrice Vermette as production designer, Paul Lambert as visual effects supervisor, Gerd Nefzer as special effects supervisor, and Thomas Struthers as stunt coordinator. Dune: Part Two was produced by\n",
+ "== Dune: Part Two is a 2024 American epic science fiction film directed and produced by Denis Villeneuve, who co-wrote the screenplay with Jon Spaihts. The sequel to Dune (2021) adapts the 1965 novel Dune by Frank Herbert and follows Paul Atreides as he unites with the Fremen people of the desert planet Arrakis to wage war against House Harkonnen. Timothée Chalamet, Rebecca Ferguson, Josh Brolin, Stellan Skarsgård, Dave Bautista, Zendaya, Charlotte Rampling, and Javier Bardem reprise their roles from the first\n",
+ "== Eric Roth was hired to co-write the screenplay in April 2017 for the Dune films, and Jon Spaihts was later confirmed to be co-writing the script alongside Roth and Villeneuve. Game of Thrones language creator David Peterson was confirmed to be developing languages for the film in April 2019. Villeneuve and Peterson had created the Chakobsa language, which was used by actors on set. In November 2019, Spaihts stepped down as showrunner for Dune: Prophecy to focus on Dune: Part Two. In June 2020, Greig Fraser\n",
+ "== on Dune: Part Two. In June 2020, Greig Fraser said, \"It's a fully formed story in itself with places to go. It's a fully standalone epic film that people will get a lot out of when they see it\". Between the release of Dune and the confirmation of Dune: Part Two, Villeneuve started working the script in a way that production could begin immediately once the film was greenlit. By February 2021, Roth created a full treatment for the sequel, with writing beginning that August. He confirmed that Feyd-Rautha\n",
+ "== that August. He confirmed that Feyd-Rautha would appear in the film, and stated he will be a \"very important character\". In March 2022, Villeneuve had mostly finished writing the screenplay. Craig Mazin and Roth wrote additional literary material for the film.Villeneuve stated that the film would continue directly from the first, and specifically described it as being the \"second part.\" He described the film as being an \"epic war movie\", adding that while the first film was more \"contemplative\", the second\n",
+ "== On the review aggregator website Rotten Tomatoes, 93% of 378 critics' reviews are positive, with an average rating of 8.4/10. The website's consensus reads: \"Visually thrilling and narratively epic, Dune: Part Two continues Denis Villeneuve's adaptation of the beloved sci-fi series in spectacular form.\" Metacritic, which uses a weighted average, assigned the film a score of 79 out of 100, based on 62 critics, indicating \"generally favorable\" reviews. Audiences surveyed by CinemaScore gave the film an\n",
+ "== theatrical experience is at the very heart of the cinematic language for me.\" With Dune: Part Two being greenlit, Villeneuve said that his primary concern was to complete the filming as soon as possible, with the earliest he expected to start in the last quarter of 2022. However, he noted that production would be facilitated by the work already established on the first film, which would help expedite production.\n",
+ "== By November 2016, Legendary Pictures had obtained the film and TV rights for the Dune franchise, based on the eponymous 1965 novel by Frank Herbert. Vice chair of worldwide production for Legendary Mary Parent began discussing with Denis Villeneuve about directing a film adaptation, quickly hiring him after realizing his passion for Dune. By February 2018, Villeneuve was confirmed to be hired as director, and intended to adapt the novel as a two-part film series. Villeneuve ultimately secured a two-film\n"
+ ]
+ }
+ ],
+ "source": [
+ "def cosine_similarity(a, b):\n",
+ " return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))\n",
+ "\n",
+ "# Calculate similarity between the user question & each chunk\n",
+ "similarities = [cosine_similarity(query_embedding, chunk) for chunk in embeddings]\n",
+ "print(\"similarity scores: \", similarities)\n",
+ "\n",
+ "# Get indices of the top 10 most similar chunks\n",
+ "sorted_indices = np.argsort(similarities)[::-1]\n",
+ "\n",
+ "# Keep only the top 10 indices\n",
+ "top_indices = sorted_indices[:10]\n",
+ "print(\"Here are the indices of the top 10 chunks after retrieval: \", top_indices)\n",
+ "\n",
+ "# Retrieve the top 10 most similar chunks\n",
+ "top_chunks_after_retrieval = [chunks[i] for i in top_indices]\n",
+ "print(\"Here are the top 10 chunks after retrieval: \")\n",
+ "for t in top_chunks_after_retrieval:\n",
+ " print(\"== \" + t)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "qzcpds3VgbOt"
+ },
+ "source": [
+ "## Step 2 - Rerank the chunks retrieved from the vector database\n",
+ "\n",
+ "We rerank the 10 chunks retrieved from the vector database. Reranking boosts retrieval accuracy.\n",
+ "\n",
+ "Reranking lets us go from 10 chunks retrieved from the vector database, to the 3 most relevant chunks."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "2J4LywVygbOt",
+ "outputId": "7a4c89bf-fc5e-409f-9304-fce006b9d8bf"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Here are the top 3 chunks after rerank: \n",
+ "== Dune: Part Two is a 2024 American epic science fiction film directed and produced by Denis Villeneuve, who co-wrote the screenplay with Jon Spaihts. The sequel to Dune (2021) adapts the 1965 novel Dune by Frank Herbert and follows Paul Atreides as he unites with the Fremen people of the desert planet Arrakis to wage war against House Harkonnen. Timothée Chalamet, Rebecca Ferguson, Josh Brolin, Stellan Skarsgård, Dave Bautista, Zendaya, Charlotte Rampling, and Javier Bardem reprise their roles from the first\n",
+ "== stunt coordinator. Dune: Part Two was produced by Villeneuve, Mary Parent, and Cale Boyter, with Tanya Lapointe, Brian Herbert, Byron Merritt, Kim Herbert, Thomas Tull, Jon Spaihts, Richard P. Rubinstein, John Harrison, and Herbert W. Gain serving as executive producers and Kevin J. Anderson as creative consultant. Legendary CEO Joshua Grode confirmed in April 2019 that they plan to make a sequel, adding that \"there's a logical place to stop the [first] movie before the book is over\".In December 2020,\n",
+ "== series. Villeneuve ultimately secured a two-film deal with Warner Bros. Pictures, in the same style as the two-part adaption of Stephen King's It in 2017 and 2019. In January 2019, Joe Walker was confirmed to be serving as the film's editor. Other crew included Brad Riker as supervising art director, Patrice Vermette as production designer, Paul Lambert as visual effects supervisor, Gerd Nefzer as special effects supervisor, and Thomas Struthers as stunt coordinator. Dune: Part Two was produced by\n"
+ ]
+ }
+ ],
+ "source": [
+ "response = co.rerank(\n",
+ " query=query,\n",
+ " documents=top_chunks_after_retrieval,\n",
+ " top_n=3,\n",
+ " model=\"rerank-english-v2.0\",\n",
+ ")\n",
+ "\n",
+ "top_chunks_after_rerank = [result.document['text'] for result in response]\n",
+ "print(\"Here are the top 3 chunks after rerank: \")\n",
+ "for t in top_chunks_after_rerank:\n",
+ " print(\"== \" + t)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "KuPL0VUXgbOt"
+ },
+ "source": [
+ "## Step 3 - Generate the model final answer, given the retrieved and reranked chunks"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "oCNXWH8GgbOt"
+ },
+ "outputs": [],
+ "source": [
+ "# preamble containing instructions about the task and the desired style for the output.\n",
+ "preamble = \"\"\"\n",
+ "## Task & Context\n",
+ "You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging.\n",
+ "\n",
+ "## Style Guide\n",
+ "Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.\n",
+ "\"\"\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "BevatShtgbOt",
+ "outputId": "af71f4a9-787a-4ee3-9598-20692fb3bf16"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Final answer:\n",
+ "Here are the key crew members involved in 'Dune: Part Two':\n",
+ "\n",
+ "- Denis Villeneuve: director and producer\n",
+ "- Jon Spaihts: co-writer of the screenplay\n",
+ "- Mary Parent and Cale Boyter: producers \n",
+ "- Tanya Lapointe, Brian Herbert, Byron Merritt, Kim Herbert, Thomas Tull, Richard P. Rubinstein, John Harrison, Herbert W. Gain and Kevin J. Anderson: executive producers \n",
+ "- Joe Walker: editor\n",
+ "- Brad Riker: supervising art director\n",
+ "- Patrice Vermette: production designer\n",
+ "- Paul Lambert: visual effects supervisor\n",
+ "- Gerd Nefzer: special effects supervisor\n",
+ "- Thomas Struthers: stunt coordinator. \n",
+ "\n",
+ "A number of crew members from the first film returned for the sequel, which is set to be released in 2024.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# retrieved documents\n",
+ "documents = [\n",
+ " {\"title\": \"chunk 0\", \"snippet\": top_chunks_after_rerank[0]},\n",
+ " {\"title\": \"chunk 1\", \"snippet\": top_chunks_after_rerank[1]},\n",
+ " {\"title\": \"chunk 2\", \"snippet\": top_chunks_after_rerank[2]},\n",
+ " ]\n",
+ "\n",
+ "# get model response\n",
+ "response = co.chat(\n",
+ " message=query,\n",
+ " documents=documents,\n",
+ " preamble=preamble,\n",
+ " model=\"command-r\",\n",
+ " temperature=0.3\n",
+ ")\n",
+ "\n",
+ "print(\"Final answer:\")\n",
+ "print(response.text)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "20wcn-EjlXZd"
+ },
+ "source": [
+ "Note: this is indeed the answer you'd expect, and here was the passage of text in wikipedia explaining it!\n",
+ "\n",
+ "\" [...] Dune: Part Two was originally scheduled to be released on October 20, 2023, but was delayed to November 17, 2023, before moving forward two weeks to November 3, 2023, to adjust to changes in release schedules from other studios. It was later postponed by over four months to March 15, 2024, due to the 2023 Hollywood labor disputes. After the strikes were resolved, the film moved once more up two weeks to March 1, 2024. [...]\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RoSVDXSsgbOt"
+ },
+ "source": [
+ "## Bonus: Citations come for free with Cohere! 🎉\n",
+ "\n",
+ "At Cohere, all RAG calls come with... precise citations! 🎉\n",
+ "The model cites which groups of words, in the RAG chunks, were used to generate the final answer. \n",
+ "These citations make it easy to check where the model’s generated response claims are coming from. \n",
+ "They help users gain visibility into the model reasoning, and sanity check the final model generation. \n",
+ "These citations are optional — you can decide to ignore them.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "BVTuQdmDgbOt",
+ "outputId": "f843b262-d8bb-45ba-cbfb-9915da104eda"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Citations that support the final answer:\n",
+ "{'start': 63, 'end': 79, 'text': 'Denis Villeneuve', 'document_ids': ['doc_0']}\n",
+ "{'start': 81, 'end': 102, 'text': 'director and producer', 'document_ids': ['doc_0']}\n",
+ "{'start': 105, 'end': 116, 'text': 'Jon Spaihts', 'document_ids': ['doc_0']}\n",
+ "{'start': 118, 'end': 145, 'text': 'co-writer of the screenplay', 'document_ids': ['doc_0']}\n",
+ "{'start': 148, 'end': 159, 'text': 'Mary Parent', 'document_ids': ['doc_1']}\n",
+ "{'start': 164, 'end': 175, 'text': 'Cale Boyter', 'document_ids': ['doc_1']}\n",
+ "{'start': 177, 'end': 186, 'text': 'producers', 'document_ids': ['doc_1']}\n",
+ "{'start': 190, 'end': 204, 'text': 'Tanya Lapointe', 'document_ids': ['doc_1']}\n",
+ "{'start': 206, 'end': 219, 'text': 'Brian Herbert', 'document_ids': ['doc_1']}\n",
+ "{'start': 221, 'end': 234, 'text': 'Byron Merritt', 'document_ids': ['doc_1']}\n",
+ "{'start': 236, 'end': 247, 'text': 'Kim Herbert', 'document_ids': ['doc_1']}\n",
+ "{'start': 249, 'end': 260, 'text': 'Thomas Tull', 'document_ids': ['doc_1']}\n",
+ "{'start': 262, 'end': 283, 'text': 'Richard P. Rubinstein', 'document_ids': ['doc_1']}\n",
+ "{'start': 285, 'end': 298, 'text': 'John Harrison', 'document_ids': ['doc_1']}\n",
+ "{'start': 300, 'end': 315, 'text': 'Herbert W. Gain', 'document_ids': ['doc_1']}\n",
+ "{'start': 320, 'end': 337, 'text': 'Kevin J. Anderson', 'document_ids': ['doc_1']}\n",
+ "{'start': 339, 'end': 358, 'text': 'executive producers', 'document_ids': ['doc_1']}\n",
+ "{'start': 362, 'end': 372, 'text': 'Joe Walker', 'document_ids': ['doc_2']}\n",
+ "{'start': 374, 'end': 380, 'text': 'editor', 'document_ids': ['doc_2']}\n",
+ "{'start': 383, 'end': 393, 'text': 'Brad Riker', 'document_ids': ['doc_2']}\n",
+ "{'start': 395, 'end': 419, 'text': 'supervising art director', 'document_ids': ['doc_2']}\n",
+ "{'start': 422, 'end': 438, 'text': 'Patrice Vermette', 'document_ids': ['doc_2']}\n",
+ "{'start': 440, 'end': 459, 'text': 'production designer', 'document_ids': ['doc_2']}\n",
+ "{'start': 462, 'end': 474, 'text': 'Paul Lambert', 'document_ids': ['doc_2']}\n",
+ "{'start': 476, 'end': 501, 'text': 'visual effects supervisor', 'document_ids': ['doc_2']}\n",
+ "{'start': 504, 'end': 515, 'text': 'Gerd Nefzer', 'document_ids': ['doc_2']}\n",
+ "{'start': 517, 'end': 543, 'text': 'special effects supervisor', 'document_ids': ['doc_2']}\n",
+ "{'start': 546, 'end': 562, 'text': 'Thomas Struthers', 'document_ids': ['doc_2']}\n",
+ "{'start': 564, 'end': 582, 'text': 'stunt coordinator.', 'document_ids': ['doc_2']}\n",
+ "{'start': 686, 'end': 691, 'text': '2024.', 'document_ids': ['doc_0']}\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Citations that support the final answer:\")\n",
+ "for cite in response.citations:\n",
+ " print(cite)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "IueXaIJggbOu",
+ "outputId": "c816af51-74be-42c9-e94e-9820bbf95f79"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Here are the key crew members involved in 'Dune: Part Two':\n",
+ "\n",
+ "- **Denis Villeneuve**[1]: **director and producer**[1]\n",
+ "- **Jon Spaihts**[1]: **co-writer of the screenplay**[1]\n",
+ "- **Mary Parent**[2] and **Cale Boyter**[2]: **producers**[2] \n",
+ "- **Tanya Lapointe**[2], **Brian Herbert**[2], **Byron Merritt**[2], **Kim Herbert**[2], **Thomas Tull**[2], **Richard P. Rubinstein**[2], **John Harrison**[2], **Herbert W. Gain**[2] and **Kevin J. Anderson**[2]: **executive producers**[2] \n",
+ "- **Joe Walker**[3]: **editor**[3]\n",
+ "- **Brad Riker**[3]: **supervising art director**[3]\n",
+ "- **Patrice Vermette**[3]: **production designer**[3]\n",
+ "- **Paul Lambert**[3]: **visual effects supervisor**[3]\n",
+ "- **Gerd Nefzer**[3]: **special effects supervisor**[3]\n",
+ "- **Thomas Struthers**[3]: **stunt coordinator.**[3] \n",
+ "\n",
+ "A number of crew members from the first film returned for the sequel, which is set to be released in **2024.**[1]\n",
+ "\n",
+ "[1] source: \"Dune: Part Two is a 2024 American epic science fiction film directed and produced by Denis Villeneuve, who co-wrote the screenplay with Jon Spaihts. The sequel to Dune (2021) adapts the 1965 novel Dune by Frank Herbert and follows Paul Atreides as he unites with the Fremen people of the desert planet Arrakis to wage war against House Harkonnen. Timothée Chalamet, Rebecca Ferguson, Josh Brolin, Stellan Skarsgård, Dave Bautista, Zendaya, Charlotte Rampling, and Javier Bardem reprise their roles from the first\"\n",
+ "[2] source: \"stunt coordinator. Dune: Part Two was produced by Villeneuve, Mary Parent, and Cale Boyter, with Tanya Lapointe, Brian Herbert, Byron Merritt, Kim Herbert, Thomas Tull, Jon Spaihts, Richard P. Rubinstein, John Harrison, and Herbert W. Gain serving as executive producers and Kevin J. Anderson as creative consultant. Legendary CEO Joshua Grode confirmed in April 2019 that they plan to make a sequel, adding that \"there's a logical place to stop the [first] movie before the book is over\".In December 2020,\"\n",
+ "[3] source: \"series. Villeneuve ultimately secured a two-film deal with Warner Bros. Pictures, in the same style as the two-part adaption of Stephen King's It in 2017 and 2019. In January 2019, Joe Walker was confirmed to be serving as the film's editor. Other crew included Brad Riker as supervising art director, Patrice Vermette as production designer, Paul Lambert as visual effects supervisor, Gerd Nefzer as special effects supervisor, and Thomas Struthers as stunt coordinator. Dune: Part Two was produced by\"\n"
+ ]
+ }
+ ],
+ "source": [
+ "def insert_citations_in_order(text, citations):\n",
+ " \"\"\"\n",
+ " A helper function to pretty print citations.\n",
+ " \"\"\"\n",
+ " offset = 0\n",
+ " document_id_to_number = {}\n",
+ " citation_number = 0\n",
+ " modified_citations = []\n",
+ "\n",
+ " # Process citations, assigning numbers based on unique document_ids\n",
+ " for citation in citations:\n",
+ " citation_numbers = []\n",
+ " for document_id in sorted(citation[\"document_ids\"]):\n",
+ " if document_id not in document_id_to_number:\n",
+ " citation_number += 1 # Increment for a new document_id\n",
+ " document_id_to_number[document_id] = citation_number\n",
+ " citation_numbers.append(document_id_to_number[document_id])\n",
+ "\n",
+ " # Adjust start/end with offset\n",
+ " start, end = citation['start'] + offset, citation['end'] + offset\n",
+ " placeholder = ''.join([f'[{number}]' for number in citation_numbers])\n",
+ " # Bold the cited text and append the placeholder\n",
+ " modification = f'**{text[start:end]}**{placeholder}'\n",
+ " # Replace the cited text with its bolded version + placeholder\n",
+ " text = text[:start] + modification + text[end:]\n",
+ " # Update the offset for subsequent replacements\n",
+ " offset += len(modification) - (end - start)\n",
+ "\n",
+ " # Prepare citations for listing at the bottom, ensuring unique document_ids are listed once\n",
+ " unique_citations = {number: doc_id for doc_id, number in document_id_to_number.items()}\n",
+ " citation_list = '\\n'.join([f'[{doc_id}] source: \"{documents[doc_id - 1][\"snippet\"]}\"' for doc_id, number in sorted(unique_citations.items(), key=lambda item: item[1])])\n",
+ " text_with_citations = f'{text}\\n\\n{citation_list}'\n",
+ "\n",
+ " return text_with_citations\n",
+ "\n",
+ "\n",
+ "print(insert_citations_in_order(response.text, response.citations))\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Kp4c_HkYIEn_"
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/gnqa/src/notebooks/parse_r2r_result.ipynb b/gnqa/src/notebooks/parse_r2r_result.ipynb
new file mode 100644
index 00000000..99648be6
--- /dev/null
+++ b/gnqa/src/notebooks/parse_r2r_result.ipynb
@@ -0,0 +1,2186 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Parse RAGAS json output"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import json\n",
+ "import sys\n",
+ "from document_operations import DocOps, QuestionList\n",
+ "\n",
+ "verbose = 0\n",
+ "#read_file = '/home/shebes/Coding/gn-ai/gnqa/paper2_eval/data/testresp2.json'\n",
+ "read_file = '/home/shebes/Coding/gn-ai/gnqa/paper2_eval/data/responses/human/cs_gn_responses.json'\n",
+ "out_file = '../data/dataset/human_cs_gn_' "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "values_key = {\n",
+ " \"text\" : {\"name\": \"contexts\", \"append\": 1},\n",
+ " \"associatedQuery\": {\"name\": \"question\", \"append\": 0},\n",
+ " \"id\": {\"name\": \"id\", \"append\": 1},\n",
+ " \"title\": {\"name\": \"titles\", \"append\": 1},\n",
+ " \"document_id\": {\"name\": \"document_id\", \"append\": 1},\n",
+ " \"extraction_id\": {\"name\": \"extraction_id\", \"append\": 1},\n",
+ " \"content\": {\"name\": \"answer\", \"append\": 0}\n",
+ "}\n",
+ "\n",
+ "def get_ragas_out_dict():\n",
+ " return { \"titles\": [],\n",
+ " \"extraction_id\": [],\n",
+ " \"document_id\": [],\n",
+ " \"id\": [],\n",
+ " \"contexts\": [],\n",
+ " \"answer\": \"\",\n",
+ " \"question\": \"\"}\n",
+ "\n",
+ "def extract_response(obj, values_key, thedict):\n",
+ " if isinstance(obj, dict):\n",
+ " for key, val in obj.items():\n",
+ " if (key in values_key.keys()):\n",
+ " if (values_key[key][\"append\"]):\n",
+ " thedict[values_key[key][\"name\"]].append(val.replace(\"\\n\", \" \").strip())\n",
+ " else:\n",
+ " thedict[values_key[key][\"name\"]] = val.replace(\"\\n\", \" \").strip()\n",
+ " print((\"\", \"Key -> {0}\\tValue -> {1}\".format(key,val)) [verbose])\n",
+ " else:\n",
+ " if (len(obj.items()) == 1 ):\n",
+ " print(key, \" --> \", val)\n",
+ " extract_response(val, values_key, thedict)\n",
+ " elif isinstance(obj, list):\n",
+ " for item in obj:\n",
+ " extract_response(item, values_key, thedict)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "There are dict_keys(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32']) keys in the result file\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZIhpxkquCUzShWFEamc7p1ntYgw', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'The most cited environmental factor for the onset of asthma is exposure to tobacco smoke, particularly in early childhood [4]. Additionally, reduced early microbial exposure, as posited by the hygiene hypothesis, is also a significant environmental factor [3].', 'role': 'assistant'}}], 'created': 1727797323, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_c17d3befe7', 'usage': {'completion_tokens': 47, 'prompt_tokens': 1222, 'total_tokens': 1269}}, 'search_results': {'vector_search_results': [{'id': '21c02be1-f8a1-5d70-abb7-00a866f4a734', 'score': 0.6928697641414275, 'metadata': {'text': 'children is driven more by dysregulated allergy and epithelial barrier function genes, whereas the cause of adult-onset asthma is more lung-centred and environmentally determined, but with immune-mediated mechanisms driving disease progression in both children and adults.\\nFunding US National Institutes of Health.\\nCopyright 2019 Elsevier Ltd. All rights reserved.\\nIntroduction\\nAsthma is the most prevalent chronic respiratory disease \\nworldwide.1 The diagnosis of asthma is based on the', 'title': '2019 - Shared and distinct genetic risk factors for childhood-onset.pdf', 'version': 'v0', 'chunk_order': 8, 'document_id': '6f5caedc-c2b4-54e4-8bc6-8b78cab6bb0e', 'extraction_id': '306aeeff-1e54-5e8d-9d06-10fc3c995f69', 'associatedQuery': 'What is the most cited environmental factor for the onset of asthma?'}}, {'id': '183e3af7-7138-554b-bcda-b76e7eeef30a', 'score': 0.6874383278227861, 'metadata': {'text': 'asthma has increased with alarming frequency in industrialized cities worldwide (e.g. Elias et al 2003). These diseases generally are complex, with clear contribu-tions of genetic background and exposure to environmental stimuli (see Kleeberger & Peden 2005). It is unlikely that the increased incidence in disease can be attributed only to genetics as increases in disease-causing genetic mutations to account for the increase would require multiple generations. Therefore the role of environmental exposures', 'title': '2008 - Genetic Effects on Environmental Vulnerability to Disease Novartis Foundation Symposium 293.pdf', 'version': 'v0', 'chunk_order': 1295, 'document_id': '5d65e407-34e5-5c1c-b394-989b7a09b57d', 'extraction_id': '110ccbf7-ee1f-5326-ac9a-a5ea4a842751', 'associatedQuery': 'What is the most cited environmental factor for the onset of asthma?'}}, {'id': '21d3694f-032b-5d8c-93e2-58e85ec92903', 'score': 0.6675477623939514, 'metadata': {'text': 'living all represent risk factors for asthma, while early farm exposures and breastfeeding confer\\nprotective effects. Such observations have been assimilated into the hygiene hypothesis, rst set out\\nin 1989 (136), positing that reduced early microbial exposure and its impacts on immunity underliethe postIndustrial Revolution atopy and asthma epidemic. Responsible for a transformation in\\nour understanding of microbial factors in asthma has been a revolution of a different kind. Only', 'title': '2018 - The Genetics and Genomics of Asthma.pdf', 'version': 'v0', 'chunk_order': 127, 'document_id': '47cf2a47-d8d2-583b-8c12-2a7cfbe92e5e', 'extraction_id': '47d93beb-84d7-55ab-af76-a671ea6dc488', 'associatedQuery': 'What is the most cited environmental factor for the onset of asthma?'}}, {'id': 'b64a52ee-d2e8-50a7-a101-b255cd905180', 'score': 0.6543693542480469, 'metadata': {'text': 'tobacco smoke exposure and with early-onset asthma\\n(before age 4) [49/C15/C15]. Further studies of preschool asth-\\nmatics have shown the 17q21 variants are associated with\\nan almost two-fold increased risk of developing recurrent\\nwheeze, asthma, asthma exacerbations and bronchial\\nhyper-responsiveness, but are not associated with eczema,\\nrhinitis or allergic sensitization, indicating that they are\\nspecic determinants of nonatopic asthma in children [47].', 'title': '2010 - Recent advances in the genetics and genomics of asthma.pdf', 'version': 'v0', 'chunk_order': 18, 'document_id': '656c0e8b-d154-551a-bae1-986e418a6aa4', 'extraction_id': 'd398c492-cb9a-5aba-bfd4-4a51bd6eb831', 'associatedQuery': 'What is the most cited environmental factor for the onset of asthma?'}}, {'id': '46ee340b-b11c-52ef-a48d-d2c8135b63d8', 'score': 0.6542739868164062, 'metadata': {'text': 'for childhood-onset asthma supports the widely held idea that asthma in childhood is due to impaired barrier function in the skin and other epithelial surfaces. This model proposes that compromised epithelial barriers promote sensitisation to food and airway allergens and to wheezing illnesses in early life.\\n46,47 In fact, childhood \\nonset-specific loci identified in this study have been associated with atopic dermatitis or food allergies, such as FLG on 1q21.3 with the atopic march,\\n41 atopic', 'title': '2019 - Shared and distinct genetic risk factors for childhood-onset.pdf', 'version': 'v0', 'chunk_order': 138, 'document_id': '6f5caedc-c2b4-54e4-8bc6-8b78cab6bb0e', 'extraction_id': 'cfc7a3ec-7c07-5966-a022-decf1c4f8276', 'associatedQuery': 'What is the most cited environmental factor for the onset of asthma?'}}, {'id': '1fa74fa4-0f13-55be-8164-ee57dfbc80af', 'score': 0.6486250162124634, 'metadata': {'text': 'relation to asthma and other atopic diseases). The prompt in the asthma example came from the observation of the apparent effect of being reared in a farm envi-ronment. Of course, it was crucial to replicate that observation in different social contexts and it was also important to have some leverage on a likely biological mediating pathway (in that case exposure to endotoxins). Similarly, the G E', 'title': '2008 - Genetic Effects on Environmental Vulnerability to Disease Novartis Foundation Symposium 293.pdf', 'version': 'v0', 'chunk_order': 1520, 'document_id': '5d65e407-34e5-5c1c-b394-989b7a09b57d', 'extraction_id': '22dfc0a4-f5ac-5fa0-911a-32a5e71c8608', 'associatedQuery': 'What is the most cited environmental factor for the onset of asthma?'}}, {'id': '545f48b6-3b45-5a1a-8def-7a5900ecc40a', 'score': 0.6441090703010559, 'metadata': {'text': '[11] Shaaban R, Zureik M, Soussan D, Neukirch C, Heinrich J, Sunyer J, et al. Rhinitis and onset of asthma: a longitudinal population-based study. Lancet (London, England) 2008;372(9643):104957.\\n [12] de NijsSB, VenekampLN, BelEH. Adult-onset asthma: is it really different? Eur Respir Rev 2013;22(127):44.\\n [13] RackemannFM. Intrinsic asthma. J Allergy 1940;11(2):14762.\\n [14] JarvisD, NewsonR, LotvallJ, HastanD, TomassenP, KeilT, etal. Asthma in adults and its as -', 'title': '2019 - Leveraging genomics to uncover.pdf', 'version': 'v0', 'chunk_order': 259, 'document_id': '5da46d3b-fa82-57f6-b3e5-c82784347881', 'extraction_id': '531fbafe-c4a1-55b2-b832-dfb9a7f67e96', 'associatedQuery': 'What is the most cited environmental factor for the onset of asthma?'}}, {'id': 'a0a06ce6-5b8f-52ff-8904-901ae666f247', 'score': 0.6438643548569479, 'metadata': {'text': 'GG19CH10_Cookson ARI 26 July 2018 9:47\\nEpigenetic Features of Asthma: Within the Lung\\nA study of the epigenome in primary airway epithelial cells from 74 asthmatic and 41 non-asthmatic\\nadults (111) revealed a regulatory locus on chromosome 17q1221 (the same locus identied by\\nasthma GWASs) associated with asthma risk and epigenetic signatures of specic asthma endo-types. ORMDL3 expression was related to the differentially methylated region at this locus, while', 'title': '2018 - The Genetics and Genomics of Asthma.pdf', 'version': 'v0', 'chunk_order': 105, 'document_id': '47cf2a47-d8d2-583b-8c12-2a7cfbe92e5e', 'extraction_id': 'af4e210e-5d90-5f49-996a-fa177eaf155e', 'associatedQuery': 'What is the most cited environmental factor for the onset of asthma?'}}, {'id': '4d8496c2-5415-58d4-a27d-8f0f7f8d147a', 'score': 0.6423291755416747, 'metadata': {'text': 'studies have identied a range of pre-, peri-, and postnatal environmental factors, including modeof delivery, diet, and early lower respiratory tract infection, that confer relative risk or protection.\\nAttempts to map the genetic architecture of asthma have identied a broad spectrum of potential\\ncontributory genes. Many of these genes demonstrate inconsistent patterns of replication betweencohorts, most likely reecting a combination of true positive and true negative results and the', 'title': '2018 - The Genetics and Genomics of Asthma.pdf', 'version': 'v0', 'chunk_order': 7, 'document_id': '47cf2a47-d8d2-583b-8c12-2a7cfbe92e5e', 'extraction_id': 'b95d9c35-eefe-579a-bf1d-12811d1b5a07', 'associatedQuery': 'What is the most cited environmental factor for the onset of asthma?'}}, {'id': '47361fa0-f820-5114-8074-ad63e0815d81', 'score': 0.6365286707878113, 'metadata': {'text': '49 \\nVariants at those loci were all associated with earlier age of asthma onset. We further showed that these loci are associated with childhood-onset asthma, even after exclusion of patients with a history of allergic diseases in prespecified analyses, suggesting both a crucial role for the allergic diathesis in the development of asthma in childhood and a shared architecture between allergic disease and childhood-onset asthma.\\n33,46\\nBy contrast, the enrichment for genes highly expressed', 'title': '2019 - Shared and distinct genetic risk factors for childhood-onset.pdf', 'version': 'v0', 'chunk_order': 140, 'document_id': '6f5caedc-c2b4-54e4-8bc6-8b78cab6bb0e', 'extraction_id': 'cfc7a3ec-7c07-5966-a022-decf1c4f8276', 'associatedQuery': 'What is the most cited environmental factor for the onset of asthma?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_1\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZIljdVVoktIlIQ3BBIkNiAq5m4n', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'To extract DNA from flora or fauna, one can follow these general steps:\\n\\n1. **Cell Rupture**: The cells need to be ruptured to release the DNA. This can be done using mechanical methods such as grinding the tissue with a sterile pestle [9] or using bead-beating for homogenization [8]. Enzymatic digestion of cell walls, if present, can also be used (e.g., lysozyme) [5].\\n\\n2. **Preventing DNA Degradation**: During the extraction process, it is crucial to prevent DNA from fragmenting. This can be achieved by using EDTA, which chelates magnesium ions necessary for DNase enzymes that degrade DNA [5].\\n\\n3. **Purification**: The DNA needs to be purified to remove contaminants. This can involve differential centrifugation and using specific kits designed for DNA extraction, such as the All-In-One kit [8] or the DNeasy Blood and Tissue Kit [9].\\n\\n4. **Specific Protocols for Different Organisms**: Different organisms may require specific protocols. For example, insects may need hypochlorite treatment before extraction to reduce contamination [3].\\n\\n5. **High Purity Requirements**: If a high degree of purity is required, DNA can be subjected to density gradient centrifugation [1].\\n\\nBy following these steps, one can effectively extract DNA from various types of flora and fauna.', 'role': 'assistant'}}], 'created': 1727797327, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 285, 'prompt_tokens': 1205, 'total_tokens': 1490}}, 'search_results': {'vector_search_results': [{'id': '4067a893-52a9-5e8e-9221-c32be3241c2a', 'score': 0.6409068917687611, 'metadata': {'text': 'by shearing. A flow diagram summarizing the extraction of DNA is given in \\nFig. 1.2. The above-described procedure is suitable for total cellular DNA. \\nIf the DNA from a specific organelle or viral particle is needed, it is best to \\nisolate the organelle or virus before extracting its DNA, because the recovery \\nof a particular type of DNA from a mixture is usually rather difficult. Where \\na high degree of purity is required, DNA may be subjected to density gradient', 'title': '2008 - Gene Expression Profiling.pdf', 'version': 'v0', 'chunk_order': 76, 'document_id': '59f3b969-089b-5258-93ad-892dbc9ffa9c', 'extraction_id': '3f898a5b-0b72-59b9-b923-a5bca2db11c6', 'associatedQuery': 'How would one extract the DNA, from say, flora or fauna?'}}, {'id': '045c27b0-dad8-56f1-8772-ae9d0da11c8a', 'score': 0.6141914955263449, 'metadata': {'text': '2017 Nature America, Inc., part of Springer Nature. All rights reserved.\\nnature medicine doi:10.1038/nm.434564. Salonen, A. et al. Comparative analysis of fecal DNA extraction methods with \\nphylogenetic microarray: effective recovery of bacterial and archaeal DNA using \\nmechanical cell lysis. J. Microbiol. Methods 81, 127134 (2010).\\n65. Murphy, N.R. & Hellwig, R.J. Improved nucleic acid organic extraction through use \\nof a unique gel barrier material. Biotechniques 21, 934936, 938939 (1996).', 'title': '2017 - Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug.pdf', 'version': 'v0', 'chunk_order': 166, 'document_id': '448d68d1-19a8-5f4c-a48b-8d33597bd03b', 'extraction_id': '7595d721-9b06-5442-a876-e389ca4a66be', 'associatedQuery': 'How would one extract the DNA, from say, flora or fauna?'}}, {'id': '61393b99-58f3-5f1d-899d-809166e88442', 'score': 0.609249734327214, 'metadata': {'text': 'is the suitable preparation of the DNA template with a high level of purity \\nand free from contaminating DNA (14). Different procedures are used for \\nDNA extraction with specific protocol for mammals, plants, fungi, bacteria, \\nprotozoan, helminthes, insects, and others. In specific cases, such as insects, \\ncontamination can be reduced by hypochlorite treatment before extraction \\nto avoid contact with foreign DNA (15). DNA preparation includes the', 'title': '2008 - Gene Expression Profiling.pdf', 'version': 'v0', 'chunk_order': 864, 'document_id': '59f3b969-089b-5258-93ad-892dbc9ffa9c', 'extraction_id': '5a11860d-c422-5e6d-8a31-be81de4e1c8d', 'associatedQuery': 'How would one extract the DNA, from say, flora or fauna?'}}, {'id': '3a090421-e3e5-5f38-8acf-b8053b43287b', 'score': 0.5945524218945263, 'metadata': {'text': 'this method is well suited for larger scale investigations of museum insect phylogenomics. We\\ndid extract DNA from relatively large insects, where one leg yields more tissue than is availablefrom crushing the entire body of most ants, for example. Thus, it remains now to be tested\\nwhether sufficient input DNA can also be obtained from smaller dried insect specimens. None-', 'title': '2016 - Sequence Capture and Phylogenetic Utility.pdf', 'version': 'v0', 'chunk_order': 120, 'document_id': '6232f392-169a-50c5-b8c9-a250f3d840cc', 'extraction_id': 'c5beca95-6108-5a67-8f74-fb39b9a36d3c', 'associatedQuery': 'How would one extract the DNA, from say, flora or fauna?'}}, {'id': '29a51de9-1da1-5a4b-9de6-19a88c8593a3', 'score': 0.5837758605547017, 'metadata': {'text': 'usually requires that it be isolated and purified to a certain degree. DNA is \\nusually recovered from cells by methods that include cell rupture but that \\nprevent the DNA from fragmenting by mechanical shearing. This is gener-\\nally undertaken in the presence of EDTA, which chelates the magnesium ions \\nneeded as cofactors for enzymes that degrade DNA, termed DNase. Ideally, \\ncell walls, if present, should be digested enzymatically (e.g., lysozyme in the', 'title': '2008 - Gene Expression Profiling.pdf', 'version': 'v0', 'chunk_order': 71, 'document_id': '59f3b969-089b-5258-93ad-892dbc9ffa9c', 'extraction_id': '3aa1db4d-6c18-53ab-8859-676d34d2b2ae', 'associatedQuery': 'How would one extract the DNA, from say, flora or fauna?'}}, {'id': '559fdf4f-5d14-5277-ba7b-a367d4795ed2', 'score': 0.5787351382532644, 'metadata': {'text': 'DNA and then using a gene probe representing a protein or enzyme from \\none of the organisms. In this way, it is possible to search for related genes in \\ndifferent species. This technique is generally termed Zoo blotting. A similar \\nprocess of nucleic acid blotting can be used to transfer RNA separated by gel \\nelectrophoresis onto membranes similar to that used in Southern blotting. This \\nprocess, termed Northern blotting , allows the identification of specific mRNA', 'title': '2008 - Gene Expression Profiling.pdf', 'version': 'v0', 'chunk_order': 97, 'document_id': '59f3b969-089b-5258-93ad-892dbc9ffa9c', 'extraction_id': '99821df5-c257-5c1f-9fe8-18d5865d5c1e', 'associatedQuery': 'How would one extract the DNA, from say, flora or fauna?'}}, {'id': '3252d040-7281-54ca-a478-46a30b6d84f6', 'score': 0.566219500753939, 'metadata': {'text': '6. Staats M, Erkens RH, van de Vossenberg B, Wieringa JJ, Kraaijeveld K, Stielow B, et al. Genomic trea-\\nsure troves: complete genome sequencing of herbarium and insect museum specimens. PLOS ONE.\\n2013; 8:e69189. doi: 10.1371/journal.pone.0069189 PMID: 23922691\\n7. Burrell AS, Disotell TR, Bergey CM. The use of museum specimens with high-throughput DNA\\nsequencers. J Hum Evol. 2015; 79:35 44. doi: 10.1016/j.jhevol.2014.10.015 PMID: 25532801', 'title': '2016 - Sequence Capture and Phylogenetic Utility.pdf', 'version': 'v0', 'chunk_order': 129, 'document_id': '6232f392-169a-50c5-b8c9-a250f3d840cc', 'extraction_id': 'f9e001fe-b0b0-5cd5-be1b-9377ac52b079', 'associatedQuery': 'How would one extract the DNA, from say, flora or fauna?'}}, {'id': 'f2d72429-c697-5c58-aee0-6cf90b0387e5', 'score': 0.5607462954298789, 'metadata': {'text': 'were extracted from unthawed, frozen faecal subsamples (150 mg) after pretreatment\\nof the weighed subsamples with 1.5 ml RNAlater ICE (LifeTechnologies) overnight.The faeces-RNAlater ICE mixture was homogenized by bead-beating, as previously\\ndescribed\\n53. Differential centrifugation and extraction using the All-In-One kit\\n(Norgen Biotek) to recover DNA and proteins were carried out as previously\\ndescribed53. DNA fractions were supplemented with DNA extracted from 200 mg', 'title': '2016 - Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes.pdf', 'version': 'v0', 'chunk_order': 103, 'document_id': 'f0405966-38bf-5a04-aa2c-1474b11362bb', 'extraction_id': '1c7453d1-119d-5575-b950-7b400de2b3a4', 'associatedQuery': 'How would one extract the DNA, from say, flora or fauna?'}}, {'id': '4498331b-aea3-5c0c-9f0b-77a45cc400a2', 'score': 0.5607318543951608, 'metadata': {'text': 'DNA was then extracted destructively by grinding the frozen tissue with a sterile pestle, using aDNeasy Blood and TissueKit (Qiagen, Valencia, CA, USA) and following the manufacturer s\\nprotocol, except the DNA was eluted in 130 L ddH\\n2O instead of the supplied buffer. We ran\\n10L of each extract for 60 min at 100 volt on 1.5% agarose SB (sodium borate) gels, to estimate\\nsize of the genomic DNA.\\nFrom a pool of 60 successful extractions (12 extractions produced no quantifiable DNA), we', 'title': '2016 - Sequence Capture and Phylogenetic Utility.pdf', 'version': 'v0', 'chunk_order': 27, 'document_id': '6232f392-169a-50c5-b8c9-a250f3d840cc', 'extraction_id': 'c9f26c8e-b56c-5a1a-95f4-5824f05ba3d0', 'associatedQuery': 'How would one extract the DNA, from say, flora or fauna?'}}, {'id': 'dbae2fad-ec06-52a8-9dc0-7bc154faecc8', 'score': 0.5596859121509853, 'metadata': {'text': 'Extracting biological information', 'title': '2004 - Linking nutrition to genomics.pdf', 'version': 'v0', 'chunk_order': 21, 'document_id': '99891ef7-0589-5c41-a61f-1ab1fe1c8939', 'extraction_id': 'b7d8dfc5-094a-5d4e-969a-97e287939187', 'associatedQuery': 'How would one extract the DNA, from say, flora or fauna?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_2\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZIrY516c5O6uEqljwZdzIXywTvS', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Genetics is the study of individual genes and their protein products [2]. It involves understanding how genes are inherited, how they function, and how they influence traits and conditions passed down from one generation to another [6]. This field also includes the analysis of genetic linkage data for Mendelian traits [3].', 'role': 'assistant'}}], 'created': 1727797333, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_5796ac6771', 'usage': {'completion_tokens': 61, 'prompt_tokens': 647, 'total_tokens': 708}}, 'search_results': {'vector_search_results': [{'id': '9e595bc1-a142-525c-97d4-5edde55c5bcf', 'score': 0.6841647028923035, 'metadata': {'text': 'Neurogenetics', 'title': '2016 - A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors.pdf', 'version': 'v0', 'chunk_order': 44, 'document_id': '22bb099c-aeca-51e8-a82d-5d091d9f0936', 'extraction_id': '600a1af4-0f16-520c-a63f-7e0af523fa3c', 'associatedQuery': 'genetics'}}, {'id': '1eed369d-2525-5621-b9a7-c344c2e48f32', 'score': 0.6752305030822754, 'metadata': {'text': 'Genetics\\n \\nGenetics is the study of individual genes and their protein products (Guttmacher &', 'title': '2012 - Needs Analysis of Genetics and Genomics in Communication Sciences and Disorders.pdf', 'version': 'v0', 'chunk_order': 123, 'document_id': 'c8a76cb1-506d-57e4-a18e-548e777898e2', 'extraction_id': 'b7b09b33-3c90-51c9-968c-d47809e9d964', 'associatedQuery': 'genetics'}}, {'id': '1ef52b83-a34c-517e-b65f-b8d9c1acb79d', 'score': 0.6496097639086775, 'metadata': {'text': 'genetics and genomics, article 1DNA, genes, and chromosomes.\\nBiological Research for Nursing ,19, 717.\\nDueker, N. D., & Pericak-Vance, M. A. (2014). Analysis of genetic\\nlinkage data for Mendelian traits. Current Protocols in Human\\nGenetics ,83, 1.4.11.4.31.\\nFu, M. R., Conley, Y. P., Axelrod, D., Guth, A. A., Yu, G., Fletcher, J.,\\n& Zagzag, D. (2016). Precision assessment of heterogeneity of\\nlymphedema phenotype, genotypes and risk prediction. Breast ,\\n29, 231240.', 'title': '2017 - Primer in Genetics and Genomics.pdf', 'version': 'v0', 'chunk_order': 94, 'document_id': '6fae6815-e1b5-564b-81c7-39ed62bbd999', 'extraction_id': '53fa3a10-5290-5209-80ce-0655d2c602a5', 'associatedQuery': 'genetics'}}, {'id': 'ab3b9b3a-2353-5730-8dd2-3b790ca7c5f7', 'score': 0.6466852023209695, 'metadata': {'text': 'genetic factors. 371 \\n 372 \\n 373 \\n 374 \\n 375', 'title': '2018 - Identification of non-HLA genes associated with development of islet autoimmunity and type.pdf', 'version': 'v0', 'chunk_order': 77, 'document_id': 'fb67c701-af96-57ad-b1e3-1309e1b53a52', 'extraction_id': '631667de-f20a-59b6-af3c-924b612d21ea', 'associatedQuery': 'genetics'}}, {'id': 'd2fe7d2e-8d04-52ce-a8e6-de8437a83014', 'score': 0.6462759971618652, 'metadata': {'text': 'GENETICS in MEDICINE |Volume 22 |Number 7 |July 2020 1153', 'title': '2020 - Mainstreaming genetics and genomics a systematic review.pdf', 'version': 'v0', 'chunk_order': 58, 'document_id': 'ea0695f5-c52c-568b-ba97-8fa31405ef30', 'extraction_id': '0120a9f0-57fd-510d-b975-b1e1f870f9fb', 'associatedQuery': 'genetics'}}, {'id': '6cce33b0-9975-5727-8b53-2e3478cb3230', 'score': 0.6450107097625732, 'metadata': {'text': \"to offspring. Genes are pieces of DNA, and most genes contain the \\ninformation for making a specific protein. \\nzGenetics - Genetics is a term that refers to the study of genes and \\ntheir role in inheritance - the way certain traits or conditions are \\npassed down from one generation to another. \\nzGenomics - Genomics is a relatively new term that describes the \\nstudy of all of a person's genes including interactions of those genes \\nwith each other and the person's environment.\", 'title': '2009 - Basic Genetics and Genomics A Primer for Nurses.pdf', 'version': 'v0', 'chunk_order': 14, 'document_id': 'c37e2ace-171b-5776-8969-86eda9736481', 'extraction_id': '2cafe5f4-79a3-5234-948d-d78c20b97650', 'associatedQuery': 'genetics'}}, {'id': 'fb261aba-abc3-5e90-a322-61841f43f60c', 'score': 0.6439312100410461, 'metadata': {'text': 'www.pnas.org/cgi/doi/10.1073/pnas.0912702107 PNAS |April 20, 2010 |vol. 107 |no. 16 |74017406\\nGENETICS', 'title': '2010 - Genetic variants near TIMP3 and high-density.pdf', 'version': 'v0', 'chunk_order': 17, 'document_id': 'da9c44fa-16a0-586b-8256-f4b91f4cfef9', 'extraction_id': '12929889-6359-5c34-8997-95a41f6202a3', 'associatedQuery': 'genetics'}}, {'id': 'ab7bbeb8-bc04-527e-8840-3bb5f905dffd', 'score': 0.6412776112556458, 'metadata': {'text': 'GENETICS\\nDownloaded from https://www.pnas.org by 41.90.188.152 on July 14, 2023 from IP address 41.90.188.152.', 'title': '2004 - Errand Gabpab specify PGC1dependentoxidative phosphorylation gene expressionthat is altered in diabetic muscle.pdf', 'version': 'v0', 'chunk_order': 69, 'document_id': '259bea02-bb3a-57b6-8896-0b41d6cace05', 'extraction_id': '715eacf0-9e21-593f-b023-84a864eb801f', 'associatedQuery': 'genetics'}}, {'id': 'c8b4753f-417d-590b-b8b8-866322504fec', 'score': 0.638548631624837, 'metadata': {'text': 'GENETICS\\nDownloaded from https://www.pnas.org by 41.80.118.137 on October 17, 2023 from IP address 41.80.118.137.', 'title': '2010 - Genome-wide association identifies OBFC1as a locus involved in human leukocyte telomere biology.pdf', 'version': 'v0', 'chunk_order': 37, 'document_id': '76ba50b9-6eb2-51c7-8dd8-82d840d81219', 'extraction_id': '0ed3fd5b-86ce-5587-90b7-1e013a7bb8ad', 'associatedQuery': 'genetics'}}, {'id': '0b0f3258-b6bb-5de0-91d1-767ef5fce360', 'score': 0.638548631624837, 'metadata': {'text': 'GENETICS\\nDownloaded from https://www.pnas.org by 41.80.118.137 on October 17, 2023 from IP address 41.80.118.137.', 'title': '2010 - Genome-wide association identifies OBFC1as a locus involved in human leukocyte telomere biology.pdf', 'version': 'v0', 'chunk_order': 17, 'document_id': '76ba50b9-6eb2-51c7-8dd8-82d840d81219', 'extraction_id': 'ccda7fa4-0bd0-5af7-919c-47b435ad81ea', 'associatedQuery': 'genetics'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_3\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZIuGqxbDENLCoABzAMboXc8WUvK', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Bioinformatics broadly refers to the use of computers to seek patterns in observed biological data and to propose mechanisms for such patterns [5]. It involves methods of computer-based information processing for analyzing the structure and function of biologically important molecules [3], [4]. The field draws from the foundations of statistics, mathematics, physics, computer science, and molecular biology, reflecting a broad base of scientific specialties [8], [9], [10].', 'role': 'assistant'}}], 'created': 1727797336, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_c17d3befe7', 'usage': {'completion_tokens': 87, 'prompt_tokens': 1006, 'total_tokens': 1093}}, 'search_results': {'vector_search_results': [{'id': '9b81ec06-a109-5441-93bc-fd3e2d0b7862', 'score': 0.7581818699836731, 'metadata': {'text': 'is the eld of bioinformatics.', 'title': '2012 - Systems Biology Approaches to Nutrition.pdf', 'version': 'v0', 'chunk_order': 96, 'document_id': '6955478b-950d-5d29-b24c-3a5ca656f3ae', 'extraction_id': '713c3d5f-dea2-5d83-a4f9-8749e8c0a9e8', 'associatedQuery': 'what is bioinformatics'}}, {'id': '2369f273-6321-5702-9c80-c29ae74935d0', 'score': 0.6725601749086287, 'metadata': {'text': 'the umbrella of bioinformatics or com-putational biology.', 'title': '2004 - Nutritional genomics.pdf', 'version': 'v0', 'chunk_order': 376, 'document_id': 'f97bdb31-0a83-5046-a60c-81d633684557', 'extraction_id': '39d8f5af-dff0-58ab-b16f-f0b25f7ccdf0', 'associatedQuery': 'what is bioinformatics'}}, {'id': '3aafc5c1-96b5-5629-bc72-b00cf5070536', 'score': 0.662312924861908, 'metadata': {'text': 'methods of computer-based information processing for ana-lyzing the structure and function of biologically important molecules. NCBI bioinformatics-related resources may be accessed through its home page at: www.ncbi.nlm.nih.gov. \\n The NCBI has three principal branches:\\n 1. Computational Biology Branch ( http://www.ncbi.nlm.\\nnih.gov/CBBresearch/) \\n 2. Information Engineering Branch ( http://www.ncbi.nlm.\\nnih.gov/IEB/)', 'title': '2008 - (Infectious Disease) Karl A. Western (auth.), Vassil St. Georgiev PhD, Karl A. Western MD, John J. McGowan PhD (eds.) - National Institute of Allergy and Infectious Diseases, NIH_ Frontiers in Researc (3).pdf', 'version': 'v0', 'chunk_order': 5589, 'document_id': '4db8c752-c8e2-5f6d-a091-dc4f1d0c48bc', 'extraction_id': '16c8fbb0-ab2a-563f-a6b2-e0d8733b69fb', 'associatedQuery': 'what is bioinformatics'}}, {'id': '6081b16d-3380-5602-9daf-0500940fafbb', 'score': 0.662312924861908, 'metadata': {'text': 'methods of computer-based information processing for ana-lyzing the structure and function of biologically important molecules. NCBI bioinformatics-related resources may be accessed through its home page at: www.ncbi.nlm.nih.gov. \\n The NCBI has three principal branches:\\n 1. Computational Biology Branch ( http://www.ncbi.nlm.\\nnih.gov/CBBresearch/) \\n 2. Information Engineering Branch ( http://www.ncbi.nlm.\\nnih.gov/IEB/)', 'title': '2008 - Biotools for Determining the Genetics of Susceptibility to Infectious Diseases.pdf', 'version': 'v0', 'chunk_order': 5589, 'document_id': 'fcbbb3ce-6524-50e3-9f8d-c191dc551231', 'extraction_id': 'fe6eb7f0-9f09-50f8-a7a1-c71e507226d5', 'associatedQuery': 'what is bioinformatics'}}, {'id': '011b9d94-7b34-597c-9b89-74062b999132', 'score': 0.6480194330215454, 'metadata': {'text': 'been successful in microbial ecological research withoutbioinformatics tools. Broadly defined, bioinformatics refersto the use of computers to seek patterns in the observedbiological data and to propose mechanisms for such patterns.As can be seen from below, bioinformatics not only canhelp us directly address experimental research objectives butalso can integrate information from various sources and seekspatterns not achievable through experimentation alone.', 'title': '2006 - Invited Review Microbial ecology in the age of genomics and metagenomics concepts, tools, and recent advances.pdf', 'version': 'v0', 'chunk_order': 65, 'document_id': 'a666073a-eb22-53b0-bc94-550e775e456a', 'extraction_id': 'c08e6c0a-19fe-52ae-a715-8241e7b9baf8', 'associatedQuery': 'what is bioinformatics'}}, {'id': '32219bd7-c673-5deb-bb35-3bea4ae9bd3a', 'score': 0.6466500163078308, 'metadata': {'text': 'Since the first protein database was created by Margaret Dayhoffin 1965 in response to the increase in protein sequencing, therehas been an explosion of data from the different modalities. Foreach of the aforementioned levels, bioinformatics plays a crucialand intimate role in each of the steps. In general, there are threelarge categories of bioinformatics applications, including data-bases, algorithms and predictions. The category of databasesallows for the combining and organization of large amounts', 'title': '2008 - Molecular profiling in the age of cancer genomics.pdf', 'version': 'v0', 'chunk_order': 134, 'document_id': 'a3e71525-cef6-50ba-abd1-e3853ddf77fa', 'extraction_id': '167ddb29-f516-5670-9b89-a5d6c9eb930f', 'associatedQuery': 'what is bioinformatics'}}, {'id': '5cebb071-960c-5072-beb7-842815ae89bb', 'score': 0.6466500163078308, 'metadata': {'text': 'Since the first protein database was created by Margaret Dayhoffin 1965 in response to the increase in protein sequencing, therehas been an explosion of data from the different modalities. Foreach of the aforementioned levels, bioinformatics plays a crucialand intimate role in each of the steps. In general, there are threelarge categories of bioinformatics applications, including data-bases, algorithms and predictions. The category of databasesallows for the combining and organization of large amounts', 'title': '2003 - Molecular profiling in the age.pdf', 'version': 'v0', 'chunk_order': 134, 'document_id': '547b71a7-ac5a-52ca-b9db-04391e9e50c6', 'extraction_id': '4c017db4-38d5-5116-b707-57e836fd043b', 'associatedQuery': 'what is bioinformatics'}}, {'id': '59772d2c-7eac-5a4b-b9ef-70735afda23e', 'score': 0.6272101402282715, 'metadata': {'text': 'remit of the early bioinformaticist.1,2T o address these problems, the eld drew from\\nthe foundations of statistics, mathematics, physics, computer science and, of course,\\nmolecular biology. T oday, predictably, bioinformatics still reects the broad base on\\nwhich it started, comprising an eclectic collection of scientic specialists.\\nAs a result of its inherent diversity, it is difcult to dene the scope of bioinformatics\\nas a discipline. It may be even fruitless to try to draw hard boundaries around the eld.', 'title': '2007 - Bioinformatics_for_Geneticists.pdf', 'version': 'v0', 'chunk_order': 30, 'document_id': '4ea8e1a8-e113-5f02-ad78-880b9c51a101', 'extraction_id': '512cfd3a-f28e-5e11-8caa-6add0151a824', 'associatedQuery': 'what is bioinformatics'}}, {'id': 'aa406f0f-8f39-5189-9131-91345a876489', 'score': 0.6271724700927734, 'metadata': {'text': 'remit of the early bioinformaticist.1,2T o address these problems, the eld drew from\\nthe foundations of statistics, mathematics, physics, computer science and, of course,\\nmolecular biology. T oday, predictably, bioinformatics still reects the broad base on\\nwhich it started, comprising an eclectic collection of scientic specialists.\\nAs a result of its inherent diversity, it is difcult to dene the scope of bioinformatics\\nas a discipline. It may be even fruitless to try to draw hard boundaries around the eld.', 'title': '003 -Barnes- Bioinformatics_for_Geneticists.pdf', 'version': 'v0', 'chunk_order': 30, 'document_id': '045edae8-468b-5725-be06-8cb4b8f6a92b', 'extraction_id': '564e2e42-51ba-5b46-9375-b9ebee9ceabc', 'associatedQuery': 'what is bioinformatics'}}, {'id': 'f03ab31a-1da3-50f1-9cfe-dc05cee18c05', 'score': 0.6271724700927734, 'metadata': {'text': 'remit of the early bioinformaticist.1,2T o address these problems, the eld drew from\\nthe foundations of statistics, mathematics, physics, computer science and, of course,\\nmolecular biology. T oday, predictably, bioinformatics still reects the broad base on\\nwhich it started, comprising an eclectic collection of scientic specialists.\\nAs a result of its inherent diversity, it is difcult to dene the scope of bioinformatics\\nas a discipline. It may be even fruitless to try to draw hard boundaries around the eld.', 'title': '2007 - Bioinformatics_for_Genetices_MAZEN_SAEED.pdf', 'version': 'v0', 'chunk_order': 30, 'document_id': '139463d1-c63c-5c51-bf9c-9ccc356768e0', 'extraction_id': 'dd3030ab-0d42-521f-a769-8ee1b2fd0902', 'associatedQuery': 'what is bioinformatics'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_4\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZIye9JJrA436MgjlTpeY9z4NFZS', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'The process of finding a genetic marker followed by a quantitative trait loci (QTL) involves several steps:\\n\\n1. **Linkage Mapping**: The initial step is to trace the trait across multiple generations by examining its coinheritance with genetic markers. This technique is known as linkage mapping [1]. Genetic linkage analysis is used to identify regions of the genome that contain genes predisposing to the observed quantitative trait [2].\\n\\n2. **Identification of QTLs**: Once regions of interest are identified through linkage mapping, the next step is to pinpoint the loci responsible for variability in the quantitative trait. This process is known as quantitative trait locus mapping or QTL mapping [1]. QTL mapping is more challenging due to the numerous sources of variation that need to be captured [1].\\n\\n3. **Statistical Analysis**: To determine linkage, statistical methods such as the log of odds (LOD) scores or likelihood ratio statistics (LRS) are used [2]. A significant QTL indicates that different genotypes at a polymorphic marker locus are associated with different trait values [2].\\n\\n4. **Techniques for Positioning QTLs**: Various techniques can be employed to position precise loci influencing the trait. These include marker regression, interval mapping, and multiple mapping strategies [7]. Marker regression, for instance, locates QTLs with respect to all markers simultaneously by regression onto the marker means and estimates the additive and dominance effects [7].\\n\\n5. **Genome-Wide Association Studies (GWAS)**: In some cases, genome-wide association studies are conducted to identify chromosomal regions referred to as QTLs that are statistically associated with the trait [8]. These regions often contain a high density of single nucleotide polymorphisms (SNPs) [8].\\n\\n6. **Candidate Gene Identification**: After identifying the QTL regions, researchers can sift through the list of genes in these regions to find candidate genes that may have a significant impact on the phenotype [10].\\n\\nBy following these steps, researchers can effectively identify genetic markers and subsequently map quantitative trait loci, providing insights into the genetic basis of complex traits.', 'role': 'assistant'}}], 'created': 1727797340, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_c17d3befe7', 'usage': {'completion_tokens': 426, 'prompt_tokens': 1239, 'total_tokens': 1665}}, 'search_results': {'vector_search_results': [{'id': '1ec396e1-0218-5f22-8db7-8653770944fb', 'score': 0.7188067771426756, 'metadata': {'text': '(although quite demanding) process offollowing the trait across multiple generations by \\ntracing its coinheritance with genetic markers (a technique referred to as linkage \\nmapping). Finding loci responsible for variability in a quantitative trait (quantitative trait \\nlocus mapping, or QTL mapping) is much more difficult, as there are many more sources \\nof variation to capture. lnbred mouse strains are the optimum starting point for QTL', 'title': '2006 - Positional cloning of genes contributing to variability in nociceptive and analgesic phenotypes.pdf', 'version': 'v0', 'chunk_order': 93, 'document_id': '8ba88825-7473-52f8-8a1d-27f25644c4a2', 'extraction_id': 'c2c33142-b1dc-5162-a2a1-b452d2385958', 'associatedQuery': 'Explain the process of finding a genetic marker followed by a quantitative trait loci.'}}, {'id': 'e3149a33-9780-5f50-b582-142cdae5a5d3', 'score': 0.716050386428833, 'metadata': {'text': 'Genetic linkage analysis can be used to identify regions of the genome that\\ncontain genes that predispose to the observed quantitative trait, leading to iden-tification of QTLs. A significant QTL means that different genotypes at a poly-morphic marker locus are associated with different trait values. Linkage isdetermined by the log of odds (LOD) scores or likelihood ratio statistics (LRS)(seeNote 1 ). To calculate a LOD score or an LRS score for a selected quanti-', 'title': '2007 - QTL Mapping in Aging Systems.pdf', 'version': 'v0', 'chunk_order': 39, 'document_id': '35fbcd3c-97e8-57e5-b4c9-08dfbd4bce2e', 'extraction_id': 'ace8317f-2e7a-5590-a8e6-5e961480c0fb', 'associatedQuery': 'Explain the process of finding a genetic marker followed by a quantitative trait loci.'}}, {'id': 'ef0bab2a-db4a-57ac-9f75-32ec8c4a8f87', 'score': 0.7066554427146912, 'metadata': {'text': 'quantitative trait loci in crosses between outbred linesusing least squares. Genetics 136, 11951207.\\nHaseman, J. K. & Elston, R. C. 1972 The investigation of\\nlinkage between a quantitative trait and a marker locus.Behav. Genet. 2, 319.\\nHenshall, J. M. & Goddard, M. E. 1999 Multiple trait\\nmapping of quantitative trait loci after selective genotypingusing logistic regression. Genetics 151, 885894.\\nJansen, R. C. 1993 Interval mapping of multiple quantitative\\ntrait loci. Genetics 135, 205211.', 'title': '2005 -Knott- Regression based QTL mapping.pdf', 'version': 'v0', 'chunk_order': 109, 'document_id': 'cd41c63b-e5c2-5040-bbc5-ab20925b7d17', 'extraction_id': 'e12f12c8-b1e0-54fa-86f8-0bcdb580bca1', 'associatedQuery': 'Explain the process of finding a genetic marker followed by a quantitative trait loci.'}}, {'id': '62ec26e1-3c71-558d-9378-e920e47edb08', 'score': 0.7066554427146912, 'metadata': {'text': 'quantitative trait loci in crosses between outbred linesusing least squares. Genetics 136, 11951207.\\nHaseman, J. K. & Elston, R. C. 1972 The investigation of\\nlinkage between a quantitative trait and a marker locus.Behav. Genet. 2, 319.\\nHenshall, J. M. & Goddard, M. E. 1999 Multiple trait\\nmapping of quantitative trait loci after selective genotypingusing logistic regression. Genetics 151, 885894.\\nJansen, R. C. 1993 Interval mapping of multiple quantitative\\ntrait loci. Genetics 135, 205211.', 'title': '2005 - Regression-based quantitative trait loci mapping robust, efficient and effective.pdf', 'version': 'v0', 'chunk_order': 111, 'document_id': 'ba67a5b2-3dc7-57dc-8f8b-2d01433e58c2', 'extraction_id': 'e8203703-d34a-5848-bf54-4e20eb6fc3c5', 'associatedQuery': 'Explain the process of finding a genetic marker followed by a quantitative trait loci.'}}, {'id': '5b07b911-a624-52ed-8506-ab14cb16a2eb', 'score': 0.7064084621193549, 'metadata': {'text': 'Keywords: quantitative trait loci mapping; regression; structured outbred populations\\n1. HISTORY\\nThe idea of using markers associated with a trait of\\ninterest, for example, to predict the performance of\\nindividuals in the trait, is not new. Initially, however,\\nthe markers used were not identied at the molecular\\nlevel but rather through the phenotype, for example,\\ncoat colour or by the use of simple biochemicalprocedures such as blood groups. An early implemen-', 'title': '2005 - Regression-based quantitative trait loci mapping robust, efficient and effective.pdf', 'version': 'v0', 'chunk_order': 3, 'document_id': 'ba67a5b2-3dc7-57dc-8f8b-2d01433e58c2', 'extraction_id': '75b53145-3938-5fbe-9cca-0389a68e1955', 'associatedQuery': 'Explain the process of finding a genetic marker followed by a quantitative trait loci.'}}, {'id': '297470d7-ce20-5685-af94-a8ed5c68386b', 'score': 0.7064084621193549, 'metadata': {'text': 'Keywords: quantitative trait loci mapping; regression; structured outbred populations\\n1. HISTORY\\nThe idea of using markers associated with a trait of\\ninterest, for example, to predict the performance of\\nindividuals in the trait, is not new. Initially, however,\\nthe markers used were not identied at the molecular\\nlevel but rather through the phenotype, for example,\\ncoat colour or by the use of simple biochemicalprocedures such as blood groups. An early implemen-', 'title': '2005 -Knott- Regression based QTL mapping.pdf', 'version': 'v0', 'chunk_order': 3, 'document_id': 'cd41c63b-e5c2-5040-bbc5-ab20925b7d17', 'extraction_id': '26dd8d34-b134-5426-b717-61b8a3a0f752', 'associatedQuery': 'Explain the process of finding a genetic marker followed by a quantitative trait loci.'}}, {'id': '543c9c0c-e8f5-59d8-b1e0-22172ace332e', 'score': 0.7037139744673366, 'metadata': {'text': 'tions between markers and phenotype. Once allelic effects at each locus are\\nidentified, different techniques can be used to position precise loci (i.e., QTL)\\ninfluencing the trait. These techniques include marker regression (30), interval\\nmapping (31), and multiple mapping strategies (32). Marker regression locates\\nQTL with respect to all markers simultaneously by regression onto the marker\\nmeans. It also estimates the additive (and dominance) effects, tests their signif-', 'title': '2007 - Using quantitative trait loci analysis to select plants for altered radionuclide accumulation.pdf', 'version': 'v0', 'chunk_order': 30, 'document_id': '682e6f43-10d4-5772-a69a-26e774606ba7', 'extraction_id': '9ca9216b-e4cb-52c2-a286-f7d5d37936b6', 'associatedQuery': 'Explain the process of finding a genetic marker followed by a quantitative trait loci.'}}, {'id': '1aa1e57d-cced-59d2-ac5b-9f3be7be2355', 'score': 0.70147705078125, 'metadata': {'text': 'successful in identifying genes for simple traits. Quantitative trait mapping and genome wide \\nassociation studies identify chromosomal regions referred to as quantitative trait loci (QTLs) that \\nare statistically associated with the trait. Usually there are several such associations, each on the \\norder of megabases (Mb) in length containing the usual diversity of single nucleotide \\npolymorphisms (SNPs), one to two thousand per Mb, and there has been little success identifying', 'title': '2008 - Genotype-phenotype relationships and the patterning of complex traits as exemplified in the mammalian dentition.pdf', 'version': 'v0', 'chunk_order': 69, 'document_id': 'f6e866b8-b233-5862-bfb8-9949d0dabb97', 'extraction_id': 'b672f393-c45d-5393-96ee-77934e21e9c3', 'associatedQuery': 'Explain the process of finding a genetic marker followed by a quantitative trait loci.'}}, {'id': 'adbe8575-3c00-53e6-bb98-e86b8d01c7c5', 'score': 0.6996601223945618, 'metadata': {'text': 'markers reveal potential gene locations regulating the trait of interest as known as quant itative \\ntrait loci (QTL s). Historically, this approach has been successful in identifying genes that are \\nresponsible for rare, monogenic bone diseases. More recently, much denser maps of SNP s allow \\nresearchers to perform genome -wide linkage analysis for complex trait s like bone phenotypes . \\nHowever, several difficulties preventing the discovery of causal genes include genetic', 'title': '2019 - Novel Genetic Loci Control L5 Vertebral Trabecular Bone and the Response to Low Calcium Intake in Growing BXD Recombinant Inbred Mice.pdf', 'version': 'v0', 'chunk_order': 198, 'document_id': 'de8dda5e-0e2f-5aa9-bb13-851c526b36a5', 'extraction_id': '92e2d87b-02c9-588b-bc3c-e1034c05826d', 'associatedQuery': 'Explain the process of finding a genetic marker followed by a quantitative trait loci.'}}, {'id': '22a5b128-d4d2-5fad-a60a-162c1d9a3369', 'score': 0.6974883675575256, 'metadata': {'text': 'Quantitative Trait Locus (QTL) analysis, which links \\nphenotype to loci on chromosomes that likely had an \\nimpact on the phenotype. Students then are able to sift \\nthrough a list of genes in the region(s) of the chromosome \\nidentified by the QT L analysis and find a candidate gene \\nthat has relatively high expression in the brain region of \\ninterest. Once such a candidate gene is identified, \\nstudents can find out more information about the gene,', 'title': '2012 - Teaching Neuroinformatics with an Emphasis on Quantitative Locus Anlaysis.pdf', 'version': 'v0', 'chunk_order': 2, 'document_id': 'f36cbb2c-90f3-5544-8ce8-52b2004f6b49', 'extraction_id': '0184b980-f596-51d9-a1a5-dd9c8d4ba388', 'associatedQuery': 'Explain the process of finding a genetic marker followed by a quantitative trait loci.'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_5\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZJ5u5h9f6SgdrxrixAsqUmOQgLr', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Recombination in human centromeres is generally suppressed, making these regions \"cold\" to recombination events [2]. This suppression is thought to be actively maintained by core centromeric proteins [3]. Despite this, there is evidence suggesting that centromeres can undergo recombination, particularly through mechanisms that involve homologous recombination (HR) during DNA repair processes [6]. For instance, crossover between sister chromatids, known as sister chromatid exchange (SCE), has been reported at human centromeres [6]. Additionally, centromeres may experience recombination during a single round of cell division in primary human cells [8]. This indicates that while recombination is generally suppressed in centromeres, it can still occur under certain conditions, potentially impacting centromere integrity and stability [5], [6], [8].', 'role': 'assistant'}}], 'created': 1727797347, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 170, 'prompt_tokens': 1376, 'total_tokens': 1546}}, 'search_results': {'vector_search_results': [{'id': '72da6034-227d-5dac-9ef6-90c246ec2b40', 'score': 0.7549923804406906, 'metadata': {'text': 'Genes 2018 ,9, 615 18 of 20\\n97. McFarlane, R.J.; Humphrey, T.C. A role for recombination in centromere function. Trends Genet. 2010 ,26,\\n209213. [CrossRef]\\n98. Talbert, P .B.; Henikoff, S. Centromeres convert but dont cross. PLoS Biol. 2010 ,8, e1000326. [CrossRef]\\n99. Durfy, S.J.; Willard, H.F. Concerted Evolution of Primate Alpha Satellite DNA Evidence for an Ancestral\\nSequence Shared by Gorilla and Human X Chromosome Satellite. J. Mol. Biol. 1990 ,216, 555566.\\n[CrossRef]', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 176, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': 'af805fbb-a39f-5a29-a0b0-9add1126b553', 'associatedQuery': 'What about recombination in human centromeres?'}}, {'id': '66e5e009-5496-5e18-bfbe-9a9567cad60c', 'score': 0.7326166033744812, 'metadata': {'text': '4.1. Recombination and Repair at Centromeres: Errors in Copying and Mending Highly Repetitive DNA\\nWhy are centromeres so cold?, asked Andy Choo in his review of centromeres [ 96]. He was\\nreferring to centromere DNA as being cold to recombination. While maternal and paternal\\nchromosomes suffer multiple DNA double-stranded breaks (DSBs) to induce recombination and\\nexchange of genetic information by crossing over during meiosis, centromere loci are refractory', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 63, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '5f52d45a-991b-54c3-92ae-37dd96e31a42', 'associatedQuery': 'What about recombination in human centromeres?'}}, {'id': '2f2342b3-4c07-5bfd-80c6-8bc47fead6b6', 'score': 0.7102879881858826, 'metadata': {'text': 'exacerbates centromere rearrangements [ 54], indicating that there may be active mechanisms to\\nsuppress centromeric recombination and these may, at least in part, involve core centromeric proteins.\\nCentromere alpha-satellite DNA is estimated to represent between 3% and 10% of the human\\ngenome [ 101], reviewed in [ 19]. During each round of replication, unperturbed cells suffer over 40 DNA\\nDSBs [ 102], of which at least half are repaired by homologous recombination (HR) in S-phase and G2,', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 66, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '5f52d45a-991b-54c3-92ae-37dd96e31a42', 'associatedQuery': 'What about recombination in human centromeres?'}}, {'id': 'ab92961e-c267-5e56-aeb9-0d03fd0a4102', 'score': 0.7094384008980763, 'metadata': {'text': '347357 (1998).\\n 31. Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836840 (2010).\\n 32. Kong, A. et al. Recombination rate and reproductive success in humans. Nat.Genet. 36, 12031206 (2004).\\n 33. Ottolini, C. S. et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47, 727735 (2015).', 'title': '2018 - Germline de novo mutation clusters arise.pdf', 'version': 'v0', 'chunk_order': 63, 'document_id': 'f2b2ca83-a34f-5f99-b9f2-357b2ddbe136', 'extraction_id': '403bbc25-ce94-5a4f-a409-436cc02fb204', 'associatedQuery': 'What about recombination in human centromeres?'}}, {'id': 'fb421292-e4ea-510b-8a69-48e12e6e6a43', 'score': 0.6924422383308411, 'metadata': {'text': 'to this process. This led to the assumption that centromeres do not undergo recombination and\\nthat the repetitive arrays are maintained as stable. However, this clashed with the notion that\\ncentromeres very origin stems from recombination to create the repetitive array, where multiple short-\\nand long-range recombination events may be responsible for the generation and reiteration of blocks of\\nhighly homogenized alpha-satellite DNA throughout the centromere [ 97,98]. Furthermore, in addition', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 64, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '5f52d45a-991b-54c3-92ae-37dd96e31a42', 'associatedQuery': 'What about recombination in human centromeres?'}}, {'id': '3b5635bb-8308-5c6b-8ee0-d65293257362', 'score': 0.6876334361811552, 'metadata': {'text': 'of these DSBs through recombination-dependent pathways, such as homologous recombination (HR), \\nmay disrupt centromere integrity in several ways: (1) Crossover between sister chromatids will lead \\nto sister chromatid exchange (SCE), which has been reported at human cent romeres. (2) Search for \\nthe homologous sequence may erroneously identify an identical or nearly identical sequence within \\nthe same chromatid downstream or upstream of the break site. Recombination between these two', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 53, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '907c33dd-34b8-51f5-a91f-fb83cf11f7f9', 'associatedQuery': 'What about recombination in human centromeres?'}}, {'id': '788b6b85-7ef2-5805-bc0c-d8af71332e0d', 'score': 0.6817248463630676, 'metadata': {'text': 'higher in regions of high recombination. Trends Genet. 18, 337340 (2002). 26. Webster, M. T. & Hurst, L. D. Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends Genet. 28, \\n101109 (2012).\\n 27. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415421 (2013).', 'title': '2018 - Germline de novo mutation clusters arise.pdf', 'version': 'v0', 'chunk_order': 61, 'document_id': 'f2b2ca83-a34f-5f99-b9f2-357b2ddbe136', 'extraction_id': '403bbc25-ce94-5a4f-a409-436cc02fb204', 'associatedQuery': 'What about recombination in human centromeres?'}}, {'id': '4802fb82-204d-57b6-b24f-5683f3731aea', 'score': 0.681354284286499, 'metadata': {'text': 'to chromosome-specic alpha-satellites, certain centromeric sequences are shared by all chromosomes,\\nevidence that formation of these arrays is dominated by interchromosomal exchanges [ 8,98100].\\nThis invites new questions about the stability of centromere DNA outside of meiosis. Indeed, our\\nrecent analysis has shown that centromeres can undergo recombination during a single round\\nof cell division in primary human cells [ 54]. Depletion of CENP-A and other CCAN proteins', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 65, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '5f52d45a-991b-54c3-92ae-37dd96e31a42', 'associatedQuery': 'What about recombination in human centromeres?'}}, {'id': 'c8e7e683-487f-5075-bbef-126ca0203c6c', 'score': 0.6755159094622201, 'metadata': {'text': 'shown to play a role in DNA repair (reviewed in [ 125]), and in vitro experiments show that this\\nhybridization may facilitate DSB repair by bridging the broken DNA fragments in a Rad52-dependent\\nmanner during recombination [126].\\nCentromeres have been suggested [ 127,128], but not proven, to behave like fragile sites of the\\nhuman genome. Common fragile sites are described as genomic loci where ongoing replication collides', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 87, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': 'c07e5efe-7d80-547e-847b-eef61bb661cc', 'associatedQuery': 'What about recombination in human centromeres?'}}, {'id': '5da6f433-231d-586b-a057-558a4c68f741', 'score': 0.6734463767143275, 'metadata': {'text': 'Cell Biol. 2016 ,17, 1629. [CrossRef] [PubMed]\\n54. Giunta, S.; Funabiki, H. Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C,\\nand CENP-T. Proc. Natl. Acad. Sci. USA 2017 ,114, 19281933. [CrossRef] [PubMed]\\n55. Giunta, S. Centromere Chromosome Orientation Fluorescent in situ Hybridization (Cen-CO-FISH) Detects\\nSister Chromatid Exchange at the Centromere in Human Cells. Bio-Protocol 2018 ,8. [CrossRef]', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 153, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '8cba1054-1540-57ee-a5c4-350f5555081f', 'associatedQuery': 'What about recombination in human centromeres?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_6\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZJEypA9e5sRA4lUD0c4IqRsBYeu', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Recombination in human centromeres is a complex process that is generally suppressed to maintain centromere integrity. Here are the key points about how recombination works in human centromeres:\\n\\n1. **Recombination Suppression**: Centromere DNA is often referred to as being \"cold\" to recombination, meaning that it is generally refractory to the recombination processes that occur during meiosis in other parts of the genome [1].\\n\\n2. **Potential Disruptions**: When recombination does occur, it can disrupt centromere integrity in several ways. For instance, crossover between sister chromatids can lead to sister chromatid exchange (SCE), which has been reported at human centromeres. Additionally, the search for homologous sequences may erroneously identify nearly identical sequences within the same chromatid, leading to inappropriate recombination events [3].\\n\\n3. **Mechanisms to Suppress Recombination**: There are active mechanisms to suppress recombination at centromeres, which may involve core centromeric proteins. This suppression is crucial because recombination-dependent pathways, such as homologous recombination (HR), could otherwise exacerbate centromere rearrangements [4].\\n\\n4. **Recombination in Centromere Formation**: Despite the general suppression, recombination is believed to play a role in the origin and formation of centromeres. Multiple short- and long-range recombination events may be responsible for generating and reiterating blocks of highly homogenized alpha-satellite DNA throughout the centromere [5].\\n\\n5. **Recombination Outside Meiosis**: Recent analyses have shown that centromeres can undergo recombination during a single round of cell division in primary human cells, indicating that recombination at centromeres is not entirely restricted to meiosis [8].\\n\\nIn summary, while recombination at human centromeres is generally suppressed to maintain their structural integrity, it can occur under certain conditions and may play a role in the formation and evolution of centromeric DNA.', 'role': 'assistant'}}], 'created': 1727797356, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_c17d3befe7', 'usage': {'completion_tokens': 409, 'prompt_tokens': 1367, 'total_tokens': 1776}}, 'search_results': {'vector_search_results': [{'id': '66e5e009-5496-5e18-bfbe-9a9567cad60c', 'score': 0.7095129489898682, 'metadata': {'text': '4.1. Recombination and Repair at Centromeres: Errors in Copying and Mending Highly Repetitive DNA\\nWhy are centromeres so cold?, asked Andy Choo in his review of centromeres [ 96]. He was\\nreferring to centromere DNA as being cold to recombination. While maternal and paternal\\nchromosomes suffer multiple DNA double-stranded breaks (DSBs) to induce recombination and\\nexchange of genetic information by crossing over during meiosis, centromere loci are refractory', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 63, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '5f52d45a-991b-54c3-92ae-37dd96e31a42', 'associatedQuery': 'How does recombination work in human centromeres?'}}, {'id': '72da6034-227d-5dac-9ef6-90c246ec2b40', 'score': 0.7072497184723796, 'metadata': {'text': 'Genes 2018 ,9, 615 18 of 20\\n97. McFarlane, R.J.; Humphrey, T.C. A role for recombination in centromere function. Trends Genet. 2010 ,26,\\n209213. [CrossRef]\\n98. Talbert, P .B.; Henikoff, S. Centromeres convert but dont cross. PLoS Biol. 2010 ,8, e1000326. [CrossRef]\\n99. Durfy, S.J.; Willard, H.F. Concerted Evolution of Primate Alpha Satellite DNA Evidence for an Ancestral\\nSequence Shared by Gorilla and Human X Chromosome Satellite. J. Mol. Biol. 1990 ,216, 555566.\\n[CrossRef]', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 176, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': 'af805fbb-a39f-5a29-a0b0-9add1126b553', 'associatedQuery': 'How does recombination work in human centromeres?'}}, {'id': '3b5635bb-8308-5c6b-8ee0-d65293257362', 'score': 0.680846254876034, 'metadata': {'text': 'of these DSBs through recombination-dependent pathways, such as homologous recombination (HR), \\nmay disrupt centromere integrity in several ways: (1) Crossover between sister chromatids will lead \\nto sister chromatid exchange (SCE), which has been reported at human cent romeres. (2) Search for \\nthe homologous sequence may erroneously identify an identical or nearly identical sequence within \\nthe same chromatid downstream or upstream of the break site. Recombination between these two', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 53, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '907c33dd-34b8-51f5-a91f-fb83cf11f7f9', 'associatedQuery': 'How does recombination work in human centromeres?'}}, {'id': '2f2342b3-4c07-5bfd-80c6-8bc47fead6b6', 'score': 0.6757853031158447, 'metadata': {'text': 'exacerbates centromere rearrangements [ 54], indicating that there may be active mechanisms to\\nsuppress centromeric recombination and these may, at least in part, involve core centromeric proteins.\\nCentromere alpha-satellite DNA is estimated to represent between 3% and 10% of the human\\ngenome [ 101], reviewed in [ 19]. During each round of replication, unperturbed cells suffer over 40 DNA\\nDSBs [ 102], of which at least half are repaired by homologous recombination (HR) in S-phase and G2,', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 66, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '5f52d45a-991b-54c3-92ae-37dd96e31a42', 'associatedQuery': 'How does recombination work in human centromeres?'}}, {'id': 'fb421292-e4ea-510b-8a69-48e12e6e6a43', 'score': 0.6745818853378296, 'metadata': {'text': 'to this process. This led to the assumption that centromeres do not undergo recombination and\\nthat the repetitive arrays are maintained as stable. However, this clashed with the notion that\\ncentromeres very origin stems from recombination to create the repetitive array, where multiple short-\\nand long-range recombination events may be responsible for the generation and reiteration of blocks of\\nhighly homogenized alpha-satellite DNA throughout the centromere [ 97,98]. Furthermore, in addition', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 64, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '5f52d45a-991b-54c3-92ae-37dd96e31a42', 'associatedQuery': 'How does recombination work in human centromeres?'}}, {'id': 'ab92961e-c267-5e56-aeb9-0d03fd0a4102', 'score': 0.6650654873212893, 'metadata': {'text': '347357 (1998).\\n 31. Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836840 (2010).\\n 32. Kong, A. et al. Recombination rate and reproductive success in humans. Nat.Genet. 36, 12031206 (2004).\\n 33. Ottolini, C. S. et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47, 727735 (2015).', 'title': '2018 - Germline de novo mutation clusters arise.pdf', 'version': 'v0', 'chunk_order': 63, 'document_id': 'f2b2ca83-a34f-5f99-b9f2-357b2ddbe136', 'extraction_id': '403bbc25-ce94-5a4f-a409-436cc02fb204', 'associatedQuery': 'How does recombination work in human centromeres?'}}, {'id': 'c8e7e683-487f-5075-bbef-126ca0203c6c', 'score': 0.6554570999469113, 'metadata': {'text': 'shown to play a role in DNA repair (reviewed in [ 125]), and in vitro experiments show that this\\nhybridization may facilitate DSB repair by bridging the broken DNA fragments in a Rad52-dependent\\nmanner during recombination [126].\\nCentromeres have been suggested [ 127,128], but not proven, to behave like fragile sites of the\\nhuman genome. Common fragile sites are described as genomic loci where ongoing replication collides', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 87, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': 'c07e5efe-7d80-547e-847b-eef61bb661cc', 'associatedQuery': 'How does recombination work in human centromeres?'}}, {'id': '4802fb82-204d-57b6-b24f-5683f3731aea', 'score': 0.6509632468223572, 'metadata': {'text': 'to chromosome-specic alpha-satellites, certain centromeric sequences are shared by all chromosomes,\\nevidence that formation of these arrays is dominated by interchromosomal exchanges [ 8,98100].\\nThis invites new questions about the stability of centromere DNA outside of meiosis. Indeed, our\\nrecent analysis has shown that centromeres can undergo recombination during a single round\\nof cell division in primary human cells [ 54]. Depletion of CENP-A and other CCAN proteins', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 65, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '5f52d45a-991b-54c3-92ae-37dd96e31a42', 'associatedQuery': 'How does recombination work in human centromeres?'}}, {'id': 'dfa6d21d-2407-5738-84df-95b68469c263', 'score': 0.6443684889187962, 'metadata': {'text': 'Studying the direct link between re combination and sister chromatid\\ndynamics with combined live cell imaging and genomics will likely yieldimportant insight into the impact that centromeric and telomeric cross-\\novers have on chromosome segregation.Reconstructing the bivalent con guration\\nfrom MeioMaps: recombination and its linkwith chromosome segregation\\nThe combined assessment of haplotypes that are determined by\\nrecombination also allowed the rst direct correlations between', 'title': '2017 - Human female meiosis revised new.pdf', 'version': 'v0', 'chunk_order': 98, 'document_id': '95817342-4fb7-543f-beab-f3d7d0a1dd80', 'extraction_id': '8e3ed969-da49-5ba4-8382-dc2714b01497', 'associatedQuery': 'How does recombination work in human centromeres?'}}, {'id': '5da6f433-231d-586b-a057-558a4c68f741', 'score': 0.6423615430378006, 'metadata': {'text': 'Cell Biol. 2016 ,17, 1629. [CrossRef] [PubMed]\\n54. Giunta, S.; Funabiki, H. Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C,\\nand CENP-T. Proc. Natl. Acad. Sci. USA 2017 ,114, 19281933. [CrossRef] [PubMed]\\n55. Giunta, S. Centromere Chromosome Orientation Fluorescent in situ Hybridization (Cen-CO-FISH) Detects\\nSister Chromatid Exchange at the Centromere in Human Cells. Bio-Protocol 2018 ,8. [CrossRef]', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 153, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '8cba1054-1540-57ee-a5c4-350f5555081f', 'associatedQuery': 'How does recombination work in human centromeres?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_7\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZJSm9AzU2UQT9a71JIfAJoKh0Fh', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Recombination in the human genome is a complex process with several key aspects highlighted in the provided context:\\n\\n1. **PRDM9 and Recombination Hotspots**: PRDM9 is identified as a major determinant of meiotic recombination hotspots in humans and mice [1], [10]. This protein plays a crucial role in determining where recombination events are likely to occur during meiosis.\\n\\n2. **Recombination Rate and Reproductive Success**: There is a relationship between recombination rate and reproductive success in humans, suggesting that recombination may have evolutionary implications [1].\\n\\n3. **Genome-wide Maps of Recombination**: Detailed maps of recombination rates and hotspots across the human genome have been created, providing insights into the fine-scale structure of recombination rate variation [2], [4]. These maps are essential for understanding genetic variation and are used in admixture mapping [9].\\n\\n4. **Variation in Recombination Rates**: There is significant variation in recombination rates across different regions of the human genome, which has implications for genetic diversity and evolution [8].\\n\\n5. **Influence on Genetic Variation**: Recombination hotspots are a general feature of the human genome and play a major role in shaping genetic variation [5].\\n\\n6. **Selection for Maternal Recombination Rates**: Genome-wide maps of recombination in human oocytes and embryos show selection for maternal recombination rates, indicating that recombination patterns can be subject to evolutionary pressures [1].\\n\\nThese points collectively highlight the importance of recombination in shaping the human genome, influencing genetic diversity, and having evolutionary consequences.', 'role': 'assistant'}}], 'created': 1727797370, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_5796ac6771', 'usage': {'completion_tokens': 325, 'prompt_tokens': 1524, 'total_tokens': 1849}}, 'search_results': {'vector_search_results': [{'id': 'ab92961e-c267-5e56-aeb9-0d03fd0a4102', 'score': 0.7244851917642127, 'metadata': {'text': '347357 (1998).\\n 31. Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836840 (2010).\\n 32. Kong, A. et al. Recombination rate and reproductive success in humans. Nat.Genet. 36, 12031206 (2004).\\n 33. Ottolini, C. S. et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47, 727735 (2015).', 'title': '2018 - Germline de novo mutation clusters arise.pdf', 'version': 'v0', 'chunk_order': 63, 'document_id': 'f2b2ca83-a34f-5f99-b9f2-357b2ddbe136', 'extraction_id': '403bbc25-ce94-5a4f-a409-436cc02fb204', 'associatedQuery': 'What about recombination in the human genome?'}}, {'id': '46297c04-59ef-5f94-af20-5e83036b5ea9', 'score': 0.7220535609658287, 'metadata': {'text': 'Genet 39: 977983\\n33 Myers S et al. (2005) A fine-scale map of recombination \\nrates and hotspots across the human genome. \\nScience 310: 321324REVIEW\\nNature.indt 1 Nature.indt 1 28/11/07 9:46:50 am 28/11/07 9:46:50 am', 'title': '2008 - Mechanisms of Disease genetic insights into the etiology of type 2 diabetes and obesity.pdf', 'version': 'v0', 'chunk_order': 80, 'document_id': '87ceda8f-0ce6-5678-9ade-96a40a991647', 'extraction_id': '0fa3ac68-ea06-5d95-b3fb-f224d40e38a9', 'associatedQuery': 'What about recombination in the human genome?'}}, {'id': '788b6b85-7ef2-5805-bc0c-d8af71332e0d', 'score': 0.7147599032664369, 'metadata': {'text': 'higher in regions of high recombination. Trends Genet. 18, 337340 (2002). 26. Webster, M. T. & Hurst, L. D. Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends Genet. 28, \\n101109 (2012).\\n 27. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415421 (2013).', 'title': '2018 - Germline de novo mutation clusters arise.pdf', 'version': 'v0', 'chunk_order': 61, 'document_id': 'f2b2ca83-a34f-5f99-b9f2-357b2ddbe136', 'extraction_id': '403bbc25-ce94-5a4f-a409-436cc02fb204', 'associatedQuery': 'What about recombination in the human genome?'}}, {'id': '9df97195-cdb6-5271-8dd2-89a421f6281a', 'score': 0.6925239150211874, 'metadata': {'text': 'D.R., and Donnelly, P. (2004). The ne-scale structure ofrecombination rate variation in the human genome. Science\\n304, 581584.\\n33. Winckler, W., Myers, S.R., Richter, D.J., Onofrio, R.C., McDo-\\nnald, G.J., Bontrop, R.E., McVean, G.A., Gabriel, S.B., Reich,\\nD., Donnelly, P., et al. (2005). Comparison of ne-scale recom-\\nbination rates in humans and chimpanzees. Science 308,\\n107111.\\n1192 The American Journal of Human Genetics 82, 11851192, May 2008', 'title': '2008 - Loci Related to Metabolic-Syndrome Pathways Including LEPR.pdf', 'version': 'v0', 'chunk_order': 82, 'document_id': 'c7583131-8c05-576b-a458-577021374b5d', 'extraction_id': '74f21fa4-31ff-5aa6-b806-1ffc73b79801', 'associatedQuery': 'What about recombination in the human genome?'}}, {'id': '94686ace-46ce-51f1-9b26-07c27baca6b9', 'score': 0.6880498714417308, 'metadata': {'text': 'www.pharmaco-genomics.com 569REVIEW\\n48. Reich DE, Schaffner SF , Daly MJ et al. : \\nHuman chromosome sequence variation and the influence of gene history, mutation \\nand recombination. Nat. Genet. 32, 135-142 \\n(2002). \\n The authors provide evidence that \\nrecombination hot spots may represent a \\ngeneral feature of the human genome and play a major role in shaping genetic \\nvariation in humans.\\n49. Wall JD, Pritchard JK: Haplotype blocks \\nand linkage disequilibrium in the human', 'title': '2003 - Haplotypes and the systematic analysis of genetic variation in genes and genomes.pdf', 'version': 'v0', 'chunk_order': 264, 'document_id': '97525d6c-b50d-5826-84eb-71ddd52aea27', 'extraction_id': 'de271b3e-86e8-5405-8e15-a54376db728b', 'associatedQuery': 'What about recombination in the human genome?'}}, {'id': '72da6034-227d-5dac-9ef6-90c246ec2b40', 'score': 0.6845472831073662, 'metadata': {'text': 'Genes 2018 ,9, 615 18 of 20\\n97. McFarlane, R.J.; Humphrey, T.C. A role for recombination in centromere function. Trends Genet. 2010 ,26,\\n209213. [CrossRef]\\n98. Talbert, P .B.; Henikoff, S. Centromeres convert but dont cross. PLoS Biol. 2010 ,8, e1000326. [CrossRef]\\n99. Durfy, S.J.; Willard, H.F. Concerted Evolution of Primate Alpha Satellite DNA Evidence for an Ancestral\\nSequence Shared by Gorilla and Human X Chromosome Satellite. J. Mol. Biol. 1990 ,216, 555566.\\n[CrossRef]', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 176, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': 'af805fbb-a39f-5a29-a0b0-9add1126b553', 'associatedQuery': 'What about recombination in the human genome?'}}, {'id': '9ee9c9e1-70ed-512a-bd20-9f967829f75a', 'score': 0.6840567369393424, 'metadata': {'text': 'Variations on a theme: cataloguing human \\nDNA sequence variation. Science 278, 1580-\\n1581 (1997).\\n37. Jeffreys AJ, Kauppi L, Neumann R: Intensely punctate meiotic recombination in the class II region of the major \\nhistocompatibility complex. Nat. Genet. 29, \\n217-222 (2001).\\n38. Chakravarti A, Buetow KH, Antonarakis SE \\net al.: Nonuniform recombination within \\nthe human beta-globin gene cluster. Am. J. \\nHum. Genet. 36, 1239-1258 (1984).\\n39. Smith RA, Ho PJ, Clegg JB, Kidd, JR,', 'title': '2003 - Haplotypes and the systematic analysis of genetic variation in genes and genomes.pdf', 'version': 'v0', 'chunk_order': 260, 'document_id': '97525d6c-b50d-5826-84eb-71ddd52aea27', 'extraction_id': 'e764c7b0-e155-5358-a5c9-a168508a32ea', 'associatedQuery': 'What about recombination in the human genome?'}}, {'id': 'acfd48ac-6d04-5691-b2b7-6ebe179c0f0b', 'score': 0.6803052615937447, 'metadata': {'text': 'genome. Nat. Rev. Genet. 4, 587-597 \\n(2003). \\n Important review, including discussion of \\nthe recently proposed haplotype-block \\nmodel of LD.\\n50. Nachman MW: Variation in recombination \\nrate across the genome: evidence and \\nimplications. Curr. Opin. Genet. Dev. 12, \\n657-663 (2002).\\n51. Kong A, Gudbjartsson DF , Sainz J et al. : A \\nhigh-resolution recombination map of the human genome. Nat. Genet. 31, 241-247 \\n(2002).\\n52. Sabeti PC, Reich DE, Higgins JM et al. :', 'title': '2003 - Haplotypes and the systematic analysis of genetic variation in genes and genomes.pdf', 'version': 'v0', 'chunk_order': 265, 'document_id': '97525d6c-b50d-5826-84eb-71ddd52aea27', 'extraction_id': 'de271b3e-86e8-5405-8e15-a54376db728b', 'associatedQuery': 'What about recombination in the human genome?'}}, {'id': '4bcb02fe-e0e1-5e2b-b0c7-7d27bb03b73c', 'score': 0.6710123811945461, 'metadata': {'text': 'Recombination maps are often used for admixture mapping (Browning and Browning 2007). A recombination map is a genetic map that illustrates the variation of the recombina-tion rate across a region of the genome or the entire genome (Myers etal. 2005). It is dependent on the underlying dis-tribution of recombination events that occur between suc-cessive generations within a given population (Kong etal. 2010). The presence and activity of the PRDM9 zinc finger protein in the population under study, the ratio', 'title': '2020 - Prospective avenues for human population genomics and disease mapping in southern Africa.pdf', 'version': 'v0', 'chunk_order': 60, 'document_id': 'e74e3b9c-14d2-54c3-9319-7dc1b45db41e', 'extraction_id': '4927bfe6-f007-5ad0-88c8-f9ae4bde540f', 'associatedQuery': 'What about recombination in the human genome?'}}, {'id': 'aa3c4d11-71cb-5941-a6b0-56f9358ba565', 'score': 0.669914165745477, 'metadata': {'text': '31. Fu Q, et al. (2015) An early modern human from Romania with a recent Neanderthal\\nancestor. Nature 524(7564):216 219.\\n32. Baudat F, et al. (2010) PRDM9 is a major determinant of meiotic recombination\\nhotspots in humans and mice. Science 327(5967):836 840.\\n33. Lesecque Y, Glmin S, Lartillot N, Mouchiroud D, Duret L (2014) The red queen model\\nof recombination hotspots evolution in the light of archaic and modern human ge-\\nnomes. PLoS Genet 10(11):e1004790.', 'title': '2016 - A genetic method for dating ancient genomes provides.pdf', 'version': 'v0', 'chunk_order': 96, 'document_id': '5a5e67ea-4830-5fe8-95c3-ccfcc8324036', 'extraction_id': 'fcf5296e-6be4-5789-b1e1-ac57fef15119', 'associatedQuery': 'What about recombination in the human genome?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_8\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZJdRAJz1ZAYluBcJm58tFEyX9Ng', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': '### How to Guide for Genetic Sequencing\\n\\nGenetic sequencing is a powerful tool used to determine the order of nucleotides in DNA. This guide will walk you through the basic steps involved in genetic sequencing, from sample preparation to data analysis.\\n\\n#### Step 1: Sample Preparation\\n1. **Collect DNA Sample**: Obtain a DNA sample from the organism or tissue of interest. This can be done using various methods such as blood draws, buccal swabs, or tissue biopsies.\\n2. **Extract DNA**: Use a DNA extraction kit to isolate DNA from the collected sample. Ensure the DNA is of high quality and free from contaminants.\\n\\n#### Step 2: Library Preparation\\n1. **Fragment DNA**: Break the DNA into smaller fragments. This can be done using mechanical shearing or enzymatic digestion.\\n2. **Add Adapters**: Ligate specific adapters to the ends of the DNA fragments. These adapters are necessary for the sequencing process and allow the fragments to bind to the sequencing platform.\\n\\n#### Step 3: Amplification\\n1. **PCR Amplification**: Amplify the DNA fragments using Polymerase Chain Reaction (PCR). This step increases the quantity of DNA to ensure there is enough material for sequencing.\\n\\n#### Step 4: Sequencing\\n1. **Choose a Sequencing Platform**: Select an appropriate sequencing platform based on your needs. Popular platforms include Illumina, Ion Torrent, Pacific Biosciences, and Oxford Nanopore Technologies [1], [5], [6].\\n2. **Load the Sample**: Load the prepared DNA library onto the sequencing platform. Each platform has specific protocols for loading samples.\\n3. **Run the Sequencer**: Initiate the sequencing run. The platform will read the DNA fragments and generate raw sequence data.\\n\\n#### Step 5: Data Analysis\\n1. **Base Calling**: Use base-calling software to convert raw data into nucleotide sequences. Tools like Phred are commonly used for this purpose [7].\\n2. **Sequence Assembly**: Assemble the short DNA sequences into longer contiguous sequences (contigs) using assemblers like Phrap or CAP3 [7].\\n3. **Quality Control**: Assess the quality of the assembled sequences. Tools like consed or GAP4 can help in finishing sequencing projects and ensuring accuracy [7].\\n\\n#### Step 6: Interpretation\\n1. **Variant Calling**: Identify genetic variants such as single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) using variant calling software.\\n2. **Annotation**: Annotate the identified variants to understand their potential impact on genes and biological functions.\\n3. **Data Management**: Store and manage the sequencing data using bioinformatics tools and databases. High-throughput sequencing generates large amounts of data that require efficient processing and management [9], [10].\\n\\n#### Additional Resources\\n- For more detailed protocols and information on specific sequencing technologies, refer to resources from companies like 10X Genomics, Illumina, and Pacific Biosciences [1].\\n- For historical context and advancements in sequencing technologies, see references such as Heather and Chain (2016) and Shendure and Ji (2008) [2].\\n\\nBy following these steps, you can successfully perform genetic sequencing and analyze the resulting data to gain insights into the genetic makeup of your sample.', 'role': 'assistant'}}], 'created': 1727797381, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_c17d3befe7', 'usage': {'completion_tokens': 679, 'prompt_tokens': 1371, 'total_tokens': 2050}}, 'search_results': {'vector_search_results': [{'id': '98010acc-fd11-5d33-bced-626ef29f2896', 'score': 0.5989538192125462, 'metadata': {'text': 'FURTHER INFORMATION\\n10X Genomics: http://www.10xgenomics.com\\n454 Sequencing: http://www.454.com\\nAdvances in Genome Biology and Technology (AGBT): \\nhttp://www.agbt.org\\nBGISEQ500: http://seq500.com/en/portal/Sequencer.shtml\\nIllumina: http://www.illumina.com\\nIon Torrent: https://www.thermofisher.com/us/en/home/\\nbrands/ion-torrent.html\\nOxford Nanopore Technologies: https://www.nanoporetech.\\ncom\\nPacific Biosciences: http://www.pacb.com\\nPersonal Genome Project: http://www.personalgenomes.org', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 271, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'cad1dcca-621d-5003-ba3a-81950819bc52', 'associatedQuery': 'Create a how to guide for genetic sequencing'}}, {'id': '8477a774-dddb-5541-b8d7-d51a7e56b0af', 'score': 0.5903149843215985, 'metadata': {'text': '36. Sequencing, H.G. Finishing the euchromatic sequence of the human genome. Nature 2004 ,431, 931945.\\n37. Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 2016 ,107,\\n18. [CrossRef]\\n38. Rothberg, J.M.; Leamon, J.H. The development and impact of 454 sequencing. Nat. Biotechnol. 2008 ,26,\\n11171124. [CrossRef] [PubMed]\\n39. Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008 ,26, 11351145. [CrossRef]\\n[PubMed]', 'title': '2020 - Precision and Personalized Medicine How Genomic.pdf', 'version': 'v0', 'chunk_order': 180, 'document_id': 'cd11028a-933b-52a0-9534-c173323056ef', 'extraction_id': 'de09f30d-e9ba-5379-8c7a-85b2cd2ed6c8', 'associatedQuery': 'Create a how to guide for genetic sequencing'}}, {'id': 'd2540614-9397-5e3e-8b5f-ad328ca973b2', 'score': 0.5894848459651985, 'metadata': {'text': 'sequencing. Genome Res. 20, 11651173 (2010).\\n64. English,A.C. etal. Assessing structural variation in a \\npersonal genome-towards a human reference diploid \\ngenome. BMC Genomics 16, 286 (2015).\\n65. Carneiro,M.O. etal. Pacific Biosciences sequencing \\ntechnology for genotyping and variation discovery in \\nhuman data. BMC Genomics 13, 375 (2012).\\n66. Quail,M.A. etal. A tale of three next generation \\nsequencing platforms: comparison of Ion T orrent, \\nPacific Biosciences and Illumina MiSeq sequencers.', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 235, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '4cdf13c0-c505-5ff9-9a6e-b10e5d1c8819', 'associatedQuery': 'Create a how to guide for genetic sequencing'}}, {'id': '13a6b6f9-4a9a-5eb9-ac79-d986d9e613f0', 'score': 0.5868756278605017, 'metadata': {'text': '22. Karow, J. Qiagen launches GeneReader NGS System \\natAMP; presents performance evaluation by broad. \\nGenomeWeb [online], https:// www.genomeweb.com/\\nmolecular-diagnostics/qiagen-launches-genereader-\\nngs-system-amp-presents-performance-evaluation \\n(4Nov 2015).\\n23. Smith,D.R. & McKernan,K. Methods of producing \\nand sequencing modified polynucleotides . US Patent \\n8058030 (2011).\\n24. Margulies,M. etal. Genome sequencing in \\nmicrofabricated high-density picolitre reactors. Nature \\n437, 376380 (2005).', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 216, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '5da5fc5d-1fe6-58f0-9141-72b9b2996fff', 'associatedQuery': 'Create a how to guide for genetic sequencing'}}, {'id': '97f2aa12-623b-53ec-9793-5834311a37dd', 'score': 0.5794574963723131, 'metadata': {'text': '160. Glenn,T .C. Field guide to next-generation DNA \\nsequencers. Mol. Ecol. Resour. 11, 759769 (2011).\\n161. Karow,J. At AGBT , 10X Genomics launches GemCode \\nplatform; shipments slated for Q2 as firm battles IP \\nlawsuits. GenomeWeb [online], https://www.\\ngenomeweb.com/sample-prep/agbt-10x-genomics-\\nlaunches-gemcode-platform-shipments-slated-q2-firm-\\nbattles-ip-lawsuits (2Mar 2015).\\nCompeting interests statement\\nThe authors declare competing interests: see Web version for \\ndetails.\\nFURTHER INFORMATION', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 270, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'cad1dcca-621d-5003-ba3a-81950819bc52', 'associatedQuery': 'Create a how to guide for genetic sequencing'}}, {'id': '1e324977-2ca5-5062-8a09-7659d516e899', 'score': 0.5758371100328641, 'metadata': {'text': 'sequencing. Bioinformatics 31, 20402042 (2015).\\n46. Qiagen. Oncology insights enabled by knowledge base-\\nguided panel design and the seamless workflow of the \\nGeneReader NGS system Press Release. Qiagen \\n[online], http://www.genereaderngs.com/PROM-9192-\\n001_1100403_WP_GeneReader_NGS_0116_NA.pdf \\n(2016).\\n47. Forgetta,V. etal. Sequencing of the Dutch elm disease \\nfungus genome using the Roche/454 GS-FLX Titanium \\nSystem in a comparison of multiple genomics core', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 226, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '5da5fc5d-1fe6-58f0-9141-72b9b2996fff', 'associatedQuery': 'Create a how to guide for genetic sequencing'}}, {'id': '3e782f01-a06e-51b6-ac8a-0e0a56939d08', 'score': 0.5720343589782756, 'metadata': {'text': 'DNA), and provide the means to link sequences containing applications. First, \\nbase- callers like Phred (4,5) extract raw sequences from raw data. There are \\nalso contig assemblers like Phrap (University of Washington, http://bozeman.\\nmbt.washington.edu/phrap.docs/phrap.html ) or CAP3 (6) that assemble frag-\\nments to contigs and packages like consed (7) or GAP4 (8), which are used to \\nfinish sequencing projects. These programs are not explained in detail here.', 'title': '2008 - Gene Expression Profiling.pdf', 'version': 'v0', 'chunk_order': 2076, 'document_id': '59f3b969-089b-5258-93ad-892dbc9ffa9c', 'extraction_id': 'c14d1c74-a14a-5037-8d3f-f32a60faa9a5', 'associatedQuery': 'Create a how to guide for genetic sequencing'}}, {'id': 'da667832-cd2f-5af6-a0a8-a17542b0a2e2', 'score': 0.5702255708113663, 'metadata': {'text': 'sequencing data to solutions from the genotyping array data.\\niv\\n \\n \\n \\n \\n \\n \\n \\nPREVIEW', 'title': '2014 - Computational tools to aid the design and development of a genetic reference population.pdf', 'version': 'v0', 'chunk_order': 9, 'document_id': '70cbde25-6406-5a31-91ae-57f430e8f267', 'extraction_id': 'a744f8ce-7920-5fb8-acce-912f70112924', 'associatedQuery': 'Create a how to guide for genetic sequencing'}}, {'id': 'd1158643-3625-5855-a03d-eec4ac96eb4d', 'score': 0.569503903388981, 'metadata': {'text': '11 BIOINFORMATIC CHALLENGES FOR GENOMIC MEDICINE \\n \\n \\nProcessing and managing of high-throughput sequence data \\n \\n High throughput sequencing offers severa l advantages relative to array-based \\ngenotyping or expression assays. First, unlike genotyping arrays, whole genome sequencing is not limited to interrogating onl y known sequence variants. Similarly, RNA-\\nsequencing (RNA-seq) enables expression quanti fication of novel transcripts that are not', 'title': '2015 -Pandey- Functional Analysis of Genomic Variation and Impact on Molecular.pdf', 'version': 'v0', 'chunk_order': 116, 'document_id': '93381e23-494b-5bc2-9d09-ef315506601f', 'extraction_id': 'f4e989e5-c3d0-5d5c-b8c3-95894a14630b', 'associatedQuery': 'Create a how to guide for genetic sequencing'}}, {'id': 'cdf2b80f-1509-50a2-9cb2-a36dd6f3f2cc', 'score': 0.5694998502731363, 'metadata': {'text': '11 BIOINFORMATIC CHALLENGES FOR GENOMIC MEDICINE \\n \\n \\nProcessing and managing of high-throughput sequence data \\n \\n High throughput sequencing offers severa l advantages relative to array-based \\ngenotyping or expression assays. First, unlike genotyping arrays, whole genome sequencing is not limited to interrogating onl y known sequence variants. Similarly, RNA-\\nsequencing (RNA-seq) enables expression quanti fication of novel transcripts that are not', 'title': '2015 - Functional Analysis of Genomic Variation and Impact on Molecular and Higher Order Phenotypes.pdf', 'version': 'v0', 'chunk_order': 109, 'document_id': '263d327b-f5db-54e4-a215-b3f8a51cd7d6', 'extraction_id': 'fa426831-7c04-56c1-a191-1ebbc35342ed', 'associatedQuery': 'Create a how to guide for genetic sequencing'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_9\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZJpRmTN4COm0TDjwpOtSCKK6Mex', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'The length of telomeres is significant for several reasons:\\n\\n1. **Protection of Chromosomes**: Telomeres are repetitive nucleotide sequences at the ends of chromosomes that protect them from attrition and damage during replication [2], [4], [7]. They prevent chromosome ends from being recognized as broken DNA ends, which could otherwise lead to degradation and fusion [4], [10].\\n\\n2. **Aging and Cellular Senescence**: Telomere length decreases with each round of genomic replication due to the unidirectional activity of DNA polymerase, which leaves a section of DNA unreplated on the lagging strand [1], [6]. This progressive shortening acts as an internal clock for cellular aging, eventually leading to cellular senescence when telomeres become critically short [8].\\n\\n3. **Disease Association**: Shorter telomeres have been linked to various diseases. For example, individuals with Type 2 Diabetes (T2D) have been shown to have shorter leukocyte telomeres, which may be associated with disease progression [2]. Similarly, shorter telomeres in smooth muscle cells have been linked to senescence and disease severity in patients with atherosclerosis [3]. Leukocyte telomere length has also been associated with a higher risk of developing cardiovascular disease [3].\\n\\n4. **Genomic Stability**: Telomere shortening and erosion can lead to chromosome end-to-end fusions and genomic instability, which are detrimental to cellular function and can lead to various genetic disorders [4].\\n\\n5. **Biomarker Potential**: Due to their association with aging and disease, telomere length is being studied as a potential biomarker for various conditions, including cardiovascular diseases and diabetes [3].\\n\\nIn summary, telomere length is crucial for maintaining chromosome integrity, regulating cellular aging, and potentially serving as a biomarker for disease progression and risk assessment.', 'role': 'assistant'}}], 'created': 1727797393, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_5796ac6771', 'usage': {'completion_tokens': 381, 'prompt_tokens': 1256, 'total_tokens': 1637}}, 'search_results': {'vector_search_results': [{'id': '28e98b7e-f273-5bdd-9979-185133f311af', 'score': 0.6755549110306853, 'metadata': {'text': 'Telomeres are arrays of linked nucleotide hexamer repeats that are found at the \\nends of chromosomes in a vast clade of organisms [14]. While the sequence of \\nthese telomeric repeats can vary between organisms, their biological function is \\nhighly conserved, which is to limit damage inflicted on genes during the replica-\\ntion of chromosomes. Telomere length is progressively shortened with each round \\nof genomic replication, unless it is restored through the action of a ribonucleo-', 'title': '2020 - Clinical Genetics and Genomics of Aging.pdf', 'version': 'v0', 'chunk_order': 1510, 'document_id': '62b635c3-040e-512a-b016-6ef295308a1e', 'extraction_id': 'efd18101-9cf2-56b5-8f86-c2aba6caa0bc', 'associatedQuery': 'What is the significance of the length of telomeres? '}}, {'id': 'bb069c10-45f1-5a83-95e3-4b7655874ba7', 'score': 0.6716833906362432, 'metadata': {'text': 'repetitive nucleotide sequences at the end of each eukaryotic chromosome, which protects them from attrition and damage. Although the relationship between leukocyte telomere length (LTL) and diabetes is still questioned\\n8, \\ndifferent studies have shown that T2D individuals have shorter leukocyte telomeres than non-T2D individuals9, 10 \\nthat may be associated with disease progression11. Indeed, the decreased antioxidant capacity described in patients', 'title': '2017 - Regular exercise participation improves genomic stability in diabetic patients an exploratory study to analyse telomere length and DNA damage.pdf', 'version': 'v0', 'chunk_order': 6, 'document_id': 'dcaf7b09-2d54-5cbf-b061-e3c4e6c6c518', 'extraction_id': '0e53122e-a308-55f7-8ee8-a0857ac9c52f', 'associatedQuery': 'What is the significance of the length of telomeres? '}}, {'id': '5f940245-af1d-5eee-84dc-942017c523d0', 'score': 0.6676036317584746, 'metadata': {'text': 'telomere length,a phenomenon attributed to higher levels of oxidativestress at the cellular level (70). More recent studies havelinked telomere length in smooth muscle cells with senes-cence and disease severity in patients with atherosclero-sis (141, 150). Leukocyte telomere length was also short ina cohort of similar patients and associated with a higherrisk of developing occult cardiovascular disease (71).More data are needed to understand and validate the useof leukocyte telomere length as a biomarker', 'title': '2008 - Telomeres and Aging.pdf', 'version': 'v0', 'chunk_order': 167, 'document_id': '61d9c326-d36e-55c1-a891-335dc943e70f', 'extraction_id': '13990eb4-bef2-58ce-bf3e-0e3bc294caab', 'associatedQuery': 'What is the significance of the length of telomeres? '}}, {'id': '7fad29bd-12bf-53d0-af89-aadd38b974ff', 'score': 0.6620062195058942, 'metadata': {'text': 'TTAGGG sequence that cap the ends of chromosomes, protect-ing them from degradation and fusion. The length of telomererepeats is primarily maintained by active telomerase, which iscomposed of Telomerase RNA (TR) and a catalytic subunitTelomerase Reverse Transcriptase (TERT) (Blackburn, 2001).Extensive evidence has shown that telomere shortening anderosion lead to chromosome end-to-end fusions and genomicinstability (Blasco \\net al \\n., 1997; Hande \\net al \\n., 1999), causing', 'title': '2002 - Mitochondrial dysfunction leads to telomere attrition.pdf', 'version': 'v0', 'chunk_order': 6, 'document_id': 'd8bc729b-7513-58b7-b12e-0db1fb6d3b7d', 'extraction_id': 'b92ede07-74a7-524a-8d2c-54b2559e8425', 'associatedQuery': 'What is the significance of the length of telomeres? '}}, {'id': '607cbd31-d430-5517-8212-208b25af32bf', 'score': 0.6590252721890657, 'metadata': {'text': 'age telomere length through accumulation of several short telo-\\nmeres (Londono-Vallejo et al., 2001; Martens et al., 2000) is \\nresponsible for senescence or whether a speci c chromosome \\narm limits the replication potential of human cells (Hemann et al., 2001). Individual chromosome arms were shown to have \\nlarge variations in their length (Lansdorp et al., 1996; Benn, \\n1997; Londono-Vallejo et al., 2001), and chromosome 17p seemed to be equipped with especially short telomeres in hu-', 'title': '2006 - Sex-specific telomere length profiles.pdf', 'version': 'v0', 'chunk_order': 64, 'document_id': '09c78a17-4a1f-52c1-be4d-994fd9fd71d0', 'extraction_id': '6d3bfe47-f26e-50dc-8d77-19f3797e53a0', 'associatedQuery': 'What is the significance of the length of telomeres? '}}, {'id': '53508a9e-d064-58a3-a4f9-0785470a1462', 'score': 0.6551252213045834, 'metadata': {'text': 'Telomeres are specialized structures that protect the ends of linear chromosomes. They shorten during aging due to the unidirectional activity of DNA polymerase, which leaves a section of DNA unrepli-cated on the lagging strand. Telomeres also are subject to shortening by genotoxic stress, such as oxidative damage (33). Among many eukaryotes, the enzyme telomerase maintains telomere length; but telomerase activity varies over the lifespan and between cell types, tissues, and species (34). In most human', 'title': '2018 - Sex Differences in Aging Genomic Instability.pdf', 'version': 'v0', 'chunk_order': 46, 'document_id': '8cfb5529-7f0c-58fc-b6e4-b3ee800fb72f', 'extraction_id': '396708f1-aa0a-571e-a8d3-7cb8404e9502', 'associatedQuery': 'What is the significance of the length of telomeres? '}}, {'id': '36de43a5-e151-5300-8c34-ed15ec66ea52', 'score': 0.6493648708623802, 'metadata': {'text': 'ends. For example, chromosome 17p typi-cally has shorter telomeres than most other chromosomeends (26, 137). In human nucleated blood cells, the aver-age telomere length shows a highly signicant declinewith age that is most pronounced for the cells of theimmune system (Fig. 2). Telomeres prevent the ends oflinear chromosomes from appearing as DNA double-strand (ds) breaks and protect chromosome ends fromdegradation and fusion. It has been proposed that telo-meres can switch between an open state (in', 'title': '2008 - Telomeres and Aging.pdf', 'version': 'v0', 'chunk_order': 55, 'document_id': '61d9c326-d36e-55c1-a891-335dc943e70f', 'extraction_id': 'e57aa746-20f1-50b3-b8ab-3139a9a910fc', 'associatedQuery': 'What is the significance of the length of telomeres? '}}, {'id': 'f181e6da-58b6-5f26-87a2-355e25388673', 'score': 0.6434412215089081, 'metadata': {'text': 'telomeres, the repetitive sequence at the end of linear chromosomes, has garnered much attention for\\nits relation to aging. Telomere repeats serve as an internal clock for cycling cells because each round of\\nreplication results in the loss of telomeric DNA in the absence of active telomerase (reviewed in [66]).\\nEventually, this loss over cellular generations culminates in telomere crisis and a permanent state of', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 35, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '3b0cb0ab-421d-54d7-9816-c6a2e6f1ac68', 'associatedQuery': 'What is the significance of the length of telomeres? '}}, {'id': '64ef9964-1831-5a7a-8a69-5e8d0c332d37', 'score': 0.6405168389966, 'metadata': {'text': 'a pivotal role in maintenance of genomic integrity and func-tion (Moyzis et al., 1988; McElligott and Wellinger, 1997; van \\nSteensel and de Lange, 1997). \\n It is generally accepted that telomeres shorten during DNA \\nreplication both in vitro and in vivo. In individuals, short telomeres are considered to be a sign of advanced age. Cawthon \\nand coworkers (2003) showed that telomere shortening in hu-', 'title': '2006 - Sex-specific telomere length profiles.pdf', 'version': 'v0', 'chunk_order': 5, 'document_id': '09c78a17-4a1f-52c1-be4d-994fd9fd71d0', 'extraction_id': 'eb8d8e40-a484-57cb-8125-3fd5eb3f6389', 'associatedQuery': 'What is the significance of the length of telomeres? '}}, {'id': 'dd9a3905-0225-5345-891b-4469af6336ee', 'score': 0.6385755158319774, 'metadata': {'text': 'Telomeres are nucleoprotein complexes situated at the ends of thelinear chromosomes that prevent chromosome termini from beingrecognized as broken DNA ends ( i.e., DSBs). In most of the organisms\\nstudied, telomeres consist of long repetitive G-rich and C-rich DNAstrands, the ribonucleoprotein telomerase, and telomere bindingand associated proteins [179] . Loss of telomeric repeats or loss of', 'title': '2010 - Roles of Werner syndrome protein in protection of genome integrity.pdf', 'version': 'v0', 'chunk_order': 101, 'document_id': 'ec3e4f66-1619-5f71-9860-c1ad048d1841', 'extraction_id': '32528f9c-b6bb-593e-94c5-1ed12d0ac4ad', 'associatedQuery': 'What is the significance of the length of telomeres? '}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_10\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZK3Fpc5jWofKuSsq6lJRZP4Zmhy', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': \"Once a sperm combines with an egg, the traits passed on to the resulting lifeform are determined by several factors:\\n\\n1. **Genetic Information**: The fertilized egg, or zygote, contains a full complement of 23 chromosome pairs, which includes a mix of genetic material from both the maternal and paternal chromosomes [7]. This genetic information is coded in DNA molecules and is heritable [4].\\n\\n2. **Gene Activation and Regulation**: The process of trait determination involves controlling which genes are active, when they activate, and for how long they remain active. This control can be achieved through several mechanisms:\\n - **Imprinting**: Genes can be marked with small chemical tags that flag them to be activated or remain inactive, depending on whether the modification was made by the father (in the sperm) or the mother (in the egg) [2], [3].\\n - **Maternal Effect**: The mother can alter gene activity in her offspring via the placenta [3].\\n - **Cis-Regulation**: Instructions encoded within the embryo's DNA can directly control if and when a nearby gene becomes activated [3].\\n\\n3. **Epigenetic Marks**: Soon after fertilization, male and female cells have sex-specific transcriptomes, epigenomes, and phenotypes. Epigenetic marks, which are less constrained, can be maintained and affect gene expression and phenotype later in development [5].\\n\\n4. **Mutations and Environmental Factors**: Gene mutations caused by factors such as radiation and chemicals can also be passed on to offspring if they occur in sex cells [4]. Additionally, environmental conditions experienced by the parents can influence the traits of the offspring through epigenetic mechanisms [10].\\n\\nThese combined factors ensure that the resulting lifeform inherits a unique set of traits from both parents, influenced by genetic, epigenetic, and environmental factors.\", 'role': 'assistant'}}], 'created': 1727797407, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_5796ac6771', 'usage': {'completion_tokens': 379, 'prompt_tokens': 1165, 'total_tokens': 1544}}, 'search_results': {'vector_search_results': [{'id': '60ad1512-b0c0-59cd-ace4-c146e2c04b52', 'score': 0.624330539236383, 'metadata': {'text': 'the egg and the sperm. Such a process would result in genetic changes that will be copied into every cell of the future adult, including reproductive cells (Stock & Campbell, 2000), opening the door to irreversibly alter the human species. Inevitably, signifi cant self-disclosure and discussion challenges await families', 'title': '2009 - Opening Up the Conversation on Genetics.pdf', 'version': 'v0', 'chunk_order': 328, 'document_id': 'b62a8f54-c2f5-5bbb-9324-af80f7537167', 'extraction_id': '51dbd5e2-fde6-5097-aa05-fcf57d3ca6b1', 'associatedQuery': 'Once a sperm combines with an egg, what determines how traits are passed on to the resulting lifeform? '}}, {'id': 'a66b8b00-d51c-575b-b6ac-fa445c4ca715', 'score': 0.6070974054067556, 'metadata': {'text': 'a fertilized egg is a complicated process that relies on controlling: which genes are active; whenthese genes activate; and for how long they are active. In broad terms, there are four ways that thiscontrol can be achieved:\\nFirst, inside the sperm or egg, genes can be marked with small chemical tags that flag these genes', 'title': '2015 - Constraint and divergence of global gene expression in the mammalian embryo.pdf', 'version': 'v0', 'chunk_order': 15, 'document_id': '3d9005f1-8f71-5d39-8749-4ebeab962cab', 'extraction_id': '261c4af7-f63d-51ac-b164-0d9e7a64bff9', 'associatedQuery': 'Once a sperm combines with an egg, what determines how traits are passed on to the resulting lifeform? '}}, {'id': 'df4c6108-740d-5bcf-99e6-dbda74f7e41a', 'score': 0.6027943075535988, 'metadata': {'text': 'to be activated (or remain inactive) after fertilization, depending on whether the modification wasmade by the father (in the sperm) or the mother (in the egg); this process is known as imprinting.\\nSecond, the mother can alter the gene activity in her offspring via the placenta; this process is known\\nas maternal effect. Third, instructions encoded within the embryos DNA can directly control if, andwhen, a nearby gene becomes activated; this is known as cis-regulation. Finally, similar instructions', 'title': '2015 - Constraint and divergence of global gene expression in the mammalian embryo.pdf', 'version': 'v0', 'chunk_order': 16, 'document_id': '3d9005f1-8f71-5d39-8749-4ebeab962cab', 'extraction_id': '261c4af7-f63d-51ac-b164-0d9e7a64bff9', 'associatedQuery': 'Once a sperm combines with an egg, what determines how traits are passed on to the resulting lifeform? '}}, {'id': '8e3fdc2c-0962-5854-83e7-a60ab05cf6de', 'score': 0.5988013565897561, 'metadata': {'text': 'genes. An altered gene may be passed on to every cell that develops from it. The resulting features my help, harm, or have little or no effect on the offsprings success in its environment. (AAAS, pg. 109, 5B:9-12#4 ) 6. Heritable material: The information passed from parents to offspring is coded in DNA molecules (AAAS, pg 108, 5B:9-12#3) 7. Mutagens: Gene mutations can be caused by such things as radiation and chemicals. When they occur in sex cells, the mutations can be passed onto offspring; if they', 'title': '2007 - Promoting_Student_Scientific_Literacy_of_Molecular Genetics and Genomics.pdf', 'version': 'v0', 'chunk_order': 117, 'document_id': '755f34c4-cc06-5275-a744-16d48162b012', 'extraction_id': '67369433-749b-5d6a-b5ef-3f0afe78b767', 'associatedQuery': 'Once a sperm combines with an egg, what determines how traits are passed on to the resulting lifeform? '}}, {'id': '0158f264-120f-5942-ad55-ef5fde1f188a', 'score': 0.5963614164698549, 'metadata': {'text': 'sex chromosome effects. (B)Soon after fertilization, male and female cells have sex-specic transcriptomes, epigenomes, and phenotypes (for example, male\\nembryos grow faster than female embryos). At implantation, lineage determination begins and gene expression differences are reduced. Epigenetic marks, however,\\nare less constrained and some are maintained, affecting gene expression, and phenotype later in development. Once specic lineages are established, differences in', 'title': '2019 - Sexual Dimorphism in the Age of Genomics How, When, Where.pdf', 'version': 'v0', 'chunk_order': 47, 'document_id': '3f8c03b0-4235-5774-9d26-e43d55c1001b', 'extraction_id': 'e22bb6fb-bec4-5c4c-8690-c96d0b8d13d4', 'associatedQuery': 'Once a sperm combines with an egg, what determines how traits are passed on to the resulting lifeform? '}}, {'id': '1e151ad5-59d9-598d-97ba-90ba0e64c4cb', 'score': 0.5957539741020887, 'metadata': {'text': 'phenomena such as mutations and gene conversion events) occur in relevant meioses \\nleading up to the formation of the gametes (i.e., egg and sperm) which are combined \\nduring fertilization and the formation of zygotes. Thus, individuals inherit a patch-\\nwork of chromosomal segments from maternal and paternal chromosomes.', 'title': '2008 - Study Design and Statistical Issues.pdf', 'version': 'v0', 'chunk_order': 36, 'document_id': 'c3bd9cf0-f768-55c4-be94-96590d7acc21', 'extraction_id': '06bf0605-388a-592c-96ad-3a53bb36362c', 'associatedQuery': 'Once a sperm combines with an egg, what determines how traits are passed on to the resulting lifeform? '}}, {'id': '4472740a-d22d-5bb1-98e3-e91332cbb303', 'score': 0.5950472532226819, 'metadata': {'text': '(Figures 8 and 9). Two gametes (egg and sperm) ultimately \\njoin into a single cell, the zygote, which has the full comple-ment of 23 chromosome pairs restored. If all goes well, the zygote gives rise to a live offspring.\\nThe Mendel Laws: Segregation and Independent \\nAssortment\\nBoth of the Mendel laws pertain directly to the process of \\nmeiosis. The first Mendel law, the law of segregation, states \\nthat each parent passes a randomly selected allele for a given', 'title': '2015 - Basic Concepts and Potential Applications of Genetics and Genomics for Cardiovascular and Stroke Clinicians.pdf', 'version': 'v0', 'chunk_order': 72, 'document_id': '8610e699-218a-50e6-8d1d-ef689623266f', 'extraction_id': '8a1ce8fa-b5f4-5942-b7b1-14a8a7887710', 'associatedQuery': 'Once a sperm combines with an egg, what determines how traits are passed on to the resulting lifeform? '}}, {'id': '47b9142f-98a3-5a45-8eaa-d327c9cc055d', 'score': 0.5914167938058615, 'metadata': {'text': 'the subset of that genetic information that is active. But how does the differentiation process \\nbegin? The key insight in resolving this conundrum came from fly genetics and was the \\nrealization that the egg is not a homogenous sack of protoplasm. The maternally-derived genes \\nactive in the fertilized egg are asymmetrically distributed such that at the first cell division each \\ndaughter cell receives a different complement of factors. Development continues as a', 'title': '2008 - Genotype-phenotype relationships and the patterning of complex traits as exemplified in the mammalian dentition.pdf', 'version': 'v0', 'chunk_order': 88, 'document_id': 'f6e866b8-b233-5862-bfb8-9949d0dabb97', 'extraction_id': '5aab3e60-b8b0-52ad-b4d3-817cf012cfa5', 'associatedQuery': 'Once a sperm combines with an egg, what determines how traits are passed on to the resulting lifeform? '}}, {'id': 'be93ee68-72ae-5015-a3f0-19e7bf24827a', 'score': 0.5898278775862515, 'metadata': {'text': 'spermatozoa: more than the sum of its parts? DNA, histones, pro -\\ntamines and epigenetics. Reproduction 139:287301\\nNilsson EE, Sadler-Riggleman I, Skinner MK (2018) Environmentally \\ninduced epigenetic transgenerational inheritance of disease. Envi-ron Epigenet 4:dvy016Pembrey M, Saffery R, Bygren LO, Network in Epigenetic Epide-', 'title': '2019 - The influence of paternal diet on sncRNA-mediated epigenetic.pdf', 'version': 'v0', 'chunk_order': 133, 'document_id': 'dfcbd6e6-f60d-5eb7-867b-34ec78415e82', 'extraction_id': '84335575-34d7-56b6-aa06-5a8ac13d637a', 'associatedQuery': 'Once a sperm combines with an egg, what determines how traits are passed on to the resulting lifeform? '}}, {'id': '53364cbf-8069-50ec-b008-5d7f7a8ea1b8', 'score': 0.5757847599919071, 'metadata': {'text': 'mediated through the transmission of epigenetic information through the paternal sperm cells \\n[6,80,81]. \\n4.1. Persistence of Maternal Exposure to A dverse Environmental Conditions along Generations \\nIn some cases, developmentally programmed traits may simply be the result of persistent or \\nreplicated exposure during critical periods of deve lopment, generation after generation. It has been \\nsuggested that the history of seve re socio-political disruptions and economic disadvantage suffered', 'title': '2019 - Mother or Father who is in the front line.pdf', 'version': 'v0', 'chunk_order': 66, 'document_id': '8011b04b-2199-5913-b8da-42c83334d4b7', 'extraction_id': '297793b1-93f9-5626-ac63-6d8675c02d27', 'associatedQuery': 'Once a sperm combines with an egg, what determines how traits are passed on to the resulting lifeform? '}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_11\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZKEWDIh0sRr2bP9lVmh6YIK1qiT', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Genetic tracing is often matrilineal rather than patrilineal primarily because mitochondrial DNA (mtDNA) is inherited solely from the maternal lineage. Unlike the nuclear genome, which requires contributions from both parents, mtDNA is passed down from mother to offspring without any admixture from the father [4], [5]. This uniparental inheritance of mtDNA simplifies the tracing of maternal lineage as it remains relatively unchanged through generations, making it a reliable marker for genetic studies [4], [5]. Additionally, humans have developed complex mechanisms to ensure this uniparental inheritance of mtDNA, which further supports its use in genetic tracing [4].', 'role': 'assistant'}}], 'created': 1727797418, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_5796ac6771', 'usage': {'completion_tokens': 132, 'prompt_tokens': 1273, 'total_tokens': 1405}}, 'search_results': {'vector_search_results': [{'id': 'f19ba98e-963f-5ecf-ad88-47215a3096e1', 'score': 0.6408689022064209, 'metadata': {'text': 'variation with cultural practices around lineage. In certain societies, individuals place greater\\nimportance on (and have greater knowledge about) one side of the family than another\\n(unilineal descent). Thus, individuals in patrilineal groups trace relationships through males\\nonly so that your fathers brothers children are members of your family, but not your fathers\\nsisters (Kottak, 2007 ). They are members of their husbands group or family. Efforts to create', 'title': '2009 - When Family Means More (or Less) Than Genetics.pdf', 'version': 'v0', 'chunk_order': 22, 'document_id': '7ba44399-3765-5ef5-9fdd-119b62117f66', 'extraction_id': 'baf15552-4198-5701-9175-c3fd31b2068e', 'associatedQuery': 'Why is genetic tracing matrilineal rather than patrilineal? '}}, {'id': '0e3b3480-c288-53cb-ac18-1d57478f9d34', 'score': 0.6218882428474293, 'metadata': {'text': 'maternal lineage membership with those who weredirectly genotyped. Based on these pedigree (matrilineal) relation-', 'title': '2012 - Mitochondrial Genomic Analysis of Late Onset.pdf', 'version': 'v0', 'chunk_order': 45, 'document_id': '5404a17c-34a9-5881-8b1a-2acacdc996a8', 'extraction_id': 'ed29f84f-f2c9-5cbe-bab1-f5d5d2a334b6', 'associatedQuery': 'Why is genetic tracing matrilineal rather than patrilineal? '}}, {'id': '06d4d82e-6eb9-59aa-a762-64de13149041', 'score': 0.6087736720577684, 'metadata': {'text': 'in three-generation families, and read pair tracing DNMs with phased variants.\\nIn the former approach, we determined the parent of origin as in our previous \\nanalysis4. For example, if an offspring of the proband was a carrier of the DNM \\nallele and had haplotype sharing to paternal chromosome of the proband, we \\nassigned the mutation to the father. Meanwhile, if the offspring was not a DNM \\nallele carrier, we would assign it to the maternal germline. We restricted the haplo -', 'title': '2017 - Parental influence on human germline de novo.pdf', 'version': 'v0', 'chunk_order': 83, 'document_id': '7c8bee23-b142-5fce-be77-6910277a136f', 'extraction_id': 'a3b7edd7-f50f-53f1-b875-6d6733ddfde9', 'associatedQuery': 'Why is genetic tracing matrilineal rather than patrilineal? '}}, {'id': '99a2cfc1-5a54-53af-b2a4-4c274e1d5ef1', 'score': 0.6017943620681763, 'metadata': {'text': 'Unlike the nuclear genome, which requires both paternal and maternal contributions, mtDNA is inherited solely from the maternal lineage. It is unclear what advantage a uniparental mtDNA transmission confers, but one possibil-ity is to minimize the number of distinct genomes to maxi-mize the efficiency of a multi-genomic system (Hill etal. 2019). In fact, humans have developed complex, redundant mechanisms to ensure uniparental inheritance of mtDNA (DeLuca and OFarrell 2012; Rojansky etal. 2016). Paternal', 'title': '2020 - Mitonuclear genomics and aging.pdf', 'version': 'v0', 'chunk_order': 60, 'document_id': 'e05fdc09-c8d8-5134-a1fd-bf07a1564981', 'extraction_id': '472c8adc-54e7-5c27-a7b8-882b7e49cd2b', 'associatedQuery': 'Why is genetic tracing matrilineal rather than patrilineal? '}}, {'id': '612366c9-fcdc-5081-bc6d-47cd39922eeb', 'score': 0.5948854330250374, 'metadata': {'text': 'c) Mitochondrial DNA (maternal line testing) markers:\\nmitochondrial DNA or mtDNA haploid is the\\nmaternally inherited mitochondrial genome\\n(mtDNA) [ 44]. All children inherit mtDNA from\\ntheir mother, with no admixture from the father.\\nLike Y-line DNA, mtDNA is passed intact from one\\ngeneration to the next but through maternal line.\\nMitochondrial DNA does not follow any surname.\\nIn fact, the surname changes in every generation\\nwhen women marry. Polymorphisms of mtDNA', 'title': '2015 - Self-reported race or ethnicity in the age of genomic.pdf', 'version': 'v0', 'chunk_order': 42, 'document_id': '51ff0b84-193b-525a-b686-f29a423fcef9', 'extraction_id': '6d68e979-ad62-5f85-ab03-5e898ce1c73b', 'associatedQuery': 'Why is genetic tracing matrilineal rather than patrilineal? '}}, {'id': '2ca2ab07-78b5-5268-93f1-297d83447163', 'score': 0.5930852293968201, 'metadata': {'text': 'a family pedigree may be hampered if the participant is not familiar with her mothers relatives,\\nbut her mothers brothers children (her cousins) may be able to supplement her overall family\\nhistory. Knowledge about the cultural system of unilineal descent avoids assuming the\\nuniversality of bilateral descent. Cultural beliefs such as these also have implications in the\\nconduct of genetic research in terms of confidentiality and autonomy (Benkendorf et al.,', 'title': '2009 - When Family Means More (or Less) Than Genetics.pdf', 'version': 'v0', 'chunk_order': 23, 'document_id': '7ba44399-3765-5ef5-9fdd-119b62117f66', 'extraction_id': 'baf15552-4198-5701-9175-c3fd31b2068e', 'associatedQuery': 'Why is genetic tracing matrilineal rather than patrilineal? '}}, {'id': 'db1fe67a-3d0c-549f-a54a-74ea0fa44d11', 'score': 0.5844577899252061, 'metadata': {'text': '225 three-generation families using haplotype sharing (Fig. 1c and \\nMethods), 80.4% were found to be of paternal origin (Extended Data \\nFig. 1). Figure 1e shows a strong relationship between the number of \\npaternal DNMs and the fathers age at conception (1.47 per year, 95% \\nCI 1.341.59) and a weaker impact of the mothers age on the number \\nof maternal DNMs (0.37 per year, 95% CI 0.300.45).\\nThe parental origin of all DNMs was also assessed by read pair', 'title': '2017 - Parental influence on human germline de novo.pdf', 'version': 'v0', 'chunk_order': 14, 'document_id': '7c8bee23-b142-5fce-be77-6910277a136f', 'extraction_id': '163ce027-26ce-5625-8b63-5b7a910b4462', 'associatedQuery': 'Why is genetic tracing matrilineal rather than patrilineal? '}}, {'id': '74484e0c-c862-5091-9fb5-957453a069af', 'score': 0.5694558620452881, 'metadata': {'text': 'genetics-based population divergence studies. Am J Phys Anthropol 128(2):415 423.22. Helgason A, Hrafnkelsson B, Gulcher JR, War d R, Stefnsson K (2003) A populationwide\\ncoalescent analysis of Icelandic matrilineal and patrilineal genealogies: Evidence for a\\nfaster evolutionary rate of mtDNA lineages than Y chromosomes. Am J Hum Genet 72(6):\\n1370 1388.\\n23. Amster G, Sella G (2015) Life history effects on the molecular clock of autosomes and\\nsex chromosomes. Proc Natl Acad Sci USA 113(6):1588 1593.', 'title': '2016 - A genetic method for dating ancient genomes provides.pdf', 'version': 'v0', 'chunk_order': 93, 'document_id': '5a5e67ea-4830-5fe8-95c3-ccfcc8324036', 'extraction_id': 'fcf5296e-6be4-5789-b1e1-ac57fef15119', 'associatedQuery': 'Why is genetic tracing matrilineal rather than patrilineal? '}}, {'id': '74ef6cdc-ea40-5d10-9ee8-b4288b3a70b4', 'score': 0.5678337812423706, 'metadata': {'text': 'sistent with a maternal imprinting effect in familiesfrom France [18], the USA[10, 18, 21] (Figure 2; Table3) and Canada [27]. However, in a large family dataset from the UK, and in smaller data sets fromDenmark and Sardinia, the transmission of VNTRsusceptibility alleles is more pronounced frommothersthanfromfathers,andnowsignicantlysoinUK families (Figure 2; Table 3). Comparison of theresults from the USAwith those from the UK suggestthat unexplained inter-population differences in thisparent-of-origin', 'title': '1996 - IDDM2-VNTR-encoded Susceptibility to Type 1 Diabetes.pdf', 'version': 'v0', 'chunk_order': 54, 'document_id': 'bbaa99aa-3ae9-558d-bc97-7f85b6d0cf81', 'extraction_id': 'a324397e-1525-55ff-a9e8-92dc2aafa237', 'associatedQuery': 'Why is genetic tracing matrilineal rather than patrilineal? '}}, {'id': '27f40683-de33-5ec1-852d-6905f2dc389c', 'score': 0.5624021552561439, 'metadata': {'text': 'started with the largest matrilineage and worked down the list. Theparticipants selected for mtDNA sequencing were selected inde-pendent of their cognitive or dementia status. 274 matrilineageswere represented by this dataset. As a result, the sequencedmitochondrial genomes also represent as many different majormitochondrial haplogroups and clusters as possible (Table 1).Selection was made blind to case-control status. 287 samples weresent to Family Tree DNA (www.familytreedna.com) for Sangersequencing of', 'title': '2012 - Mitochondrial Genomic Analysis of Late Onset.pdf', 'version': 'v0', 'chunk_order': 38, 'document_id': '5404a17c-34a9-5881-8b1a-2acacdc996a8', 'extraction_id': 'ed29f84f-f2c9-5cbe-bab1-f5d5d2a334b6', 'associatedQuery': 'Why is genetic tracing matrilineal rather than patrilineal? '}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_12\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZKK0KDNVDBm3vRB6dGuJYB5JlVa', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': \"To differentiate between X and Y DNA with respect to DNA tracing and determining quantitative trait loci (QTLs), one must consider the unique characteristics of each chromosome:\\n\\n1. **Recombination Rates**:\\n - The Y chromosome largely does not undergo recombination, which means it is passed down relatively unchanged from father to son. This makes it easier to trace paternal lineage but limits its utility in QTL mapping due to the lack of recombination [1].\\n - The X chromosome, on the other hand, does undergo recombination, although at a slower rate compared to autosomes. This recombination can complicate tracing but is crucial for detecting significant QTLs [1].\\n\\n2. **QTL Mapping**:\\n - QTLs are stretches of DNA closely linked to genes that influence a phenotype of interest. The detection and mapping of QTLs on the X chromosome can be more complex due to its recombination, but this recombination is necessary for identifying the genomic locations involved in regulating phenotypes [2].\\n - The Y chromosome's lack of recombination means it is less useful for QTL mapping, as the identification of QTLs relies on the recombination events that help pinpoint the genomic regions associated with specific traits [1].\\n\\nIn summary, the primary difference lies in the recombination behavior of the X and Y chromosomes, which affects their utility in DNA tracing and QTL determination. The X chromosome's recombination, although slower, is essential for QTL mapping, whereas the Y chromosome's lack of recombination makes it more suitable for tracing paternal lineage but less useful for QTL analysis.\", 'role': 'assistant'}}], 'created': 1727797424, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 325, 'prompt_tokens': 1226, 'total_tokens': 1551}}, 'search_results': {'vector_search_results': [{'id': '73540700-b5cf-5838-852b-b281ca086140', 'score': 0.6887560711808338, 'metadata': {'text': 'While most of the Y chromosome does not undergo\\nrecombination, the recombination rate of the X chromosomeis slower than that of the autosomes. This has important\\nconsequences on the detection of significant QTLs. For a\\ncomprehensive view of these issues, see(43).\\n9.Probe hybridization artifacts\\nWhen several probes are available for the same gene, it is\\nnot uncommon to observe a difference in the mapping results', 'title': '2009 - eQTL analysis in mice and rats.pdf', 'version': 'v0', 'chunk_order': 99, 'document_id': '8d67ea90-f7b1-5bb8-937c-4a9eceddff43', 'extraction_id': '71981bfb-284e-50ad-854e-2055c07f77a7', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': '374c456a-d1db-5b4a-8713-97abe4162d77', 'score': 0.6851788383935546, 'metadata': {'text': '8 QTL Mapping \\n \\nAllelic variation exists among natural populations and inbred strains, and this is \\nreflective of the segregation of quantitative tr ait loci (QTLs) [96]. QTLs are stretches of \\nDNA that are closely linked to genes that underlie a phenotype of interest. QTL analysis has been proven to be an invaluable tool to help unravel heritable traits, by enabling \\nresearchers to map different quantitative traits back to the genomic location involved in the regulation of these phenotypes.', 'title': '2015 - Genetic Control of Survival and Weight Loss during Pneumonic Burk.pdf', 'version': 'v0', 'chunk_order': 119, 'document_id': 'ae1025b0-1410-51ae-9be2-26fa2e9d5808', 'extraction_id': '615ee0cd-5960-57e5-b4e6-56e4b8020a1b', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': 'b9d52798-0235-5018-bccd-560565d16cc3', 'score': 0.6851701769537062, 'metadata': {'text': '8 QTL Mapping \\n \\nAllelic variation exists among natural populations and inbred strains, and this is \\nreflective of the segregation of quantitative tr ait loci (QTLs) [96]. QTLs are stretches of \\nDNA that are closely linked to genes that underlie a phenotype of interest. QTL analysis has been proven to be an invaluable tool to help unravel heritable traits, by enabling \\nresearchers to map different quantitative traits back to the genomic location involved in the regulation of these phenotypes.', 'title': '2015 -Emery- Genetic Control of Survival and Weight Loss during Pneumonic Burk.pdf', 'version': 'v0', 'chunk_order': 119, 'document_id': 'a9aceace-bf48-5472-b54c-59a458a84c62', 'extraction_id': '268a23e8-f528-5b59-89f2-188331e0a03c', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': 'c8f17022-aeae-5242-9082-d6d1eee4c4bf', 'score': 0.6701249683052312, 'metadata': {'text': 'genes underlying QTLs in animals and plants (see for example Shirley et al 2004,Korstanje & Paigen 2002, Fridman et al 2004). I should also point out, though,\\nthat even in a single QTL region isolated in a congenic strain, it is possible that\\nthere is more than one allele that aects the phenotype. So, you have a fair pointabout the challenges and complexities of QTL analysis.\\nKoolhaas: There are dierent questions underlying both approaches. The QTL', 'title': '2005 - quantitative-trait-locus-analysis-of-aggressive-behaviours-in-mi.pdf', 'version': 'v0', 'chunk_order': 86, 'document_id': '0dc730ba-4ff4-52aa-a988-71075113c416', 'extraction_id': '9de93371-6239-53c2-b42c-71f615a0614b', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': '1b2de424-be9f-572d-bd62-dc2ecd92192b', 'score': 0.6700757351675676, 'metadata': {'text': 'genes underlying QTLs in animals and plants (see for example Shirley et al 2004,Korstanje & Paigen 2002, Fridman et al 2004). I should also point out, though,\\nthat even in a single QTL region isolated in a congenic strain, it is possible that\\nthere is more than one allele that aects the phenotype. So, you have a fair pointabout the challenges and complexities of QTL analysis.\\nKoolhaas: There are dierent questions underlying both approaches. The QTL', 'title': '2005 -Broadkin- quantitative-trait-locus-analysis-of-aggressive-behaviours-in-mi.pdf', 'version': 'v0', 'chunk_order': 86, 'document_id': 'e6027e7f-aec0-5e76-8aff-96b36389e701', 'extraction_id': '0a5c759e-8dab-55f1-ac59-e8211ec683b8', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': 'fef212bc-631b-591d-b8e3-d1523da0507d', 'score': 0.6696171962758585, 'metadata': {'text': 'The basic pr emise of QTL an alysis is simple (Ph illips and Belknap,\\n2002 ) . First, one must meas ure a speci c phen otype within a popul ation.\\nNext, the population must be genotyped at a hundred or more marker loci186 Boehm II et al.', 'title': '2006 - From_gene_to_behavior_and_back_again_new.pdf', 'version': 'v0', 'chunk_order': 129, 'document_id': '7a088b36-11b7-5379-bfe5-ce571e11de07', 'extraction_id': '64c0287d-aeea-52eb-a074-e9591c5593ae', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': 'f72795a1-66c3-5a98-84bc-b085e8008073', 'score': 0.6656408706689506, 'metadata': {'text': 'through analysis of line crosses, quantitative trait loci (QTL) mapping, and verification\\nof candidate genes with quantitative complementation tests or genetic engineering (e.g.,McGuire and Tully 1987; Chandra et al. 2001; Dierick and Greenspan 2006; Edwardset al. 2006). They can also be used to study the underlying physiological, neural, andmolecular mechanisms of the differences in behavior between selected and controllines, or between divergently selected lines.', 'title': '2009 - Experimental_Evolution.pdf', 'version': 'v0', 'chunk_order': 2219, 'document_id': '34821353-1b74-5ee2-ac39-66dd46f145bf', 'extraction_id': '8ee78018-b998-590c-99ab-788a447ede81', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': '31a32dc5-81ac-52ba-a463-c61e293f21e5', 'score': 0.6656335193674039, 'metadata': {'text': 'through analysis of line crosses, quantitative trait loci (QTL) mapping, and verification\\nof candidate genes with quantitative complementation tests or genetic engineering (e.g.,McGuire and Tully 1987; Chandra et al. 2001; Dierick and Greenspan 2006; Edwardset al. 2006). They can also be used to study the underlying physiological, neural, andmolecular mechanisms of the differences in behavior between selected and controllines, or between divergently selected lines.', 'title': '2009 - Garland_and_Rose_Experimental_Evolution.pdf', 'version': 'v0', 'chunk_order': 2219, 'document_id': '496faa7f-9623-5ab7-9816-7c3755abb3aa', 'extraction_id': 'cbce50ea-be78-5d54-beb1-849222c5bfdd', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': 'b660d882-1cb0-5150-ae76-8eb3ccb88a58', 'score': 0.6623994506835716, 'metadata': {'text': 'genetic background.\\nGene identification of QTL should be distinguished from identification of the quanti-\\ntative trait nucleotide (QTN). The latter is a daunting task, since SNPs are so frequent.\\nFinal proof for a QTN in mice would require placing a genomic segment containing theputative QTN from a donor mouse strain on the background of another strain using\\nhomologous recombination and reproducing the phenotype of the donor strain.', 'title': '2005 - quantitative-trait-analysis-in-the-investigation-of-function-and.pdf', 'version': 'v0', 'chunk_order': 97, 'document_id': 'dac1c73c-0b5f-5a54-bb12-7e8b654009c0', 'extraction_id': '0a895880-91c0-5079-b258-73926b38430f', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': '7ef9df1d-b21a-597a-9e74-6eace5d0c33c', 'score': 0.6582260116742882, 'metadata': {'text': 'because these strains have been genotyped at more than 14,000 markers, including single\\nnucleotide polymorphisms (SNP). Hundreds of genes may lie within a QTL interval, so\\nidentifying the underlying genes requires complementary methods. One method is to use\\nBXD gene expression data (a public resource at www.genenetwork.org) to screen for genes\\nwithin the QTL interval whose expression correlates with the trait of interest [23].', 'title': '2012 - Systems genetic analysis of the effects of iron deficiency in mouse brain.pdf', 'version': 'v0', 'chunk_order': 14, 'document_id': '99fc80f0-f3c3-5766-a604-921552bb3298', 'extraction_id': '6ab990b0-4f9c-5be3-ab79-9ca6835271fa', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_13\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZKSZUCeTbC5g92NfqE6Fmp3TXXx', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'For QTL mapping analysis in GeneNetwork2, datasets that are useful include genotypes and complex phenotypes ranging from gene expression to behavior in standard inbred strains and panels of mouse recombinant inbred strains [3]. Additionally, data from permanent genetic reference populations, such as the HXB rat strains, are also valuable [5]. These datasets allow for the identification of correlations within the data and the mapping of genetic loci associated with mRNA abundance or trait phenotypes [10].', 'role': 'assistant'}}], 'created': 1727797432, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_c17d3befe7', 'usage': {'completion_tokens': 95, 'prompt_tokens': 1068, 'total_tokens': 1163}}, 'search_results': {'vector_search_results': [{'id': 'a2ffc857-6d79-5889-8344-cae8f1ca5e32', 'score': 0.7282648844561063, 'metadata': {'text': 'QTL Mapping\\nGeneNetwork ( www.genenetwork.org ) variants data set comprising about', 'title': '2016 - A genetic screen identifies hypothalamic Fgf15 as a regulator of glucagon secretion.pdf', 'version': 'v0', 'chunk_order': 93, 'document_id': '288adb9b-a547-5e61-8593-1b2ab36271d3', 'extraction_id': '7eae53fa-ac5e-5cf4-807c-5d13dffdcf83', 'associatedQuery': 'what type of dataset is useful for qtl mapping analysis in genenetwork2?'}}, {'id': '1e23f2e3-f4b1-5195-9061-5e525a13fb32', 'score': 0.720731692270537, 'metadata': {'text': 'Bioinformatics\\nAll of the genetic analyses were carried out in GeneNetwork, whichis an open source bioinformatics resource for systems genetics thatexists as both a repository for genetic, genomic and phenotypicdata together with a suite of statistical programs for data analy-sis that includes mapping and evaluating QTLs, examining pheno-type/genotype correlations and building interaction networks.\\nQTL mapping\\nThe QTL mapping module of GeneNetwork was used to identify', 'title': '2015 - Systems genetic analysis of hippocampal neuroanatomy and spatial learning in mice.pdf', 'version': 'v0', 'chunk_order': 38, 'document_id': '8708ead5-20bc-5d41-82db-61a807eb3f90', 'extraction_id': '69504f91-c34d-5555-a05a-ac485356cec6', 'associatedQuery': 'what type of dataset is useful for qtl mapping analysis in genenetwork2?'}}, {'id': '6c1e5cb1-ab19-5246-859d-a2f58d48232a', 'score': 0.7149678042550216, 'metadata': {'text': 'the database is that each data collection is associated with a protocol which describes how \\nthe data were generated. The project also provides online analysis tools to allow \\nidentification of correlations within its data set.\\nGeneNetwork ( http://www.genenetwork.org ), encompassing WebQTL, is a database of \\ngenotypes and complex phenotypes ranging from gene expression to behaviour in standard \\ninbred strains, and six panels of mouse recombinant inbred strains including the two largest', 'title': '2007 - Integration of mouse phenome data resources.pdf', 'version': 'v0', 'chunk_order': 26, 'document_id': '08a3ce6e-947b-5ee9-b723-946807cf7d23', 'extraction_id': '6ba5dba3-6135-5545-bec9-eee2e1465e7b', 'associatedQuery': 'what type of dataset is useful for qtl mapping analysis in genenetwork2?'}}, {'id': '51757b6b-0492-5077-ba69-90a2ddf3da9d', 'score': 0.710901158398322, 'metadata': {'text': 'QTL/interval analysis \\nQTL mapping was conducted using publically available software \\non GeneNetwork (http://www .genenetwork .org/webqtl /main .py). \\nOne important feature of the GeneNetwork is WebQTL , which is the \\nleading GeneNetwork module , and has been optimized for on-line \\nanalysis of traits that are controlled by combinations of allelic variants \\nand environmental factors [15]. A simple graphical user interface', 'title': '2016 - Genetic Regulation of Gelsolin in Lung in Mouse Model and its Potential.pdf', 'version': 'v0', 'chunk_order': 21, 'document_id': 'ec8452c0-1c16-54e6-9b9f-3e741a8c7340', 'extraction_id': '311be2a2-4428-5887-8ed2-35875eac9fcb', 'associatedQuery': 'what type of dataset is useful for qtl mapping analysis in genenetwork2?'}}, {'id': 'dae9312b-c464-5fb7-bbc1-06ba2998e462', 'score': 0.7083333308498079, 'metadata': {'text': 'WebQTL is the primary module in the Gene-\\nNetwork online resource (www.genenetwork.org),and provides a powerful environment to analyzetraits controlled by genetic variants (Chesler et al.2004; Wang et al. 2003). It includes data from manypermanent genetic reference populations, including\\nthe HXB rat strains, and allows for phenotypic traits,', 'title': '2005 -Integrated gene expression profiling and linkage analysis in the rat.pdf', 'version': 'v0', 'chunk_order': 64, 'document_id': '7b3a7517-2967-5693-b4e8-8423a9fa432b', 'extraction_id': '80a6f32f-a473-58ba-98ce-30100f5cc913', 'associatedQuery': 'what type of dataset is useful for qtl mapping analysis in genenetwork2?'}}, {'id': '0b3d48d1-f253-508c-9a9e-5060e02d54a6', 'score': 0.6984897615325735, 'metadata': {'text': '67. As described above, loci are identified in GeneNet work by the computation of a \\nlikelihood ratio statistic score and significance was determined using at least 5,000 \\npermutations of the phenotype data. \\nUpdated QTL mapping methods , such as R/qtl 2 66,146, Multiple QTL mapping 64, \\nGEMMA 156 and pyLMM 63, have been implimented on t he GeneNetwork2 site 46.', 'title': '2019 - The expanded BXD family of mice A cohort for experimental systems genetics and precision medicine.pdf', 'version': 'v0', 'chunk_order': 157, 'document_id': '8df14e3b-644f-5a18-94a6-5ff5a1eae053', 'extraction_id': '22772f7f-a42d-5438-a910-9e26c2916be2', 'associatedQuery': 'what type of dataset is useful for qtl mapping analysis in genenetwork2?'}}, {'id': 'd261c68c-c253-52c9-8e27-f76fb8d0b4f8', 'score': 0.6970214012835739, 'metadata': {'text': 'genetic mapping, and correlation of quantitative traits such as gene expression data and behavioral parameters (Wang et al, 2003) . GeneNetwork employs \\ngenotype data from 3809 markers, selected based on their being informative (i.e., different between progenitor strains). GeneNetwork outputs peak likelihood ratio statistic (LRS) locations for each trait, whic h can be directly converted to', 'title': '2018 - Molecular Brain Adaptations to Ethanol_ Role of Glycogen Synthase (2).pdf', 'version': 'v0', 'chunk_order': 233, 'document_id': 'cc2690a9-5a87-5f09-87d5-115a6a6b8349', 'extraction_id': '1047bf10-3878-5b70-8bb2-c0249f2a9c53', 'associatedQuery': 'what type of dataset is useful for qtl mapping analysis in genenetwork2?'}}, {'id': '9fbea8b6-25ad-5da9-bc9a-988784e33f0b', 'score': 0.6965950312259787, 'metadata': {'text': 'tool for combined visualization and exploration of geneexpression data and QTL. The methodology developedin this work is complementary to the analyses that canbe performed on the GeneNetwork website (WebQTL,http://www.genenetwork.org/ ), which allows assessment of\\nthe relationship between gene expressions and QTL inrecombinant in bred mice [ 3].\\nComparing QTL and microarray data is not completely', 'title': '2008 -Han- Comparing Quantitative Trait Loci.pdf', 'version': 'v0', 'chunk_order': 8, 'document_id': 'e6904cbd-8265-5e40-8978-d461ee6e151a', 'extraction_id': 'e0bc4e49-6d6f-5b60-b7bc-18fd622629a8', 'associatedQuery': 'what type of dataset is useful for qtl mapping analysis in genenetwork2?'}}, {'id': 'bd69b879-f1fe-57ee-8b36-b621708bdcc3', 'score': 0.6965116054859307, 'metadata': {'text': 'tool for combined visualization and exploration of geneexpression data and QTL. The methodology developedin this work is complementary to the analyses that canbe performed on the GeneNetwork website (WebQTL,http://www.genenetwork.org/ ), which allows assessment of\\nthe relationship between gene expressions and QTL inrecombinant in bred mice [ 3].\\nComparing QTL and microarray data is not completely', 'title': '2008 - Comparing Quantitative Trait Loci.pdf', 'version': 'v0', 'chunk_order': 8, 'document_id': 'bfbddb84-c0e5-5d74-8e2d-9e54e75e8c49', 'extraction_id': '476c90a3-1613-5e45-81b4-358519368bda', 'associatedQuery': 'what type of dataset is useful for qtl mapping analysis in genenetwork2?'}}, {'id': '969d6ade-dc87-5f19-bd57-3f58882f11e8', 'score': 0.6923374717034428, 'metadata': {'text': \"the database entries. Once the resulting record set of the\\nquery is returned, it can be further restricted by selecting\\nrelevant records based on attached annotations before for-\\nwarding it for further analysis.\\nTo map genetic loci associated with mRNA abundance or\\ntrait phenotypes, any one of the three QTL mapping func-\\ntions currently employed by GeneNetwork's WebQTL\\nmodule can be used. These are 1. interval mapping, 2. sin-\\ngle-marker regression, or 3. composite mapping [29,30].\", 'title': '2008 - Towards systems genetic analyses in barley Integration of phenotypic, expression and genotype data into GeneNetwork.pdf', 'version': 'v0', 'chunk_order': 30, 'document_id': '8513abbe-65ed-5f35-9f86-ba93cfc5a194', 'extraction_id': 'a6c480d1-b384-5c6f-b21b-94fe0b3b0f4d', 'associatedQuery': 'what type of dataset is useful for qtl mapping analysis in genenetwork2?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_14\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZKWNKiSvqnmJLiG5DiGZqUhCrfq', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'The bioinformatics tools for QTLs analysis include:\\n\\n1. **R/qtl** - A comprehensive tool for QTL mapping [4].\\n2. **QTL Cartographer** - Used for QTL mapping and analysis [4].\\n3. **MapQTL** - Another tool for QTL mapping [4].\\n4. **WebQTL** - An online tool optimized for the analysis of traits controlled by combinations of allelic variants and environmental factors [4], [7].\\n5. **QTL IciMapping** - A free software for QTL mapping that constructs genetic linkage maps and performs QTL analysis by simple interval mapping and inclusive composite interval mapping [4].\\n6. **CPMAtranseqtl** - Available on GitHub, supports R/Python [3].\\n7. **eMap** - Available on GNU, supports R [3].\\n8. **FastMap** - Available on SourceForge, supports JAVA [3].\\n9. **lme4qtl** - Available on GitHub, supports R [3].\\n10. **Matrix eQTL** - Available on the UNC website, supports R/Matlab [3].\\n11. **Meta-eQTL** - Available on HPC MSSM, supports R/C [3].\\n12. **Plink** - A library for association QTL mapping on single nucleotide polymorphisms (SNP) in natural populations [8].\\n13. **Multimapper** - Allows the automatic building of models of multiple QTLs within the same linkage group and works as a companion program to QTL Cartographer [10].\\n\\nThese tools can be used in combination with classical experimental methods to accelerate QTL gene identification [1], [2].', 'role': 'assistant'}}], 'created': 1727797436, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 346, 'prompt_tokens': 1391, 'total_tokens': 1737}}, 'search_results': {'vector_search_results': [{'id': '7a9f6af0-22c9-5bd7-a443-f0b0111551fa', 'score': 0.813942812211184, 'metadata': {'text': 'rodent QTLs. Here we discuss each tool, illustrate itsapplication and generate a bioinformatics strategy fornarrowing QTLs. Combining these bioinformatics toolswith classical experimental methods should accelerateQTL gene identication.\\nIntroduction\\nQuantitative trait locus (QTL) analysis is a method to\\nlocalize chromosomal regions harboring genetic variants\\nthat affect a continuously distributed, polygenic phenotype(including many common diseases) [1]. It is particularly', 'title': '2005 -Dipetrillo- Bioinformatics toolbox QTL.pdf', 'version': 'v0', 'chunk_order': 2, 'document_id': '9b089457-5804-594a-99ea-e716b65c216c', 'extraction_id': '63fcced2-fd9b-5b8c-917e-8a5502f89624', 'associatedQuery': 'what are the bioinformatics tools for QTLs analysis?'}}, {'id': 'b89fda54-1dd8-5033-9caa-c8e6079d4e28', 'score': 0.813942812211184, 'metadata': {'text': 'rodent QTLs. Here we discuss each tool, illustrate itsapplication and generate a bioinformatics strategy fornarrowing QTLs. Combining these bioinformatics toolswith classical experimental methods should accelerateQTL gene identication.\\nIntroduction\\nQuantitative trait locus (QTL) analysis is a method to\\nlocalize chromosomal regions harboring genetic variants\\nthat affect a continuously distributed, polygenic phenotype(including many common diseases) [1]. It is particularly', 'title': '2005 - Bioinformatics toolbox for narrowing rodent quantitative trait loci .pdf', 'version': 'v0', 'chunk_order': 2, 'document_id': '5d87aefe-dee5-5f25-8b46-d87b24907dcc', 'extraction_id': 'ede4bc5e-f495-5c65-b2e6-a5dc0625b0d0', 'associatedQuery': 'what are the bioinformatics tools for QTLs analysis?'}}, {'id': 'db4d7722-ff83-54a4-9fb6-23d331ead769', 'score': 0.7928501861452613, 'metadata': {'text': 'Table 2. Computational Approaches for Identi cation of QTLs\\nTools Link Programming\\nlanguageRefs\\nLinear models\\nCPMAtranseqtl https://github.com/cotsapaslab/CPMAtranseqtl R/Python [ 176]\\neMap www.gnu.org/software/gsl/ R\\nFastMap https://sourceforge.net/projects/fastmapunix/ JAVA [ 134]\\nlme4qtl https://github.com/variani/lme4qtl R[ 175]\\nMatrix eQTL www.bios.unc.edu/research/genomic_software/\\nMatrix_eQTLR/Matlab [ 133]\\nMeta-eQTL https://haok01.u.hpc.mssm.edu/meta_eQTL/ R/C [ 177]', 'title': '2020 - A Multi-Omics Perspective of Quantitative Trait Loci in Precision Medicine.pdf', 'version': 'v0', 'chunk_order': 78, 'document_id': '8503b166-b917-5efb-a356-5ba371504cc1', 'extraction_id': '03e2ebd6-ce89-551c-ba81-59a4ded02515', 'associatedQuery': 'what are the bioinformatics tools for QTLs analysis?'}}, {'id': '5604e763-06b5-5528-be49-9003bf547ae2', 'score': 0.7917333741823734, 'metadata': {'text': '2012). Tools for QTL analysis have been de veloped and released for researchers such as \\nR/qtl, QTL cartographer, M apQTL, and WebQTL. Recently, Wang et al. (2012) \\ndeveloped a free software for QTL mapping called QTL IciMapping which constructs genetic linkage maps and QTL analysis by simple interval mapping and inclusive \\ncomposite interval mapping. QTL IciMapping is available for segregating and inbred \\n \\n \\n \\n \\n \\n \\n \\nPREVIEW', 'title': '2016 - Genotyping by sequencing for identification and mapping of QTLs for bioenergy-related traits in sweet sorghum.pdf', 'version': 'v0', 'chunk_order': 57, 'document_id': 'd6da662e-cb6e-5628-8a42-5aca1b978447', 'extraction_id': 'ea640aeb-71cc-578d-8ad3-6940f2b892da', 'associatedQuery': 'what are the bioinformatics tools for QTLs analysis?'}}, {'id': '7019c554-cbae-528e-8207-b8575d99daf4', 'score': 0.7768397597265585, 'metadata': {'text': 'incorrect, the analysis can separate the QTL peak into twoTable 1. Summary of bioinformatics tools for dissecting rodent QTLs\\nBioinformatics tool Summary Resolution\\nComparative genomics Identies regions of chromosomal synteny in QTLs that are concordant across\\nspecies1020 Mb\\nCombined cross analysis Recodes genotype information from multiple crosses detecting a shared QTL into\\none susceptibility and one resistance genotype to combine the crosses in a singleQTL analysis1020 Mb\\nInterval-specic haplotype', 'title': '2005 -Dipetrillo- Bioinformatics toolbox QTL.pdf', 'version': 'v0', 'chunk_order': 21, 'document_id': '9b089457-5804-594a-99ea-e716b65c216c', 'extraction_id': '294efef3-6516-5c74-8cc5-bc8401f6602b', 'associatedQuery': 'what are the bioinformatics tools for QTLs analysis?'}}, {'id': '3fe2119e-e576-5608-91e1-2a010b91515c', 'score': 0.7768397597265585, 'metadata': {'text': 'incorrect, the analysis can separate the QTL peak into twoTable 1. Summary of bioinformatics tools for dissecting rodent QTLs\\nBioinformatics tool Summary Resolution\\nComparative genomics Identies regions of chromosomal synteny in QTLs that are concordant across\\nspecies1020 Mb\\nCombined cross analysis Recodes genotype information from multiple crosses detecting a shared QTL into\\none susceptibility and one resistance genotype to combine the crosses in a singleQTL analysis1020 Mb\\nInterval-specic haplotype', 'title': '2005 - Bioinformatics toolbox for narrowing rodent quantitative trait loci .pdf', 'version': 'v0', 'chunk_order': 21, 'document_id': '5d87aefe-dee5-5f25-8b46-d87b24907dcc', 'extraction_id': '4cf47fab-c25f-52a4-953b-3c3508a26274', 'associatedQuery': 'what are the bioinformatics tools for QTLs analysis?'}}, {'id': '51757b6b-0492-5077-ba69-90a2ddf3da9d', 'score': 0.7720669779697737, 'metadata': {'text': 'QTL/interval analysis \\nQTL mapping was conducted using publically available software \\non GeneNetwork (http://www .genenetwork .org/webqtl /main .py). \\nOne important feature of the GeneNetwork is WebQTL , which is the \\nleading GeneNetwork module , and has been optimized for on-line \\nanalysis of traits that are controlled by combinations of allelic variants \\nand environmental factors [15]. A simple graphical user interface', 'title': '2016 - Genetic Regulation of Gelsolin in Lung in Mouse Model and its Potential.pdf', 'version': 'v0', 'chunk_order': 21, 'document_id': 'ec8452c0-1c16-54e6-9b9f-3e741a8c7340', 'extraction_id': '311be2a2-4428-5887-8ed2-35875eac9fcb', 'associatedQuery': 'what are the bioinformatics tools for QTLs analysis?'}}, {'id': '7cd326b3-1669-55f1-b4ce-376b5159a6fb', 'score': 0.772017088888044, 'metadata': {'text': 'model selection approach for mapping multiple interacting QTL [376]\\nand Plink, a library for association QTL mapping on single nu cleotide\\npolymorphisms (SNP) in natural populations [277].\\n3.2.3 Add new analysis tools\\nxQTL workbench supports exible adding of more QTL analysis s oft-\\nware: any R-based, or command-line tool, can be plugged in. A ll anal-\\nysis results are uploaded, stored and tracked in the xQTL workbench\\ndatabase through an R-API. When new tools are added, they can b uild', 'title': '2009 - Detection and interpretation of expression quantitative trait loci (eQTL).pdf', 'version': 'v0', 'chunk_order': 252, 'document_id': 'ef974b09-4ea2-5382-85e5-c2169f440fda', 'extraction_id': '2b670f5c-5b0c-5d8f-b236-2cbff81eff5a', 'associatedQuery': 'what are the bioinformatics tools for QTLs analysis?'}}, {'id': 'ae35202f-70ed-5fb8-a075-ce1e63616fb2', 'score': 0.7663446208033314, 'metadata': {'text': '717 730\\n14. Delaneau, O. et al. (2017) A complete tool set for molecular\\nQTL discovery and analysis. Nat. Commun. 8, 1545215. Liu, B.H. (2017) Statistical Genomics: Linkage, Mapping, and\\nQTL Analysis , CRC Press\\n16. Gibson, G. et al. (2015) Expression quantitative trait locus anal-\\nysis for translational medicine. Genome Med. 7, 1 14\\n17. Ritchie, M.D. et al. (2015) Methods of integrating data to\\nuncover genotype-phenotype interactions. Nat. Rev. Genet.\\n16, 185 197', 'title': '2020 - A Multi-Omics Perspective of Quantitative Trait Loci in Precision Medicine.pdf', 'version': 'v0', 'chunk_order': 115, 'document_id': '8503b166-b917-5efb-a356-5ba371504cc1', 'extraction_id': '6f44c216-c9a1-582e-8081-d6ad912369db', 'associatedQuery': 'what are the bioinformatics tools for QTLs analysis?'}}, {'id': '0049fb65-142a-54a1-8ab5-2d747bc521a0', 'score': 0.761485202046896, 'metadata': {'text': '236 CH 10 TOOLS FOR STATISTICAL GENETICS\\nLastly, Bayesian methods allow the consideration of multiple QTLs, QTL positions\\nand QTL strengths (Jansen, 1996; Satagopan et al. , 1996; Uimari et al. , 1996; Sillanpaa\\nand Arjas, 1998, Borevitz et al. , 2002). Multimapper (Sillanpaa, 1998), for example,\\nallows the automatic building of models of multiple QTLs within the same linkage\\ngroup. It is designed to work as a companion program to QTL Cartographer (Basten', 'title': '2007 - Bioinformatics_for_Geneticists.pdf', 'version': 'v0', 'chunk_order': 1433, 'document_id': '4ea8e1a8-e113-5f02-ad78-880b9c51a101', 'extraction_id': '52bb366e-161f-51fd-a5a2-bef21f1b4c01', 'associatedQuery': 'what are the bioinformatics tools for QTLs analysis?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_15\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZKiurNCvLvQlfZEPvqlUva8Sekv', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'The statistical approaches for QTLs (Quantitative Trait Loci) analysis include several methodologies and techniques. Here are some of the key approaches mentioned in the provided context:\\n\\n1. **Hidden Markov Model (HMM)**: This approach is used to calculate QTL genotype probabilities, simulate from the joint genotype distribution, and calculate the most likely sequence of underlying genotypes, all conditional on the observed marker data [1].\\n\\n2. **Composite Interval Mapping (CIM)**: This method is available in the R/qtl package and is used for QTL mapping [2].\\n\\n3. **Haley-Knott Regression**: Another method available in the R/qtl package, used for QTL analysis [2].\\n\\n4. **Log of the Odds (LOD) Scores Calculation**: The scanone function in R/qtl is used to calculate LOD scores, which are essential for identifying QTLs [2].\\n\\n5. **Permutation Analysis**: This technique is used to establish the significance threshold for each phenotype, ensuring that the identified QTLs are statistically significant [2].\\n\\n6. **Additive and Interactive Covariates**: These can be added to the model to account for additional sources of variation in the data [2].\\n\\n7. **Regression Method**: One of the commonly used methods for linkage analysis in QTL studies [7].\\n\\n8. **Likelihood Method**: Another method used for linkage analysis in QTL studies [7].\\n\\n9. **Variance Component Method**: This method is also used for linkage analysis in QTL studies [7].\\n\\n10. **Bayesian Method**: A method used for linkage analysis, which can also be used to check significant thresholds using Bayesian factors [7].\\n\\n11. **Bootstrapping**: This method is preferred for checking confidence intervals in QTL analysis [7].\\n\\nThese approaches provide a comprehensive toolkit for conducting QTL analysis, allowing researchers to identify and validate QTLs effectively.', 'role': 'assistant'}}], 'created': 1727797448, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 393, 'prompt_tokens': 1245, 'total_tokens': 1638}}, 'search_results': {'vector_search_results': [{'id': '5db68dae-9dc1-5065-b61f-067ba20b6e19', 'score': 0.6621682651934161, 'metadata': {'text': 'Methods 31 \\nstatistical language/software R (R DEVELOPMENT CORE TEAM 2008) . The core of R/qtl is a set \\nof functions that make use of the hidden Markov model (HMM) technology to calculate QTL \\ngenotype probabilities, to simulate from the joint genotype distribution and to calculate the \\nmost likely sequence of underlying genotypes (all conditional on the observed marker data) \\n(BROMAN et al. 2003) . R/qtl also calculates several functio ns that are useful for a quality', 'title': '2009 - Identification of Quantitative Trait Loci in Alcoholism.pdf', 'version': 'v0', 'chunk_order': 174, 'document_id': '11c67421-d1e1-5bde-bf97-3e313232fec7', 'extraction_id': '59e1cde3-dd67-55c0-aceb-0d4dbf22ed4d', 'associatedQuery': 'what are the statistical approaches for qtls analysis?'}}, {'id': 'e5fcabd8-0d42-5aa4-bebb-a355493e8ced', 'score': 0.6454146908100067, 'metadata': {'text': 'A variety of analytical methodologies are available in the R/qtl package, including,\\ne.g., composite interval mapping or Haley-Knott regression (see Ref. 42for discussion).\\nThe scanone function in R/qtl is used to calculate log of the odds (LOD) scores. Per-\\nmutation analysis (perm 1000) is used to establish the signi cance threshold for each\\nphenotype ( P<.05). Additive and/or interactive covariates can be added to the model', 'title': '2018 - Reduced complexity cross design for behavioral genetics.pdf', 'version': 'v0', 'chunk_order': 89, 'document_id': 'b6797de4-6bdf-52ae-a848-d8fc4f048587', 'extraction_id': 'd18c973d-30ee-5069-a101-b4d3000333eb', 'associatedQuery': 'what are the statistical approaches for qtls analysis?'}}, {'id': '8efc851d-4fd4-5355-946a-4e183083eadd', 'score': 0.6399780702584478, 'metadata': {'text': 'WebQTL (Chesler et al. 2003; http://www.web-\\nqtl.org/home.html), because each has some uniquecapabilities.\\nR/qtl is an interactive environment for mapping\\nQTLs in experimental crosses, implemented as anadd-on package for the freely available statisticallanguage/software R. Empirical significance valuesare calculated by permutation tests by comparing\\nthe peak likelihood ratio statistic (LRS) obtained\\nfrom 1000 permutations (Churchill and Doerge1994). The permutation test results of highly sig-', 'title': '2005 - Genetics of body weight in the LXS recombinant inbred mouse strains.pdf', 'version': 'v0', 'chunk_order': 30, 'document_id': '1a5be6d7-d1b8-5405-a0cb-696a5eb6a0f1', 'extraction_id': 'def0e506-3ca4-5a7f-8a4d-5968e2a36f1e', 'associatedQuery': 'what are the statistical approaches for qtls analysis?'}}, {'id': 'fef212bc-631b-591d-b8e3-d1523da0507d', 'score': 0.6275216563033081, 'metadata': {'text': 'The basic pr emise of QTL an alysis is simple (Ph illips and Belknap,\\n2002 ) . First, one must meas ure a speci c phen otype within a popul ation.\\nNext, the population must be genotyped at a hundred or more marker loci186 Boehm II et al.', 'title': '2006 - From_gene_to_behavior_and_back_again_new.pdf', 'version': 'v0', 'chunk_order': 129, 'document_id': '7a088b36-11b7-5379-bfe5-ce571e11de07', 'extraction_id': '64c0287d-aeea-52eb-a074-e9591c5593ae', 'associatedQuery': 'what are the statistical approaches for qtls analysis?'}}, {'id': '9dc3af1c-27a0-5527-b788-719c3ff01cd4', 'score': 0.6269023231595088, 'metadata': {'text': 'analyses on whole assays of (molecular) phenotypesas a batch. This enables genetical genomics studieswithout waiting times. TIQS is particularly strong inusing a cloud for large scale computing while\\nxQTL uses pbs based traditional clusters and is\\nmore developed for data management and definitionof new analyses, so the desire is to work together.Both systems use R as the back-end language for dataanalysis in all platforms, which will enable transfer of\\nanalysis protocols between experiments and insti-', 'title': '2012 - Bioinformatics tools and database resources for systems genetics analysis in mice—a short review and an evaluation of future needs.pdf', 'version': 'v0', 'chunk_order': 41, 'document_id': '4bb4798b-3969-5448-ac4b-13c1b8506268', 'extraction_id': '88873c88-94cd-5caf-b675-a99f0ae6235f', 'associatedQuery': 'what are the statistical approaches for qtls analysis?'}}, {'id': '4940ec57-f3dc-55f7-9cfa-71f1e5b66287', 'score': 0.624549508094792, 'metadata': {'text': 'tional protocols to analyse all expression, proteomicsand metabolomics QTLs on marker maps of everincreasing density. These should include web accesstools for both experts and non-experts in sophisti-cated statistics analysis and high performance\\ncomputing.\\nThe interactive QTL System (TIQS) (http://eqtl\\n.berlios.de) is a web application that guides its usersthrough the analysis steps needed. It maximizes the\\ndistribution of computational effort (supporting trad-', 'title': '2012 - Bioinformatics tools and database resources for systems genetics analysis in mice—a short review and an evaluation of future needs.pdf', 'version': 'v0', 'chunk_order': 36, 'document_id': '4bb4798b-3969-5448-ac4b-13c1b8506268', 'extraction_id': '88873c88-94cd-5caf-b675-a99f0ae6235f', 'associatedQuery': 'what are the statistical approaches for qtls analysis?'}}, {'id': '280734af-e950-5339-b984-8718e98448ad', 'score': 0.62187024224578, 'metadata': {'text': 'four commonly used methods for doing a linkage analysis, namely; regression method, likelihood method, variance component method and Bayesian method. For statistical purpose, to check significant thresholds, either permutation test or Bayesian factors are used and for confidence interval check, bootstrapping is the preferred method. For our study, we use WebQTL for QTL mapping. WebQTL (http://webqtl.org) uses interval mapping, to estimate the position of QTLs across a chromosome (Wang et al., 2003,', 'title': '2012 - Genetic regulation of adult hippocampal neurogenesis A systems genetics approach using BXD recombinant inbred mouse strains.pdf', 'version': 'v0', 'chunk_order': 181, 'document_id': 'c54da858-9620-588e-8e41-76a960af2ff6', 'extraction_id': '17184903-e412-5545-8dfc-c17e31f5201b', 'associatedQuery': 'what are the statistical approaches for qtls analysis?'}}, {'id': '9ee9d05e-d3fb-5dd7-b1b5-9862c1894099', 'score': 0.6184561068279736, 'metadata': {'text': 'MultiQTL software package, version 2.5 (www.multiqtl.com), aspreviously described in detail (37). In brief, for initial analysis, weused by default an unrestricted model. When the results suggested thepresence of a QTL, we attempted to t the simplest and statisticallyjustied model (dominant, recessive, or additive effect) by comparingit with the nonrestricted model and replacing it if the difference wasnonsignicant. When applicable, we utilized the single-trait, multi-trait, and multienvironment analyses', 'title': '2007 - Metabolic and genomic dissection of diabetes in the Cohen rat.pdf', 'version': 'v0', 'chunk_order': 33, 'document_id': 'ce608956-7efb-5ce8-ab42-400075d012bb', 'extraction_id': 'a20d5dd5-6dd1-54ab-8c52-647fdf644ae7', 'associatedQuery': 'what are the statistical approaches for qtls analysis?'}}, {'id': '7e038f11-0794-5424-9465-eb0034442369', 'score': 0.6184561068279736, 'metadata': {'text': 'MultiQTL software package, version 2.5 (www.multiqtl.com), aspreviously described in detail (37). In brief, for initial analysis, weused by default an unrestricted model. When the results suggested thepresence of a QTL, we attempted to t the simplest and statisticallyjustied model (dominant, recessive, or additive effect) by comparingit with the nonrestricted model and replacing it if the difference wasnonsignicant. When applicable, we utilized the single-trait, multi-trait, and multienvironment analyses', 'title': '2007 - Metabolic and genomic dissection of diabetes.pdf', 'version': 'v0', 'chunk_order': 36, 'document_id': '5503f978-238f-59bc-ad3f-f500eb712aef', 'extraction_id': '1aa37aaa-5635-57a5-b8d4-2dd9fa17d028', 'associatedQuery': 'what are the statistical approaches for qtls analysis?'}}, {'id': '9a2b996d-7480-57e8-9c6a-da084c4be200', 'score': 0.6168286432726011, 'metadata': {'text': 'R/QTL [35] is an R package which includes many func tions for mapping, including \\nan algorithm to infer missing genotype data using H idden Markov Models. Gene- \\nNetwork (www.genenetwork.org [11]) also offers eQTL analysis for user uploaded \\ndata, one trait at a time, and genome-wide analysis tools for a number of published \\ndatasets. \\n \\n4. Alternative Illumina data pre-processing \\nCompared with Affymetrix for example, Illumina is a relatively new technology and', 'title': '2011 - Genetical genomics approaches for systems genetics.pdf', 'version': 'v0', 'chunk_order': 284, 'document_id': 'de78a01d-8d03-5afb-af5b-ce2ed2167766', 'extraction_id': 'fb1b1f9d-81a6-59b2-b31c-80a5940d8b3f', 'associatedQuery': 'what are the statistical approaches for qtls analysis?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_16\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZKtYz4STZ5YGDkrchFPqAthSpVB', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': '### How-to Guide for GWAS Analysis\\n\\nGenome-Wide Association Studies (GWAS) are a powerful tool for identifying genetic variants associated with traits or diseases. Below is a step-by-step guide to performing a GWAS analysis:\\n\\n#### Step 1: Preliminary Genome-Wide Analysis and Data Preprocessing\\n1. **Sample Collection**: Collect thousands of samples characterized for the phenotype of interest. This can be done using continuous measurements or dichotomous classification as a case (affected) or control (unaffected) [2].\\n2. **Genotyping**: Perform large-scale genotyping using commercially available chips such as Affymetrix or Illumina [9].\\n3. **Data Formatting**: Prepare the GWAS genotype data by generating bed, bim, and fam files using tools like PLINK [5].\\n\\n#### Step 2: Identifying Gene-Set Definitions\\n1. **Gene-Set Identification**: Identify gene-set definitions whose patterns need to be recognized [4].\\n\\n#### Step 3: Processing Genomic Data\\n1. **Filtering and Identifying Gene Patterns**: Process the genomic data by filtering and identifying gene patterns [4].\\n2. **Intermediate Datasets**: Generate intermediate datasets that integrate original GWAS p-values, rsID, position, and chromosome column for each SNP [8].\\n\\n#### Step 4: Statistical Analysis\\n1. **Association Testing**: Perform statistical analysis, typically using linear or logistic regression, to test the association of each SNP against the phenotype, including relevant covariate variables [2].\\n2. **Gene-Wise P-Values**: Calculate gene-wise p-values from the raw SNP p-values using programs like VEGAS2 or KGG [1].\\n\\n#### Step 5: Aggregating GWAS Data\\n1. **Gene-Based Approaches**: Aggregate GWAS data into biological units using gene-based approaches to reduce the multiple testing burden. This involves deriving p-values for association at the level of the gene [7].\\n\\n#### Step 6: Assessing Statistical Magnitude\\n1. **Statistical Hypothesis**: Identify gene set analysis models and assess the statistical magnitude of the associations [4].\\n\\n#### Step 7: Constructing Gene Networks\\n1. **Enhancing GWAS Results**: Construct gene networks to enhance GWAS results. This involves identifying DNA markers that associate with the expression of one or more genes [6].\\n\\nBy following these steps, you can systematically perform a GWAS analysis to identify genetic variants associated with your trait or disease of interest.', 'role': 'assistant'}}], 'created': 1727797459, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 509, 'prompt_tokens': 1188, 'total_tokens': 1697}}, 'search_results': {'vector_search_results': [{'id': '1b947a05-d204-5524-b7a6-4ddce62449f8', 'score': 0.6336905578559315, 'metadata': {'text': '1. Formatting genome wide association study (GWAS) data . For this step, a \\nhuman GWAS results file is needed that contains SNP names and raw p-\\nvalues for the association of each SNP with a trait of interest. Because the \\nnodes of the dmGWAS network will represent genes, as opposed to SNPs, \\ngene-wise p-values need to be calculated from the raw SNP p-values. This \\ncan be accomplished by using programs like VEGAS2 (Versatile Gene-\\nBased Association Study) [ 10] or KGG (Knowledge-based mining system', 'title': '2017 - INTEGRATIVE ANALYSIS OF GENETIC, GENOMIC AND PHENOTYPIC DATA FOR ETHANOL BEHAVIORS A NETWORK-BASED PIPELINE FOR IDENTIFYING MECHANISMS AND POTENTIAL DRUG TARGETS.pdf', 'version': 'v0', 'chunk_order': 66, 'document_id': '0e2a1075-1e04-5097-b87f-3ca41d55e025', 'extraction_id': 'cc02b251-60c5-571f-9ff8-ef64c61eee5a', 'associatedQuery': 'Create a how-to guide for GWAS analysis?'}}, {'id': '47097a55-da1c-5802-8ee7-549e16db2927', 'score': 0.6262726783752441, 'metadata': {'text': 'A general outline for GWAS is provided in Figure 2. These studies usually begin\\nwith thousands of individuals who are charact erized for the phenotype of interest using\\ncontinuous measurements, or dichotomous classi fication as a case (affected) or control\\n(unaffected). Statistical analysis, typically us ing linear or logistic regression, tests the\\nassociation of each SNP against the phenotype (including relevant covariate variables) to', 'title': '2008 - The Environmental Genome Project Reference Polymorphisms for Drug Metabolism Genes and Genome Wide Association Studies.pdf', 'version': 'v0', 'chunk_order': 52, 'document_id': '15e4c746-42a2-598b-992f-dfbf468865ed', 'extraction_id': '0f19f50f-ee04-5e99-8547-8a7e71a1dd9c', 'associatedQuery': 'Create a how-to guide for GWAS analysis?'}}, {'id': '1dbbef8d-ece1-534d-a3f0-0cc46024cae6', 'score': 0.6162755489349365, 'metadata': {'text': 'GWAS has also provided polygenic characteristics of diseases. Figure 1 presents a block \\nof GWAS in disease prediction. There are many steps during a gene-set analysis. They are \\nshown below as Steps 1 through Step 6: \\nStep 1: Preliminary genome-wide analysis and data preproces sing; \\nStep 2: Identifying gene-set definitions whose patterns have to be recognized; \\nStep 3: Processing genomic data such as filtering and ident ifying gene patterns;', 'title': '2022 - Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data.pdf', 'version': 'v0', 'chunk_order': 68, 'document_id': 'be0e50e0-3de8-53c5-8126-a0b618647f80', 'extraction_id': '200d489e-301f-50bc-9870-260894c8fc41', 'associatedQuery': 'Create a how-to guide for GWAS analysis?'}}, {'id': '0b7e9c6d-60e3-5d66-b23f-8222b327d91e', 'score': 0.609818160533905, 'metadata': {'text': 'GWAS in disease prediction. There are many steps during a gene-set analysis. They are\\nshown below as Steps 1 through Step 6:\\nStep 1: Preliminary genome-wide analysis and data preprocessing;\\nStep 2: Identifying gene-set denitions whose patterns have to be recognized;\\nStep 3: Processing genomic data such as ltering and identifying gene patterns;\\nStep 4: Identify gene set analysis models, such as identifying the statistical hypothesis;\\nStep 5: Assessing the statistical magnitude;', 'title': '2022 - Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data.pdf', 'version': 'v0', 'chunk_order': 65, 'document_id': 'be0e50e0-3de8-53c5-8126-a0b618647f80', 'extraction_id': '6b4157fa-dcf0-5b70-b508-38ffb5fcda8d', 'associatedQuery': 'Create a how-to guide for GWAS analysis?'}}, {'id': '43aa64fe-556a-5938-a489-fff5aac6829d', 'score': 0.6079410314559937, 'metadata': {'text': 'include: 1) generate bed, bimand fam files for GWAS genotype data using PLINK; 2) generategrm.gz and grm.id files using make-grm; 3) prepare a', 'title': '2013 - Genome-Wide Contribution of Genotype by Environment Interaction.pdf', 'version': 'v0', 'chunk_order': 27, 'document_id': '8c310d76-0a3b-574c-9859-859258870ee5', 'extraction_id': '5ade83ec-421a-58be-ac06-c9076076483c', 'associatedQuery': 'Create a how-to guide for GWAS analysis?'}}, {'id': '6e7cd04d-d23a-5a7d-a0cd-7958608010f2', 'score': 0.6048469778986597, 'metadata': {'text': '7 Constructing Gene Networks to Enhance GWAS\\nand GOGE Results\\nAs discussed, generating a GOGE data set and performing a rst-pass analysis on\\nthis scale of data is a major undertaking. The identication of or other DNA markersthat associate with the expression of one or more genes is a primary goal of a GOGE\\nstudy. However, if analysis of GOGE data stopped at the identication of SNPs\\nthat associate with expression, the true v alue of these data would not be realized.', 'title': '2009 - Processing Large-Scale, High-Dimension Genetic and Gene Expression Data.pdf', 'version': 'v0', 'chunk_order': 95, 'document_id': '17264155-b665-59db-94cb-f4d67eac20fc', 'extraction_id': '1d401588-b6dc-532f-8194-4667a7d31153', 'associatedQuery': 'Create a how-to guide for GWAS analysis?'}}, {'id': '3a9e43ef-294d-5b1b-b4f9-62fa70064045', 'score': 0.6045137283495837, 'metadata': {'text': 'Aggregating GWAS data into biological units\\nGWAS data can be further combined into biological units using gene and network-based \\napproaches.\\nGene-based approaches\\nThere is a high multiple testing burden in the context of a GWAS. Gene-based approaches, \\nwhich aggregate across summary statistics derived from association analyses of multiple loci \\nto derive p-values for association at the level of the gene, developed as one way to reduce', 'title': '2019 - Beyond Genome-wide Significance Integrative Approaches to the Interpretation and Extension of GWAS Findings for Alcohol Use Disorder.pdf', 'version': 'v0', 'chunk_order': 28, 'document_id': 'f59b3e10-a887-5708-b520-c5e8adb48dcd', 'extraction_id': 'bca29f20-2764-5d16-888e-3af671c9d8b0', 'associatedQuery': 'Create a how-to guide for GWAS analysis?'}}, {'id': 'b4a50b95-3a61-5495-b8b2-c18f8edcaa8f', 'score': 0.598755955696106, 'metadata': {'text': 'Steps involved inthegene-based association testwere described asbelow: 1)Generating\\nintermediate datasets which integrate original GWAS Pvalues, rsID, position and chromo-\\nsome column foreach SNP. Atotal of6,559,815 European-specific and 5,351,262 Asian-spe-\\ncific autosomal SNPs were used forsubsequent analysis after excluding theSNPs that could\\nnotberecognized byKGG and that located insexchromosomes (XorY);2)Defining asetof', 'title': '2016- Gene-Based Genome-Wide Association.pdf', 'version': 'v0', 'chunk_order': 20, 'document_id': '8cb14287-762d-5366-8ad9-3d638f02d0d6', 'extraction_id': 'db605926-64e1-5fc5-ac90-22f0f33b2a50', 'associatedQuery': 'Create a how-to guide for GWAS analysis?'}}, {'id': '5e4b2bf5-f842-5c20-8031-48a29fd3d25a', 'score': 0.5979727684847348, 'metadata': {'text': '248 M. J. RIEDER ET AL.\\nFigure 2 An overview of GWAS. Samples with a phenotype(s) or trait(s) of interest are identified; typically,\\nthousands of samples are required to achieve appropri ate statistical power. Large-scale genotyping is carried\\nout using commercially available chips (Affymetrix or Illumina). P-values are generated from the associa-\\ntion between the phenotype and genotype for each SNP tested. Highly associated SNPs will typically cluster', 'title': '2008 - The Environmental Genome Project Reference Polymorphisms for Drug Metabolism Genes and Genome Wide Association Studies.pdf', 'version': 'v0', 'chunk_order': 54, 'document_id': '15e4c746-42a2-598b-992f-dfbf468865ed', 'extraction_id': '1b1aabee-8555-5ba8-b147-7f250fdcbc6b', 'associatedQuery': 'Create a how-to guide for GWAS analysis?'}}, {'id': '619bcf7e-2724-571a-ba3c-4214ff014f21', 'score': 0.5941306352615356, 'metadata': {'text': '2006).\\n40. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait\\nassociations. Nucleic Acids Res. 42,D1001D1006 (2014).41. Wang, X. et al. Comparing methods for performing trans-ethnic meta-analysis\\nof genome-wide association studies.\\nHum. Mol. Genet. 22,23032311 (2013).\\n42. Purcell, S. et al. PLINK: a tool set for whole-genome association and\\npopulation-based linkage analyses. Am. J. Hum. Genet. 81,559575 (2007).', 'title': '2015 - Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.pdf', 'version': 'v0', 'chunk_order': 134, 'document_id': 'ea82333b-b64c-5416-9843-2e3ffeb1902a', 'extraction_id': '0127b2c2-37b8-580d-b974-a2e3c69015ab', 'associatedQuery': 'Create a how-to guide for GWAS analysis?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_17\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZL3IjE1j3CPp4KvVU6JGEtG2NTv', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': \"### How-to Guide for Genetic Sequencing\\n\\nGenetic sequencing is a powerful tool used to determine the order of nucleotides in DNA. This guide will walk you through the basic steps involved in genetic sequencing, referencing specific resources for further information.\\n\\n#### Step 1: Sample Preparation\\n1. **Collect DNA Sample**: Obtain a DNA sample from the organism or tissue of interest. This can be done using various methods such as blood draws, buccal swabs, or tissue biopsies.\\n2. **Extract DNA**: Use a DNA extraction kit to isolate DNA from the collected sample. Ensure the DNA is of high quality and free from contaminants.\\n\\n#### Step 2: Library Preparation\\n1. **Fragment DNA**: Break the DNA into smaller fragments. This can be done using mechanical shearing or enzymatic digestion.\\n2. **Add Adapters**: Ligate specific adapters to the ends of the DNA fragments. These adapters are necessary for the sequencing process and often contain barcodes for sample identification [6].\\n\\n#### Step 3: Amplification\\n1. **PCR Amplification**: Amplify the DNA fragments using Polymerase Chain Reaction (PCR). This step increases the quantity of DNA to ensure there is enough material for sequencing.\\n\\n#### Step 4: Sequencing\\n1. **Choose a Sequencing Platform**: Select an appropriate sequencing platform based on your needs. Popular platforms include Illumina, Ion Torrent, Pacific Biosciences, and Oxford Nanopore Technologies [1], [4], [7].\\n2. **Load the Sample**: Load the prepared DNA library onto the sequencing machine. Follow the manufacturer's instructions for your specific platform.\\n\\n#### Step 5: Data Acquisition\\n1. **Run the Sequencer**: Start the sequencing run. The machine will read the nucleotide sequences of the DNA fragments and generate raw data.\\n2. **Monitor the Run**: Keep an eye on the sequencing run to ensure it is proceeding correctly. Some platforms provide real-time monitoring capabilities [6].\\n\\n#### Step 6: Data Analysis\\n1. **Base Calling**: Use base-calling software to convert raw sequencing data into nucleotide sequences. Tools like Phred are commonly used for this purpose [8].\\n2. **Sequence Assembly**: Assemble the short reads into longer contiguous sequences (contigs) using assemblers like Phrap or CAP3 [8].\\n3. **Data Interpretation**: Analyze the assembled sequences to identify genetic variants, structural variations, and other genomic features. This step may involve bioinformatics tools and databases [10].\\n\\n#### Step 7: Validation and Reporting\\n1. **Validate Results**: Confirm the accuracy of your sequencing results using additional methods such as Sanger sequencing or quantitative PCR.\\n2. **Report Findings**: Compile your findings into a comprehensive report. Include details about the methods used, the quality of the data, and any significant genetic variations identified.\\n\\n#### Further Information\\nFor more detailed information on specific sequencing technologies and platforms, refer to the following resources:\\n- [10X Genomics](http://www.10xgenomics.com)\\n- [Illumina](http://www.illumina.com)\\n- [Ion Torrent](https://www.thermofisher.com/us/en/home/brands/ion-torrent.html)\\n- [Pacific Biosciences](http://www.pacb.com)\\n- [Oxford Nanopore Technologies](https://www.nanoporetech.com) [1]\\n\\nBy following these steps and utilizing the referenced resources, you can successfully perform genetic sequencing and analyze the resulting data.\", 'role': 'assistant'}}], 'created': 1727797469, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 719, 'prompt_tokens': 1499, 'total_tokens': 2218}}, 'search_results': {'vector_search_results': [{'id': '98010acc-fd11-5d33-bced-626ef29f2896', 'score': 0.5950793382572744, 'metadata': {'text': 'FURTHER INFORMATION\\n10X Genomics: http://www.10xgenomics.com\\n454 Sequencing: http://www.454.com\\nAdvances in Genome Biology and Technology (AGBT): \\nhttp://www.agbt.org\\nBGISEQ500: http://seq500.com/en/portal/Sequencer.shtml\\nIllumina: http://www.illumina.com\\nIon Torrent: https://www.thermofisher.com/us/en/home/\\nbrands/ion-torrent.html\\nOxford Nanopore Technologies: https://www.nanoporetech.\\ncom\\nPacific Biosciences: http://www.pacb.com\\nPersonal Genome Project: http://www.personalgenomes.org', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 271, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'cad1dcca-621d-5003-ba3a-81950819bc52', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '13a6b6f9-4a9a-5eb9-ac79-d986d9e613f0', 'score': 0.5900514233173637, 'metadata': {'text': '22. Karow, J. Qiagen launches GeneReader NGS System \\natAMP; presents performance evaluation by broad. \\nGenomeWeb [online], https:// www.genomeweb.com/\\nmolecular-diagnostics/qiagen-launches-genereader-\\nngs-system-amp-presents-performance-evaluation \\n(4Nov 2015).\\n23. Smith,D.R. & McKernan,K. Methods of producing \\nand sequencing modified polynucleotides . US Patent \\n8058030 (2011).\\n24. Margulies,M. etal. Genome sequencing in \\nmicrofabricated high-density picolitre reactors. Nature \\n437, 376380 (2005).', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 216, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '5da5fc5d-1fe6-58f0-9141-72b9b2996fff', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '8477a774-dddb-5541-b8d7-d51a7e56b0af', 'score': 0.5885502696037335, 'metadata': {'text': '36. Sequencing, H.G. Finishing the euchromatic sequence of the human genome. Nature 2004 ,431, 931945.\\n37. Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 2016 ,107,\\n18. [CrossRef]\\n38. Rothberg, J.M.; Leamon, J.H. The development and impact of 454 sequencing. Nat. Biotechnol. 2008 ,26,\\n11171124. [CrossRef] [PubMed]\\n39. Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008 ,26, 11351145. [CrossRef]\\n[PubMed]', 'title': '2020 - Precision and Personalized Medicine How Genomic.pdf', 'version': 'v0', 'chunk_order': 180, 'document_id': 'cd11028a-933b-52a0-9534-c173323056ef', 'extraction_id': 'de09f30d-e9ba-5379-8c7a-85b2cd2ed6c8', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': 'd2540614-9397-5e3e-8b5f-ad328ca973b2', 'score': 0.5810342181345365, 'metadata': {'text': 'sequencing. Genome Res. 20, 11651173 (2010).\\n64. English,A.C. etal. Assessing structural variation in a \\npersonal genome-towards a human reference diploid \\ngenome. BMC Genomics 16, 286 (2015).\\n65. Carneiro,M.O. etal. Pacific Biosciences sequencing \\ntechnology for genotyping and variation discovery in \\nhuman data. BMC Genomics 13, 375 (2012).\\n66. Quail,M.A. etal. A tale of three next generation \\nsequencing platforms: comparison of Ion T orrent, \\nPacific Biosciences and Illumina MiSeq sequencers.', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 235, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '4cdf13c0-c505-5ff9-9a6e-b10e5d1c8819', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '1e324977-2ca5-5062-8a09-7659d516e899', 'score': 0.5750640973486969, 'metadata': {'text': 'sequencing. Bioinformatics 31, 20402042 (2015).\\n46. Qiagen. Oncology insights enabled by knowledge base-\\nguided panel design and the seamless workflow of the \\nGeneReader NGS system Press Release. Qiagen \\n[online], http://www.genereaderngs.com/PROM-9192-\\n001_1100403_WP_GeneReader_NGS_0116_NA.pdf \\n(2016).\\n47. Forgetta,V. etal. Sequencing of the Dutch elm disease \\nfungus genome using the Roche/454 GS-FLX Titanium \\nSystem in a comparison of multiple genomics core', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 226, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '5da5fc5d-1fe6-58f0-9141-72b9b2996fff', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': 'a2d9c614-903d-513a-ad88-5a40f3534988', 'score': 0.5712476287407545, 'metadata': {'text': 'for sequencing on existing short-read instrumentation, \\nafter which data are split by barcode and reassembled \\nwith the knowledge that fragments sharing barcodes Barcodes\\nA series of known bases \\naddedto a template molecule \\neither through ligation or \\namplification. After \\nsequencing, these barcodes \\ncan be used to identify which \\nsample a particular read is \\nderived from.\\nFigure 5 | Real-time and synthetic long-read sequencing approaches.', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 143, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'c91e328e-4a01-5952-85b8-d7b5b47237c5', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '97f2aa12-623b-53ec-9793-5834311a37dd', 'score': 0.568690095465786, 'metadata': {'text': '160. Glenn,T .C. Field guide to next-generation DNA \\nsequencers. Mol. Ecol. Resour. 11, 759769 (2011).\\n161. Karow,J. At AGBT , 10X Genomics launches GemCode \\nplatform; shipments slated for Q2 as firm battles IP \\nlawsuits. GenomeWeb [online], https://www.\\ngenomeweb.com/sample-prep/agbt-10x-genomics-\\nlaunches-gemcode-platform-shipments-slated-q2-firm-\\nbattles-ip-lawsuits (2Mar 2015).\\nCompeting interests statement\\nThe authors declare competing interests: see Web version for \\ndetails.\\nFURTHER INFORMATION', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 270, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'cad1dcca-621d-5003-ba3a-81950819bc52', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '3e782f01-a06e-51b6-ac8a-0e0a56939d08', 'score': 0.5677847266197245, 'metadata': {'text': 'DNA), and provide the means to link sequences containing applications. First, \\nbase- callers like Phred (4,5) extract raw sequences from raw data. There are \\nalso contig assemblers like Phrap (University of Washington, http://bozeman.\\nmbt.washington.edu/phrap.docs/phrap.html ) or CAP3 (6) that assemble frag-\\nments to contigs and packages like consed (7) or GAP4 (8), which are used to \\nfinish sequencing projects. These programs are not explained in detail here.', 'title': '2008 - Gene Expression Profiling.pdf', 'version': 'v0', 'chunk_order': 2076, 'document_id': '59f3b969-089b-5258-93ad-892dbc9ffa9c', 'extraction_id': 'c14d1c74-a14a-5037-8d3f-f32a60faa9a5', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '199e1929-dc7c-58d4-8c8d-1c931e658e9c', 'score': 0.564137432821837, 'metadata': {'text': 'Nat. Biotechnol. 30, 10331036 (2012).\\n111. Chrystoja,C.C. & Diamandis,E.P . Whole genome \\nsequencing as a diagnostic test: challenges and \\nopportunities. Clin. Chem. 60, 724733 (2014).\\n112. McGuire,A.L. etal. Point-counterpoint. Ethics and \\ngenomic incidental findings. Science 340, 10471048 \\n(2013).\\n113. Bowers,J. etal. Virtual terminator nucleotides for \\nnext-generation DNA sequencing. Nat. Methods 6, \\n593595 (2009).\\n114. Heger,M. Chinas Direct Genomics unveils new', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 251, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '4cdf13c0-c505-5ff9-9a6e-b10e5d1c8819', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': 'd1158643-3625-5855-a03d-eec4ac96eb4d', 'score': 0.5640871524810831, 'metadata': {'text': '11 BIOINFORMATIC CHALLENGES FOR GENOMIC MEDICINE \\n \\n \\nProcessing and managing of high-throughput sequence data \\n \\n High throughput sequencing offers severa l advantages relative to array-based \\ngenotyping or expression assays. First, unlike genotyping arrays, whole genome sequencing is not limited to interrogating onl y known sequence variants. Similarly, RNA-\\nsequencing (RNA-seq) enables expression quanti fication of novel transcripts that are not', 'title': '2015 -Pandey- Functional Analysis of Genomic Variation and Impact on Molecular.pdf', 'version': 'v0', 'chunk_order': 116, 'document_id': '93381e23-494b-5bc2-9d09-ef315506601f', 'extraction_id': 'f4e989e5-c3d0-5d5c-b8c3-95894a14630b', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_18\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZLI3pesAhKfrcor9tw6wwv6rY5l', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': \"### How-to Guide for Genetic Sequencing\\n\\nGenetic sequencing is a powerful tool used to determine the order of nucleotides in DNA. This guide will walk you through the basic steps involved in genetic sequencing, referencing specific sources for more detailed information.\\n\\n#### Step 1: Sample Preparation\\n1. **DNA Extraction**: Begin by extracting DNA from your sample. This can be done using various commercial kits or standard laboratory protocols.\\n2. **DNA Quantification and Quality Check**: Measure the concentration and purity of the extracted DNA using spectrophotometry or fluorometry. Ensure the DNA is of high quality and free from contaminants.\\n\\n#### Step 2: Library Preparation\\n1. **Fragmentation**: Fragment the DNA into smaller pieces. This can be achieved through mechanical shearing, enzymatic digestion, or sonication.\\n2. **End Repair and A-tailing**: Repair the fragmented DNA ends and add an adenine (A) base to the 3' ends to prepare them for adapter ligation.\\n3. **Adapter Ligation**: Ligate sequencing adapters to the ends of the DNA fragments. These adapters are necessary for the fragments to bind to the sequencing platform.\\n\\n#### Step 3: Amplification and Enrichment\\n1. **PCR Amplification**: Amplify the adapter-ligated DNA fragments using polymerase chain reaction (PCR). This step increases the quantity of DNA available for sequencing.\\n2. **Size Selection**: Select DNA fragments of the desired size range using gel electrophoresis or magnetic beads.\\n\\n#### Step 4: Sequencing\\n1. **Loading the Sequencer**: Load the prepared DNA library onto the sequencing platform. Popular platforms include Illumina, Ion Torrent, and Pacific Biosciences [6], [9].\\n2. **Sequencing Run**: Initiate the sequencing run. The platform will read the nucleotide sequences of the DNA fragments and generate raw sequence data [1], [5].\\n\\n#### Step 5: Data Processing\\n1. **Base Calling**: Convert raw data into nucleotide sequences using base-calling software such as Phred [10].\\n2. **Sequence Assembly**: Assemble the short DNA sequences into longer contiguous sequences (contigs) using software like Phrap or CAP3 [10].\\n3. **Quality Control**: Assess the quality of the assembled sequences and remove any errors or low-quality reads.\\n\\n#### Step 6: Data Analysis\\n1. **Variant Calling**: Identify genetic variants such as single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) using variant calling software.\\n2. **Annotation**: Annotate the identified variants to understand their potential impact on gene function and association with diseases.\\n\\n#### Step 7: Interpretation and Reporting\\n1. **Bioinformatics Analysis**: Use bioinformatics tools to interpret the sequencing data in the context of the research question or clinical application [3], [4].\\n2. **Report Generation**: Generate a comprehensive report summarizing the findings, including identified variants and their potential implications.\\n\\n#### Additional Resources\\n- For a detailed history and development of sequencing technologies, refer to Heather and Chain's review [1].\\n- For information on specific sequencing platforms and their comparisons, see Quail et al. [6].\\n- For best practices in sequencing and data management, consult Olson et al. [5].\\n\\nBy following these steps, you can successfully perform genetic sequencing and analyze the resulting data to gain valuable insights into the genetic makeup of your samples.\", 'role': 'assistant'}}], 'created': 1727797484, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_c17d3befe7', 'usage': {'completion_tokens': 707, 'prompt_tokens': 1513, 'total_tokens': 2220}}, 'search_results': {'vector_search_results': [{'id': '8477a774-dddb-5541-b8d7-d51a7e56b0af', 'score': 0.5945478323371521, 'metadata': {'text': '36. Sequencing, H.G. Finishing the euchromatic sequence of the human genome. Nature 2004 ,431, 931945.\\n37. Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 2016 ,107,\\n18. [CrossRef]\\n38. Rothberg, J.M.; Leamon, J.H. The development and impact of 454 sequencing. Nat. Biotechnol. 2008 ,26,\\n11171124. [CrossRef] [PubMed]\\n39. Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008 ,26, 11351145. [CrossRef]\\n[PubMed]', 'title': '2020 - Precision and Personalized Medicine How Genomic.pdf', 'version': 'v0', 'chunk_order': 180, 'document_id': 'cd11028a-933b-52a0-9534-c173323056ef', 'extraction_id': 'de09f30d-e9ba-5379-8c7a-85b2cd2ed6c8', 'associatedQuery': 'Create a how-to guide for genetic sequencing.'}}, {'id': '13a6b6f9-4a9a-5eb9-ac79-d986d9e613f0', 'score': 0.5830697168749412, 'metadata': {'text': '22. Karow, J. Qiagen launches GeneReader NGS System \\natAMP; presents performance evaluation by broad. \\nGenomeWeb [online], https:// www.genomeweb.com/\\nmolecular-diagnostics/qiagen-launches-genereader-\\nngs-system-amp-presents-performance-evaluation \\n(4Nov 2015).\\n23. Smith,D.R. & McKernan,K. Methods of producing \\nand sequencing modified polynucleotides . US Patent \\n8058030 (2011).\\n24. Margulies,M. etal. Genome sequencing in \\nmicrofabricated high-density picolitre reactors. Nature \\n437, 376380 (2005).', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 216, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '5da5fc5d-1fe6-58f0-9141-72b9b2996fff', 'associatedQuery': 'Create a how-to guide for genetic sequencing.'}}, {'id': 'd1158643-3625-5855-a03d-eec4ac96eb4d', 'score': 0.5805294167679906, 'metadata': {'text': '11 BIOINFORMATIC CHALLENGES FOR GENOMIC MEDICINE \\n \\n \\nProcessing and managing of high-throughput sequence data \\n \\n High throughput sequencing offers severa l advantages relative to array-based \\ngenotyping or expression assays. First, unlike genotyping arrays, whole genome sequencing is not limited to interrogating onl y known sequence variants. Similarly, RNA-\\nsequencing (RNA-seq) enables expression quanti fication of novel transcripts that are not', 'title': '2015 -Pandey- Functional Analysis of Genomic Variation and Impact on Molecular.pdf', 'version': 'v0', 'chunk_order': 116, 'document_id': '93381e23-494b-5bc2-9d09-ef315506601f', 'extraction_id': 'f4e989e5-c3d0-5d5c-b8c3-95894a14630b', 'associatedQuery': 'Create a how-to guide for genetic sequencing.'}}, {'id': 'cdf2b80f-1509-50a2-9cb2-a36dd6f3f2cc', 'score': 0.580528701512296, 'metadata': {'text': '11 BIOINFORMATIC CHALLENGES FOR GENOMIC MEDICINE \\n \\n \\nProcessing and managing of high-throughput sequence data \\n \\n High throughput sequencing offers severa l advantages relative to array-based \\ngenotyping or expression assays. First, unlike genotyping arrays, whole genome sequencing is not limited to interrogating onl y known sequence variants. Similarly, RNA-\\nsequencing (RNA-seq) enables expression quanti fication of novel transcripts that are not', 'title': '2015 - Functional Analysis of Genomic Variation and Impact on Molecular and Higher Order Phenotypes.pdf', 'version': 'v0', 'chunk_order': 109, 'document_id': '263d327b-f5db-54e4-a215-b3f8a51cd7d6', 'extraction_id': 'fa426831-7c04-56c1-a191-1ebbc35342ed', 'associatedQuery': 'Create a how-to guide for genetic sequencing.'}}, {'id': 'f8ae01ae-cea8-5b8b-95c0-7147055de596', 'score': 0.5799031853675842, 'metadata': {'text': 'High-throughput bacterial genome sequencing: an embarrassment of choice,\\naworldof opportunity.NatRevMicrobiol2012;10:599-606.\\n11.CroucherNJ,DidelotX.Theapplicationof genomicstotracingbacterialpathogen\\ntransmission.CurrOpinMicrobiol2015;23:62-7.\\n12.ShendureJ,JiH.Next-generationDNAsequencing.NatBiotechnol2008;26:1135-\\n45.\\n13.MillerJR,KorenS,SuttonG.Assemblyalgorithmsfornext-generationsequencing\\ndata.Genomics2010;95:315-27.\\n14.OlsonND,LundSP,ColmanRE,FosterJT,SahlJW,SchuppJM,etal.Bestpractices', 'title': '2017 - Infection control in the new age of genomic epidemiology.pdf', 'version': 'v0', 'chunk_order': 106, 'document_id': '8f028916-b990-5e95-b2a6-e69f451cc291', 'extraction_id': '04f06fb6-b2ff-57d4-bac0-de5cf4782ff3', 'associatedQuery': 'Create a how-to guide for genetic sequencing.'}}, {'id': 'd2540614-9397-5e3e-8b5f-ad328ca973b2', 'score': 0.5776035785675049, 'metadata': {'text': 'sequencing. Genome Res. 20, 11651173 (2010).\\n64. English,A.C. etal. Assessing structural variation in a \\npersonal genome-towards a human reference diploid \\ngenome. BMC Genomics 16, 286 (2015).\\n65. Carneiro,M.O. etal. Pacific Biosciences sequencing \\ntechnology for genotyping and variation discovery in \\nhuman data. BMC Genomics 13, 375 (2012).\\n66. Quail,M.A. etal. A tale of three next generation \\nsequencing platforms: comparison of Ion T orrent, \\nPacific Biosciences and Illumina MiSeq sequencers.', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 235, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '4cdf13c0-c505-5ff9-9a6e-b10e5d1c8819', 'associatedQuery': 'Create a how-to guide for genetic sequencing.'}}, {'id': '199e1929-dc7c-58d4-8c8d-1c931e658e9c', 'score': 0.5775302648544312, 'metadata': {'text': 'Nat. Biotechnol. 30, 10331036 (2012).\\n111. Chrystoja,C.C. & Diamandis,E.P . Whole genome \\nsequencing as a diagnostic test: challenges and \\nopportunities. Clin. Chem. 60, 724733 (2014).\\n112. McGuire,A.L. etal. Point-counterpoint. Ethics and \\ngenomic incidental findings. Science 340, 10471048 \\n(2013).\\n113. Bowers,J. etal. Virtual terminator nucleotides for \\nnext-generation DNA sequencing. Nat. Methods 6, \\n593595 (2009).\\n114. Heger,M. Chinas Direct Genomics unveils new', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 251, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '4cdf13c0-c505-5ff9-9a6e-b10e5d1c8819', 'associatedQuery': 'Create a how-to guide for genetic sequencing.'}}, {'id': '1e324977-2ca5-5062-8a09-7659d516e899', 'score': 0.5737321376800537, 'metadata': {'text': 'sequencing. Bioinformatics 31, 20402042 (2015).\\n46. Qiagen. Oncology insights enabled by knowledge base-\\nguided panel design and the seamless workflow of the \\nGeneReader NGS system Press Release. Qiagen \\n[online], http://www.genereaderngs.com/PROM-9192-\\n001_1100403_WP_GeneReader_NGS_0116_NA.pdf \\n(2016).\\n47. Forgetta,V. etal. Sequencing of the Dutch elm disease \\nfungus genome using the Roche/454 GS-FLX Titanium \\nSystem in a comparison of multiple genomics core', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 226, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '5da5fc5d-1fe6-58f0-9141-72b9b2996fff', 'associatedQuery': 'Create a how-to guide for genetic sequencing.'}}, {'id': '98010acc-fd11-5d33-bced-626ef29f2896', 'score': 0.5720546841621399, 'metadata': {'text': 'FURTHER INFORMATION\\n10X Genomics: http://www.10xgenomics.com\\n454 Sequencing: http://www.454.com\\nAdvances in Genome Biology and Technology (AGBT): \\nhttp://www.agbt.org\\nBGISEQ500: http://seq500.com/en/portal/Sequencer.shtml\\nIllumina: http://www.illumina.com\\nIon Torrent: https://www.thermofisher.com/us/en/home/\\nbrands/ion-torrent.html\\nOxford Nanopore Technologies: https://www.nanoporetech.\\ncom\\nPacific Biosciences: http://www.pacb.com\\nPersonal Genome Project: http://www.personalgenomes.org', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 271, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'cad1dcca-621d-5003-ba3a-81950819bc52', 'associatedQuery': 'Create a how-to guide for genetic sequencing.'}}, {'id': '3e782f01-a06e-51b6-ac8a-0e0a56939d08', 'score': 0.5704884785122596, 'metadata': {'text': 'DNA), and provide the means to link sequences containing applications. First, \\nbase- callers like Phred (4,5) extract raw sequences from raw data. There are \\nalso contig assemblers like Phrap (University of Washington, http://bozeman.\\nmbt.washington.edu/phrap.docs/phrap.html ) or CAP3 (6) that assemble frag-\\nments to contigs and packages like consed (7) or GAP4 (8), which are used to \\nfinish sequencing projects. These programs are not explained in detail here.', 'title': '2008 - Gene Expression Profiling.pdf', 'version': 'v0', 'chunk_order': 2076, 'document_id': '59f3b969-089b-5258-93ad-892dbc9ffa9c', 'extraction_id': 'c14d1c74-a14a-5037-8d3f-f32a60faa9a5', 'associatedQuery': 'Create a how-to guide for genetic sequencing.'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_19\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZLSMnXSYde3yxfC3WAn4RccN6wO', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'The length of telomeres is significant for several reasons:\\n\\n1. **Protection of Chromosomes**: Telomeres are repetitive nucleotide sequences at the ends of eukaryotic chromosomes that protect them from attrition and damage during replication [1], [2], [6]. They prevent chromosome ends from being recognized as DNA breaks, thereby avoiding unnecessary repair mechanisms that could lead to genomic instability [9].\\n\\n2. **Aging and Cellular Senescence**: Telomere length is progressively shortened with each round of genomic replication unless restored by the enzyme telomerase [2], [5]. Short telomeres are considered a sign of advanced age and are associated with cellular senescence, where cells lose their ability to divide and function properly [4], [7], [8].\\n\\n3. **Disease Association**: Shorter telomeres have been linked to various diseases. For instance, individuals with Type 2 Diabetes (T2D) have been shown to have shorter leukocyte telomeres, which may be associated with disease progression [1]. Similarly, telomere length in smooth muscle cells has been linked to disease severity in atherosclerosis, and shorter leukocyte telomeres are associated with a higher risk of developing cardiovascular disease [3], [8].\\n\\n4. **Genomic Stability**: Telomere shortening and erosion can lead to chromosome end-to-end fusions and genomic instability, which are detrimental to cellular function and can lead to cancer and other genetic disorders [6].\\n\\n5. **Biomarker Potential**: Due to their association with aging and disease, telomere length is being studied as a potential biomarker for various conditions, including cardiovascular diseases and diabetes [3].\\n\\nIn summary, the length of telomeres is crucial for maintaining chromosomal integrity, regulating cellular aging, and potentially serving as a biomarker for certain diseases.', 'role': 'assistant'}}], 'created': 1727797494, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 375, 'prompt_tokens': 1235, 'total_tokens': 1610}}, 'search_results': {'vector_search_results': [{'id': 'bb069c10-45f1-5a83-95e3-4b7655874ba7', 'score': 0.6728987103312082, 'metadata': {'text': 'repetitive nucleotide sequences at the end of each eukaryotic chromosome, which protects them from attrition and damage. Although the relationship between leukocyte telomere length (LTL) and diabetes is still questioned\\n8, \\ndifferent studies have shown that T2D individuals have shorter leukocyte telomeres than non-T2D individuals9, 10 \\nthat may be associated with disease progression11. Indeed, the decreased antioxidant capacity described in patients', 'title': '2017 - Regular exercise participation improves genomic stability in diabetic patients an exploratory study to analyse telomere length and DNA damage.pdf', 'version': 'v0', 'chunk_order': 6, 'document_id': 'dcaf7b09-2d54-5cbf-b061-e3c4e6c6c518', 'extraction_id': '0e53122e-a308-55f7-8ee8-a0857ac9c52f', 'associatedQuery': 'What is the significance of the length of telomeres?'}}, {'id': '28e98b7e-f273-5bdd-9979-185133f311af', 'score': 0.6722902264941021, 'metadata': {'text': 'Telomeres are arrays of linked nucleotide hexamer repeats that are found at the \\nends of chromosomes in a vast clade of organisms [14]. While the sequence of \\nthese telomeric repeats can vary between organisms, their biological function is \\nhighly conserved, which is to limit damage inflicted on genes during the replica-\\ntion of chromosomes. Telomere length is progressively shortened with each round \\nof genomic replication, unless it is restored through the action of a ribonucleo-', 'title': '2020 - Clinical Genetics and Genomics of Aging.pdf', 'version': 'v0', 'chunk_order': 1510, 'document_id': '62b635c3-040e-512a-b016-6ef295308a1e', 'extraction_id': 'efd18101-9cf2-56b5-8f86-c2aba6caa0bc', 'associatedQuery': 'What is the significance of the length of telomeres?'}}, {'id': '5f940245-af1d-5eee-84dc-942017c523d0', 'score': 0.6608605975682104, 'metadata': {'text': 'telomere length,a phenomenon attributed to higher levels of oxidativestress at the cellular level (70). More recent studies havelinked telomere length in smooth muscle cells with senes-cence and disease severity in patients with atherosclero-sis (141, 150). Leukocyte telomere length was also short ina cohort of similar patients and associated with a higherrisk of developing occult cardiovascular disease (71).More data are needed to understand and validate the useof leukocyte telomere length as a biomarker', 'title': '2008 - Telomeres and Aging.pdf', 'version': 'v0', 'chunk_order': 167, 'document_id': '61d9c326-d36e-55c1-a891-335dc943e70f', 'extraction_id': '13990eb4-bef2-58ce-bf3e-0e3bc294caab', 'associatedQuery': 'What is the significance of the length of telomeres?'}}, {'id': '607cbd31-d430-5517-8212-208b25af32bf', 'score': 0.6593275063628735, 'metadata': {'text': 'age telomere length through accumulation of several short telo-\\nmeres (Londono-Vallejo et al., 2001; Martens et al., 2000) is \\nresponsible for senescence or whether a speci c chromosome \\narm limits the replication potential of human cells (Hemann et al., 2001). Individual chromosome arms were shown to have \\nlarge variations in their length (Lansdorp et al., 1996; Benn, \\n1997; Londono-Vallejo et al., 2001), and chromosome 17p seemed to be equipped with especially short telomeres in hu-', 'title': '2006 - Sex-specific telomere length profiles.pdf', 'version': 'v0', 'chunk_order': 64, 'document_id': '09c78a17-4a1f-52c1-be4d-994fd9fd71d0', 'extraction_id': '6d3bfe47-f26e-50dc-8d77-19f3797e53a0', 'associatedQuery': 'What is the significance of the length of telomeres?'}}, {'id': '53508a9e-d064-58a3-a4f9-0785470a1462', 'score': 0.6565387835984361, 'metadata': {'text': 'Telomeres are specialized structures that protect the ends of linear chromosomes. They shorten during aging due to the unidirectional activity of DNA polymerase, which leaves a section of DNA unrepli-cated on the lagging strand. Telomeres also are subject to shortening by genotoxic stress, such as oxidative damage (33). Among many eukaryotes, the enzyme telomerase maintains telomere length; but telomerase activity varies over the lifespan and between cell types, tissues, and species (34). In most human', 'title': '2018 - Sex Differences in Aging Genomic Instability.pdf', 'version': 'v0', 'chunk_order': 46, 'document_id': '8cfb5529-7f0c-58fc-b6e4-b3ee800fb72f', 'extraction_id': '396708f1-aa0a-571e-a8d3-7cb8404e9502', 'associatedQuery': 'What is the significance of the length of telomeres?'}}, {'id': '7fad29bd-12bf-53d0-af89-aadd38b974ff', 'score': 0.6563625922527273, 'metadata': {'text': 'TTAGGG sequence that cap the ends of chromosomes, protect-ing them from degradation and fusion. The length of telomererepeats is primarily maintained by active telomerase, which iscomposed of Telomerase RNA (TR) and a catalytic subunitTelomerase Reverse Transcriptase (TERT) (Blackburn, 2001).Extensive evidence has shown that telomere shortening anderosion lead to chromosome end-to-end fusions and genomicinstability (Blasco \\net al \\n., 1997; Hande \\net al \\n., 1999), causing', 'title': '2002 - Mitochondrial dysfunction leads to telomere attrition.pdf', 'version': 'v0', 'chunk_order': 6, 'document_id': 'd8bc729b-7513-58b7-b12e-0db1fb6d3b7d', 'extraction_id': 'b92ede07-74a7-524a-8d2c-54b2559e8425', 'associatedQuery': 'What is the significance of the length of telomeres?'}}, {'id': '64ef9964-1831-5a7a-8a69-5e8d0c332d37', 'score': 0.6479189379142791, 'metadata': {'text': 'a pivotal role in maintenance of genomic integrity and func-tion (Moyzis et al., 1988; McElligott and Wellinger, 1997; van \\nSteensel and de Lange, 1997). \\n It is generally accepted that telomeres shorten during DNA \\nreplication both in vitro and in vivo. In individuals, short telomeres are considered to be a sign of advanced age. Cawthon \\nand coworkers (2003) showed that telomere shortening in hu-', 'title': '2006 - Sex-specific telomere length profiles.pdf', 'version': 'v0', 'chunk_order': 5, 'document_id': '09c78a17-4a1f-52c1-be4d-994fd9fd71d0', 'extraction_id': 'eb8d8e40-a484-57cb-8125-3fd5eb3f6389', 'associatedQuery': 'What is the significance of the length of telomeres?'}}, {'id': '1b453e12-a0c4-59db-a978-bbebd689e7dc', 'score': 0.6441001488000271, 'metadata': {'text': 'Each cell division shortens telomeric DNA until, at a\\ncritical length, the cells lose capping function at thechromosomal ends, activating DNA damage check-points, cell senescence, and eventually apoptosis.Telomere shortening has particular relevance in thesetting of CVD. Leukocyte telomere length (LTL)\\nassociates signi cantly with vascular cell senescence,', 'title': '2017 - The Aging Cardiovascular System.pdf', 'version': 'v0', 'chunk_order': 61, 'document_id': 'd3ff8471-986b-5fa0-b9c4-96eaaa8fce7c', 'extraction_id': '6949970f-7bc7-5585-a57a-96de1b5ba6ec', 'associatedQuery': 'What is the significance of the length of telomeres?'}}, {'id': '65fb74aa-f3c3-5c80-919f-329169db982f', 'score': 0.6431638577428954, 'metadata': {'text': 'nization may directly affect telomere attrition, resulting in accelerated replicative \\nsenescence and progeroid phenotypes [180].\\nTelomeres are regions constituted by tandem repeats of non-coding DNA \\nsequences 5-(TTAGGG)n-3 and a protein complex called shelterin, bound to them. \\nThis structure ensures the stability of the genome and protects the chromosomes \\nfrom a wrong action of the DNA repair machinery [184] by allowing the formation \\nof a chromatin loop called T-Loop [185].', 'title': '2020 - Clinical Genetics and Genomics of Aging.pdf', 'version': 'v0', 'chunk_order': 1084, 'document_id': '62b635c3-040e-512a-b016-6ef295308a1e', 'extraction_id': 'd4afa45a-5efa-577b-822e-7a82c2f6508d', 'associatedQuery': 'What is the significance of the length of telomeres?'}}, {'id': 'f181e6da-58b6-5f26-87a2-355e25388673', 'score': 0.6414783574472415, 'metadata': {'text': 'telomeres, the repetitive sequence at the end of linear chromosomes, has garnered much attention for\\nits relation to aging. Telomere repeats serve as an internal clock for cycling cells because each round of\\nreplication results in the loss of telomeric DNA in the absence of active telomerase (reviewed in [66]).\\nEventually, this loss over cellular generations culminates in telomere crisis and a permanent state of', 'title': '2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf', 'version': 'v0', 'chunk_order': 35, 'document_id': '262df0d6-ad68-544a-88ed-b4568f305858', 'extraction_id': '3b0cb0ab-421d-54d7-9816-c6a2e6f1ac68', 'associatedQuery': 'What is the significance of the length of telomeres?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_20\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZLdc2V8rjlDwihUfGh20lox5Tad', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': '### How-to Guide for Genetic Sequencing\\n\\nGenetic sequencing is a powerful tool used to determine the order of nucleotides in DNA. This guide will walk you through the basic steps involved in genetic sequencing, referencing specific resources for further information.\\n\\n#### Step 1: Sample Preparation\\n1. **Collect DNA Sample**: Obtain a sample containing DNA. This could be from blood, saliva, or tissue.\\n2. **Extract DNA**: Use a DNA extraction kit to isolate DNA from the sample. Ensure the DNA is pure and of high quality.\\n\\n#### Step 2: Library Preparation\\n1. **Fragment DNA**: Break the DNA into smaller fragments. This can be done using mechanical shearing or enzymatic methods.\\n2. **Add Adapters**: Ligate specific sequences (adapters) to the ends of the DNA fragments. These adapters are necessary for the sequencing process and allow the fragments to bind to the sequencing platform [6].\\n\\n#### Step 3: Amplification\\n1. **PCR Amplification**: Amplify the DNA fragments using Polymerase Chain Reaction (PCR). This step increases the quantity of DNA to ensure there is enough material for sequencing.\\n\\n#### Step 4: Sequencing\\n1. **Choose a Sequencing Platform**: Select a sequencing technology based on your needs. Popular platforms include Illumina, Ion Torrent, Pacific Biosciences, and Oxford Nanopore Technologies [1], [4], [7].\\n2. **Load DNA onto Sequencer**: Load the prepared DNA library onto the sequencing machine. Each platform has specific protocols for loading and running the sequencing process.\\n\\n#### Step 5: Data Analysis\\n1. **Base Calling**: Use software to convert raw sequencing data into nucleotide sequences. Tools like Phred are commonly used for this purpose [8].\\n2. **Sequence Assembly**: Assemble the short DNA reads into longer sequences (contigs). Software like Phrap or CAP3 can be used for this step [8].\\n3. **Variant Calling**: Identify genetic variants by comparing the assembled sequences to a reference genome. This step is crucial for understanding genetic differences and mutations.\\n\\n#### Step 6: Interpretation\\n1. **Bioinformatics Analysis**: Use bioinformatics tools to analyze the sequencing data. This includes identifying genes, predicting functions, and understanding genetic variations [10].\\n2. **Report Findings**: Summarize the results in a report. This should include information on identified variants, potential implications, and any recommendations for further analysis or validation.\\n\\n#### Additional Resources\\n- **10X Genomics**: Offers advanced solutions for single-cell sequencing and spatial genomics [1].\\n- **Illumina**: Provides a wide range of sequencing platforms and reagents [1].\\n- **Pacific Biosciences**: Known for long-read sequencing technology [1], [4].\\n- **Oxford Nanopore Technologies**: Offers portable and real-time sequencing solutions [1].\\n\\nBy following these steps and utilizing the referenced resources, you can successfully perform genetic sequencing and analyze the resulting data.', 'role': 'assistant'}}], 'created': 1727797505, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_5796ac6771', 'usage': {'completion_tokens': 614, 'prompt_tokens': 1499, 'total_tokens': 2113}}, 'search_results': {'vector_search_results': [{'id': '98010acc-fd11-5d33-bced-626ef29f2896', 'score': 0.5950793382572744, 'metadata': {'text': 'FURTHER INFORMATION\\n10X Genomics: http://www.10xgenomics.com\\n454 Sequencing: http://www.454.com\\nAdvances in Genome Biology and Technology (AGBT): \\nhttp://www.agbt.org\\nBGISEQ500: http://seq500.com/en/portal/Sequencer.shtml\\nIllumina: http://www.illumina.com\\nIon Torrent: https://www.thermofisher.com/us/en/home/\\nbrands/ion-torrent.html\\nOxford Nanopore Technologies: https://www.nanoporetech.\\ncom\\nPacific Biosciences: http://www.pacb.com\\nPersonal Genome Project: http://www.personalgenomes.org', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 271, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'cad1dcca-621d-5003-ba3a-81950819bc52', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '13a6b6f9-4a9a-5eb9-ac79-d986d9e613f0', 'score': 0.5900514233173637, 'metadata': {'text': '22. Karow, J. Qiagen launches GeneReader NGS System \\natAMP; presents performance evaluation by broad. \\nGenomeWeb [online], https:// www.genomeweb.com/\\nmolecular-diagnostics/qiagen-launches-genereader-\\nngs-system-amp-presents-performance-evaluation \\n(4Nov 2015).\\n23. Smith,D.R. & McKernan,K. Methods of producing \\nand sequencing modified polynucleotides . US Patent \\n8058030 (2011).\\n24. Margulies,M. etal. Genome sequencing in \\nmicrofabricated high-density picolitre reactors. Nature \\n437, 376380 (2005).', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 216, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '5da5fc5d-1fe6-58f0-9141-72b9b2996fff', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '8477a774-dddb-5541-b8d7-d51a7e56b0af', 'score': 0.5885502696037335, 'metadata': {'text': '36. Sequencing, H.G. Finishing the euchromatic sequence of the human genome. Nature 2004 ,431, 931945.\\n37. Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 2016 ,107,\\n18. [CrossRef]\\n38. Rothberg, J.M.; Leamon, J.H. The development and impact of 454 sequencing. Nat. Biotechnol. 2008 ,26,\\n11171124. [CrossRef] [PubMed]\\n39. Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008 ,26, 11351145. [CrossRef]\\n[PubMed]', 'title': '2020 - Precision and Personalized Medicine How Genomic.pdf', 'version': 'v0', 'chunk_order': 180, 'document_id': 'cd11028a-933b-52a0-9534-c173323056ef', 'extraction_id': 'de09f30d-e9ba-5379-8c7a-85b2cd2ed6c8', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': 'd2540614-9397-5e3e-8b5f-ad328ca973b2', 'score': 0.5810342181345365, 'metadata': {'text': 'sequencing. Genome Res. 20, 11651173 (2010).\\n64. English,A.C. etal. Assessing structural variation in a \\npersonal genome-towards a human reference diploid \\ngenome. BMC Genomics 16, 286 (2015).\\n65. Carneiro,M.O. etal. Pacific Biosciences sequencing \\ntechnology for genotyping and variation discovery in \\nhuman data. BMC Genomics 13, 375 (2012).\\n66. Quail,M.A. etal. A tale of three next generation \\nsequencing platforms: comparison of Ion T orrent, \\nPacific Biosciences and Illumina MiSeq sequencers.', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 235, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '4cdf13c0-c505-5ff9-9a6e-b10e5d1c8819', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '1e324977-2ca5-5062-8a09-7659d516e899', 'score': 0.5750640973486969, 'metadata': {'text': 'sequencing. Bioinformatics 31, 20402042 (2015).\\n46. Qiagen. Oncology insights enabled by knowledge base-\\nguided panel design and the seamless workflow of the \\nGeneReader NGS system Press Release. Qiagen \\n[online], http://www.genereaderngs.com/PROM-9192-\\n001_1100403_WP_GeneReader_NGS_0116_NA.pdf \\n(2016).\\n47. Forgetta,V. etal. Sequencing of the Dutch elm disease \\nfungus genome using the Roche/454 GS-FLX Titanium \\nSystem in a comparison of multiple genomics core', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 226, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '5da5fc5d-1fe6-58f0-9141-72b9b2996fff', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': 'a2d9c614-903d-513a-ad88-5a40f3534988', 'score': 0.5712476287407545, 'metadata': {'text': 'for sequencing on existing short-read instrumentation, \\nafter which data are split by barcode and reassembled \\nwith the knowledge that fragments sharing barcodes Barcodes\\nA series of known bases \\naddedto a template molecule \\neither through ligation or \\namplification. After \\nsequencing, these barcodes \\ncan be used to identify which \\nsample a particular read is \\nderived from.\\nFigure 5 | Real-time and synthetic long-read sequencing approaches.', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 143, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'c91e328e-4a01-5952-85b8-d7b5b47237c5', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '97f2aa12-623b-53ec-9793-5834311a37dd', 'score': 0.568690095465786, 'metadata': {'text': '160. Glenn,T .C. Field guide to next-generation DNA \\nsequencers. Mol. Ecol. Resour. 11, 759769 (2011).\\n161. Karow,J. At AGBT , 10X Genomics launches GemCode \\nplatform; shipments slated for Q2 as firm battles IP \\nlawsuits. GenomeWeb [online], https://www.\\ngenomeweb.com/sample-prep/agbt-10x-genomics-\\nlaunches-gemcode-platform-shipments-slated-q2-firm-\\nbattles-ip-lawsuits (2Mar 2015).\\nCompeting interests statement\\nThe authors declare competing interests: see Web version for \\ndetails.\\nFURTHER INFORMATION', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 270, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'cad1dcca-621d-5003-ba3a-81950819bc52', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '3e782f01-a06e-51b6-ac8a-0e0a56939d08', 'score': 0.5677847266197245, 'metadata': {'text': 'DNA), and provide the means to link sequences containing applications. First, \\nbase- callers like Phred (4,5) extract raw sequences from raw data. There are \\nalso contig assemblers like Phrap (University of Washington, http://bozeman.\\nmbt.washington.edu/phrap.docs/phrap.html ) or CAP3 (6) that assemble frag-\\nments to contigs and packages like consed (7) or GAP4 (8), which are used to \\nfinish sequencing projects. These programs are not explained in detail here.', 'title': '2008 - Gene Expression Profiling.pdf', 'version': 'v0', 'chunk_order': 2076, 'document_id': '59f3b969-089b-5258-93ad-892dbc9ffa9c', 'extraction_id': 'c14d1c74-a14a-5037-8d3f-f32a60faa9a5', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': '199e1929-dc7c-58d4-8c8d-1c931e658e9c', 'score': 0.564137432821837, 'metadata': {'text': 'Nat. Biotechnol. 30, 10331036 (2012).\\n111. Chrystoja,C.C. & Diamandis,E.P . Whole genome \\nsequencing as a diagnostic test: challenges and \\nopportunities. Clin. Chem. 60, 724733 (2014).\\n112. McGuire,A.L. etal. Point-counterpoint. Ethics and \\ngenomic incidental findings. Science 340, 10471048 \\n(2013).\\n113. Bowers,J. etal. Virtual terminator nucleotides for \\nnext-generation DNA sequencing. Nat. Methods 6, \\n593595 (2009).\\n114. Heger,M. Chinas Direct Genomics unveils new', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 251, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '4cdf13c0-c505-5ff9-9a6e-b10e5d1c8819', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}, {'id': 'd1158643-3625-5855-a03d-eec4ac96eb4d', 'score': 0.5640871524810831, 'metadata': {'text': '11 BIOINFORMATIC CHALLENGES FOR GENOMIC MEDICINE \\n \\n \\nProcessing and managing of high-throughput sequence data \\n \\n High throughput sequencing offers severa l advantages relative to array-based \\ngenotyping or expression assays. First, unlike genotyping arrays, whole genome sequencing is not limited to interrogating onl y known sequence variants. Similarly, RNA-\\nsequencing (RNA-seq) enables expression quanti fication of novel transcripts that are not', 'title': '2015 -Pandey- Functional Analysis of Genomic Variation and Impact on Molecular.pdf', 'version': 'v0', 'chunk_order': 116, 'document_id': '93381e23-494b-5bc2-9d09-ef315506601f', 'extraction_id': 'f4e989e5-c3d0-5d5c-b8c3-95894a14630b', 'associatedQuery': 'Create a how-to guide for genetic sequencing'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_21\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZLof1DVn6jbHUiHhxz6hRe0WZVb', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': '### Guide to Genetic Sequencing\\n\\nGenetic sequencing is a powerful tool used to determine the order of nucleotides in DNA. This guide will walk you through the basics of genetic sequencing, the different technologies available, and the steps involved in the sequencing process.\\n\\n#### 1. Introduction to Genetic Sequencing\\nGenetic sequencing involves determining the precise order of nucleotides within a DNA molecule. This information is crucial for understanding genetic information, diagnosing genetic disorders, and conducting research in genomics.\\n\\n#### 2. Types of Sequencing Technologies\\nThere are several sequencing technologies available, each with its own advantages and applications:\\n\\n- **Sanger Sequencing**: The first-generation sequencing method, known for its high accuracy but lower throughput.\\n- **Next-Generation Sequencing (NGS)**: Includes various platforms that allow for high-throughput sequencing, enabling the sequencing of millions of fragments simultaneously [9].\\n\\n#### 3. Next-Generation Sequencing Platforms\\nSeveral NGS platforms are widely used in the field:\\n\\n- **Illumina**: Known for its high accuracy and throughput, suitable for a wide range of applications [2].\\n- **Ion Torrent**: Uses semiconductor technology for sequencing, offering a cost-effective solution [2].\\n- **Pacific Biosciences (PacBio)**: Provides long-read sequencing, which is useful for identifying structural variations and complex regions in the genome [3], [2].\\n- **Oxford Nanopore Technologies**: Offers portable sequencing devices with real-time data analysis capabilities [2].\\n- **10X Genomics**: Known for its GemCode platform, which provides linked-read sequencing for better genome assembly [1], [2].\\n\\n#### 4. Steps in Genetic Sequencing\\nThe sequencing process generally involves the following steps:\\n\\n1. **Sample Preparation**: DNA is extracted from the sample and prepared for sequencing. This may involve fragmentation, adapter ligation, and amplification [5].\\n2. **Library Construction**: The prepared DNA fragments are converted into a library suitable for the sequencing platform being used [5].\\n3. **Sequencing**: The library is loaded onto the sequencing platform, where the DNA fragments are sequenced in parallel [9].\\n4. **Data Analysis**: The raw sequencing data is processed and aligned to a reference genome. Tools like Bismark and Bowtie2 are commonly used for alignment and analysis [5].\\n5. **Interpretation**: The processed data is interpreted to identify genetic variants, structural variations, and other genomic features [3].\\n\\n#### 5. Applications of Genetic Sequencing\\nGenetic sequencing has a wide range of applications, including:\\n\\n- **Medical Diagnostics**: Identifying genetic mutations associated with diseases.\\n- **Genomic Research**: Studying genetic variations and their implications.\\n- **Personal Genomics**: Providing individuals with information about their genetic makeup [2].\\n\\n#### 6. Future Directions\\nThe field of genetic sequencing is rapidly evolving, with ongoing advancements aimed at increasing accuracy, reducing costs, and enabling direct sequencing of DNA molecules without amplification [9].\\n\\n#### 7. Further Information\\nFor more detailed information on specific sequencing platforms and technologies, you can visit the following resources:\\n\\n- **Illumina**: [http://www.illumina.com](http://www.illumina.com)\\n- **Ion Torrent**: [https://www.thermofisher.com/us/en/home/brands/ion-torrent.html](https://www.thermofisher.com/us/en/home/brands/ion-torrent.html)\\n- **Pacific Biosciences**: [http://www.pacb.com](http://www.pacb.com)\\n- **Oxford Nanopore Technologies**: [https://www.nanoporetech.com](https://www.nanoporetech.com)\\n- **10X Genomics**: [http://www.10xgenomics.com](http://www.10xgenomics.com)\\n\\nBy understanding the basics of genetic sequencing and the available technologies, you can better appreciate the power and potential of this transformative field in genomics.', 'role': 'assistant'}}], 'created': 1727797516, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 820, 'prompt_tokens': 1400, 'total_tokens': 2220}}, 'search_results': {'vector_search_results': [{'id': '97f2aa12-623b-53ec-9793-5834311a37dd', 'score': 0.5886985063552856, 'metadata': {'text': '160. Glenn,T .C. Field guide to next-generation DNA \\nsequencers. Mol. Ecol. Resour. 11, 759769 (2011).\\n161. Karow,J. At AGBT , 10X Genomics launches GemCode \\nplatform; shipments slated for Q2 as firm battles IP \\nlawsuits. GenomeWeb [online], https://www.\\ngenomeweb.com/sample-prep/agbt-10x-genomics-\\nlaunches-gemcode-platform-shipments-slated-q2-firm-\\nbattles-ip-lawsuits (2Mar 2015).\\nCompeting interests statement\\nThe authors declare competing interests: see Web version for \\ndetails.\\nFURTHER INFORMATION', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 270, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'cad1dcca-621d-5003-ba3a-81950819bc52', 'associatedQuery': 'Create a guide for genetic sequencing'}}, {'id': '98010acc-fd11-5d33-bced-626ef29f2896', 'score': 0.5867795348167419, 'metadata': {'text': 'FURTHER INFORMATION\\n10X Genomics: http://www.10xgenomics.com\\n454 Sequencing: http://www.454.com\\nAdvances in Genome Biology and Technology (AGBT): \\nhttp://www.agbt.org\\nBGISEQ500: http://seq500.com/en/portal/Sequencer.shtml\\nIllumina: http://www.illumina.com\\nIon Torrent: https://www.thermofisher.com/us/en/home/\\nbrands/ion-torrent.html\\nOxford Nanopore Technologies: https://www.nanoporetech.\\ncom\\nPacific Biosciences: http://www.pacb.com\\nPersonal Genome Project: http://www.personalgenomes.org', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 271, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'cad1dcca-621d-5003-ba3a-81950819bc52', 'associatedQuery': 'Create a guide for genetic sequencing'}}, {'id': 'd2540614-9397-5e3e-8b5f-ad328ca973b2', 'score': 0.5858993530273438, 'metadata': {'text': 'sequencing. Genome Res. 20, 11651173 (2010).\\n64. English,A.C. etal. Assessing structural variation in a \\npersonal genome-towards a human reference diploid \\ngenome. BMC Genomics 16, 286 (2015).\\n65. Carneiro,M.O. etal. Pacific Biosciences sequencing \\ntechnology for genotyping and variation discovery in \\nhuman data. BMC Genomics 13, 375 (2012).\\n66. Quail,M.A. etal. A tale of three next generation \\nsequencing platforms: comparison of Ion T orrent, \\nPacific Biosciences and Illumina MiSeq sequencers.', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 235, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '4cdf13c0-c505-5ff9-9a6e-b10e5d1c8819', 'associatedQuery': 'Create a guide for genetic sequencing'}}, {'id': '13a6b6f9-4a9a-5eb9-ac79-d986d9e613f0', 'score': 0.5789940702315621, 'metadata': {'text': '22. Karow, J. Qiagen launches GeneReader NGS System \\natAMP; presents performance evaluation by broad. \\nGenomeWeb [online], https:// www.genomeweb.com/\\nmolecular-diagnostics/qiagen-launches-genereader-\\nngs-system-amp-presents-performance-evaluation \\n(4Nov 2015).\\n23. Smith,D.R. & McKernan,K. Methods of producing \\nand sequencing modified polynucleotides . US Patent \\n8058030 (2011).\\n24. Margulies,M. etal. Genome sequencing in \\nmicrofabricated high-density picolitre reactors. Nature \\n437, 376380 (2005).', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 216, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '5da5fc5d-1fe6-58f0-9141-72b9b2996fff', 'associatedQuery': 'Create a guide for genetic sequencing'}}, {'id': '822f10c2-37f6-5543-a1d4-6f640c464fb7', 'score': 0.5770190954208374, 'metadata': {'text': 'mina barcoded adapters and prepared using a 300-cycle MiSeq Reagent Micro Kit v2 (Illumina, San Diego, CA). PCR amplicons were sequenced on the MiSeq with paired-end (PE) 250 base pair reads. Files were aligned to the bisulfite converted reference genome GRCh38 release 94 implementing Bismark [35, 36]. Alignment was \\nobtained through Bismark using the Bowtie2 [37] engine using non-directional and paired-end. Complete sequencing code is provided (https ://githu b.com/qahat', 'title': '2019 - Machine-learning to stratify diabetic patients using novel cardiac biomarkers and integrative genomics.pdf', 'version': 'v0', 'chunk_order': 43, 'document_id': '332ac2ec-accc-5370-a4d2-6fec9ce7e072', 'extraction_id': '8c9e74de-fe33-53c9-a26a-c4e4be6ab217', 'associatedQuery': 'Create a guide for genetic sequencing'}}, {'id': 'da667832-cd2f-5af6-a0a8-a17542b0a2e2', 'score': 0.5723843574523926, 'metadata': {'text': 'sequencing data to solutions from the genotyping array data.\\niv\\n \\n \\n \\n \\n \\n \\n \\nPREVIEW', 'title': '2014 - Computational tools to aid the design and development of a genetic reference population.pdf', 'version': 'v0', 'chunk_order': 9, 'document_id': '70cbde25-6406-5a31-91ae-57f430e8f267', 'extraction_id': 'a744f8ce-7920-5fb8-acce-912f70112924', 'associatedQuery': 'Create a guide for genetic sequencing'}}, {'id': '8477a774-dddb-5541-b8d7-d51a7e56b0af', 'score': 0.5719827072630709, 'metadata': {'text': '36. Sequencing, H.G. Finishing the euchromatic sequence of the human genome. Nature 2004 ,431, 931945.\\n37. Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 2016 ,107,\\n18. [CrossRef]\\n38. Rothberg, J.M.; Leamon, J.H. The development and impact of 454 sequencing. Nat. Biotechnol. 2008 ,26,\\n11171124. [CrossRef] [PubMed]\\n39. Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008 ,26, 11351145. [CrossRef]\\n[PubMed]', 'title': '2020 - Precision and Personalized Medicine How Genomic.pdf', 'version': 'v0', 'chunk_order': 180, 'document_id': 'cd11028a-933b-52a0-9534-c173323056ef', 'extraction_id': 'de09f30d-e9ba-5379-8c7a-85b2cd2ed6c8', 'associatedQuery': 'Create a guide for genetic sequencing'}}, {'id': '1e324977-2ca5-5062-8a09-7659d516e899', 'score': 0.5703699588775635, 'metadata': {'text': 'sequencing. Bioinformatics 31, 20402042 (2015).\\n46. Qiagen. Oncology insights enabled by knowledge base-\\nguided panel design and the seamless workflow of the \\nGeneReader NGS system Press Release. Qiagen \\n[online], http://www.genereaderngs.com/PROM-9192-\\n001_1100403_WP_GeneReader_NGS_0116_NA.pdf \\n(2016).\\n47. Forgetta,V. etal. Sequencing of the Dutch elm disease \\nfungus genome using the Roche/454 GS-FLX Titanium \\nSystem in a comparison of multiple genomics core', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 226, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': '5da5fc5d-1fe6-58f0-9141-72b9b2996fff', 'associatedQuery': 'Create a guide for genetic sequencing'}}, {'id': '943d9de4-1181-5811-aa37-e8d560c39562', 'score': 0.5692178180580684, 'metadata': {'text': 'Conventional sequencing Next-generation sequencing\\nSequencing Subcloning in vectors, amplification in hosts\\nfor every single DNA fragment Direct DNA fragment sequencing\\n Sequencing of 100 fragments in parallel Optional PCR amplification\\n Parallel sequencing of millions\\nof small fragments\\nYield 1 /H11003105bp/sequencing run /H110221/H110031011bp/sequencing run\\nComputational requirements Moderate High\\nCost per megabase High LowAccuracy High HighFuture directions Direct sequencing of DNA\\nmolecules', 'title': '2012 - Next Steps in Cardiovascular Disease Genomic Research.pdf', 'version': 'v0', 'chunk_order': 38, 'document_id': '5cde24e3-2463-5751-8ef3-97cda391449b', 'extraction_id': 'c2635fbd-ed4f-574a-be56-076a770af2b4', 'associatedQuery': 'Create a guide for genetic sequencing'}}, {'id': '571b0089-beff-5726-a831-5b5c1f95c53a', 'score': 0.5675928592681885, 'metadata': {'text': 'Nature Reviews | GeneticsCleavage agent\\nSingle-base-encoded probes\\nA probe with a single known base and degenerate bases hybridizes to a template and is imagedResetAfter each imaging step, both the probe and anchor are removed\\nProbe with known base at n+1a SOLiD \\n (Thermo Fisher)\\nb Complete Genomics\\n (BGI)\\nPaired-end sequencingSequencing is performed for both the left and right sides of the adapterTTG AG TC CC GA CT TATA\\nA', 'title': '2016 - Coming of age ten years of next.pdf', 'version': 'v0', 'chunk_order': 71, 'document_id': '9dd6e4e9-d136-507b-b628-68c8e1461bd0', 'extraction_id': 'abff2242-b300-56f4-9974-2eefc93ae1aa', 'associatedQuery': 'Create a guide for genetic sequencing'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_22\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZM6xG6YQyyKS0yjhUsqz3mB8jmi', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Dyslipidemia is defined as deregulated lipid metabolism that manifests as hypercholesterolemia (high cholesterol levels), hypertriglyceridemia (high triglyceride levels), low high-density lipoprotein (HDL) cholesterol levels, or a combination of these conditions [1]. It is an established risk factor for coronary heart disease (CHD) and can involve various lipoprotein abnormalities, such as increased lipoproteins, elevated apolipoprotein B, and small LDL and HDL particles [2].', 'role': 'assistant'}}], 'created': 1727797534, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_5796ac6771', 'usage': {'completion_tokens': 106, 'prompt_tokens': 1408, 'total_tokens': 1514}}, 'search_results': {'vector_search_results': [{'id': '53aa581f-06d1-52b3-b847-08ea3d95a980', 'score': 0.6461477279663086, 'metadata': {'text': 'Deregulated lipid metabolism (dyslipidemia) that manifests as hypercholesterolemia, \\nhypertriglyceridemia, low high -density -lipoprotein (HDL) cholesterol levels or a \\ncombination of those is an established risk factor for CHD among other established risk \\nfactors. The liver is of major importance in maintaining whole- body lipid metabolic', 'title': '2011 - Genetics and Genomics of Cholesterol and Polyunsaturated Fatty Acid Metabolism in Relation to Coronary Heart Disease Risk.pdf', 'version': 'v0', 'chunk_order': 37, 'document_id': '111e0e1e-d336-55ee-87a8-2f03b02473c2', 'extraction_id': '1745eb7d-e39e-5304-96a5-c351809d4795', 'associatedQuery': 'Define dyslipidemia.'}}, {'id': '799c27b2-d017-5ded-bb75-76b3d65b0bf6', 'score': 0.5842112302780151, 'metadata': {'text': '23 Atherogenic dyslipidemia, manifested by raised triglycerides and low \\nconcentrations of HDL cholesterol. There could be p resent other lipoprotein abnormalities \\nas well, e.g., increased lipoproteins, elevated apo lipoprotein B, small LDL and HDL \\nparticles. All of these abnormalities have been imp licated as being atherogenic (Kolovou et \\nal., 2005; Ginsberget al., 2000). \\n Elevated blood pressure strongly associates with obesity and commonly occu rs in \\ninsulin-resistant persons.', 'title': '2011 - Analysis of cognitive functions in recombinant inbred strains of rats produced by crossbreeding of SHR and BN Lx. lines.pdf', 'version': 'v0', 'chunk_order': 98, 'document_id': '6f628ea8-1286-5d74-80e5-55439f21805d', 'extraction_id': 'b3d1c55f-bcdc-59b2-8191-623e8e79b87b', 'associatedQuery': 'Define dyslipidemia.'}}, {'id': '142eead0-6648-5c97-a2da-770aff4986f6', 'score': 0.5679373145103455, 'metadata': {'text': 'plasma TGisdetermined bythelevel ofVLDL-TG (the balance between synthesis and clear-\\nance ofVLDL-TG), and thesynthesis ofVLDL-TG isassociated with total fatmass and liver\\nfat[59]. Thus, thelarge amount offatmass inobese patients leads toincreasing synthesis of\\nVLDL-TG, buttheclearance ofVLDL-TG remains unchanged. Hypertriglyceridemia isaprin-\\ncipal characteristic ofdyslipidemia and islinked tomany other types ofdyslipidemia such as', 'title': '2018 - Multivariate analysis of genomics data to identify potential pleiotropic genes.pdf', 'version': 'v0', 'chunk_order': 80, 'document_id': '2f7bad8a-28aa-5add-b9c3-8c2d445719f5', 'extraction_id': '4bee64c1-92ce-5b8c-925d-f30c4acab84b', 'associatedQuery': 'Define dyslipidemia.'}}, {'id': '0cbbec43-43bb-502d-a26d-fbc669ff29ee', 'score': 0.5646401643753052, 'metadata': {'text': 'Dyslipidemia status\\nNormolipidemia 2,731 898 (0.33) 1,319 (0.48) 514 (0.19) 42.97End-of-study cases 2,102 611 (0.29) 1,057 (0.50) 434 (0.21) 45.79 0.01, 1.12 (1.021.22)Incident cases 959 293 (0.31) 472 (0.49) 194 (0.20) 44.84 0.9, 0.99 (0.911.09)\\nOverall risk data are P, OR (95% CI) and incident risk data are P, HR (95% CI). Hyperglycemia and type 2 diabetes were dened according to 1997 American Diabetes Association criteria', 'title': '2008 - The Common P446L Polymorphism in GCKR Inversely.pdf', 'version': 'v0', 'chunk_order': 57, 'document_id': '1d74871a-be20-5ca3-ab8f-0a68e885dcf4', 'extraction_id': 'e54089b3-5559-55f8-b482-ceae887ce6ca', 'associatedQuery': 'Define dyslipidemia.'}}, {'id': '60c771fb-a2fa-5f19-a13c-e4086864bcd5', 'score': 0.5457299893224291, 'metadata': {'text': 'The most characteristic lipoprotein abnormality in patients with \\ndiabetes, especially type 2, is elevated triglyceride, i.e. VLDL, reduced HDL, \\nand smaller dense LDL. This lipoprotein profile is sometimes referred to as \\ndiabetic dyslipidemia. Moreover, in conjunction with obesity, and insulin \\nresistance this lipoprotein profile constitutes part of the \"polymetabolic \\nsyndrome\". The primary lipoprotein abnormality is hypertriglyceridemia .', 'title': '2004 - Diabetes Genes a.pdf', 'version': 'v0', 'chunk_order': 2485, 'document_id': '805ad0d5-6a3d-5e5f-b1ba-121e10c6daaa', 'extraction_id': '9738a79c-f506-5134-87c7-0ef5020c0077', 'associatedQuery': 'Define dyslipidemia.'}}, {'id': 'bd69128b-7357-5e87-ab9a-af6f4f3fc733', 'score': 0.542966365814209, 'metadata': {'text': 'Hyperlipidemia 63 (23%) 100 (38%) < 0.001c\\nDiabetes 66 (24%) 106 (40%) < 0.001c\\nTC (mmol/L) 4.36 0.55 4.37 1.07 0.832b,d\\nTG (mmol/L) 1.01 (0.77~1.28) 1.35 (1.00~1.92) < 0.001d,e\\nHDL-C (mmol/L) 1.26 (1.13~1.42) 1.10 (0.94~1.34) < 0.001d,e\\nLDL-C (mmol/L) 2.57 0.36 2.43 0.88 0.017b,d\\nFBG (mmol/L) 4.71 (4.35~5.15) 5.84 (5.31~6.87) < 0.001e\\nPBLs counts (109/L) 5.30 (4.60~6.29) 6.58 (5.33~7.92) < 0.001e\\nPBLs classifications\\n(PBMCs %)40.31 8.11 34.48 10.16 < 0.001b', 'title': '2018 - Genomic 5-mC contents in peripheral.pdf', 'version': 'v0', 'chunk_order': 17, 'document_id': 'f720cb59-3a8f-58e0-9cb8-e34b7d0bb74f', 'extraction_id': '3fc1141e-011e-5606-952c-5d7d9201459e', 'associatedQuery': 'Define dyslipidemia.'}}, {'id': '3fd58cb6-d19a-5337-9a84-a8e4e4e0b97c', 'score': 0.5394852322186601, 'metadata': {'text': 'lipid traits as (lipid follow-up lipid baseline ) / lipid baseline .\\nDyslipidemia/abnormal lipid levels were defined\\naccording to the thresholds used in clinical practice\\nguidelines [ 19]: (1) TC 5.1 mmol/l; TG 1.1 mmol/l;\\nand LDL-C 3.4 mmol/l in children; (2) TC 5.1 mmol/l;\\nTG1.4 mmol/l; and LDL-C 3.4 mmol/l in adolescents;\\n(3) TC 5.2 mmol/l; TG 1.7 or 1.97 mmol/l; and LDL-\\nC1.8 or 2.6 mmol/l in adults or patients with T2D.\\nIn the two cohorts of adult women, cIMT was mea-', 'title': '2021- Development of genome-wide polygenic risk scores for lipid traits and clinical applications for dyslipidemia, subclinical atherosclerosis, and diabetes cardiovascular complications among East Asians.pdf', 'version': 'v0', 'chunk_order': 35, 'document_id': 'ce8040c7-157f-54c5-b28b-3224e8871415', 'extraction_id': 'a95613b6-a2e8-5d84-841f-ae8879611a9e', 'associatedQuery': 'Define dyslipidemia.'}}, {'id': '134d285e-3f83-5ed6-ab9d-774b81068a3d', 'score': 0.5388759695813647, 'metadata': {'text': 'dyslipidemia. It also lowered in ammatory biomarkers (CRP and PAI - 1) associated', 'title': '2012 - Systems Biology Approaches to Nutrition.pdf', 'version': 'v0', 'chunk_order': 9568, 'document_id': '6955478b-950d-5d29-b24c-3a5ca656f3ae', 'extraction_id': 'e860a438-567e-50e4-99a9-759ff52ffdda', 'associatedQuery': 'Define dyslipidemia.'}}, {'id': '7a2c163e-e4ef-58ee-86dc-399d15d20eb7', 'score': 0.5335229635238647, 'metadata': {'text': 'usually associated with reduced HDL cholesterol and small dense LDL. \\nBiliary \\ncholesterol \\n+ \\nBile acids \\nBlood vessel \\nFigure 3. HDL metabolism: HDL production requires addition of lipid \\nto small, nascent particles. This lipid arrives via hydrolysis of VLDL and \\nchylomicrons with transfer of surface lipids (phospholipid PL, and free \\ncholesterol, FC) via the actions of phospholipid transfer protein (PL TP). A \\nsecond pathway is via effiux of cellular free cholesterol (FC), a process', 'title': '2004 - Diabetes Genes a.pdf', 'version': 'v0', 'chunk_order': 2480, 'document_id': '805ad0d5-6a3d-5e5f-b1ba-121e10c6daaa', 'extraction_id': 'c194ef31-2e93-5de6-9c35-6365056b1e54', 'associatedQuery': 'Define dyslipidemia.'}}, {'id': 'cba6153e-0a7f-540c-897b-40cbf9284ea9', 'score': 0.5322571992874146, 'metadata': {'text': 'shift in the composition of the lipoprotein particle from one de ned as VLDL to', 'title': '2012 - Systems Biology Approaches to Nutrition.pdf', 'version': 'v0', 'chunk_order': 1579, 'document_id': '6955478b-950d-5d29-b24c-3a5ca656f3ae', 'extraction_id': 'e464416a-2dc9-53c0-988c-b0131883aa79', 'associatedQuery': 'Define dyslipidemia.'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_23\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZMBjMCSl2sOAftMGQRmV7FIDy31', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Cytochromes are proteins that contain heme groups and are responsible for the transport of electrons [3]. They play a crucial role in the mitochondrial respiratory chain, which is essential for the biochemical synthesis of ATP [2]. One specific family of cytochromes, known as cytochrome P450, is involved in the detoxification of harmful substances [3].', 'role': 'assistant'}}], 'created': 1727797539, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_a5d11b2ef2', 'usage': {'completion_tokens': 74, 'prompt_tokens': 1677, 'total_tokens': 1751}}, 'search_results': {'vector_search_results': [{'id': '7bab87cd-7bd1-525e-98fe-14e9c51f617a', 'score': 0.567793395054735, 'metadata': {'text': 'oxidoreductase MitochondriaF29C4.2 IV Cytochrome', 'title': '2007 - Functional genomic approach to identify novel genes.pdf', 'version': 'v0', 'chunk_order': 57, 'document_id': '6d78d3b0-1754-5f4c-8dbc-c972c68d21cd', 'extraction_id': '3aebacd5-b198-5144-8fe3-34ac09f6e1e8', 'associatedQuery': 'What is cytochrome?'}}, {'id': 'a6bd961a-ed80-5266-8519-4399a1c7a6ba', 'score': 0.561569230603255, 'metadata': {'text': 'complex III. It functions to form a part of the mitochondrial respiratory chain. It may also act as a binding fac-tor for the iron-sulfur protein. Mitochondrial Complex III is composed of one mitochondrial-encoded subunit (MT-CYB) and ten nuclear-encoded subunits. The complex is located within the mitochondrial inner mem-\\nbrane and plays an important role in biochemical synthesis of ATP . It functions to catalyze electrons to trans-', 'title': '2017 - Gene-based genome-wide association study identified 19p13.3 for lean body mass.pdf', 'version': 'v0', 'chunk_order': 40, 'document_id': '970711f0-abe2-5129-8374-b7bb24c58b9e', 'extraction_id': '088aee9f-e751-5b68-9142-235a84d4297d', 'associatedQuery': 'What is cytochrome?'}}, {'id': '84d74cdd-eccb-55a7-a407-a14f90e30d78', 'score': 0.5515203475952148, 'metadata': {'text': 'Chapter 36 Directed Protein Evolution 653\\n3.1.9. SHIPREC\\nCytochromes are proteins that contain heme groups and are responsible for \\nthe transport of electrons. P450 is a family of membrane-bound cytochromes \\nwith an absorption maximum of 450 nm when complexed with CO. One of the \\nmajor roles of the cytochrome P450 system is the detoxification of harmful \\nsubstances.\\nSieber et al. (23) produced hybrids of two cytochromes, which share only', 'title': '2008 - Gene Expression Profiling.pdf', 'version': 'v0', 'chunk_order': 4188, 'document_id': '59f3b969-089b-5258-93ad-892dbc9ffa9c', 'extraction_id': 'd69da2f6-dced-546c-b3d7-bd57253a15a6', 'associatedQuery': 'What is cytochrome?'}}, {'id': 'cf86caa8-56c6-58f5-8233-e1de07f1ef37', 'score': 0.5502725511626878, 'metadata': {'text': 'F42A9.5 cyp-33E2 IV Cytochrome P450 MitochondriaF21D5.8 IV Mitochondrial 28S ribosomal protein S33 MitochondriaC33A12.1 IV NADH: ubiquinone oxidoreductase, ETS complex I subunit MitochondriaZK809.3 IV NADH: ubiquinone oxidoreductase MitochondriaC47E12.2 IV Mitochondrial ADP/ATP carrier protein MitochondriaY57G11C.12 IV NADH: ubiquinone oxidoreductase MitochondriaY41E3.4 ers-1 IV Glutaminyl tRNA synthetase, predicted to be mitochondrial MitochondriaY55F3B_743.b IV Mitochondrial ribosomal protein', 'title': '2007 - Functional genomic approach to identify novel genes.pdf', 'version': 'v0', 'chunk_order': 59, 'document_id': '6d78d3b0-1754-5f4c-8dbc-c972c68d21cd', 'extraction_id': '3aebacd5-b198-5144-8fe3-34ac09f6e1e8', 'associatedQuery': 'What is cytochrome?'}}, {'id': '53fee260-155f-58c5-810e-ff890292a46b', 'score': 0.5452050566673279, 'metadata': {'text': 'Process\\n2.9 2.9 25.4 gi 149058974 rCG44669 (cytochrome c\\noxidase, subunit VIIc;Cox7c)1.19 0.2121 1.35 1.42 0.05 1.30 1.26 0.0480 1.26 unclassied\\n29.6 29.7 56.0 gi 149016520 rCG50966 (3-oxoacid-CoA\\ntransferase 1(OXCT1/SCOT)1.12 0.3615 1.27 1.08 0.46 1.23 1.33 <0.0001 1.12 metabolism: ketone\\nmetabolism\\n60.9 60.9 67.6 gi 116242506 stress-70 protein,\\nmitochondrial precursor(75 kDa glucose-regulatedprotein) (Heat shock 70kDa protein 9)1.07 0.1432 1.12 1.02 0.39 1.10 1.13 0.0300 1.09 protein folding; protein', 'title': '2012 - Quantitative proteomic analysis reveals novel mitochondrial targets.pdf', 'version': 'v0', 'chunk_order': 104, 'document_id': 'a4ca3799-0273-5765-98fd-4902eeacf894', 'extraction_id': 'ad33e7d7-8861-52b8-92ac-b307a6c42a0d', 'associatedQuery': 'What is cytochrome?'}}, {'id': '7ff5d5ed-f6a9-52ab-8994-4bdb61161f4f', 'score': 0.539888056509976, 'metadata': {'text': '413\\nTable 2\\nGene ontology\\nDatabase: molecular function name: Cytochrome c oxidase activity ID:GO:0004129\\nC = 16 O = 2 E = 0.12 R = 17.06 rawP = 0.0060 adjP = 0.0590\\nIndex User IDGene \\nsymbol Gene namesEntrez \\ngene Ensemble\\n1 ILMN_2657141 Surf1 Surfeit gene 1 20930 ENSMUSG00000015790\\n2 ILMN_1254971 Cox6b1 Cytochrome c oxidase, \\nsubunit VIb polypeptide110323 ENSMUSG00000036751\\nDatabase: molecular function Name: NADH dehydrogenase activity ID:GO:0003954', 'title': '2017 - Systems Genetics Analysis to Identify the Genetic Modulation of a Glaucoma-Associated Gene.pdf', 'version': 'v0', 'chunk_order': 111, 'document_id': '67e804db-8127-5938-8d7f-a5918cdf4f86', 'extraction_id': 'd83136ee-cf42-5167-902b-470a6e0b2d3c', 'associatedQuery': 'What is cytochrome?'}}, {'id': 'cf251057-96a1-581c-b60a-63a04d845511', 'score': 0.5393913984298706, 'metadata': {'text': 'F42A9.5 cyp-33E2, cytochrome P450 family 13.81 ( 0.49) 118 0.0010\\nC47E12.2 Mitochondrial ADP/ATP carrier protein 16.00 ( 0.78) 136 < 0.0001\\nF21D5.8 Mitochondrial 28S ribosomal protein S33 15.95 ( 0.99) 136 < 0.0001\\nC33A12.1 NADH: ubiquinone oxidoreductase 16.28 ( 1.05) 139 0.0003\\nZK809.3 NADH: ubiquinone oxidoreductase 23.46 ( 1.14) 200 < 0.0001\\nY57G11C.12 nuo-3, NADH: ubiquinone oxidoreductase 20.71 ( 1.18) 177 < 0.0001', 'title': '2007 - Functional genomic approach to identify novel genes.pdf', 'version': 'v0', 'chunk_order': 99, 'document_id': '6d78d3b0-1754-5f4c-8dbc-c972c68d21cd', 'extraction_id': '47e612a2-c181-5c19-8b1c-c6aaa107e88a', 'associatedQuery': 'What is cytochrome?'}}, {'id': '3b3c603d-bb36-5995-b4c5-fd06e733dfda', 'score': 0.5388766205980418, 'metadata': {'text': 'Y66A7A1 100 52 33 4 0 9.00 ( 0.29) 0.0572 210\\nY71H2_388.c PP2A regulatory subunit (cytochrome C oxidase subunit) 100 82 48 2 0 5.57 ( 0.20) < 0.0001 130\\nF54D8.2 Cytochrome c oxidase subunit Vla 100 70 41 22 3 5.62 ( 0.27) < 0.0001 131\\nF56D2.1 Mitochondrial processing peptidase 100 55 17 3 0 4.46 ( 0.20) 0.4303 104\\nK04G7.4 Nuo-4, NADH: ubiquinone oxidoreductase 100 78 55 4 0 5.06 ( 0.23) < 0.0001 118\\nT20H4.5 Ubiquinone Fe-S protein 100 99 89 45 2 7.58 ( 0.18) < 0.0001 177', 'title': '2007 - Functional genomic approach to identify novel genes.pdf', 'version': 'v0', 'chunk_order': 121, 'document_id': '6d78d3b0-1754-5f4c-8dbc-c972c68d21cd', 'extraction_id': '90107b5e-bd2c-56ae-a7b9-ac4ca506e3e5', 'associatedQuery': 'What is cytochrome?'}}, {'id': '2e0e68ba-1804-5040-81aa-8746d263083a', 'score': 0.5265659062187821, 'metadata': {'text': 'and (Iso211Ser) 1.1383 . (ii) Overview of MT-CYB mutation on electron transport chain. From the complex II the reduced form of ubiquinone move through the hydrophobic region of the membrane by diffusion. When the ubiquinone comes in contact with the next carrier in the electron-transport chain, the electron is transferred to cytochrome reductase, or the cytochrome b-c1 complex (Complex \\nIII). The mutated cytochrome b loses the ability to accept incoming', 'title': '2014 - Evidence for the presence of somatic mitochondrial DNA.pdf', 'version': 'v0', 'chunk_order': 69, 'document_id': 'a835ef5d-9a88-58ac-a0bc-5411c9f9031a', 'extraction_id': '655a0cc4-b432-5b84-9eac-43b932700af5', 'associatedQuery': 'What is cytochrome?'}}, {'id': 'a2b4ddd9-1f98-5271-85a0-5d79c529253e', 'score': 0.5174461603164673, 'metadata': {'text': 'c \\n oxidase polypeptide Mitochondria\\nK08F11.4 year-1 IV Tyrosyl-tRNA synthetase, predicted to be mitochondrial MitochondriaE04A4.7 IV Cytochrome \\nc \\nMitochondria', 'title': '2007 - Functional genomic approach to identify novel genes.pdf', 'version': 'v0', 'chunk_order': 58, 'document_id': '6d78d3b0-1754-5f4c-8dbc-c972c68d21cd', 'extraction_id': '3aebacd5-b198-5144-8fe3-34ac09f6e1e8', 'associatedQuery': 'What is cytochrome?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_24\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZMFYjDRlNaYIo2GAk3sVCPv4DGN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': \"To differentiate between X and Y DNA with respect to DNA tracing and determining quantitative trait loci (QTLs), consider the following points:\\n\\n1. **Recombination Rates**:\\n - The Y chromosome largely does not undergo recombination, which means it is passed down relatively unchanged from father to son. This makes it easier to trace paternal lineage but limits its utility in QTL mapping due to the lack of recombination [1].\\n - The X chromosome, on the other hand, does undergo recombination, albeit at a slower rate compared to autosomes. This slower recombination rate can affect the detection of significant QTLs, making it a unique consideration in QTL analysis [1].\\n\\n2. **QTL Mapping**:\\n - QTLs are stretches of DNA closely linked to genes that underlie specific phenotypes. The process of QTL mapping involves measuring phenotypes within a population and genotyping at numerous marker loci to identify genomic locations associated with these traits [2], [4].\\n - The differences in recombination rates between the X and Y chromosomes mean that QTL mapping on the X chromosome can be more complex due to its unique inheritance pattern and recombination characteristics, whereas the Y chromosome's lack of recombination simplifies paternal lineage tracing but complicates QTL mapping [1], [2].\\n\\nIn summary, the primary differences between X and Y DNA in the context of DNA tracing and QTL determination lie in their recombination rates and inheritance patterns. The Y chromosome's lack of recombination makes it straightforward for paternal lineage tracing but less useful for QTL mapping. In contrast, the X chromosome's slower recombination rate compared to autosomes presents unique challenges and considerations in QTL analysis [1], [2].\", 'role': 'assistant'}}], 'created': 1727797543, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 349, 'prompt_tokens': 1241, 'total_tokens': 1590}}, 'search_results': {'vector_search_results': [{'id': '73540700-b5cf-5838-852b-b281ca086140', 'score': 0.6865836568722942, 'metadata': {'text': 'While most of the Y chromosome does not undergo\\nrecombination, the recombination rate of the X chromosomeis slower than that of the autosomes. This has important\\nconsequences on the detection of significant QTLs. For a\\ncomprehensive view of these issues, see(43).\\n9.Probe hybridization artifacts\\nWhen several probes are available for the same gene, it is\\nnot uncommon to observe a difference in the mapping results', 'title': '2009 - eQTL analysis in mice and rats.pdf', 'version': 'v0', 'chunk_order': 99, 'document_id': '8d67ea90-f7b1-5bb8-937c-4a9eceddff43', 'extraction_id': '71981bfb-284e-50ad-854e-2055c07f77a7', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': '374c456a-d1db-5b4a-8713-97abe4162d77', 'score': 0.6844554135527973, 'metadata': {'text': '8 QTL Mapping \\n \\nAllelic variation exists among natural populations and inbred strains, and this is \\nreflective of the segregation of quantitative tr ait loci (QTLs) [96]. QTLs are stretches of \\nDNA that are closely linked to genes that underlie a phenotype of interest. QTL analysis has been proven to be an invaluable tool to help unravel heritable traits, by enabling \\nresearchers to map different quantitative traits back to the genomic location involved in the regulation of these phenotypes.', 'title': '2015 - Genetic Control of Survival and Weight Loss during Pneumonic Burk.pdf', 'version': 'v0', 'chunk_order': 119, 'document_id': 'ae1025b0-1410-51ae-9be2-26fa2e9d5808', 'extraction_id': '615ee0cd-5960-57e5-b4e6-56e4b8020a1b', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': 'b9d52798-0235-5018-bccd-560565d16cc3', 'score': 0.6844450831413318, 'metadata': {'text': '8 QTL Mapping \\n \\nAllelic variation exists among natural populations and inbred strains, and this is \\nreflective of the segregation of quantitative tr ait loci (QTLs) [96]. QTLs are stretches of \\nDNA that are closely linked to genes that underlie a phenotype of interest. QTL analysis has been proven to be an invaluable tool to help unravel heritable traits, by enabling \\nresearchers to map different quantitative traits back to the genomic location involved in the regulation of these phenotypes.', 'title': '2015 -Emery- Genetic Control of Survival and Weight Loss during Pneumonic Burk.pdf', 'version': 'v0', 'chunk_order': 119, 'document_id': 'a9aceace-bf48-5472-b54c-59a458a84c62', 'extraction_id': '268a23e8-f528-5b59-89f2-188331e0a03c', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': 'fef212bc-631b-591d-b8e3-d1523da0507d', 'score': 0.6716856556126096, 'metadata': {'text': 'The basic pr emise of QTL an alysis is simple (Ph illips and Belknap,\\n2002 ) . First, one must meas ure a speci c phen otype within a popul ation.\\nNext, the population must be genotyped at a hundred or more marker loci186 Boehm II et al.', 'title': '2006 - From_gene_to_behavior_and_back_again_new.pdf', 'version': 'v0', 'chunk_order': 129, 'document_id': '7a088b36-11b7-5379-bfe5-ce571e11de07', 'extraction_id': '64c0287d-aeea-52eb-a074-e9591c5593ae', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': 'c8f17022-aeae-5242-9082-d6d1eee4c4bf', 'score': 0.6653960546615103, 'metadata': {'text': 'genes underlying QTLs in animals and plants (see for example Shirley et al 2004,Korstanje & Paigen 2002, Fridman et al 2004). I should also point out, though,\\nthat even in a single QTL region isolated in a congenic strain, it is possible that\\nthere is more than one allele that aects the phenotype. So, you have a fair pointabout the challenges and complexities of QTL analysis.\\nKoolhaas: There are dierent questions underlying both approaches. The QTL', 'title': '2005 - quantitative-trait-locus-analysis-of-aggressive-behaviours-in-mi.pdf', 'version': 'v0', 'chunk_order': 86, 'document_id': '0dc730ba-4ff4-52aa-a988-71075113c416', 'extraction_id': '9de93371-6239-53c2-b42c-71f615a0614b', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': '1b2de424-be9f-572d-bd62-dc2ecd92192b', 'score': 0.6653512914583546, 'metadata': {'text': 'genes underlying QTLs in animals and plants (see for example Shirley et al 2004,Korstanje & Paigen 2002, Fridman et al 2004). I should also point out, though,\\nthat even in a single QTL region isolated in a congenic strain, it is possible that\\nthere is more than one allele that aects the phenotype. So, you have a fair pointabout the challenges and complexities of QTL analysis.\\nKoolhaas: There are dierent questions underlying both approaches. The QTL', 'title': '2005 -Broadkin- quantitative-trait-locus-analysis-of-aggressive-behaviours-in-mi.pdf', 'version': 'v0', 'chunk_order': 86, 'document_id': 'e6027e7f-aec0-5e76-8aff-96b36389e701', 'extraction_id': '0a5c759e-8dab-55f1-ac59-e8211ec683b8', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': 'f72795a1-66c3-5a98-84bc-b085e8008073', 'score': 0.6629081174244741, 'metadata': {'text': 'through analysis of line crosses, quantitative trait loci (QTL) mapping, and verification\\nof candidate genes with quantitative complementation tests or genetic engineering (e.g.,McGuire and Tully 1987; Chandra et al. 2001; Dierick and Greenspan 2006; Edwardset al. 2006). They can also be used to study the underlying physiological, neural, andmolecular mechanisms of the differences in behavior between selected and controllines, or between divergently selected lines.', 'title': '2009 - Experimental_Evolution.pdf', 'version': 'v0', 'chunk_order': 2219, 'document_id': '34821353-1b74-5ee2-ac39-66dd46f145bf', 'extraction_id': '8ee78018-b998-590c-99ab-788a447ede81', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': '31a32dc5-81ac-52ba-a463-c61e293f21e5', 'score': 0.6629027329145245, 'metadata': {'text': 'through analysis of line crosses, quantitative trait loci (QTL) mapping, and verification\\nof candidate genes with quantitative complementation tests or genetic engineering (e.g.,McGuire and Tully 1987; Chandra et al. 2001; Dierick and Greenspan 2006; Edwardset al. 2006). They can also be used to study the underlying physiological, neural, andmolecular mechanisms of the differences in behavior between selected and controllines, or between divergently selected lines.', 'title': '2009 - Garland_and_Rose_Experimental_Evolution.pdf', 'version': 'v0', 'chunk_order': 2219, 'document_id': '496faa7f-9623-5ab7-9816-7c3755abb3aa', 'extraction_id': 'cbce50ea-be78-5d54-beb1-849222c5bfdd', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': 'b660d882-1cb0-5150-ae76-8eb3ccb88a58', 'score': 0.6610122131094679, 'metadata': {'text': 'genetic background.\\nGene identification of QTL should be distinguished from identification of the quanti-\\ntative trait nucleotide (QTN). The latter is a daunting task, since SNPs are so frequent.\\nFinal proof for a QTN in mice would require placing a genomic segment containing theputative QTN from a donor mouse strain on the background of another strain using\\nhomologous recombination and reproducing the phenotype of the donor strain.', 'title': '2005 - quantitative-trait-analysis-in-the-investigation-of-function-and.pdf', 'version': 'v0', 'chunk_order': 97, 'document_id': 'dac1c73c-0b5f-5a54-bb12-7e8b654009c0', 'extraction_id': '0a895880-91c0-5079-b258-73926b38430f', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}, {'id': '985378d7-e164-581b-ac1c-97bbcda9c06f', 'score': 0.6567563227705571, 'metadata': {'text': 'measuring correlations between genetic markers and phenotypic \\ntraits in a population. Individuals are scored for their phenotype for \\na particular trait, and their genotype at a marker. If there is a differ-\\nence in mean phenotype between those individuals with one geno-\\ntype at a particular locus compared with the other, than we can infer \\nthat there is a QTL linked to that marker [ 40 , 153 ]. 2.3 Analysis and QTL \\nMappingDavid G. Ashbrook and Reinmar Hager', 'title': '2016 - Social interactions and indirect genetic effects on complex juvenile and adult traits.pdf', 'version': 'v0', 'chunk_order': 50, 'document_id': '06e126d3-b75d-57db-8edb-09de6ae13b24', 'extraction_id': '0b91ce42-1ba4-530c-8d77-6ddbdc0e759d', 'associatedQuery': 'How does one tell the difference between X and Y DNA, with respect to DNA tracing and determining QTLs?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_25\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZMMx7Aorq6SFjdy1f98MjZd0bQz', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'The environment influences fertilization through various factors that can affect both the biological and genetic mechanisms involved. Here are some specific ways in which the environment can impact fertilization:\\n\\n1. **Developmental Environment**: The developmental environment, which can span from weeks to years, is a significant source of environmental influence. This includes factors such as temperature, which can affect gene expression levels and potentially influence fertilization outcomes [1].\\n\\n2. **Strain and Environmental Interactions**: There is an interaction between genetic strain and environmental factors that can influence fertilization rates. For example, the fertilization rate of frozen-thawed spermatozoa compared to fresh spermatozoa can be affected by these interactions, indicating that both intrinsic genetic factors and environmental conditions play a role [2], [7].\\n\\n3. **Gene-by-Environment Interactions**: Behaviors and biological processes, including fertilization, are influenced by complex interactions between multiple genes and environmental factors. These interactions can be subtle and often uncontrollable, making it challenging to isolate the specific environmental factors at play [3], [4].\\n\\n4. **Epigenetic Modifications**: Environmental factors such as diet, smoking, and assisted reproductive techniques can alter gene expression through epigenetic modifications like DNA methylation. These changes can impact the placental epigenome and, consequently, pregnancy development and fertilization success [6].\\n\\n5. **Temperature and Other Environmental Factors**: Temperature has a genetic basis in its effect on sex determination, and interactions between temperature and genetic factors have been observed in several species. Other environmental factors such as pH, hypoxia, and social factors can also influence sex determination and potentially affect fertilization processes [10].\\n\\nIn summary, the environment influences fertilization through a combination of developmental conditions, genetic and environmental interactions, epigenetic modifications, and specific environmental factors like temperature and pH [1], [2], [3], [4], [6], [7], [10].', 'role': 'assistant'}}], 'created': 1727797550, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_5796ac6771', 'usage': {'completion_tokens': 396, 'prompt_tokens': 1181, 'total_tokens': 1577}}, 'search_results': {'vector_search_results': [{'id': '5e6a7f2c-1232-5c7e-bba5-9779ec280ed0', 'score': 0.5996625780858146, 'metadata': {'text': 'ferentiation in animals reared at male- and\\nfemale-producing temperatures (Fernandino\\net al., 2011).\\nFrom a pure experimental point of view,\\nthere are several potential sources of environ-\\nmental inuences that need to be under con-\\ntrol in order to avoid confounding results when\\nstudying gene expression levels (Hodgins-Davis\\nand Townsend, 2009; Table 8.3). One of them is\\neffect of the developmental environment, typi-\\ncally in the range of weeks to years. Size is pos-', 'title': '2012 - Functional genomics research in aquaculture principles and general approaches.pdf', 'version': 'v0', 'chunk_order': 1518, 'document_id': 'a39b4cc1-8661-578b-a61b-b9962e45fc33', 'extraction_id': 'c3a2c07f-e216-5dc0-92ea-f7c210e90974', 'associatedQuery': 'how does environment influence fertilisation'}}, {'id': '3c7fb887-5dbb-54d9-9664-75ceabd4ebf3', 'score': 0.5903145250771801, 'metadata': {'text': 'the fertilization rate (Table 1). There was an interaction between the two factors (strain and', 'title': '2017 - Identification of quantitative trait loci associated with the susceptibility of mouse spermatozoa to cryopreservation.pdf', 'version': 'v0', 'chunk_order': 40, 'document_id': 'e549cb7c-db24-540f-aded-e67442470525', 'extraction_id': '002f921f-e651-538b-aec0-b357d2c08ee9', 'associatedQuery': 'how does environment influence fertilisation'}}, {'id': '1fa77703-e337-518f-bdd8-6c3ebad0754e', 'score': 0.5671776106112486, 'metadata': {'text': 'subtle, and often uncontrollable, environmentalfactors. Behaviors are often influenced by multiple genes with complex gene-by-gene,gene-by-environment, and environment-by-environment interactions. This is one reason,for example, that single-gene mutants are relatively uninformative (see also Rauser et al.this volume), though we described a case in which such mutants were useful for explor-ing mechanisms underlying the evolution of mating systems in voles.', 'title': '2009 - Garland_and_Rose_Experimental_Evolution.pdf', 'version': 'v0', 'chunk_order': 2389, 'document_id': '496faa7f-9623-5ab7-9816-7c3755abb3aa', 'extraction_id': '4a07567a-57db-5110-aa52-cc76b8df0d32', 'associatedQuery': 'how does environment influence fertilisation'}}, {'id': '833bb510-694a-5646-960e-66b5e38ef609', 'score': 0.5670874883856624, 'metadata': {'text': 'subtle, and often uncontrollable, environmentalfactors. Behaviors are often influenced by multiple genes with complex gene-by-gene,gene-by-environment, and environment-by-environment interactions. This is one reason,for example, that single-gene mutants are relatively uninformative (see also Rauser et al.this volume), though we described a case in which such mutants were useful for explor-ing mechanisms underlying the evolution of mating systems in voles.', 'title': '2009 - Experimental_Evolution.pdf', 'version': 'v0', 'chunk_order': 2389, 'document_id': '34821353-1b74-5ee2-ac39-66dd46f145bf', 'extraction_id': '5e459c02-b084-5d1a-80fd-90643c6045f5', 'associatedQuery': 'how does environment influence fertilisation'}}, {'id': '30b42710-3270-5e84-9227-266db106f470', 'score': 0.5597549414488638, 'metadata': {'text': 'environment interactions, particularly the contribution of environmen-\\ntal factors in utero (Burmeister, McInnis, & Zllner, 2008; Henriksen,\\nNordgaard, & Jansson, 2017), and these limitations in turn hinder the\\ndevelopment of a mechanistic understanding of aetiology. Here, we\\ndissect the impact of gene prenatal environmental interactions on\\ncocaine responsiveness of adult male and female mice from the BXD\\nrecombinant inbred panel.\\nEarly life stressors, including prenatal stress (PNS), are important', 'title': '2019 - Discovery of early life stress interacting and sex-specific quantitative trait loci impacting cocaine responsiveness.pdf', 'version': 'v0', 'chunk_order': 10, 'document_id': '92c8a239-31ad-5ef3-bc37-a571afcdd187', 'extraction_id': '1b0fe3c9-4c86-5e80-9dde-faadbcdd44a1', 'associatedQuery': 'how does environment influence fertilisation'}}, {'id': '5db85ce4-25a9-5aba-b5ca-ab394fb0394f', 'score': 0.5597168970023664, 'metadata': {'text': 'onmental factors, some of which have been shown toalter placental gene expression, as well as epigeneticmarks [10]. These include diet [11,12], smoking [13],and assisted reproductive techniques [14,15]. Mountingevidence implicates epigenetic marks, such as DNA\\nmethylation, in mediating environmentally-induced reg-\\nulation of genome function. More studies into theeffects of the environment on the placental epigenomeare warranted due the importance of this organ in regu-lating pregnancy development.', 'title': '2011 - Evidence for widespread changes in promoter.pdf', 'version': 'v0', 'chunk_order': 13, 'document_id': '1c35d1ec-a7c2-56f0-8ccf-e554814e94ef', 'extraction_id': '1f77a329-36c6-5cef-884f-221358ef64ec', 'associatedQuery': 'how does environment influence fertilisation'}}, {'id': '80bc495d-85ab-5b77-8984-1f4e80ace849', 'score': 0.5594971346705301, 'metadata': {'text': 'as well as the intrinsic fertilizing ability of the strain. Therefore, the results of the QTL analysis \\nbased on the fertilization rates of frozen thawed spermatozoa might have reflected the 220 \\ncumulative effect of these two factors. T o exclude the possible background strain effects, we \\ncalculated the ratio of the fertilization rate of frozen thawed spermatozoa per that of fresh \\nspermatozoa in individual male mice (designated here as relative fertilization rate ). As shown', 'title': '2017 - Identification of quantitative trait loci associated with the susceptibility of mouse spermatozoa to cryopreservation.pdf', 'version': 'v0', 'chunk_order': 44, 'document_id': 'e549cb7c-db24-540f-aded-e67442470525', 'extraction_id': 'cf45ca6a-fbcd-52bc-b936-4f992c8e5537', 'associatedQuery': 'how does environment influence fertilisation'}}, {'id': '0e360074-4b6b-5b81-a96d-509266b7b637', 'score': 0.5544293092021143, 'metadata': {'text': 'male ; Relative fertilization rate (%) = (Fertilization rate with f rozen spermatozoa \\n(%)/Fertilization rate with f resh spermatozoa (%)) 100 (n = 6 for each strain) . \\n \\nFig. 2. Genome -wide interval mapping for suggestive QTLs affecting the fertilization rate 515 \\nusing frozen thawed spermatozoa. (A) Mapping based on the actual fertilization rates. (B) \\nMapping based on the relative fertilization rates. Critical intervals were selected based on peak', 'title': '2017 - Identification of quantitative trait loci associated with the susceptibility of mouse spermatozoa to cryopreservation.pdf', 'version': 'v0', 'chunk_order': 98, 'document_id': 'e549cb7c-db24-540f-aded-e67442470525', 'extraction_id': '3a518d3b-30c3-5cee-8344-c21cf4b32941', 'associatedQuery': 'how does environment influence fertilisation'}}, {'id': '084d7eaf-290a-525b-b01b-f0537e46f56e', 'score': 0.5492078498241968, 'metadata': {'text': 'duce the behavioral differences observed in these inbred strains.The interaction of genes and the environment to produce phe-notypic outcomes has been acknowledged and accepted for quitesome time in the scientic community. However, the exact mech-anism by which the environment can act on genetic materialhas only recently begun to be investigated in a more systematicmanner.\\nA ROLE FOR EPIGENETICS IN THE LINK BETWEEN MATERNAL\\nCARE AND BEHAVIORAL OUTCOMES IN ANIMAL MODELS', 'title': '2011 - Using animal models to disentangle the role of genetic, epigenetic, and environmental influences on behavioral outcomes associated with maternal anxiety and depression.pdf', 'version': 'v0', 'chunk_order': 77, 'document_id': '9c2f76c6-b991-58ac-a332-50e1a3c016d8', 'extraction_id': 'c570b41d-fa75-588a-bce6-30c7a64b6997', 'associatedQuery': 'how does environment influence fertilisation'}}, {'id': '2a5ee720-370b-5c4b-b7ea-fe4c3b2a9ea4', 'score': 0.5432155294184547, 'metadata': {'text': 'I na d d i t i o n ,i ts h o u l db en o t e dt h a tt h ee f -\\nfect of temperature on sex determination has\\na genetic basis itself and an interaction be-\\ntween families and temperature effect has been\\nreported in several species (Schultz, 1993; Van-\\ndeputte et al., 2007). Finally, other environ-\\nmental effects such as pH, hypoxia, and so-\\ncial factors have claimed to be involved on sex\\ndetermination (reviewed by Guerrero-Est evez\\nand Moreno-Mendoza, 2010). All the informa-', 'title': '2012 - Functional genomics research in aquaculture principles and general approaches.pdf', 'version': 'v0', 'chunk_order': 1432, 'document_id': 'a39b4cc1-8661-578b-a61b-b9962e45fc33', 'extraction_id': 'a59b4a8a-4f9c-59d3-b184-267db613e8cc', 'associatedQuery': 'how does environment influence fertilisation'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_26\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZMSefJYQo9NCnH90mHvha0SygR5', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': \"Diet plays a significant role in determining someone's height, particularly during the growth phases of childhood and adolescence. Several factors related to diet can impact height:\\n\\n1. **Childhood Nutrition Status**: The nutritional status during childhood is crucial for growth. Proper nutrition ensures that children receive the necessary vitamins and minerals required for bone growth and overall development [1].\\n\\n2. **Dietary Factors and Genetics**: Diet interacts with genetics, influencing growth outcomes. For example, calcium intake during childhood and adolescence can affect bone mass acquisition, which is essential for achieving optimal height [4].\\n\\n3. **Peak Height Velocity (PHV)**: The period of rapid growth during early adolescence, known as peak height velocity, can be influenced by diet. Adequate nutrition during this period is essential to support the growth spurt [3].\\n\\nIn summary, a well-balanced diet rich in essential nutrients is vital for achieving optimal height, especially during the critical growth periods of childhood and adolescence.\", 'role': 'assistant'}}], 'created': 1727797556, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 192, 'prompt_tokens': 1088, 'total_tokens': 1280}}, 'search_results': {'vector_search_results': [{'id': '3202ea94-5578-58ff-b5cf-6e856e914c2e', 'score': 0.5591888594385644, 'metadata': {'text': 'economic status of a population, for example childhood nutrition status and the disease \\nenvironment etc.21 Rare are the stud ies that unveil the relation between height decline \\nand bone loss. A study performed by Galloway et al. on 1,024 subjects (735 women and \\n289 men) evaluated the correlation between height decline and bone loss with ageing. \\nTheir findings show that bone mine ral density (BMD) plays the largest role in \\ndetermining annual height reduction.22', 'title': '2015_GN_Diabets_notheses.pdf', 'version': 'v0', 'chunk_order': 456, 'document_id': '1744d9bf-29f9-52e3-a7c9-62a916999cda', 'extraction_id': '5c6504ad-cec3-5054-b72e-7c8663b93020', 'associatedQuery': \"how does diet impact someone's height\"}}, {'id': '70ba6e2c-c4a0-5c07-ba63-d91926f401ff', 'score': 0.5591629147529602, 'metadata': {'text': 'economic status of a population, for example childhood nutrition status and the disease \\nenvironment etc.21 Rare are the stud ies that unveil the relation between height decline \\nand bone loss. A study performed by Galloway et al. on 1,024 subjects (735 women and \\n289 men) evaluated the correlation between height decline and bone loss with ageing. \\nTheir findings show that bone mine ral density (BMD) plays the largest role in \\ndetermining annual height reduction.22', 'title': '2015 -Bikai- Osteoporosis and Hypertension.pdf', 'version': 'v0', 'chunk_order': 257, 'document_id': '4d27e689-ce69-566f-8d4c-4101abd064e7', 'extraction_id': '2580c29f-1bd9-5a0b-bc39-36d2ac780bcd', 'associatedQuery': \"how does diet impact someone's height\"}}, {'id': 'c775c97a-4e53-50b3-aff0-9f947f1cee70', 'score': 0.5458799004554749, 'metadata': {'text': 'how many eat a high phenylalanine diet.The relationship between gene and disease remains constantacross sites, but diet will act as an effect modier, controllingthe phenotypic consequences of the gene. Another example is the relationship among peak height velocity (PHV: thegrowth spurt of early adolescence), change of school anddepressive symptoms. The period of PHV may be a time whenyoungsters are particularly vulnerable to symptoms of depres-sion (Simmons & Blyth, 1987), particularly when they haveto', 'title': '2008 - Rutter_s child and adolescent psychiatry-Blackwell Pub (2008).pdf', 'version': 'v0', 'chunk_order': 1240, 'document_id': '59daba11-206e-5bbc-8833-9d1b661532b5', 'extraction_id': '55640275-345b-5ed5-bc71-5d2ffe9b2fd1', 'associatedQuery': \"how does diet impact someone's height\"}}, {'id': '6ad9600e-e47a-5a12-8c1d-a1cf84a1342a', 'score': 0.5331607460975647, 'metadata': {'text': 'Dietary factor s deserve special attention as an environmental factor that interacts with \\ngenetics because we are exposed to our diet every day and we can modify it to our own benefit. \\nThe findings from several Ca intervention trials in children and adolescents demonstrated that \\nthere is a large variability in the acquisition of bone mass , despite the control of age range and \\npubertal maturation of part icipants.(28) Weaver et al.(102) conducted a 3 -week long, controlled', 'title': '2019 - Novel Genetic Loci Control L5 Vertebral Trabecular Bone and the Response to Low Calcium Intake in Growing BXD Recombinant Inbred Mice.pdf', 'version': 'v0', 'chunk_order': 255, 'document_id': 'de8dda5e-0e2f-5aa9-bb13-851c526b36a5', 'extraction_id': 'f540990d-044f-57aa-855b-ef89677321cb', 'associatedQuery': \"how does diet impact someone's height\"}}, {'id': '1ecbfb13-5c51-57ac-b23b-09837def6f70', 'score': 0.5064583420753479, 'metadata': {'text': 'rapidly than Paleolithic people andreaching both maximal adult height\\nandsexual maturity earlier. Wehave earlier speculated thatcompression\\nofthegrowth history predisposes tohigher blood pressure during adoles-\\ncence andincreases theriskofhypertension inadulthood [57] .\\nArecent interesting series ofstudies byBarker andcolleagues hasfor-\\nwarded theargument thatsome fraction ofthepredisposition tohyperten-\\nsionandNIDDM maybeprogrammed inutero bylowbirth weight. Several', 'title': '1998 - Type II Diabetes, Essential Hypertension, and Obesity as Syndromes of Impaired Genetic Homeostasis The Thrifty Genotype Hypothesis Enters the 21st Century.pdf', 'version': 'v0', 'chunk_order': 69, 'document_id': '5a32199a-ae34-5829-a6f0-025d55231305', 'extraction_id': 'cb4c8b17-644c-58a0-b63f-b7e839419dbf', 'associatedQuery': \"how does diet impact someone's height\"}}, {'id': 'd49fe981-9f4f-59b2-8d91-c325a30ab87e', 'score': 0.5061553716659546, 'metadata': {'text': 'diets are likely to vary in composition by batch, season and \\nvendor. Variability in non-nutritive dietary components, \\nsuch as soluble fibre content and plant- derived phyto-\\nestrogens, affects the progression of DIO and metabolic \\ndisease, even affecting behavioural traits151,152.\\nAnother consideration is that humans consume \\n~30% of their daily calories from fat. This fat intake is \\nremarkably consistent across age and BMI153 and lower \\nthan the 40% to 60% calories from fat used in many', 'title': '2018 - Animal models of obesity.pdf', 'version': 'v0', 'chunk_order': 88, 'document_id': '9e9af9c7-814f-562e-a04d-878528a38002', 'extraction_id': '12eaf8f0-a516-575b-af2f-54c390ad052a', 'associatedQuery': \"how does diet impact someone's height\"}}, {'id': '4955053e-da3e-530a-8b72-e8416c962d36', 'score': 0.4985760449514425, 'metadata': {'text': 'several factors such as age, nutritional status, overall health and geographic location, all of which in uence the diet of', 'title': '2012 - Systems Biology Approaches to Nutrition.pdf', 'version': 'v0', 'chunk_order': 11210, 'document_id': '6955478b-950d-5d29-b24c-3a5ca656f3ae', 'extraction_id': '1d378974-7dbd-54d3-ab94-c2306c450bd0', 'associatedQuery': \"how does diet impact someone's height\"}}, {'id': '6c0bb788-256b-56ce-97db-124b60eeed86', 'score': 0.49790164828300476, 'metadata': {'text': '4 Hypertension November 2020\\nestimated the relative influence of genetic and environmental \\nfactors on height, weight, BMI, SBP, and DBP, as well as the genetic and environmental correlations of BMI with SBP and DBP. Furthermore, the moderating effects of BMI on SBP and DBP heritabilities were tested to explore potential gene-obe-sity interactions on BP.\\nContributions to the total phenotypic variances of SBP and', 'title': '2021 - Estimating genetic and environmental contributions to complex traits and diseases..pdf', 'version': 'v0', 'chunk_order': 368, 'document_id': '2ac6e31c-a3fd-546a-b18a-7f947faf1f4c', 'extraction_id': 'c6f13122-c145-50a6-8cb8-2cd0d8d40f4a', 'associatedQuery': \"how does diet impact someone's height\"}}, {'id': '3a585d96-582f-5497-b0b1-ca3a7c79c651', 'score': 0.4974704088288311, 'metadata': {'text': 'individuals. Augmentation index was in reverse correlation with height, in addition it \\nwas observed that taller participants had less prevalence of hypertension and use of \\nantihypertensive drugs suggesting th e beneficial role of height in estimating \\ncardiovascular risks (159). In a study done on patients with end stage renal disease \\naugmentation index wa s found to negatively correlate with body height, and it was', 'title': '2015_GN_Diabets_notheses.pdf', 'version': 'v0', 'chunk_order': 621, 'document_id': '1744d9bf-29f9-52e3-a7c9-62a916999cda', 'extraction_id': 'c3ea8f4a-36b2-5c54-b573-f1bb8a9f6126', 'associatedQuery': \"how does diet impact someone's height\"}}, {'id': '65d7a65d-a1d7-50f5-923e-f843fc203b21', 'score': 0.4974704088288311, 'metadata': {'text': 'individuals. Augmentation index was in reverse correlation with height, in addition it \\nwas observed that taller participants had less prevalence of hypertension and use of \\nantihypertensive drugs suggesting th e beneficial role of height in estimating \\ncardiovascular risks (159). In a study done on patients with end stage renal disease \\naugmentation index wa s found to negatively correlate with body height, and it was', 'title': '2015 -Bikai- Osteoporosis and Hypertension.pdf', 'version': 'v0', 'chunk_order': 422, 'document_id': '4d27e689-ce69-566f-8d4c-4101abd064e7', 'extraction_id': 'b38762d9-8eb9-5290-ad8a-3ff14ffef706', 'associatedQuery': \"how does diet impact someone's height\"}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_27\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZMXN8MM8gEy7UyxGzfomf1l430J', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Humans have 46 chromosomes, arranged in 23 pairs [1], [7]. The animal that has the same number of chromosomes as humans is the baboon, specifically the Olive baboon (Papio hamadryas anubis), which also has 46 chromosomes [10].', 'role': 'assistant'}}], 'created': 1727797561, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 59, 'prompt_tokens': 1229, 'total_tokens': 1288}}, 'search_results': {'vector_search_results': [{'id': '597a0fb1-4a16-5fd3-9bdc-8be977741b82', 'score': 0.5301156201993116, 'metadata': {'text': 'As seen in this karyotypic spread, the typical human cell has 46 chromosomes with 22 pairs of autosomes (numbered 122) and a pair of sex chromosomes, either XX or XY .\\nDownloaded from http://ahajournals.org by on July 10, 2023', 'title': '2015 - Basic Concepts and Potential Applications of Genetics and Genomics for Cardiovascular and Stroke Clinicians.pdf', 'version': 'v0', 'chunk_order': 23, 'document_id': '8610e699-218a-50e6-8d1d-ef689623266f', 'extraction_id': '34fa36d0-0b64-5c70-8645-ba3576d9262c', 'associatedQuery': 'which animal has the same number of chromosomes as human'}}, {'id': '06d5d1e7-9474-5389-9f00-5669172e73a7', 'score': 0.525562926365052, 'metadata': {'text': 'FIGURE 3. Telomere arrays of chicken and human chromosomes:\\nthe chicken genome contains more telomere sequence than the human', 'title': '2003 - Telomeres in the chicken genome stability and chromosome ends.pdf', 'version': 'v0', 'chunk_order': 61, 'document_id': 'c9124b17-6f3f-50fd-b6fc-d329db6b7cdd', 'extraction_id': '02efe8ed-062d-51d2-9dd6-5a29a178b708', 'associatedQuery': 'which animal has the same number of chromosomes as human'}}, {'id': '65b220a4-b96c-5bcb-a65f-ed6954e44757', 'score': 0.5075987283944325, 'metadata': {'text': 'In sexually reproducing organisms, body cells contain 2 sets of chromosomes (1 set from each parent). To maintain this state, the egg and sperm that unite during fertilization each contain a single set of chromosomes. During meiosis, diploid cells undergo DNA replication, followed by 2 rounds of \\ncell division, producing 4 gametes, each of which has 1 set \\nof chromosomes (for humans, 23 unpaired chromosomes). Recombination occurs during meiosis.\\nMendelian diseaseSame as monogenic disease. Named', 'title': '2015 - Basic Concepts and Potential Applications of Genetics and Genomics for Cardiovascular and Stroke Clinicians.pdf', 'version': 'v0', 'chunk_order': 268, 'document_id': '8610e699-218a-50e6-8d1d-ef689623266f', 'extraction_id': '070b22be-cafb-5fd4-a338-ae3c62939c24', 'associatedQuery': 'which animal has the same number of chromosomes as human'}}, {'id': 'd9101bd9-f565-57c1-98f2-0a43b8a073b1', 'score': 0.5050166995828362, 'metadata': {'text': 'some set. Therefore, chromosome morphology sup-ports the designation of two separate genera [5]. \\nSex Chromosomes \\nSeveral studies have revealed high degrees of \\nhomology among autosomal chromosomes of bovids with similar banding patterns and gene order among the chromosome arms of ca ttle, river buffalo, sheep, \\nand goats [14, 15]. Bovid sex chromosomes, unlike the highly similar autosomal chromosomes, share a slightly more complex rearrangement of sequences', 'title': '2010 - Water Buffalo Genome Science Comes of Age.pdf', 'version': 'v0', 'chunk_order': 29, 'document_id': 'fda7e83a-8e8c-5592-8302-687dab622323', 'extraction_id': '86b3157e-5b20-5e1f-aeee-f4a6f652694d', 'associatedQuery': 'which animal has the same number of chromosomes as human'}}, {'id': '9712b652-cddb-522b-a7b6-053cecb6c9d9', 'score': 0.5017052442343608, 'metadata': {'text': '14\\n Mice share an anatomy, physiology, and genome that is similar, though not \\nidentical, to humans (May a nd Lutjen-Drecoll 2002; Smith 2002; Emes, Goodstadt et al. \\n2003; Huang, Winter et al. 2004). Mice and hum ans also share a su sceptibility to many \\nsimilar diseases. As an experimental genetic platform for vertebrates, tools for studying \\nand manipulating the mouse genome are near ly, if not completely, unparalleled', 'title': '2009 - Genetic pathways of Lyst and exfoliation syndrome.pdf', 'version': 'v0', 'chunk_order': 109, 'document_id': '5f35f50f-2f13-5b4c-9cfd-a96926e82f8c', 'extraction_id': '4165230b-bfd7-506c-8cfc-02868fa6bf21', 'associatedQuery': 'which animal has the same number of chromosomes as human'}}, {'id': '53079eb2-6661-5082-8a3a-e9b577cbcbe9', 'score': 0.49605472374125514, 'metadata': {'text': 'DELANY ET AL. 920\\nTABLE 1. Cytogenetic and telomere characteristics of vertebrate animal species (in vivo)\\nOrganism Terminal\\nreference 2n/no. of telomere Telomere\\n(maximum longevity) Telomeres array sizes shortening\\nRainbow trout 5860/116120 20 kb Unknown\\nOncohynchus mykiss\\nLejnine et al., 1995(20 yr)\\nAfrican clawed toad 36/72 1050 kb No\\nXenopus laevisBassham et al., 1998(15 yr)\\nLaboratory mouse 40/80 50150 kb No\\nMus musculusKipling and Cooke, 1990(2 yr)\\nWild mouse 40/80 525 kb Yes', 'title': '2003 - Telomeres in the chicken genome stability and chromosome ends.pdf', 'version': 'v0', 'chunk_order': 47, 'document_id': 'c9124b17-6f3f-50fd-b6fc-d329db6b7cdd', 'extraction_id': 'b5cb2e6d-631c-5dad-bae9-26acf1dd9fb6', 'associatedQuery': 'which animal has the same number of chromosomes as human'}}, {'id': 'b597e6e2-4b16-5955-8b97-972ba3cc7053', 'score': 0.49558223770803944, 'metadata': {'text': 'A human has 23 pairs of chromosomes, i.e. 46 in total. In each pair one\\nchromosome has been inherited from the mother and the other from the father.\\nThe chromosomes in a pair are said to be homologous. They have the same\\ngenes at the same loci, but they may have different variants, different so called\\nalleles, of the gene. Recall the eye color example from standard high school\\ntexts on genetics. We inherit one eye color allele from each parent, either a', 'title': '2005 - Numerical Algorithms for Mapping of Multiple Quantitative Trait Loci in Experimental Populations.pdf', 'version': 'v0', 'chunk_order': 25, 'document_id': 'dd7d3ea5-b23a-514e-898f-a4259ce6f6f9', 'extraction_id': '7c86a795-7202-5bfb-8da3-148cd8e66358', 'associatedQuery': 'which animal has the same number of chromosomes as human'}}, {'id': '9e3ef47b-6e78-50d9-bc28-01c227f0a2ce', 'score': 0.49558223770803944, 'metadata': {'text': 'A human has 23 pairs of chromosomes, i.e. 46 in total. In each pair one\\nchromosome has been inherited from the mother and the other from the father.\\nThe chromosomes in a pair are said to be homologous. They have the same\\ngenes at the same loci, but they may have different variants, different so called\\nalleles, of the gene. Recall the eye color example from standard high school\\ntexts on genetics. We inherit one eye color allele from each parent, either a', 'title': '2005 -Ljungberg- Numerical algos for Multi QTL.pdf', 'version': 'v0', 'chunk_order': 25, 'document_id': 'bea0655c-7ef4-5754-ba14-817b72a21be2', 'extraction_id': '1b359995-cabb-5e75-ba37-7df272c6c232', 'associatedQuery': 'which animal has the same number of chromosomes as human'}}, {'id': 'fbf0608e-28ec-540e-9d18-5acbfaacec5d', 'score': 0.49533028942374335, 'metadata': {'text': 'and zebra sh (http://www.alliancegenome.org, last access:\\n3 January 2018).\\n3 The mouse as a model animal for livestock\\nresearch\\nMice are mammals, sharing 92 to 95 % of protein cod-\\ning genes with humans and other mammalian livestock\\nspecies, such as cattle (Elsik et al., 2009), pigs (Humphray\\net al., 2007), sheep (Iannuzzi et al., 1999), and goats\\n(Schibler et al., 1998). The mouse genome is structured\\ninto 19 autosomes and the sex chromosomes. The mouse', 'title': '2018 - Invited review Genetic and genomic_ xmltexbreak_ mouse models for livestock research.pdf', 'version': 'v0', 'chunk_order': 12, 'document_id': '5b167564-85a2-5886-b800-37932c3143a9', 'extraction_id': 'fa8c1f01-7655-597d-8718-67ad0bc3b5ee', 'associatedQuery': 'which animal has the same number of chromosomes as human'}}, {'id': '73394dbd-8c20-5c5c-8ac5-ac76d4bab36f', 'score': 0.49174366866778363, 'metadata': {'text': 'Figure 3: Comparison of human and baboon chromosomes. (A)\\nConservation of microsatellite marker order for orthologs human 12and baboon 11. (B) C hromosome inversion between orthologs hu-\\nman 4 and baboon 5. The y-axis indicates chromosome length incentimorgans. Microsatellite markers identi ed in human have\\nidenti cation numbers that begin with D,and microsatellite\\nmarkers identi ed in baboon have identi cation numbers that begin\\nswith Pha.\\nFigure 2: Papio hamadryas anubis (Olive baboon)', 'title': '2013 - Baboons as a Model to Study Genetics and Epigenetics of Human Disease.pdf', 'version': 'v0', 'chunk_order': 39, 'document_id': '9f0acb79-6236-5add-b27e-1fb81ee4915d', 'extraction_id': '4dd22813-9004-571c-a351-80a2ec0f9b92', 'associatedQuery': 'which animal has the same number of chromosomes as human'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_28\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZMaWRstSGrYv65Txc4tWg1NphEi', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'The proper functioning of the brain is ensured by several factors:\\n\\n1. **Precise Regulation of Molecular and Cellular Events**: The development of the brain is a highly complex process that relies on the precise regulation of molecular and cellular events, which are grounded in the spatiotemporal regulation of transcription [3].\\n\\n2. **Energy Metabolism**: Energy metabolism plays a crucial role in the fate of adult neural stem cells, which is essential for maintaining brain function [8].\\n\\n3. **Functional Reserve and Resiliency**: The creation of redundancy in brain circuitry is associated with functional reserve and resiliency, which are critical for maintaining homeostatic equilibrium and supporting healthy aging and longevity [9].\\n\\nThese factors collectively ensure that the brain works effectively.', 'role': 'assistant'}}], 'created': 1727797564, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 150, 'prompt_tokens': 1281, 'total_tokens': 1431}}, 'search_results': {'vector_search_results': [{'id': '340e7007-f00f-56b9-b99c-9bbf6591889a', 'score': 0.5517971680103891, 'metadata': {'text': 'ARTICLE\\n nATuRE C ommunICATIons | 3:1079 | DoI: 10.1038/ncomms2086 | www.nature.com/naturecommunications\\n 2012 Macmillan Publishers Limited. All rights reserved.Received 8 may 2012 | Accepted 23 Aug 2012 | Published 25 sep 2012 DOI: 10.1038/ncomms2086\\nThe mammalian brain consists of distinct parts that fulfil different functions. Finlay and \\nDarlington have argued that evolution of the mammalian brain is constrained by', 'title': '2012 - Genetic architecture supports mosaic brain evolution and independent brain–body size regulation_.pdf', 'version': 'v0', 'chunk_order': 0, 'document_id': 'c2d37851-b1a9-5572-8de1-1cc627e5c89e', 'extraction_id': 'e4c6a021-c822-5c6e-96ee-bdfcd9e087b6', 'associatedQuery': 'what ensures brains work'}}, {'id': '3e7b4f88-a18f-5cdb-aa31-0eb92d4d226c', 'score': 0.5517971680103891, 'metadata': {'text': 'ARTICLE\\n nATuRE C ommunICATIons | 3:1079 | DoI: 10.1038/ncomms2086 | www.nature.com/naturecommunications\\n 2012 Macmillan Publishers Limited. All rights reserved.Received 8 may 2012 | Accepted 23 Aug 2012 | Published 25 sep 2012 DOI: 10.1038/ncomms2086\\nThe mammalian brain consists of distinct parts that fulfil different functions. Finlay and \\nDarlington have argued that evolution of the mammalian brain is constrained by', 'title': '2012 - Genetic architecture supports mosaic brain evolution and independent brain–body size regulation_(1).pdf', 'version': 'v0', 'chunk_order': 0, 'document_id': '655ce593-3f0f-5065-9ce0-e9c130b6e7e4', 'extraction_id': 'cb9a0594-ed63-533f-b872-eea0ab9dd781', 'associatedQuery': 'what ensures brains work'}}, {'id': 'f494980a-326f-5454-8faa-890eed0a343f', 'score': 0.5499427914619446, 'metadata': {'text': 'Daniel H. Geschwind, Michael J. Hawrylycz, Matthew W. State, Stephan J. Sanders,\\nPatrick F. Sullivan, Mark B. Gerstein , Ed S. Lein , James A. Knowles , Nenad Sestan \\nINTRODUCTION: The brain is responsible\\nfor cognition, behavior, and much of what\\nmakes us uniquely human. The development\\nof the brain is a highly complex process, and\\nthis process is reliant on precise regulation of\\nmolecular and cellular events grounded in the\\nspatiotemporal regulation of the transcrip-', 'title': '2018 - Integrative functional genomic.pdf', 'version': 'v0', 'chunk_order': 2, 'document_id': '6e37d26b-e45b-5eb8-8d79-339d9c0e05bd', 'extraction_id': '33bb0b60-582f-56b5-87da-66601ba8a482', 'associatedQuery': 'what ensures brains work'}}, {'id': '54eeed5e-a1c7-566a-981d-3c40211b3992', 'score': 0.533223569393158, 'metadata': {'text': 'addition,each study implemented rigorous controls for non-genetic factors suchas age, gender, IQ and performance on the experimental task. They alsocapitalized on existing functional paradigms designed to explorephysiological aspects of distinct neural systems.', 'title': '2003 - Imaging genomics.pdf', 'version': 'v0', 'chunk_order': 48, 'document_id': 'b4aee92d-491c-5f9d-9c40-adb5c5cceeb6', 'extraction_id': '76e11f30-b4f4-5fee-ae1f-eaf8daefc962', 'associatedQuery': 'what ensures brains work'}}, {'id': '772ad124-6371-5435-ad48-4e8546f766a0', 'score': 0.5300448220941539, 'metadata': {'text': 'brain to prevent theapoptosis of irreplaceable neurons, even in the', 'title': '2008 - The Aging Brain.pdf', 'version': 'v0', 'chunk_order': 75, 'document_id': '874f5d02-35c9-5233-8ded-6e06c7570ca9', 'extraction_id': '64f9170a-04bd-57be-ba0b-cc61edec0f37', 'associatedQuery': 'what ensures brains work'}}, {'id': '2e99dbdc-ea40-5e40-864b-4d0ad745bc09', 'score': 0.5239295519569385, 'metadata': {'text': 'Funding\\nFunding from the BBSRC, EPSRC, ESRC and MRC is gratefully\\nacknowledged.\\nReferences\\n1 Brayne C (2007) The elephant in the room: healthy brains in later life, epidemiology and\\npublic health. Nat Rev Neurosci ,8, 233239.\\n2 Gow J, Gilhooly M (2003) Risk Factors for Dementia and Cognitive Decline . Glasgow: NHS\\nHealth Scotland.\\n3 House of Lords (2005) Ageing: scientific aspects. London: The Stationery Office.\\n4 Stern PC, Carstensen LL (2000) The Aging Mind. Washington, DC: National Academy Press.', 'title': '2009 - Age-associated cognitive decline.pdf', 'version': 'v0', 'chunk_order': 100, 'document_id': '746ed855-8647-558a-9abc-c0e2d4254868', 'extraction_id': '87274deb-c57b-51c7-96f2-17111737c026', 'associatedQuery': 'what ensures brains work'}}, {'id': 'e5058bc7-2fc5-5a2b-852e-39efb9adc7c0', 'score': 0.5224298238754272, 'metadata': {'text': '1124 the brain. Nature Reviews Neuroscience. Nat Rev Neurosci; 2012. pp. 225239. \\n1125 doi:10.1038/nrn3209\\n1126 75. van Praag X, Fleshner M, Schwartz MW, Mattson MP. Exercise, energy intake, \\n1127 glucose homeostasis, and the brain. J Neurosci. 2014;34: 1513915149. \\n1128 doi:10.1523/JNEUROSCI.2814-14.2014\\n1129 76. Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Progress in \\n1130 Neurobiology. Prog Neurobiol; 2011. pp. 182203. \\n1131 doi:10.1016/j.pneurobio.2010.10.007', 'title': '2021 - System genetics in the rat HXBBXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose.pdf', 'version': 'v0', 'chunk_order': 268, 'document_id': '9ab8b190-fb4f-5bb0-8d04-1cd07a42192a', 'extraction_id': '3c4e5025-5c02-522d-81f0-2354118cbf61', 'associatedQuery': 'what ensures brains work'}}, {'id': 'e6ce00e3-8a5d-5f20-9d18-fb8b8932dc54', 'score': 0.5224298238754272, 'metadata': {'text': '1124 the brain. Nature Reviews Neuroscience. Nat Rev Neurosci; 2012. pp. 225239. \\n1125 doi:10.1038/nrn3209\\n1126 75. van Praag X, Fleshner M, Schwartz MW, Mattson MP. Exercise, energy intake, \\n1127 glucose homeostasis, and the brain. J Neurosci. 2014;34: 1513915149. \\n1128 doi:10.1523/JNEUROSCI.2814-14.2014\\n1129 76. Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Progress in \\n1130 Neurobiology. Prog Neurobiol; 2011. pp. 182203. \\n1131 doi:10.1016/j.pneurobio.2010.10.007', 'title': '2022 - System genetics in the rat HXBBXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose.pdf', 'version': 'v0', 'chunk_order': 268, 'document_id': '4198ec53-60f1-55d1-8759-b9ede1d098c0', 'extraction_id': '347bc44e-9705-5922-bfcd-22d65eb7cd80', 'associatedQuery': 'what ensures brains work'}}, {'id': '919fafa2-a013-5549-9f1b-c7ccb2181215', 'score': 0.5211876034736633, 'metadata': {'text': 'for the creation of redun-dancy in brain circuitry, which is associated with functionalreserve and resiliency. Brain function regulates most of thecompensatory strategy supporting maintenance of homeo-static equilibrium. Both of these processes are essential tohealthy aging and longevity.', 'title': '2011 - A genome-wide association study of aging.pdf', 'version': 'v0', 'chunk_order': 82, 'document_id': '8e9c1150-1047-54a2-bf85-1cc5000a6811', 'extraction_id': '253a4339-29d4-58c2-8a01-5137d94873b6', 'associatedQuery': 'what ensures brains work'}}, {'id': '2cc5e05a-e8fc-57cb-a7dc-c1d3ea8204a9', 'score': 0.5199397802352905, 'metadata': {'text': 'of complex traits. It has been said that The brain is the chief architect, \\norchestrator and driver of behavior; behavior, in turn, is the principal function of \\nthe brain (Gomez -Marin et al., 2014, p. 1455) , and therefore to understand one \\nwe need to understand the other. The brain and the behaviours that it causes are \\nhighly complex traits influen ced by many factors including genes (Hager et al., \\n2012; Hitzemann et al., 2013; McCarroll and Hyman, 2013) , environment (Carola', 'title': '2015 - A Systems-Genetics Analyses of Complex Phenotypes.pdf', 'version': 'v0', 'chunk_order': 114, 'document_id': '030d0226-b782-5964-8452-339777dc9658', 'extraction_id': '3f7d819b-ed86-50c7-a0c9-1955df2cead9', 'associatedQuery': 'what ensures brains work'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_29\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZMeEIq2Wv2GICWJZcSZAU1k5Qdz', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Our brains maintain emotions through a complex interplay of various brain regions and neural circuits. Key areas involved include:\\n\\n1. **Amygdala**: Sensory inputs with emotional components are transmitted to the amygdala, where they are processed and further relayed to other regions to modulate autonomic and behavioral responses, and to form emotional memories [6]. The amygdala orchestrates responses to threats and is involved in both negative and positive emotional states [10].\\n\\n2. **Prefrontal Cortex**: The ventrolateral prefrontal cortex (VLPFC) is critical for regulating responses to emotional stimuli. Increased activity in the right VLPFC is associated with decreased activity in the amygdala, which helps in managing negative affective states [9].\\n\\n3. **Extended Limbic System**: This system, which includes structures like the hippocampus, is primitively responsible for fear and pleasure responses, stress, memory, and learning. It is modulated by immune signaling, indicating that inflammation can affect emotional regulation [2].\\n\\n4. **Midbrain Structures**: These structures are involved in emotion regulation and are activated by both physical pain and pleasure, as well as positive and negative socially induced emotions [3].\\n\\n5. **Nucleus Accumbens and Ventral Striatum**: These areas participate in reward responses and positive emotional states [10].\\n\\nOverall, the brain maintains emotions through the coordinated activity of these regions, which process, regulate, and respond to emotional stimuli, thereby shaping our emotional experiences and behaviors.', 'role': 'assistant'}}], 'created': 1727797568, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_057232b607', 'usage': {'completion_tokens': 308, 'prompt_tokens': 1136, 'total_tokens': 1444}}, 'search_results': {'vector_search_results': [{'id': '34f059bf-1e74-580d-9b52-8c940ff0f302', 'score': 0.5939342621604059, 'metadata': {'text': 'areas that support pos-itive emotions and deactivate brain areas that are linked withaggression, fear and sadness (Diamond, 2004); this nding is consistent with the emotional prole associated with agreeableness.', 'title': '2008 - Rutter_s child and adolescent psychiatry-Blackwell Pub (2008).pdf', 'version': 'v0', 'chunk_order': 3378, 'document_id': '59daba11-206e-5bbc-8833-9d1b661532b5', 'extraction_id': '5e06bd24-8977-582c-b01b-61be91612e1a', 'associatedQuery': 'how do our brains maintain emotions'}}, {'id': 'fd7b6e37-2aba-525e-aa22-4a9cef18827d', 'score': 0.5910756479411545, 'metadata': {'text': 'Importantly, regions of the brain responsible for emotional regulation, executive \\nfunctioning, and their consequential behavioral outcomes are sensitive to \\nin ammation [ 22 ] . The extended limbic system, primitively responsible for fear and \\npleasure responses, stress, memory, and learning, has been shown to be modulated \\nby immune signaling. Early work established that there is a high density of IL-1 \\nreceptors in the dentate gyrus and pyramidal cell layer of the hippocampus, the', 'title': '2013 - Neural-Immune Interactions in Brain Function and Alcohol Related Disorders.pdf', 'version': 'v0', 'chunk_order': 1385, 'document_id': '78271275-3409-5fc7-bbdd-53c484178e0b', 'extraction_id': 'fb4ba6b4-c3ea-5671-9da8-15fcadccff59', 'associatedQuery': 'how do our brains maintain emotions'}}, {'id': 'f2dda7e1-1af6-54b0-8ffa-856313872579', 'score': 0.5860279449207826, 'metadata': {'text': 'the midbrain structures are implicated in cardiacresponses to social stress (Wager et al, 2009 ).\\nIt is now evident that these same brain regions\\nare involved in emotion regulation. Furthermore,\\nthe circuitry involved in physical pain and plea-sure appears to be activated by positive and\\nnegative socially induced emotion (Takahashi\\net al, 2009 ). The possibility therefore arises that\\npositive well-being may be embodied in the acti-\\nvation of neural circuitry in a reciprocal fashion', 'title': '2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf', 'version': 'v0', 'chunk_order': 1678, 'document_id': '17637a6f-804e-50e4-9cf5-37318e17f15c', 'extraction_id': 'd0222d2f-7e27-59de-9ad0-23febb3564f8', 'associatedQuery': 'how do our brains maintain emotions'}}, {'id': '96a2a72c-b239-58f0-b116-2b1eeb3e8434', 'score': 0.5841074833805879, 'metadata': {'text': '723732.\\nEtkin, A., Egner, T., Peraza, D. M., Kandel, E. R., and\\nHirsch, J. (2006). Resolving emotional conict: a rolefor the rostral anterior cingulate cortex in modulatingactivity in the amygdala. Neuron, 51 , 871882.\\nFales, C. L., Barch, D. M., Rundle, M. M., Mintun, M. A.,\\nSnyder, A. Z. et al (2008). Altered emotional inter-ference processing in affective and cognitive-controlbrain circuitry in major depression. Biol Psychiatry,\\n63, 377384.\\nFanselow, M. S. (2000). Contextual fear, gestalt mem-', 'title': '2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf', 'version': 'v0', 'chunk_order': 6850, 'document_id': '17637a6f-804e-50e4-9cf5-37318e17f15c', 'extraction_id': '4d38ecad-88e4-5f52-8a99-55029773de79', 'associatedQuery': 'how do our brains maintain emotions'}}, {'id': 'b2d814c0-e515-54b9-b994-b457ca0e2739', 'score': 0.5829041848835845, 'metadata': {'text': 'for cognitive processes such as learning,memory, and emotions.', 'title': '2007 - Gene expression profiles in anatomically and functionally distinct regions.pdf', 'version': 'v0', 'chunk_order': 110, 'document_id': 'd4a001e2-8cac-58cb-be8b-b9afa9382e01', 'extraction_id': 'b848d23b-0c65-5e44-b190-1ec8e5a76545', 'associatedQuery': 'how do our brains maintain emotions'}}, {'id': '45e53d76-dced-5f6b-abf2-c830b41c1c90', 'score': 0.5826015125154558, 'metadata': {'text': 'expression of emotional behavior. Sensory inputs with emotional components are \\ntransmitted to the amygdala where they are processed and fu rther relayed to other regions \\nto modulate autonomic and behavioral responses, and to form emotional memories \\n(LeDoux, 2000; Rosen, 2004). As a neural substrate of emotionality, many \\nneuropsychiatric disorders have been associated with structural changes i n the amygdala. \\nIndividuals with genetically predisposed susceptibility to anxiety and depression have', 'title': '2009 - Multiscale Genomic Analysis of the Corticolimbic System_ Uncoveri (1).pdf', 'version': 'v0', 'chunk_order': 73, 'document_id': '3d0df5a3-7d7c-5edc-b94d-cae582f59c12', 'extraction_id': 'c755176c-961c-57f0-996c-662de89048d3', 'associatedQuery': 'how do our brains maintain emotions'}}, {'id': '2fc8ee5e-7a5e-57cc-98e3-e9156aec2571', 'score': 0.5811971848846345, 'metadata': {'text': 'components can act back upon its physical substrate. Thought, emotion, and action trigger neural activity, which can lead to a reorganization of the brain, shaping future psychosocial experience. From this perspective, we are not the passive products of neurophysiology and heredity; rather, through our behavior in the social environment, we become active agents in the con-struction of our own neurobiology and, ultimately, our own lives.', 'title': '2009 - Neuroplasticity, Psychosocial Genomics.pdf', 'version': 'v0', 'chunk_order': 98, 'document_id': '77549d17-8f07-5b62-8134-011a68f2ebd4', 'extraction_id': '8cd38348-d367-5c85-829e-e465af8184cb', 'associatedQuery': 'how do our brains maintain emotions'}}, {'id': 'fbdf5982-c2f0-5577-bce3-bc8762aef713', 'score': 0.5737447738647502, 'metadata': {'text': 'et al, 1995 ; Scher et al, 2005 ), (2) are less\\neasily distracted from negative emotion process-\\ning (Ellenbogen et al, 2002 ; Lyubomirsky et al,\\n1998 ; Siegle et al, 2002 ; Wenzlaff and Bates,\\n1998 ), (3) show heightened stress hormone lev-\\nels such as cortisol that may have deleterious\\neffects on the brain (Sapolsky, 2000 ), and (4)', 'title': '2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf', 'version': 'v0', 'chunk_order': 6779, 'document_id': '17637a6f-804e-50e4-9cf5-37318e17f15c', 'extraction_id': '995b3eb6-e505-52a0-a142-ca507eb9a9ac', 'associatedQuery': 'how do our brains maintain emotions'}}, {'id': '2199f4c4-8126-54c8-a323-6704c96bc0f7', 'score': 0.5732914209365886, 'metadata': {'text': 'et al, 2000 ). Once activated, the amygdala sets in\\nmotion a cascade of responses to threat via pro-jections to the hypothalamus and prefrontal cor-tex (LeDoux, 1996 ). A neural region that is criti-\\ncal for regulating responses to emotional stimuli\\nis the ventrolateral prefrontal cortex (VLPFC;Hariri et al, 2002 ). Studies have shown that\\nthe labeling of negative affective states activates\\nthe right VLPFC and that increased activity inright VLPFC is associated with decreased activ-', 'title': '2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf', 'version': 'v0', 'chunk_order': 4744, 'document_id': '17637a6f-804e-50e4-9cf5-37318e17f15c', 'extraction_id': '264526ff-3f41-5a6d-88af-6e237cea42cb', 'associatedQuery': 'how do our brains maintain emotions'}}, {'id': '8b65f73a-2d73-53b2-b418-f8e485d58df3', 'score': 0.5715483001086186, 'metadata': {'text': 'tially participates in negative emotional states,although it also participates in positive emo-\\ntional states (Zald, 2003 ). The amygdala orches-\\ntrates the somatomotor, visceral, and cognitiveresponses to threats by virtue of its connections\\nwith cortical brain structures above and hypotha-\\nlamic and brainstem structures below it (LeDouxet al, 1990 ). The nucleus accumbens and ventral\\nstriatum participate in reward responses and pos-\\nitive emotional states. Other structures that are', 'title': '2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf', 'version': 'v0', 'chunk_order': 6764, 'document_id': '17637a6f-804e-50e4-9cf5-37318e17f15c', 'extraction_id': '069a2a63-f01c-5235-a118-3744c21f2baa', 'associatedQuery': 'how do our brains maintain emotions'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_30\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZMkkQgFtXLUsuTUrfbvqGBOuc3R', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'During stressful experiences, our brains release several hormones, including corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and glucocorticoids (GC) [1]. Additionally, cortisol, a steroid hormone, is released by the adrenal glands under chronic stress [6]. These hormones play significant roles in regulating immune responses, neuronal survival, neurogenesis, synaptic plasticity, and behavioral responses [1].', 'role': 'assistant'}}], 'created': 1727797574, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_c17d3befe7', 'usage': {'completion_tokens': 92, 'prompt_tokens': 1422, 'total_tokens': 1514}}, 'search_results': {'vector_search_results': [{'id': '3667e7f7-c984-567e-9757-19d7827c2a52', 'score': 0.6551440553410073, 'metadata': {'text': 'pin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and \\nglucocorticoids (GC), which are also called stress hormones. These hormones con-\\ntribute to the regulation of immune responses and can also affect neuronal survival, \\nneurogenesis, synaptic plasticity, and behavioral responses [ 1, 2 ] . The HPA axis is \\na three-tiered biological system that begins at the highest level with the release of \\nCRH from the hypothalamic paraventricular nucleus (PVN). CRH-expressing neu-', 'title': '2013 - Neural-Immune Interactions in Brain Function and Alcohol Related Disorders.pdf', 'version': 'v0', 'chunk_order': 3647, 'document_id': '78271275-3409-5fc7-bbdd-53c484178e0b', 'extraction_id': 'e4e689d6-5e01-50cb-bb0f-1d958542a343', 'associatedQuery': 'what hormones do our brains release during stressful experiences?'}}, {'id': 'db05c1b0-1a66-5a2c-9680-564167f95ffe', 'score': 0.6442934850716729, 'metadata': {'text': 'stressor in uences the interleukin-1beta system, tumor necrosis factor-alpha, transforming growth factor-beta1, and neuropeptide mRNAs in speci c brain regions. Brain Res Bull 51:187193 \\n 63. Deak T et al (2005) Stress-induced increases in hypothalamic IL-1: a systematic analysis of \\nmultiple stressor paradigms. Brain Res Bull 64:541556 \\n 64. Hennessy MB et al (2004) Responses of guinea pig pups during isolation in a novel', 'title': '2013 - Neural-Immune Interactions in Brain Function and Alcohol Related Disorders.pdf', 'version': 'v0', 'chunk_order': 1278, 'document_id': '78271275-3409-5fc7-bbdd-53c484178e0b', 'extraction_id': '87cb54ed-b246-52a8-8922-5baa4f2f5e7c', 'associatedQuery': 'what hormones do our brains release during stressful experiences?'}}, {'id': 'dfdcca45-79ae-5e00-bae0-175860786128', 'score': 0.6383971166133025, 'metadata': {'text': 'stressful events. In rats and mice, the secretion\\nof hypothalamicpituitaryadrenal hormones istypically greater, and increased HPA activity\\noften persists into adulthood (Koehl et al, 1999 ).\\nBasal levels of adrenal hormones are more typ-ically reported to be normal in primates, but\\nthere may be alterations in the diurnal hormone\\nrhythm or an altered negative feedback, whichresults in protracted cortisol responses once acti-vated. Many effects of prenatal stress on brain', 'title': '2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf', 'version': 'v0', 'chunk_order': 4611, 'document_id': '17637a6f-804e-50e4-9cf5-37318e17f15c', 'extraction_id': 'c83a0fd3-2bc2-510b-ba66-fad5dab1c430', 'associatedQuery': 'what hormones do our brains release during stressful experiences?'}}, {'id': '1900d276-5346-5041-b497-41b8f1dde22e', 'score': 0.6323272962765274, 'metadata': {'text': 'Y in depression and stress. Brain Research 1314, 194 205.\\nMozhui, K., Karlsson, R.M., Kash, T.L., Ihne, J., Norcross, M., Patel, S., Farrell, M.R., Hill,\\nE.E., Graybeal, C., Martin, K.P., Camp, M., Fitzgerald, P.J., Ciobanu, D.C., Sprengel,\\nR., Mishina, M., Wellman, C.L., Winder, D.G., Williams, R.W., Holmes, A., 2010.\\nStrain differences in stress responsivity are associated with divergent amygdala\\ngene expression and glutamate-mediated neuronal excitability. The Journal of', 'title': '2014 - Genetic regulatory network analysis reveals that low density lipoprotein receptor-related protein 11 is involved in stress responses in mice.pdf', 'version': 'v0', 'chunk_order': 75, 'document_id': '9e59e66c-6b3f-5c99-a12c-7bb6fd0d899f', 'extraction_id': 'a576772e-e17b-56fc-96b0-bdf8c913b2e8', 'associatedQuery': 'what hormones do our brains release during stressful experiences?'}}, {'id': 'cc9faf66-a0d0-5427-9f84-004d1b450b5a', 'score': 0.63044895620492, 'metadata': {'text': 'Neurobiology of Learning and Memory 185 (2021) 107509\\n21.Introduction \\nJames McGaugh was one of the first neuroscientists to point to the \\nimportant influence of stress hormones on memory consolidation \\n(McGaugh, Gold, Van Buskirk, & Haycock, 1975 ). He and others \\nconsidered that hormones released by stressful experiences could \\nenhance memory consolidation, indicating particularly the hormones \\nepinephrine and glucocorticoids as memory modulators (McGaugh &', 'title': '2021 - Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children.pdf', 'version': 'v0', 'chunk_order': 10, 'document_id': '976026ce-9e0c-5b0b-8469-abc8f92dbdf0', 'extraction_id': '8c989969-10c2-533e-ad71-5e9a54499798', 'associatedQuery': 'what hormones do our brains release during stressful experiences?'}}, {'id': '7c9bf714-0d21-5104-9aed-4bd1b191fbf4', 'score': 0.6291910001394454, 'metadata': {'text': 'For example, stress is a functional state of psychosocial arousal that focuses and energizes us to confront the stressor, but chronic/toxic levels of stress lead to disruptive changes in brain architecture and dysregulation of stress response mechanisms, such as the hypothalamus-pituitary (\\nhpA) axis and the autonomic \\nnervous (ANS) system. Under chronic stress, the adrenal glands of mammals (including humans) release the steroid hormone cortisol. Cortisol acts by increas\\n-', 'title': '2015 - Great Is Their Sin.pdf', 'version': 'v0', 'chunk_order': 137, 'document_id': 'e5ae9710-3049-5327-82e4-e6626eb670c2', 'extraction_id': '2992ae99-13f8-5b72-9a5b-408a1ec77e32', 'associatedQuery': 'what hormones do our brains release during stressful experiences?'}}, {'id': 'b06f880b-97c9-5541-a76e-a5f37f31fa6a', 'score': 0.6268789955043497, 'metadata': {'text': '55:485494. \\nHerman JP, Ostrander MM, Mueller NK, Figueiredo H (2005). Limbic system \\nmechanisms of stress regulation: hypothalamo -pituitary -adrenocortical axis. Prog \\nNeuropsychopharmacol Biol Psychiatry 29:1201 1213. \\nHerry C, Bach DR, Esposito F, Di Salle F, P errig WJ, Scheffler K et al. (2007). \\nProcessing of temporal unpredictability in human and animal amygdala. J Neurosci \\n27:5958 5966. \\nHitzemann R, Malmanger B, Cooper S, Coulombe S, Reed C, Demarest K et al. (2002).', 'title': '2009 - Multiscale Genomic Analysis of the Corticolimbic System_ Uncoveri (1).pdf', 'version': 'v0', 'chunk_order': 665, 'document_id': '3d0df5a3-7d7c-5edc-b94d-cae582f59c12', 'extraction_id': 'bccdd21d-53b6-53c5-89ae-6508fa5ea4a9', 'associatedQuery': 'what hormones do our brains release during stressful experiences?'}}, {'id': '010d5687-d237-51ca-87a1-e7e0af944e39', 'score': 0.6263157911990822, 'metadata': {'text': 'after restraint stress. Acute stress (like acute ethanol) activates the\\nHPA axis and increases brain and circulating levels of GABAergic\\nneuroactive steroids [1] as well as corticosterone, the major\\ncorticosteroid synthesized in rodents from DOC. GABAergic\\nneuroactive steroids have anxiolytic properties when administered\\nsystemically [54,55]. Thus, we might have predicted that those\\nstrains with higher basal DOC levels would have been less', 'title': '2011 - Genetic Analysis of the Neurosteroid Deoxycorticosterone and Its Relation to Alcohol Phenotypes Identification of QTLs and Downstream Gene Regulation.pdf', 'version': 'v0', 'chunk_order': 74, 'document_id': '4eef9c8d-17bf-5ed2-a90c-6bc64f7374b1', 'extraction_id': 'f854fcfc-5758-5d5f-944d-d1db9e72ccdd', 'associatedQuery': 'what hormones do our brains release during stressful experiences?'}}, {'id': '869496a0-2bff-569f-ba3a-03294ebf2e98', 'score': 0.6251489110335386, 'metadata': {'text': 'present in the brain as well as in the peripheral circulation. It issynthesized from progesterone, mainly in the adrenal zonafasciculata and it is precursor of both the glucocorticoidcorticosterone and the GABAergic neuroactive steroid (3 a,5a)-\\n3,21-dihydroxypregnan-20-one (tetrahydrodeoxycorticosterone,THDOC). These steroids are all elevated following acute stress[1] or ethanol administration in rats, and their elevation is blunted', 'title': '2011 - Genetic Analysis of the Neurosteroid Deoxycorticosterone and Its Relation to Alcohol Phenotypes Identification of QTLs and Downstream Gene Regulation.pdf', 'version': 'v0', 'chunk_order': 10, 'document_id': '4eef9c8d-17bf-5ed2-a90c-6bc64f7374b1', 'extraction_id': '0b62b9d2-6622-5882-b3d6-e7f8482a927a', 'associatedQuery': 'what hormones do our brains release during stressful experiences?'}}, {'id': '19df7543-5231-56d5-a59a-e342565b737d', 'score': 0.6242675371249778, 'metadata': {'text': 'plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology\\n62, 3 12.\\nMcEwen, B.S., Nasca, C., Gray, J.D., 2016. Stress e ects on neuronal structure: hippo-\\ncampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 41, 3 .\\nMozhui, K., Lu, L., Armstrong, W.E., Williams, R.W., 2012. Sex-speci c modulation of\\ngene expression networks in murine hypothalamus. Front. Neurosci. 6, 63 .\\nNavarro, V.M., 2013. Interactions between kisspeptins and neurokinin B. In: Kisspeptin', 'title': '2019 - Exploring the involvement of Tac2 in the mouse hippocampal stress response through gene networking.pdf', 'version': 'v0', 'chunk_order': 125, 'document_id': '8277ae11-6516-54d2-9723-73749d46db9b', 'extraction_id': 'cd49980b-e59c-5d64-816d-3a8817f099fc', 'associatedQuery': 'what hormones do our brains release during stressful experiences?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_31\n",
+ "results --> {'completion': {'id': 'chatcmpl-ADZMoelW4EZWflXHaXujPl4dX6GM9', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Corticosterone has several uses and effects as indicated in the provided context:\\n\\n1. **Amplification of Stress-Induced Changes**: Corticosterone importantly amplifies stress-induced changes [1].\\n2. **Anti-inflammatory and Immune Effects**: At high and supraphysiological concentrations, corticosterone has pronounced anti-inflammatory actions. Conversely, at lower concentrations, it appears to have some immune-potentiating effects [3].\\n3. **Impact on Cell Proliferation**: Acute increases in corticosterone lead to decreased cell proliferation, while chronic increases cause an increase in proliferation rate. This is due to the presence of two receptors with different binding affinities: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) [5].\\n4. **Reduction of Delayed-Type Hypersensitivity Response**: Corticosterone dramatically reduces the delayed-type hypersensitivity response [6].\\n5. **Measurement in Research**: Corticosterone levels can be measured in plasma samples using specific enzyme immunoassay kits, which is useful in various research settings [8].\\n\\nThese points highlight the diverse roles and applications of corticosterone in both physiological and research contexts.', 'role': 'assistant'}}], 'created': 1727797578, 'model': 'gpt-4o-2024-05-13', 'object': 'chat.completion', 'system_fingerprint': 'fp_c17d3befe7', 'usage': {'completion_tokens': 241, 'prompt_tokens': 1059, 'total_tokens': 1300}}, 'search_results': {'vector_search_results': [{'id': 'bf56c010-06d1-598e-81cf-2a2603f0a883', 'score': 0.6560750603675842, 'metadata': {'text': 'that corticosterone importantly amplies the SD induced changes', 'title': '2015 - Genetic dissection of sleep homeostasis.pdf', 'version': 'v0', 'chunk_order': 191, 'document_id': 'ed971d1f-e77e-566b-b549-81cd0038834a', 'extraction_id': 'cef725f8-c326-59f4-a65e-62d8c7bd5db5', 'associatedQuery': 'what is the use of corticosterone?'}}, {'id': '76804170-ccb4-5e86-b9ba-533264556893', 'score': 0.6132207377885937, 'metadata': {'text': 'be used to predict corticosteroid response [200]. George etal.', 'title': '2019 - Leveraging genomics to uncover.pdf', 'version': 'v0', 'chunk_order': 221, 'document_id': '5da46d3b-fa82-57f6-b3e5-c82784347881', 'extraction_id': 'c624519f-327a-5733-9e1e-94d5bec93fd7', 'associatedQuery': 'what is the use of corticosterone?'}}, {'id': '63c085a5-ad08-5f28-b3be-3e62b7739183', 'score': 0.5948904994195413, 'metadata': {'text': 'we do not wish to dispute this viewpoint, it is interesting to note that anti-\\nin ammatory actions of CORT are most pronounced at high and supraphysiological \\nconcentrations, whereas lower concentrations of CORT appear to have some \\nimmune-potentiating effects (e.g., [ 6 ] ). Whether these low-dose facilitation effects \\nrelate more directly to the timing of CORT injection relative to cytokine measure-\\nments, or represent differential tissue sensitivity to glucocorticoids, remains to be', 'title': '2013 - Neural-Immune Interactions in Brain Function and Alcohol Related Disorders.pdf', 'version': 'v0', 'chunk_order': 1131, 'document_id': '78271275-3409-5fc7-bbdd-53c484178e0b', 'extraction_id': 'f6556a02-048a-5e9b-ac7e-ed681db96345', 'associatedQuery': 'what is the use of corticosterone?'}}, {'id': '74ffa8aa-80dc-5e94-a373-c1af483d63f4', 'score': 0.5867375381745386, 'metadata': {'text': 'cortisol to the less bioactive cortisone (Seckl,1997 ). While the protection afforded by this bar-\\nrier enzyme can be overwhelmed when cortisol\\nlevels get very high, it likely functions effec-\\ntively when cortisol remains within the normalrange (Campbell and Murphy, 1997 ). There is\\nnow considerable interest in what types of events\\nor other hormones might lower 11-HSD2 andthereby reduce the buffering benets it affords.\\nOn example is elevated catecholamine levels,', 'title': '2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf', 'version': 'v0', 'chunk_order': 4617, 'document_id': '17637a6f-804e-50e4-9cf5-37318e17f15c', 'extraction_id': 'f9be673c-af23-5d15-9087-37e818cf1a68', 'associatedQuery': 'what is the use of corticosterone?'}}, {'id': '05e15635-52ee-5d80-9696-15cea22fb7e4', 'score': 0.575142400716019, 'metadata': {'text': 'the balance between cell generation and cell death. Acute increase of corticosterone leads to decreased cell proliferation while chronic increase causes an increase in proliferation rate (Sapolsky et al., 2000). This discrepancy is due to the presence of two receptors with different binding affinities: the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). The GR present in', 'title': '2012 - Genetic regulation of adult hippocampal neurogenesis A systems genetics approach using BXD recombinant inbred mouse strains.pdf', 'version': 'v0', 'chunk_order': 118, 'document_id': 'c54da858-9620-588e-8e41-76a960af2ff6', 'extraction_id': '3c78be84-90fe-58ce-85e5-e85e2208057f', 'associatedQuery': 'what is the use of corticosterone?'}}, {'id': '5ccf3333-4675-577f-bfce-5d5e72fd7c3f', 'score': 0.5715612173080444, 'metadata': {'text': 'corticosterone dramatically reduce the delayed-type hypersensitivity response (Dhabhar andMcEwen, 1997 ,1999 ). Sorrells and Sapolsky\\n(2007 ) have provided a thought provoking recent\\nreview, contrasting the well-established anti-inammatory aspect of glucocorticoids, with the\\nmounting evidence for their pro-inammatory\\neffects both in the periphery and in the brain fol-lowing chronic exposure. This pattern of results\\ndemonstrates that the acute stress response has', 'title': '2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf', 'version': 'v0', 'chunk_order': 5507, 'document_id': '17637a6f-804e-50e4-9cf5-37318e17f15c', 'extraction_id': '59789bd0-1ee6-51da-b2a1-94f847ff6c63', 'associatedQuery': 'what is the use of corticosterone?'}}, {'id': '6d2d21e3-a1c5-5a11-a7ca-7fc643cf8b36', 'score': 0.5678959062068437, 'metadata': {'text': 'mature babies in order to stimulate lung maturation. As\\nillustrated here, Dex readily bypasses the protective bar-rier enzyme 11 beta-hydroxysteroid dehydrogenase type2 (11-HSD2), which normally limits fetal exposure tomaternal cortisol by converting it to corticosterone, aless bioactive form. Some concerns linger about long-term effects of fetal exposure to high doses or sustainedcorticosteroid treatmentantenatal glucocorticoid therapies are warranted,', 'title': '2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf', 'version': 'v0', 'chunk_order': 4627, 'document_id': '17637a6f-804e-50e4-9cf5-37318e17f15c', 'extraction_id': '32902b1c-3a3a-5f5b-b651-a6fd0fa653a9', 'associatedQuery': 'what is the use of corticosterone?'}}, {'id': '8f5142d0-8efa-5fe8-b7bf-46dea42ec444', 'score': 0.5626591444015503, 'metadata': {'text': 'first session. Approximately 50 microliters was collected into lithium heparin-coated tubes \\nand then centrifuged for collection of plasma. Samples were stored at 80 degrees until \\nready for processing.\\nPlasma corticosterone concentration was measured with the use of the DetectX CORT \\nEnzyme Immunoassay kit (ArborAssays K014-H5, Ann Arbor, MI, USA). Room \\ntemperature plasma samples were diluted 1:450 in assay buffer and processed according to', 'title': '2019 - Strain differences in maternal neuroendocrine and behavioral responses to stress and the relation to offspring cocaine responsiveness..pdf', 'version': 'v0', 'chunk_order': 28, 'document_id': 'd29d8018-09a1-53d4-8f07-9dd110c79b39', 'extraction_id': '29253383-31a5-5fe1-8160-9d6091273a4d', 'associatedQuery': 'what is the use of corticosterone?'}}, {'id': '7b2a0384-586f-582f-93da-8fd64dc76095', 'score': 0.5621330142021179, 'metadata': {'text': 'corticosterone in their drinking water as sole liquid source for seven days prior to i.p. treatment with\\n4 mg /kg diisopropylurophosphate. Data are mean consumption per day s.e.m.\\n4.2. Gene Expression in Response to Treatments\\n4.2.1. IL1b\\nWe observed wide variability in the e ect of CORT on expression of Il1b (Figure 2). ANOVA\\nrevealed a signicant main e ect for strain (F 32,122 =3.61, p<0.001). The main e ects for sex and', 'title': '2020 - Modeling the Genetic Basis of Individual Differences in Susceptibility to Gulf War Illness.pdf', 'version': 'v0', 'chunk_order': 27, 'document_id': 'd235d186-3d1c-5cde-90d5-9c140cd920f4', 'extraction_id': '1de7e365-88d0-5893-826e-7ac6a69b896e', 'associatedQuery': 'what is the use of corticosterone?'}}, {'id': '2234517f-d2da-535b-8bb4-5ee5d33671e2', 'score': 0.5606993436813354, 'metadata': {'text': 'cortisol.\\nSupport has emerged for the basic tenets of\\nthis hypothesis in studies of both humans and\\nanimals (Avitsur et al, 2001 ; Miller and Chen,\\n2006 ; Miller et al, 2002 ,2009 ; Rohleder et al,\\n2001 ; Stark et al, 2001 ). Most of this work has\\nmade use of an ex vivo assay system, where\\nleukocytes are stimulated with a bacterial prod-\\nuct (endotoxin) in the presence of varying levelsof cortisol, which is expected to suppress their\\nability to synthesize inammatory cytokines. In', 'title': '2010 - Candidate Gene and Genome-Wide Association Studies in Behavioral Medicine.pdf', 'version': 'v0', 'chunk_order': 3732, 'document_id': '17637a6f-804e-50e4-9cf5-37318e17f15c', 'extraction_id': '5da98563-71dd-5d71-8303-b52f2fb8c6a7', 'associatedQuery': 'what is the use of corticosterone?'}}], 'kg_search_results': None}}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "../data/dataset/human_cs_gn_32\n"
+ ]
+ }
+ ],
+ "source": [
+ "# this should be a json file with a list of input files and an output file\n",
+ "with open(read_file, \"r\") as r_file:\n",
+ " result_file = json.load(r_file)\n",
+ "\n",
+ "ragas_output = {\n",
+ " \"titles\": [],\n",
+ " \"extraction_id\": [],\n",
+ " \"document_id\": [],\n",
+ " \"id\": [],\n",
+ " \"contexts\": [],\n",
+ " \"answer\": \"\",\n",
+ " \"question\": \"\"}\n",
+ "#extract_response(result_file, values_key, ragas_output)\n",
+ "print('There are {0} keys in the result file'.format(result_file.keys()))\n",
+ "for key in result_file.keys():\n",
+ " eval_dataset_dict = get_ragas_out_dict()\n",
+ " extract_response(result_file[key], values_key, eval_dataset_dict)\n",
+ " DocOps.writeDatasetFile(eval_dataset_dict, '{0}{1}'.format(out_file, key))\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/gnqa/src/scripts/run_human_datasets.sh b/gnqa/src/scripts/run_human_datasets.sh
new file mode 100755
index 00000000..6f55d6d3
--- /dev/null
+++ b/gnqa/src/scripts/run_human_datasets.sh
@@ -0,0 +1,63 @@
+#!/bin/bash
+
+#echo "Evaluating dataset of questions from domainexperts on the topic of general GN information."
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_domainexpert_general_1.json data/results/human/scores_de_gn_1.json 3
+#sleep 60
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_domainexpert_general_2.json data/results/human/scores_de_gn_2.json 3
+#sleep 60
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_domainexpert_general_3.json data/results/human/scores_de_gn_3.json 3
+#sleep 60
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_domainexpert_general_4.json data/results/human/scores_de_gn_4.json 3
+#sleep 60
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_domainexpert_general_5.json data/results/human/scores_de_gn_5.json 3
+#sleep 60
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_domainexpert_general_6.json data/results/human/scores_de_gn_6.json 3
+#sleep 60
+#echo "Evaluating dataset of questions from domainexpert in the topic of aging"
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_domainexpert_aging_1.json data/results/human/scores_de_aging_1.json 3
+#sleep 60
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_domainexpert_aging_2.json data/results/human/scores_de_aging_2.json 3
+#sleep 60
+#echo "Evaluating dataset of questions from domainexpert in the topic of diabetes"
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_domainexpert_diabetes_1.json data/results/human/scores_de_diabetes_1.json 3
+#sleep 60
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_domainexpert_diabetes_2.json data/results/human/scores_de_diabetes_2.json 3
+#sleep 60
+#echo "Evaluating dataset of questions from citizenscientist in the topic of general"
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_general_1.json data/results/human/scores_cs_gn_1.json 3
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_general_2.json data/results/human/scores_cs_gn_2.json 3
+#sleep 30
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_general_3.json data/results/human/scores_cs_gn_3.json 3
+#sleep 30
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_general_4.json data/results/human/scores_cs_gn_4.json 3
+#sleep 30
+##python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_general_5.json data/results/human/scores_cs_gn_5.json 3
+##sleep 30
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_general_6.json data/results/human/scores_cs_gn_6.json 3
+#sleep 30
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_general_7.json data/results/human/scores_cs_gn_7.json 3
+#echo "Evaluating dataset of questions from citizenscientist in the topic of aging"
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_aging_1.json data/results/human/scores_cs_aging_1.json 3
+#sleep 30
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_aging_2.json data/results/human/scores_cs_aging_2.json 3
+#sleep 30
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_aging_3.json data/results/human/scores_cs_aging_3.json 3
+#sleep 30
+#echo "Evaluating dataset of questions from citizenscientist in the topic of diabetes"
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_diabetes_1.json data/results/human/scores_cs_diabetes_1.json 3
+#sleep 30
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_diabetes_2.json data/results/human/scores_cs_diabetes_2.json 3
+#sleep 30
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_diabetes_3.json data/results/human/scores_cs_diabetes_3.json 3
+#sleep 30
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/human/dataset_citizenscientist_diabetes_4.json data/results/human/scores_cs_diabetes_4.json 3
+#sleep 30
+
+echo "Evaluating dataset of queriestion from citizen scientist on the diabetes topics, generated by gpt4o"
+python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/gpt4o/dataset_citizenscientist_gn_2.json data/results/gpt4o/scores_cs_gn.json 3
+#sleep 60
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/gpt4o/dataset_citizenscientist_diabetes_2.json data/results/gpt4o/scores_cs_diabetes.json 3
+#sleep 60
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/gpt4o/dataset_citizenscientist_diabetes_3.json data/results/gpt4o/scores_cs_diabetes.json 3
+#sleep 60
+#python3 ragas_fahamuRAG.py /home/shebes/code/GN-LLM-Hacking/gnqa_eval/src/data/datasets/gpt4o/dataset_citizenscientist_diabetes_4.json data/results/gpt4o/scores_cs_diabetes.json 3
diff --git a/gnqa/src/study1/__init__.py b/gnqa/src/study1/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/gnqa/src/study1/__init__.py
diff --git a/gnqa/src/study1/parsejson.py b/gnqa/src/study1/parsejson.py
new file mode 100644
index 00000000..b49a898a
--- /dev/null
+++ b/gnqa/src/study1/parsejson.py
@@ -0,0 +1,63 @@
+import json
+import sys
+
+
+def iterate_json(obj, thedict):
+ if isinstance(obj, dict):
+ for key, val in obj.items():
+ if (key == "text"):
+ thedict["contexts"].append(val.replace("\n", " ").strip())
+ elif (key == "answer"):
+ thedict["answer"] = val.replace("\n", " ").strip()
+ elif (key == "question"):
+ thedict["question"] = val.replace("\n", " ").strip()
+ else:
+ if (len(obj.items()) == 1 ):
+ print(key, " --> ", val)
+ iterate_json(val, thedict)
+ elif isinstance(obj, list):
+ for item in obj:
+ iterate_json(item, thedict)
+
+def create_dataset_from_files(tag, file_name, rag_out):
+ for the_file in file_name[tag]:
+ ragas_output = {
+ "contexts": [],
+ "answer": "",
+ "question": ""}
+ #print(the_file)
+ with open("./data/"+the_file, "r") as r_file:
+ data_file = json.load(r_file)
+ iterate_json(data_file, ragas_output)
+ rag_out["answer"].append(ragas_output["answer"])
+ rag_out["question"].append(ragas_output["question"])
+ rag_out["contexts"].append(ragas_output["contexts"])
+
+def create_resultset_from_file(file_name):
+ with open("./data/"+the_file, "r") as r_file:
+ data_file = json.load(r_file)
+ iterate_json(data_file, ragas_output)
+
+
+file_list_tag = str(sys.argv[1])
+read_file = str(sys.argv[2]) # e.g. doc_list.json
+outp_file = str(sys.argv[3])
+
+rag_out = {
+ "question": [],
+ "answer": [],
+ "contexts": []
+}
+
+cntxt_lst = []
+
+# this should be a json file with a list of input files and an output file
+with open(read_file, "r") as r_file:
+ file_lst = json.load(r_file)
+
+create_dataset_from_files(file_list_tag, file_lst, rag_out)
+
+with open(outp_file, "a") as the_data:
+ #json.dump(ragas_output, the_data)
+ the_data.write(",\n")
+ the_data.write(json.dumps(rag_out, indent=2))
diff --git a/gnqa/src/study1/parsejson_ratings.py b/gnqa/src/study1/parsejson_ratings.py
new file mode 100644
index 00000000..bd20417e
--- /dev/null
+++ b/gnqa/src/study1/parsejson_ratings.py
@@ -0,0 +1,106 @@
+import json
+import sys
+
+"""
+This file converts the json report from GNQA into a list of individual users
+and their interactions with the system. At the moment we are getting their
+questions, the systems answers, and their ratings of the overall system response.
+Unfortunately the context is not saved with the answer.
+"""
+# report_data, ratings_dict
+def reorg_json_report(obj, resp_lst, ratings):
+ if isinstance(obj, dict):
+ user_id = ''
+ for key, val in obj.items():
+ if (key == "user_id"):
+ user_id = val
+ if isKeyInList(resp_lst, val) == 0:
+ resp_lst.append({val: ratings})
+ else:
+ print("\nKey {0} is already present".format(val))
+ elif (key in ["query","answer","weight","task_id"]):
+ ratings[key].append(val)
+ #else:
+ # print('These are the current ratings --> {0}'.format(ratings))
+ print('The ratings before being pushed to user_responses -> {0}'.format(ratings))
+ # add query to dictionary, if it is an update then don't update the ratings
+ qcount = query_dict.setdefault(ratings["query"][0], 0)
+ query_dict.update({ratings["query"][0]: qcount+1})
+ update_ratings(resp_lst, user_id, ratings)
+ if qcount == 0:
+ taskquery_dict.setdefault(ratings["task_id"][0], ratings["query"][0])
+ #update_ratings(resp_lst, user_id, ratings)
+ #reorg_json_report(val, resp_lst, ratings)
+ elif isinstance(obj, list):
+ for item in obj:
+ ratings = reset_ratings()
+ reorg_json_report(item, resp_lst, ratings)
+
+
+
+def create_resultset_from_file(resp_lst, file_name, output):
+ with open(file_name, "r") as r_file:
+ the_data = json.load(r_file)
+ reorg_json_report(the_data, resp_lst, output)
+
+def isKeyInList(the_lst, the_key):
+ result = 0
+ result_item = {}
+ for the_item in the_lst:
+ if the_key in the_item:
+ result = 1
+ result_item = the_item
+ return result, result_item
+
+def update_ratings(ratings, user_id, input_dict):
+ key_ndx, ratings_dict = isKeyInList(ratings, user_id)
+ if key_ndx == 0:
+ ratings.append({user_id: input_dict})
+ else:
+ for key, val in input_dict.items():
+ if isinstance(val,list):
+ ratings_dict[user_id][key].append(val[0])
+ else:
+ ratings_dict[user_id][key].append(val)
+
+def reset_ratings():
+ return {
+ "task_id": [],
+ "weight": [],
+ "answer": [],
+ "query": []
+ }
+
+user_responses = []
+ratings_out = {
+ "task_id": [],
+ "weight": [],
+ "answer": [],
+ "query": []
+}
+
+query_dict = {}
+taskquery_dict = {}
+
+try:
+ read_file = str(sys.argv[1]) # e.g. doc_list.json
+ outp_file = str(sys.argv[2])
+except:
+ exit('Example use "python3 parsejson_ratings.py data/ratings/2024_06_25-gnqa_responses.json data/ratings/[date]-out.json"')
+
+#print('The input file is {0}, the output file is {1}'.format(read_file, outp_file))
+
+create_resultset_from_file(user_responses, read_file, ratings_out)
+print('The number of users is {0}'.format(len(user_responses)))
+#print(json.dumps(ratings_out, indent=2))
+with open(outp_file, "a") as the_data:
+ the_data.write(",\n")
+ the_data.write(json.dumps(user_responses, indent=2))
+
+print("Greetings shabes!")
+print('There are {0} unique queries.'.format(len(taskquery_dict)))
+print(json.dumps(taskquery_dict, indent=2))
+#get number of users
+# get number of questions asked per user
+# get average ratings
+
diff --git a/gnqa/src/study1/ragas_fahamuRAG.py b/gnqa/src/study1/ragas_fahamuRAG.py
new file mode 100644
index 00000000..8955a668
--- /dev/null
+++ b/gnqa/src/study1/ragas_fahamuRAG.py
@@ -0,0 +1,71 @@
+#!/usr/bin/python3
+import os
+import sys
+import json
+import time
+import configparser
+#import pandas as pd
+
+#from pandas import DataFrame as df
+#from langchain_together import Together
+#from langchain_together.embeddings import TogetherEmbeddings
+#from ragas.metrics import (faithfulness, answer_relevancy, context_relevancy, context_utilization, context_recall)
+# using ragas==0.1.9
+from ragas.metrics import (faithfulness, answer_relevancy, context_relevancy, context_utilization)
+from ragas import evaluate
+from datasets import Dataset#, load_dataset
+
+def evaluateDataset(num_evaluations, dataset, output_file):
+ for n in range(0,num_evaluations):
+
+ #results = evaluate(dataset, metrics=[faithfulness,context_utilization,context_relevancy,answer_relevancy], raise_exceptions=False)
+ results = evaluate(dataset, metrics=[faithfulness,answer_relevancy, context_relevancy, context_utilization])
+ print(results)
+ with open(output_file, "a") as the_data:
+ the_data.write(",\n")
+ the_data.write(json.dumps(results, indent=2))
+ time.sleep(20)
+
+
+
+config = configparser.ConfigParser()
+#config.read('/home/shebes/Coding/gn-ai/gnqa/paper1_eval/src/_config.cfg')
+config.read('/code/paper1_eval/src/_config.cfg')
+
+os.environ["OPENAI_API_KEY"] = config['key.api']['openai2']
+together_key = config['key.api']['togetherai']
+
+#embeddings = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
+#embeddings = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-32k-retrieval")
+
+#together_completion = Together(
+ #model="NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT",
+ #model="togethercomputer/Llama-2-7B-32K-Instruct",
+ #model="meta-llama/Llama-3-70b-chat-hf",
+# model="google/gemma-7b-it",
+# temperature=0.8,
+# max_tokens=4000,
+# top_k=1,
+# together_api_key=together_key
+#)
+
+read_file = str(sys.argv[1])
+outp_file = str(sys.argv[2])
+num_evals = int(sys.argv[3])
+
+print(read_file)
+print(outp_file)
+
+with open(read_file, "r") as r_file:
+ data = json.load(r_file)
+
+dataset = Dataset.from_dict(data)
+print(dataset)
+evaluateDataset(num_evals, dataset, outp_file)
+"""
+results = evaluate(
+ dataset,
+ metrics=[faithfulness,answer_relevancy,context_relevancy,context_utilization],
+ llm=together_completion,
+ embeddings=embeddings)
+"""
diff --git a/gnqa/src/study1/retrieve_context.py b/gnqa/src/study1/retrieve_context.py
new file mode 100644
index 00000000..58b9d472
--- /dev/null
+++ b/gnqa/src/study1/retrieve_context.py
@@ -0,0 +1,171 @@
+import os
+import sys
+import json
+import time
+import configparser
+import apis.process as gnqa
+from apis.process import get_gnqa, get_response_from_taskid
+
+
+config = configparser.ConfigParser()
+config.read('_config.cfg')
+
+'''
+the refs object is a list of items containing doc_id, bibInfo, and comboTxt
+We only need comboTxt
+'''
+def simplifyContext(refs):
+ result = []
+ for item in refs:
+ combo_text = item['comboTxt']
+ combo_text = combo_text.replace('\n','')
+ combo_text = combo_text.replace('\t','')
+ result.append(combo_text)
+ return result
+
+def writeDatasetFile(responses, outp_file):
+ print(outp_file)
+ output = json.dumps(responses, indent=2)
+ if os.path.exists(outp_file):
+ with open(outp_file, "a") as the_data:
+ the_data.write('' + output)
+ else:
+ with open(outp_file, "a") as the_data:
+ the_data.write(output)
+
+
+def reset_responses():
+ return {
+ 'question': [],
+ 'answer': [],
+ 'contexts': [],
+ 'task_id': []
+ }
+
+def parse_document(jsonfile):
+ print('Parse document')
+ for item in jsonfile:
+ level = item['level']
+ domain = item['domain']
+ query_lst = item['query']
+ create_datasets(query_lst, domain, level)
+
+def create_datasets(query_list, domain, level):
+ print('Creating dataset')
+ responses = reset_responses()
+ ndx = 0
+ for query in query_list:
+ print(query)
+ task_id, answer, refs = get_gnqa(query, config['key.api']['fahamuai'], config['DEFAULT']['DATA_DIR'])
+ responses['question'].append(query)
+ responses['answer'].append(answer)
+ responses['task_id'].append(task_id)
+ responses['contexts'].append(simplifyContext(refs))
+ ndx+=1
+ time.sleep(10) # sleep a bit to not overtask the api
+ if ndx % 5 == 0:
+ print('Will print to file number {0}'.format(int(ndx/5)))
+ outp_file = '{0}dataset_{1}_{2}_{3}.json'.format(config['out.response.dataset']['gpt4o_dir'],level,domain,str(int(ndx/5)))
+ writeDatasetFile(responses, outp_file)
+ responses = reset_responses()
+ if len(responses['question']) > 0:
+ outp_file = '{0}dataset_{1}_{2}_{3}.json'.format(config['out.response.dataset']['gpt4o_dir'],level,domain,str(int(ndx/5)+1))
+ writeDatasetFile(responses, outp_file)
+
+def parse_responses(jsonfile):
+ print('Parsing human responses')
+ de_dict_general = {"level": "domainexpert", "domain": "general", "query": [], "task_id": []}
+ de_dict_aging = {"level": "domainexpert", "domain": "aging", "query": [], "task_id": []}
+ de_dict_diabetes = {"level": "domainexpert", "domain": "diabetes", "query": [], "task_id": []}
+ cs_dict_general = {"level": "citizenscientist", "domain": "general", "query": [], "task_id": []}
+ cs_dict_aging = {"level": "citizenscientist", "domain": "aging", "query": [], "task_id": []}
+ cs_dict_diabetes = {"level": "citizenscientist", "domain": "diabetes", "query": [], "task_id": []}
+ j = 0
+ for _, val in jsonfile.items():
+ ndx = 0
+ lvl = val.get("level")
+ for qry in val.get("query"):
+ ans = val.get("answer")[ndx] if "answer" in val else ""
+ tpc = val.get("topic")[ndx]
+ tpc = "general" if tpc==0 else "aging" if tpc==1 else "diabetes"
+ tskd = val.get("task_id")[ndx]
+ if lvl == 'cs' and tpc == 'general':
+ addToDataList(cs_dict_general, qry, ans, tskd)
+ elif lvl == 'cs' and tpc == 'aging':
+ addToDataList(cs_dict_aging, qry, ans, tskd)
+ elif lvl == 'cs' and tpc == 'diabetes':
+ addToDataList(cs_dict_diabetes, qry, ans, tskd)
+ elif lvl == 'de' and tpc == 'general':
+ addToDataList(de_dict_general, qry, ans, tskd)
+ elif lvl == 'de' and tpc == 'aging':
+ addToDataList(de_dict_aging, qry, ans, tskd)
+ elif lvl == 'de' and tpc == 'diabetes':
+ addToDataList(de_dict_diabetes, qry, ans, tskd)
+ else:
+ print('Somehow there is a query without a topic or expertise level')
+ ndx+=1
+ j+=1
+ create_datasets_from_taskid(de_dict_general)
+ create_datasets_from_taskid(de_dict_aging)
+ create_datasets_from_taskid(de_dict_diabetes)
+ create_datasets_from_taskid(cs_dict_general)
+ create_datasets_from_taskid(cs_dict_aging)
+ create_datasets_from_taskid(cs_dict_diabetes)
+
+def addToDataList(data_lst, qry, ans, tskd):
+ data_lst["query"].append(qry)
+ data_lst["task_id"].append(tskd)
+ if "answer" not in data_lst.keys():
+ data_lst["answer"] = []
+ data_lst["answer"].append(ans)
+
+
+def create_datasets_from_taskid(info_dict):#task_list, query_list, answers, domain, level):
+ print('Creating dataset of questions from {0} in the topic of {1}'.format(info_dict["level"], info_dict["domain"]))
+ responses = reset_responses()
+ ndx = 0
+ query_list = info_dict["query"]
+ if "answer" in info_dict:
+ answers = info_dict["answer"]
+ else:
+ info_dict["answer"] = []
+ answers = []
+
+ for task_id in info_dict["task_id"]:
+ _, an_answer, refs = get_response_from_taskid(config['key.api']['fahamuai'], task_id)
+ responses['question'].append(query_list[ndx])
+ if answers[ndx] == "":
+ responses['answer'].append(an_answer)
+ else:
+ responses['answer'].append(answers[ndx])
+ responses['task_id'].append(task_id)
+ responses['contexts'].append(simplifyContext(refs))
+ ndx+=1
+ time.sleep(10) # sleep a bit to not overtask the api
+ if ndx % 5 == 0:
+ #print('Will print to file number {0}'.format(int(ndx/5)))
+ outp_file = '{0}dataset_{1}_{2}_{3}_two.json'.format(config['out.response.dataset']['human_dir'],info_dict["level"],info_dict["domain"],str(int(ndx/5)))
+ writeDatasetFile(responses, outp_file)
+ responses = reset_responses()
+ if len(responses['question']) > 0:
+ #print('Will print to file number {0}'.format(int((ndx/5)+1)))
+ #print(responses)
+ outp_file = '{0}dataset_{1}_{2}_{3}_two.json'.format(config['out.response.dataset']['human_dir'],info_dict["level"],info_dict["domain"],str(int(ndx/5)+1))
+ writeDatasetFile(responses, outp_file)
+
+try:
+
+ read_file = str(sys.argv[1])
+ file_type = str(sys.argv[2])
+
+except:
+ exit('Example use "python3 retrieve_context.py data/queries/qlist.json human/gpt4o"')
+
+
+print('Read input file')
+with open(read_file, "r") as r_file:
+ file_lst = json.load(r_file)
+if file_type == "gpt4o":
+ parse_document(file_lst)
+else:
+ parse_responses(file_lst) \ No newline at end of file
diff --git a/gnqa/src/study2/__init__.py b/gnqa/src/study2/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/gnqa/src/study2/__init__.py
diff --git a/gnqa/src/study2/create_dataset.py b/gnqa/src/study2/create_dataset.py
new file mode 100644
index 00000000..2d62f18b
--- /dev/null
+++ b/gnqa/src/study2/create_dataset.py
@@ -0,0 +1,20 @@
+#!/usr/bin/python3
+
+import sys
+from study2.document_operations import DocOps
+
+
+'''
+*******************************************************************************
+Commands
+*******************************************************************************
+'''
+
+try:
+ read_file = str(sys.argv[1])
+ out_file = str(sys.argv[2])
+except:
+ exit('Example use "python create_dataset.py ../data/lists/human_list_cs_gn.json ../data/dataset/human_cs_gn.json"')
+
+doc_list = DocOps.read_json_document(read_file)
+DocOps.combine_responses(doc_list, out_file) \ No newline at end of file
diff --git a/gnqa/src/study2/document_operations.py b/gnqa/src/study2/document_operations.py
new file mode 100644
index 00000000..f8ffdefe
--- /dev/null
+++ b/gnqa/src/study2/document_operations.py
@@ -0,0 +1,177 @@
+import os
+import sys
+import json
+#import inspect
+from r2r import RAGResponse
+#import time
+#import configparser
+'''
+from r2r import ( R2R,
+ Document,
+ GenerationConfig,
+ R2RClient )
+'''
+
+class DocOps:
+ _type = ''
+ values_key = {
+ "text" : {"name": "contexts", "append": 1},
+ "associatedQuery": {"name": "question", "append": 0},
+ "id": {"name": "id", "append": 1},
+ "title": {"name": "titles", "append": 1},
+ "document_id": {"name": "document_id", "append": 1},
+ "extraction_id": {"name": "extraction_id", "append": 1},
+ "content": {"name": "answer", "append": 0}
+ }
+
+ def __init__(self):
+ self._type = 'QuestionList'
+
+ def reset_responses():
+ return {
+ 'question': [],
+ 'answer': [],
+ 'contexts': []
+ #,
+ #'task_id': []
+ }
+
+ def writeDatasetFile(responses, outp_file):
+ print(outp_file)
+ output = json.dumps(responses, indent=2)
+
+ if os.path.exists(outp_file):
+ with open(outp_file, "a") as the_data:
+ the_data.write('\n\n' + output)
+ else:
+ with open(outp_file, "a") as the_data:
+ the_data.write(output)
+
+ def jsonifyRAGResponse(resps):
+ for resp in resps:
+ print("Num citations {0}\nAnswer --> {1}\n\t{2}".format(
+ len(resp.citations),
+ resp.generated_answer,
+ resp.metadata))
+
+ def writeRAGResponses(resps, outp_file):
+ print(outp_file)
+ for ndx in resps:
+ resp = resps[ndx]
+ #methods = [attr for attr in dir(obj) if not attr.startswith('_')] # Exclude private methods
+ #print(methods)
+ output = resp.model_dump()
+ output_to_write = resp.model_dump_json()
+ print("The answer --> {0}\nID --> {1}".format(
+ output["results"]["generated_answer"],
+ output["results"]["metadata"]["id"]))
+ if os.path.exists(outp_file):
+ with open(outp_file, "a") as the_data:
+ the_data.write('\n\n' + output_to_write)
+ else:
+ with open(outp_file, "a") as the_data:
+ the_data.write(output_to_write)
+
+
+
+ def get_r2r_ragas_out_dict():
+ return { "titles": [],
+ "extraction_id": [],
+ "document_id": [],
+ "id": [],
+ "contexts": [],
+ "answer": "",
+ "question": ""}
+
+ def read_json_document(file_name):
+ with open(file_name, "r") as result_file:
+ return json.load(result_file)
+
+ def combine_responses(doc_lst, out_filename):
+ ragas_output = DocOps.reset_responses()
+
+ for doc in doc_lst:
+ the_doc = DocOps.read_json_document(doc)
+ ragas_output['question'].append(
+ the_doc['question'])
+ ragas_output['answer'].append(
+ the_doc['answer'])
+ ragas_output['contexts'].append(
+ the_doc['contexts'])
+ DocOps.writeDatasetFile(
+ ragas_output, out_filename)
+
+
+ def extract_response(obj, values_key, thedict):
+ if isinstance(obj, dict):
+ for key, val in obj.items():
+ if (key in values_key.keys()):
+ if (values_key[key]["append"]):
+ thedict[values_key[key]["name"]].append(val.replace("\n", " ").strip())
+ else:
+ thedict[values_key[key]["name"]] = val.replace("\n", " ").strip()
+ print(("", "Key -> {0}\tValue -> {1}".format(key,val)) [DocOps.verbose])
+ else:
+ if (len(obj.items()) == 1 ):
+ print(key, " --> ", val)
+ DocOps.extract_response(val, values_key, thedict)
+ elif isinstance(obj, list):
+ for item in obj:
+ DocOps.extract_response(item, values_key, thedict)
+
+class QuestionList:
+ _verbose = 0
+ _doc = ''
+ _fname = ''
+ _question_list = {
+ "domainexpert": {
+ "gn": [],
+ "aging": [],
+ "diabetes": []
+ },
+ "citizenscientist": {
+ "gn": [],
+ "aging": [],
+ "diabetes": []
+ }
+ }
+
+ def __init__(self, the_file, verbose=0):
+ print('QuestionList has been initialized {0}, verbosity is {1}'.format(the_file, verbose))
+ self._fname = the_file
+ self._verbose = verbose
+ self.read_document()
+ self.parse_document()
+ #self._print()
+
+
+ def read_document(self):
+ self._doc = DocOps.read_json_document(
+ self._fname)
+
+
+
+ def parse_document(self):
+ print(('', '\nParse question list') [self._verbose] )
+ for item in self._doc:
+ level = item['level']
+ domain = item['domain']
+ query_lst = item['query']
+ self._question_list[level][domain] = query_lst
+ #print(('', 'Level --> {0} \tDomain --> {1}\n{2}'.format(level, domain, self.print_list(query_lst))) [self._verbose])
+ #create_datasets(query_lst, domain, level)
+
+
+ def print_list(self, the_lst):
+ ndx = 1
+ for item in the_lst:
+ print('\t[{0}] {1}'.format(ndx, item))
+ ndx += 1
+
+ def _print(self):
+ print(json.dumps(self._question_list, indent=2))
+
+ def get(self, level, domain):
+ return self._question_list[level][domain]
+
+
diff --git a/gnqa/src/study2/parse_r2r_result.py b/gnqa/src/study2/parse_r2r_result.py
new file mode 100644
index 00000000..5cba6d3e
--- /dev/null
+++ b/gnqa/src/study2/parse_r2r_result.py
@@ -0,0 +1,63 @@
+import json
+import sys
+from study2.document_operations import DocOps, QuestionList
+
+verbose = 0
+#read_file = '/home/shebes/Coding/gn-ai/gnqa/paper2_eval/data/testresp2.json'
+read_file = '/home/shebes/Coding/gn-ai/gnqa/paper2_eval/data/responses/human/cs_diabetes_responses.json'
+out_file = '../data/dataset/human/intermediate_files/human_cs_diabetes_'
+
+values_key = {
+ "text" : {"name": "contexts", "append": 1},
+ "associatedQuery": {"name": "question", "append": 0},
+ "id": {"name": "id", "append": 1},
+ "title": {"name": "titles", "append": 1},
+ "document_id": {"name": "document_id", "append": 1},
+ "extraction_id": {"name": "extraction_id", "append": 1},
+ "content": {"name": "answer", "append": 0}
+}
+
+def get_ragas_out_dict():
+ return { "titles": [],
+ "extraction_id": [],
+ "document_id": [],
+ "id": [],
+ "contexts": [],
+ "answer": "",
+ "question": ""}
+
+def extract_response(obj, values_key, thedict):
+ if isinstance(obj, dict):
+ for key, val in obj.items():
+ if (key in values_key.keys()):
+ if (values_key[key]["append"]):
+ thedict[values_key[key]["name"]].append(val.replace("\n", " ").strip())
+ else:
+ thedict[values_key[key]["name"]] = val.replace("\n", " ").strip()
+ print(("", "Key -> {0}\tValue -> {1}".format(key,val)) [verbose])
+ else:
+ if (len(obj.items()) == 1 ):
+ print(key, " --> ", val)
+ extract_response(val, values_key, thedict)
+ elif isinstance(obj, list):
+ for item in obj:
+ extract_response(item, values_key, thedict)
+
+# this should be a json file with a list of input files and an output file
+with open(read_file, "r") as r_file:
+ result_file = json.load(r_file)
+
+ragas_output = {
+ "titles": [],
+ "extraction_id": [],
+ "document_id": [],
+ "id": [],
+ "contexts": [],
+ "answer": "",
+ "question": ""}
+
+print('There are {0} keys in the result file'.format(result_file.keys()))
+for key in result_file.keys():
+ eval_dataset_dict = get_ragas_out_dict()
+ extract_response(result_file[key], values_key, eval_dataset_dict)
+ DocOps.writeDatasetFile(eval_dataset_dict, '{0}{1}'.format(out_file, key)) \ No newline at end of file
diff --git a/gnqa/src/study2/parsejson.py b/gnqa/src/study2/parsejson.py
new file mode 100644
index 00000000..b49a898a
--- /dev/null
+++ b/gnqa/src/study2/parsejson.py
@@ -0,0 +1,63 @@
+import json
+import sys
+
+
+def iterate_json(obj, thedict):
+ if isinstance(obj, dict):
+ for key, val in obj.items():
+ if (key == "text"):
+ thedict["contexts"].append(val.replace("\n", " ").strip())
+ elif (key == "answer"):
+ thedict["answer"] = val.replace("\n", " ").strip()
+ elif (key == "question"):
+ thedict["question"] = val.replace("\n", " ").strip()
+ else:
+ if (len(obj.items()) == 1 ):
+ print(key, " --> ", val)
+ iterate_json(val, thedict)
+ elif isinstance(obj, list):
+ for item in obj:
+ iterate_json(item, thedict)
+
+def create_dataset_from_files(tag, file_name, rag_out):
+ for the_file in file_name[tag]:
+ ragas_output = {
+ "contexts": [],
+ "answer": "",
+ "question": ""}
+ #print(the_file)
+ with open("./data/"+the_file, "r") as r_file:
+ data_file = json.load(r_file)
+ iterate_json(data_file, ragas_output)
+ rag_out["answer"].append(ragas_output["answer"])
+ rag_out["question"].append(ragas_output["question"])
+ rag_out["contexts"].append(ragas_output["contexts"])
+
+def create_resultset_from_file(file_name):
+ with open("./data/"+the_file, "r") as r_file:
+ data_file = json.load(r_file)
+ iterate_json(data_file, ragas_output)
+
+
+file_list_tag = str(sys.argv[1])
+read_file = str(sys.argv[2]) # e.g. doc_list.json
+outp_file = str(sys.argv[3])
+
+rag_out = {
+ "question": [],
+ "answer": [],
+ "contexts": []
+}
+
+cntxt_lst = []
+
+# this should be a json file with a list of input files and an output file
+with open(read_file, "r") as r_file:
+ file_lst = json.load(r_file)
+
+create_dataset_from_files(file_list_tag, file_lst, rag_out)
+
+with open(outp_file, "a") as the_data:
+ #json.dump(ragas_output, the_data)
+ the_data.write(",\n")
+ the_data.write(json.dumps(rag_out, indent=2))
diff --git a/gnqa/src/study2/retrieve_context.py b/gnqa/src/study2/retrieve_context.py
new file mode 100644
index 00000000..fca90dd9
--- /dev/null
+++ b/gnqa/src/study2/retrieve_context.py
@@ -0,0 +1,171 @@
+import os
+import sys
+import json
+import time
+import configparser
+import apis.process as gnqa
+from apis.process import get_gnqa, get_response_from_taskid
+
+
+config = configparser.ConfigParser()
+config.read('_config.cfg')
+
+'''
+the refs object is a list of items containing doc_id, bibInfo, and comboTxt
+We only need comboTxt
+'''
+def simplifyContext(refs):
+ result = []
+ for item in refs:
+ combo_text = item['comboTxt']
+ combo_text = combo_text.replace('\n','')
+ combo_text = combo_text.replace('\t','')
+ result.append(combo_text)
+ return result
+
+def writeDatasetFile(responses, outp_file):
+ print(outp_file)
+ output = json.dumps(responses, indent=2)
+ if os.path.exists(outp_file):
+ with open(outp_file, "a") as the_data:
+ the_data.write('' + output)
+ else:
+ with open(outp_file, "a") as the_data:
+ the_data.write(output)
+
+
+def reset_responses():
+ return {
+ 'question': [],
+ 'answer': [],
+ 'contexts': [],
+ 'task_id': []
+ }
+
+def parse_document(jsonfile):
+ print('Parse document')
+ for item in jsonfile:
+ level = item['level']
+ domain = item['domain']
+ query_lst = item['query']
+ create_datasets(query_lst, domain, level)
+
+def create_datasets(query_list, domain, level):
+ print('Creating dataset')
+ responses = reset_responses()
+ ndx = 0
+ for query in query_list:
+ print(query)
+ task_id, answer, refs = get_gnqa(query, config['key.api']['fahamuai'], config['DEFAULT']['DATA_DIR'])
+ responses['question'].append(query)
+ responses['answer'].append(answer)
+ responses['task_id'].append(task_id)
+ responses['contexts'].append(simplifyContext(refs))
+ ndx+=1
+ time.sleep(10) # sleep a bit to not overtask the api
+ if ndx % 5 == 0:
+ print('Will print to file number {0}'.format(int(ndx/5)))
+ outp_file = '{0}dataset_{1}_{2}_{3}.json'.format(config['out.response.dataset']['human_dir'],level,domain,str(int(ndx/5)))
+ writeDatasetFile(responses, outp_file)
+ responses = reset_responses()
+ if len(responses['question']) > 0:
+ outp_file = '{0}dataset_{1}_{2}_{3}.json'.format(config['out.response.dataset']['human_dir'],level,domain,str(int(ndx/5)+1))
+ writeDatasetFile(responses, outp_file)
+
+def parse_responses(jsonfile):
+ print('Parsing human responses')
+ de_dict_general = {"level": "domainexpert", "domain": "general", "query": [], "task_id": []}
+ de_dict_aging = {"level": "domainexpert", "domain": "aging", "query": [], "task_id": []}
+ de_dict_diabetes = {"level": "domainexpert", "domain": "diabetes", "query": [], "task_id": []}
+ cs_dict_general = {"level": "citizenscientist", "domain": "general", "query": [], "task_id": []}
+ cs_dict_aging = {"level": "citizenscientist", "domain": "aging", "query": [], "task_id": []}
+ cs_dict_diabetes = {"level": "citizenscientist", "domain": "diabetes", "query": [], "task_id": []}
+ j = 0
+ for _, val in jsonfile.items():
+ ndx = 0
+ lvl = val.get("level")
+ for qry in val.get("query"):
+ ans = val.get("answer")[ndx] if "answer" in val else ""
+ tpc = val.get("topic")[ndx]
+ tpc = "general" if tpc==0 else "aging" if tpc==1 else "diabetes"
+ tskd = val.get("task_id")[ndx]
+ if lvl == 'cs' and tpc == 'general':
+ addToDataList(cs_dict_general, qry, ans, tskd)
+ elif lvl == 'cs' and tpc == 'aging':
+ addToDataList(cs_dict_aging, qry, ans, tskd)
+ elif lvl == 'cs' and tpc == 'diabetes':
+ addToDataList(cs_dict_diabetes, qry, ans, tskd)
+ elif lvl == 'de' and tpc == 'general':
+ addToDataList(de_dict_general, qry, ans, tskd)
+ elif lvl == 'de' and tpc == 'aging':
+ addToDataList(de_dict_aging, qry, ans, tskd)
+ elif lvl == 'de' and tpc == 'diabetes':
+ addToDataList(de_dict_diabetes, qry, ans, tskd)
+ else:
+ print('Somehow there is a query without a topic or expertise level')
+ ndx+=1
+ j+=1
+ create_datasets_from_taskid(de_dict_general)
+ create_datasets_from_taskid(de_dict_aging)
+ create_datasets_from_taskid(de_dict_diabetes)
+ create_datasets_from_taskid(cs_dict_general)
+ create_datasets_from_taskid(cs_dict_aging)
+ create_datasets_from_taskid(cs_dict_diabetes)
+
+def addToDataList(data_lst, qry, ans, tskd):
+ data_lst["query"].append(qry)
+ data_lst["task_id"].append(tskd)
+ if "answer" not in data_lst.keys():
+ data_lst["answer"] = []
+ data_lst["answer"].append(ans)
+
+
+def create_datasets_from_taskid(info_dict):#task_list, query_list, answers, domain, level):
+ print('Creating dataset of questions from {0} in the topic of {1}'.format(info_dict["level"], info_dict["domain"]))
+ responses = reset_responses()
+ ndx = 0
+ query_list = info_dict["query"]
+ if "answer" in info_dict:
+ answers = info_dict["answer"]
+ else:
+ info_dict["answer"] = []
+ answers = []
+
+ for task_id in info_dict["task_id"]:
+ _, an_answer, refs = get_response_from_taskid(config['key.api']['fahamuai'], task_id)
+ responses['question'].append(query_list[ndx])
+ if answers[ndx] == "":
+ responses['answer'].append(an_answer)
+ else:
+ responses['answer'].append(answers[ndx])
+ responses['task_id'].append(task_id)
+ responses['contexts'].append(simplifyContext(refs))
+ ndx+=1
+ time.sleep(10) # sleep a bit to not overtask the api
+ if ndx % 5 == 0:
+ #print('Will print to file number {0}'.format(int(ndx/5)))
+ outp_file = '{0}dataset_{1}_{2}_{3}_two.json'.format(config['out.response.dataset']['human_dir'],info_dict["level"],info_dict["domain"],str(int(ndx/5)))
+ writeDatasetFile(responses, outp_file)
+ responses = reset_responses()
+ if len(responses['question']) > 0:
+ #print('Will print to file number {0}'.format(int((ndx/5)+1)))
+ #print(responses)
+ outp_file = '{0}dataset_{1}_{2}_{3}_two.json'.format(config['out.response.dataset']['human_dir'],info_dict["level"],info_dict["domain"],str(int(ndx/5)+1))
+ writeDatasetFile(responses, outp_file)
+
+try:
+
+ read_file = str(sys.argv[1])
+ file_type = str(sys.argv[2])
+
+except:
+ exit('Example use "python3 retrieve_context.py data/queries/qlist.json human/gpt4o"')
+
+
+print('Read input file')
+with open(read_file, "r") as r_file:
+ file_lst = json.load(r_file)
+if file_type == "gpt4o":
+ parse_document(file_lst)
+else:
+ parse_responses(file_lst) \ No newline at end of file
diff --git a/gnqa/src/study2/run_questions.py b/gnqa/src/study2/run_questions.py
new file mode 100644
index 00000000..9bac5a23
--- /dev/null
+++ b/gnqa/src/study2/run_questions.py
@@ -0,0 +1,41 @@
+import json
+import sys
+import os
+
+from r2r import R2RClient, RAGResponse
+from document_operations import DocOps, QuestionList
+
+'''
+*******************************************************************************
+Variables
+*******************************************************************************
+'''
+rag_gen_cfg = {"model": "openai/gpt-4o-mini", "temperature": 0.0, "use_hybrid_search": True}
+rag_response = {}
+#client = R2RClient("http://localhost:8000")
+client = R2RClient("http://localhost:7272")
+#health_resp = client.health()
+
+'''
+*******************************************************************************
+Commands
+*******************************************************************************
+'''
+
+#print("The R2R client's health status is {0}".format(health_resp))
+
+try:
+ read_file = str(sys.argv[1])
+ out_file = str(sys.argv[2])
+except:
+ exit('Example use "python run_questions.py ../../data/study2/lists/human-questions.json ../../data/test_study/human/de/aging_resp.json"')
+
+qLst = QuestionList(read_file, 1) # second parameter is for verbose output
+ndx = 1
+for question in qLst.get("domainexpert","aging"):
+ print('Getting response for the following question --> {0}'.format(question))
+ #rag_response[str(ndx)] = client.rag(question)
+ rag_response[str(ndx)] = client.retrieval.rag(question, rag_gen_cfg)
+ ndx += 1
+
+DocOps.writeRAGResponses(rag_response, out_file) \ No newline at end of file