aboutsummaryrefslogtreecommitdiff
path: root/gnqa/paper2_eval/data/dataset/human/intermediate_files/human_cs_gn_8
diff options
context:
space:
mode:
Diffstat (limited to 'gnqa/paper2_eval/data/dataset/human/intermediate_files/human_cs_gn_8')
-rw-r--r--gnqa/paper2_eval/data/dataset/human/intermediate_files/human_cs_gn_865
1 files changed, 65 insertions, 0 deletions
diff --git a/gnqa/paper2_eval/data/dataset/human/intermediate_files/human_cs_gn_8 b/gnqa/paper2_eval/data/dataset/human/intermediate_files/human_cs_gn_8
new file mode 100644
index 0000000..6e73b0c
--- /dev/null
+++ b/gnqa/paper2_eval/data/dataset/human/intermediate_files/human_cs_gn_8
@@ -0,0 +1,65 @@
+{
+ "titles": [
+ "2018 - Germline de novo mutation clusters arise.pdf",
+ "2008 - Mechanisms of Disease genetic insights into the etiology of type 2 diabetes and obesity.pdf",
+ "2018 - Germline de novo mutation clusters arise.pdf",
+ "2008 - Loci Related to Metabolic-Syndrome Pathways Including LEPR.pdf",
+ "2003 - Haplotypes and the systematic analysis of genetic variation in genes and genomes.pdf",
+ "2018 - Repetitive Fragile Sites Centromere Satellite DNA.pdf",
+ "2003 - Haplotypes and the systematic analysis of genetic variation in genes and genomes.pdf",
+ "2003 - Haplotypes and the systematic analysis of genetic variation in genes and genomes.pdf",
+ "2020 - Prospective avenues for human population genomics and disease mapping in southern Africa.pdf",
+ "2016 - A genetic method for dating ancient genomes provides.pdf"
+ ],
+ "extraction_id": [
+ "403bbc25-ce94-5a4f-a409-436cc02fb204",
+ "0fa3ac68-ea06-5d95-b3fb-f224d40e38a9",
+ "403bbc25-ce94-5a4f-a409-436cc02fb204",
+ "74f21fa4-31ff-5aa6-b806-1ffc73b79801",
+ "de271b3e-86e8-5405-8e15-a54376db728b",
+ "af805fbb-a39f-5a29-a0b0-9add1126b553",
+ "e764c7b0-e155-5358-a5c9-a168508a32ea",
+ "de271b3e-86e8-5405-8e15-a54376db728b",
+ "4927bfe6-f007-5ad0-88c8-f9ae4bde540f",
+ "fcf5296e-6be4-5789-b1e1-ac57fef15119"
+ ],
+ "document_id": [
+ "f2b2ca83-a34f-5f99-b9f2-357b2ddbe136",
+ "87ceda8f-0ce6-5678-9ade-96a40a991647",
+ "f2b2ca83-a34f-5f99-b9f2-357b2ddbe136",
+ "c7583131-8c05-576b-a458-577021374b5d",
+ "97525d6c-b50d-5826-84eb-71ddd52aea27",
+ "262df0d6-ad68-544a-88ed-b4568f305858",
+ "97525d6c-b50d-5826-84eb-71ddd52aea27",
+ "97525d6c-b50d-5826-84eb-71ddd52aea27",
+ "e74e3b9c-14d2-54c3-9319-7dc1b45db41e",
+ "5a5e67ea-4830-5fe8-95c3-ccfcc8324036"
+ ],
+ "id": [
+ "chatcmpl-ADZJSm9AzU2UQT9a71JIfAJoKh0Fh",
+ "ab92961e-c267-5e56-aeb9-0d03fd0a4102",
+ "46297c04-59ef-5f94-af20-5e83036b5ea9",
+ "788b6b85-7ef2-5805-bc0c-d8af71332e0d",
+ "9df97195-cdb6-5271-8dd2-89a421f6281a",
+ "94686ace-46ce-51f1-9b26-07c27baca6b9",
+ "72da6034-227d-5dac-9ef6-90c246ec2b40",
+ "9ee9c9e1-70ed-512a-bd20-9f967829f75a",
+ "acfd48ac-6d04-5691-b2b7-6ebe179c0f0b",
+ "4bcb02fe-e0e1-5e2b-b0c7-7d27bb03b73c",
+ "aa3c4d11-71cb-5941-a6b0-56f9358ba565"
+ ],
+ "contexts": [
+ "347357 (1998). 31. Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836840 (2010). 32. Kong, A. et al. Recombination rate and reproductive success in humans. Nat.Genet. 36, 12031206 (2004). 33. Ottolini, C. S. et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47, 727735 (2015).",
+ "Genet 39: 977983 33 Myers S et al. (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310: 321324REVIEW Nature.indt 1 Nature.indt 1 28/11/07 9:46:50 am 28/11/07 9:46:50 am",
+ "higher in regions of high recombination. Trends Genet. 18, 337340 (2002). 26. Webster, M. T. & Hurst, L. D. Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends Genet. 28, 101109 (2012). 27. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415421 (2013).",
+ "D.R., and Donnelly, P. (2004). The ne-scale structure ofrecombination rate variation in the human genome. Science 304, 581584. 33. Winckler, W., Myers, S.R., Richter, D.J., Onofrio, R.C., McDo- nald, G.J., Bontrop, R.E., McVean, G.A., Gabriel, S.B., Reich, D., Donnelly, P., et al. (2005). Comparison of ne-scale recom- bination rates in humans and chimpanzees. Science 308, 107111. 1192 The American Journal of Human Genetics 82, 11851192, May 2008",
+ "www.pharmaco-genomics.com 569REVIEW 48. Reich DE, Schaffner SF , Daly MJ et al. : Human chromosome sequence variation and the influence of gene history, mutation and recombination. Nat. Genet. 32, 135-142 (2002). The authors provide evidence that recombination hot spots may represent a general feature of the human genome and play a major role in shaping genetic variation in humans. 49. Wall JD, Pritchard JK: Haplotype blocks and linkage disequilibrium in the human",
+ "Genes 2018 ,9, 615 18 of 20 97. McFarlane, R.J.; Humphrey, T.C. A role for recombination in centromere function. Trends Genet. 2010 ,26, 209213. [CrossRef] 98. Talbert, P .B.; Henikoff, S. Centromeres convert but dont cross. PLoS Biol. 2010 ,8, e1000326. [CrossRef] 99. Durfy, S.J.; Willard, H.F. Concerted Evolution of Primate Alpha Satellite DNA Evidence for an Ancestral Sequence Shared by Gorilla and Human X Chromosome Satellite. J. Mol. Biol. 1990 ,216, 555566. [CrossRef]",
+ "Variations on a theme: cataloguing human DNA sequence variation. Science 278, 1580- 1581 (1997). 37. Jeffreys AJ, Kauppi L, Neumann R: Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217-222 (2001). 38. Chakravarti A, Buetow KH, Antonarakis SE et al.: Nonuniform recombination within the human beta-globin gene cluster. Am. J. Hum. Genet. 36, 1239-1258 (1984). 39. Smith RA, Ho PJ, Clegg JB, Kidd, JR,",
+ "genome. Nat. Rev. Genet. 4, 587-597 (2003). Important review, including discussion of the recently proposed haplotype-block model of LD. 50. Nachman MW: Variation in recombination rate across the genome: evidence and implications. Curr. Opin. Genet. Dev. 12, 657-663 (2002). 51. Kong A, Gudbjartsson DF , Sainz J et al. : A high-resolution recombination map of the human genome. Nat. Genet. 31, 241-247 (2002). 52. Sabeti PC, Reich DE, Higgins JM et al. :",
+ "Recombination maps are often used for admixture mapping (Browning and Browning 2007). A recombination map is a genetic map that illustrates the variation of the recombina-tion rate across a region of the genome or the entire genome (Myers etal. 2005). It is dependent on the underlying dis-tribution of recombination events that occur between suc-cessive generations within a given population (Kong etal. 2010). The presence and activity of the PRDM9 zinc finger protein in the population under study, the ratio",
+ "31. Fu Q, et al. (2015) An early modern human from Romania with a recent Neanderthal ancestor. Nature 524(7564):216 219. 32. Baudat F, et al. (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327(5967):836 840. 33. Lesecque Y, Glmin S, Lartillot N, Mouchiroud D, Duret L (2014) The red queen model of recombination hotspots evolution in the light of archaic and modern human ge- nomes. PLoS Genet 10(11):e1004790."
+ ],
+ "answer": "Recombination in the human genome is a complex process with several key aspects highlighted in the provided context: 1. **PRDM9 and Recombination Hotspots**: PRDM9 is identified as a major determinant of meiotic recombination hotspots in humans and mice [1], [10]. This protein plays a crucial role in determining where recombination events are likely to occur during meiosis. 2. **Recombination Rate and Reproductive Success**: There is a relationship between recombination rate and reproductive success in humans, suggesting that recombination may have evolutionary implications [1]. 3. **Genome-wide Maps of Recombination**: Detailed maps of recombination rates and hotspots across the human genome have been created, providing insights into the fine-scale structure of recombination rate variation [2], [4]. These maps are essential for understanding genetic variation and are used in admixture mapping [9]. 4. **Variation in Recombination Rates**: There is significant variation in recombination rates across different regions of the human genome, which has implications for genetic diversity and evolution [8]. 5. **Influence on Genetic Variation**: Recombination hotspots are a general feature of the human genome and play a major role in shaping genetic variation [5]. 6. **Selection for Maternal Recombination Rates**: Genome-wide maps of recombination in human oocytes and embryos show selection for maternal recombination rates, indicating that recombination patterns can be subject to evolutionary pressures [1]. These points collectively highlight the importance of recombination in shaping the human genome, influencing genetic diversity, and having evolutionary consequences.",
+ "question": "What about recombination in the human genome?"
+} \ No newline at end of file