aboutsummaryrefslogtreecommitdiff
path: root/gnqa/paper1_eval/src/data/datasets/old/full_aging_dataset.json
diff options
context:
space:
mode:
Diffstat (limited to 'gnqa/paper1_eval/src/data/datasets/old/full_aging_dataset.json')
-rw-r--r--gnqa/paper1_eval/src/data/datasets/old/full_aging_dataset.json248
1 files changed, 248 insertions, 0 deletions
diff --git a/gnqa/paper1_eval/src/data/datasets/old/full_aging_dataset.json b/gnqa/paper1_eval/src/data/datasets/old/full_aging_dataset.json
new file mode 100644
index 0000000..9e2008f
--- /dev/null
+++ b/gnqa/paper1_eval/src/data/datasets/old/full_aging_dataset.json
@@ -0,0 +1,248 @@
+{
+ "question": [
+ "List as many studies are you can that include rapamycin",
+ "Why is it so difficult to map gene loci that control aging in humans?",
+ "How would one evaluate a candidate gene for mouse lifespan?",
+ "Do we find significant quantitative trait loci in aging studies, if so give the top three examples with descriptions?",
+ "What are the most fundamental human life expectancy extending geroscience studies?",
+ "List and describe the grand challenges related to aging research in genetics and genomics.",
+ "How do gene-by-drug effects (GxD) modulate life expectancies and health?",
+ "What loci and gene variants modulate normal variation in lifespan, and in which cases is this sex-specific (GxS)?",
+ "what is the influence of rapamycin and aging on the in vivo physiological and metabolic states and cellular bioenergetic, and how do these relate to the rapamycin-induced health and lifespan modification for that genometype?",
+ "Describe the genotypes related to alzheimers and dementia which have commonalities with those for aging?"
+ ],
+ "answer": [
+ "1. A study assessing the impact of a rapamycin derivative on healthy aging in people (Mannick et al. 2014). 2. A veterinary clinical trial testing rapamycin as a treatment for osteosarcoma (Paoloni et al. 2010). 3. A veterinary clinical trial assessing the side effect profile and effects on age-associated cardiac function following 10 weeks of rapamycin treatment in healthy elderly dogs (Kaeberlein 2015). 4. A study on the pharmacokinetic analysis of rapamycin treatment in healthy dogs (Larson et al. 2016). 5. A study on the effects of rapamycin in aging mice (Johnson et al. 2015). 6. A study on the effects of rapamycin in rodents (Johnson et al. 2013). 7. A study on the effects of rapamycin on the replicative life of yeast (Reference [57]). 8. A study on the effects of rapamycin in 20-month-old mice (Reference [58]). 9. A study on the combination of rapamycin with other compounds for anti-aging activity (Reference [59]).",
+ "Mapping gene loci that control aging in humans is difficult due to several reasons. Firstly, aging is a complex phenotype influenced by multiple genes and their interactions with each other and the environment. Secondly, the effects of common genetic variations on longevity are small, requiring large studies for identification. Thirdly, human studies often face issues such as environmental heterogeneity, genetic diversity, and lack of birth matched controls. Lastly, the influence of social, economic, and cultural factors, which are unique to humans, can't be replicated in traditional model organisms, adding to the complexity.",
+ "One would evaluate a candidate gene for mouse lifespan by conducting gene mapping methods and using mouse life span as a surrogate for aging. This involves studying the genetic contributions to mortality rates, conducting sex-specific analyses, and determining any changes in pathology associated with the loci. The study would involve a large population of mice, and the results would be compared to Mendelian expectations. Additionally, epigenetic predictors and differential methylation analysis could be used to assess the relationship between the gene and lifespan. The gene's influence on specific late-life diseases and its effect on the risk of these diseases would also be evaluated.",
+ "Yes, significant quantitative trait loci (QTLs) have been found in aging studies. Three examples include: 1. Lfdr1: This QTL was found on chromosome 7 and affects lifespan and fertility in response to dietary restriction. It also has suggestive effects on fuel efficiency (FE). 2. Fedr1 and Fedr2: These QTLs were identified on chromosomes 9 and 15 respectively. They have significant effects on fuel efficiency in response to dietary restriction. 3. QTLs associated with age-related thymic involution: These were identified in a study using C57BL/6 J X DBA/2 J (BXD) recombinant inbred (RI) strains of mice.",
+ "The most fundamental human life expectancy extending geroscience studies include genetic and genomic research into longevity. These studies use both hypothesis-driven candidate gene approaches and explorative genome-wide analyses. They also involve the study of biomarkers related to aging, deep phenotyping, and the use of novel technologies like next-generation sequencing. Additionally, they examine the role of environmental factors, lifestyle, and heritability in human lifespan variation.",
+ "The grand challenges related to aging research in genetics and genomics include: 1. Lack of awareness and interest: Health professionals, governments, and researchers often lack awareness and interest in genetic diseases, which hinders progress. 2. Limited funding and access to technology: Research funding is often limited, and access to high-end technology is not always available, which restricts the scope of research. 3. Economic and health disparities: These disparities can affect the application and benefits of genomic medicine, making it less accessible to those in lower income brackets. 4. Ethical, legal, and social issues: The interpretation, storage, and sharing of genetic data raise ethical and legal concerns, including issues of privacy and consent. 5. Rapid advancements: The fast pace of developments in genetics and genomics can outpace the ability to address emerging ethical, legal, and social questions. 6. Public knowledge and trust: There is a need to increase public knowledge about genomic research and address issues of trust in medicine and scientific research. 7. Integration of genomics into public health: This is a major future challenge for healthcare systems, requiring dialogue with all stakeholders in society.",
+ "Gene-by-drug effects (GxD) can modulate life expectancies and health by influencing how individuals respond to medications. Genetic variations can affect how drugs are absorbed, disseminated, metabolized, and excreted in the body, which can lead to differences in drug efficacy and the occurrence of adverse drug reactions. For example, a genetic variant in the HMG-CoA reductase gene can modify the LDL-C response to pravastatin. Additionally, certain genes are involved in DNA damage repair and oxidative stress, which can influence susceptibility to adverse drug effects. Therefore, understanding these genetic variations can help in personalizing treatment and potentially improving health outcomes.",
+ "The study identified 10 genomic loci which influence healthspan, parental lifespan, and longevity. These include loci near FOXO3, SLC4A7, LINC02513, ZW10, and FGD6. The life-extending variant near FOXO3 is associated with a delay in the age at menarche, suggesting a possible sex-specific effect. However, the study did not perform sex-stratified analyses, so it's unclear if there are other sex-specific longevity-related genetic variants.",
+ "Rapamycin, an mTOR inhibitor, has been shown to extend the lifespan of various organisms, including mice, by delaying or reversing aging in multiple cell types. It does this by regulating rates of protein synthesis and energy utilization, which are processes associated with aging. In the hematopoietic system, rapamycin limits age-related increases in stem cells and biomarkers of aging, enhancing the performance of these cells. However, rapamycin also has potential unwanted metabolic effects, such as insulin resistance and glucose intolerance, though these effects are controversial and potentially reversible. The mTOR pathway, which rapamycin targets, integrates signals from insulin, cytokines, nutrients, oxygen, and mitogenic stimuli, and its regulation has implications for longevity and against the negative effects of aging. Rapamycin also induces autophagy, a process important for cellular homeostasis and damage prevention. Despite these benefits, the exact mechanisms by which rapamycin extends lifespan and whether it delays aging or affects specific diseases remain unclear.",
+ "The genotypes related to Alzheimer's and dementia that have commonalities with those for aging include a locus on chromosome 17 associated with the age at onset, and a specific variant in CCL11. Other genes associated with Alzheimer's include APP, PSEN1, PSEN2, and APOE. These genes are also associated with early-onset Alzheimer's disease. The APOE gene is the strongest genetic risk factor for later onset Alzheimer's. The heritability of late-onset Alzheimer's disease (LOAD) is estimated to be ~60-80%, suggesting a large proportion of individual differences in LOAD risk is driven by genetics."
+ ],
+ "contexts": [
+ [
+ "Intervention trials and cell-based monotherapy",
+ "Rapamycin has been shown to be well tolerated in dogs, improves outcome in a glycogen storage disease model (Yi et al. 2014), and is currently being tested in veterinary clinical trials as a treatment for osteosarcoma (Paoloni et al. 2010).A veterinary clinical trial is underway to assess the side effect profile and effects on age-associated cardiac function following 10 weeks of rapamycin treatment in healthy elderly dogs (Kaeberlein 2015).",
+ "Rapamycin is used clinically to prevent organ transplant rejection, for some forms of cancer, and to prevent restenosis in cardiac stents (Kaeberlein 2013b).Shortterm treatment with the rapamycin derivative RAD001 improves ageassociated decline in immune function, as measured by antibody response to an influenza vaccine, in healthy elderly people (Mannick et al. 2014).",
+ "To date, only one study has been performed assessing the impact of a rapamycin derivative on healthy aging in people.In this trial, it was observed that 6 weeks of treatment with the rapamycin derivative RAD001 (everolimus) was sufficient to enhance function of the aged immune system, as assessed by response to an influenza vaccine (Mannick et al. 2014).This recapitulates what was observed in elderly mice (Chen et al. 2009), and suggests that at least some of the mechanisms by which rapamycin delays aging in mice work similarly in humans.Although both compounds have essentially identical biological activities, RAD001 was used in this study instead of rapamycin because the study was funded by Novartis, who holds the patent rights for RAD001 (rapamycin is now off patent and sold as a generic drug).The doses of RAD001 used in the human immune aging study were lower than those typically used to prevent organ transplant rejection and showed improved side effect profiles, although some adverse effects, including the presence of mouth sores in a subset of the patients, were noted.",
+ "This trial is designed to determine whether treatment with the drug rapamycin (see Table 1) can significantly reduce age-related disease and disability as well as mortality in middle-aged large dogs.The initial phase of this trial, which is in progress at the time of this writing, is intended to enroll at least 32 dogs 6 years of age or older and 40 lb in weight or greater.Each animal receives an initial veterinary exam and comprehensive blood work along with a cardiac exam including echocardiography (Fig. 3).Those dogs that do not present with any abnormalities or significant pre-existing health conditions are randomized into either placebo or rapamycin treatment groups for a 10-week treatment period.Initial rapamycin dosing regimens were determined, in part, based on pharmacokinetic analysis of rapamycin treatment in healthy dogs (Larson et al. 2016).After 10 weeks in the study, each dog receives another full exam and blood chemistry panel as well as repeat cardiac exam.The primary goals of this first phase are to establish appropriate dosing of rapamycin in the absence of significant adverse events and to determine whether similar improvements in cardiac function are achieved in aged dogs after 10 weeks of rapamycin treatment, as has been observed in laboratory mice (Dai et al. 2014;Flynn et al. 2013).",
+ "Fig. 3 Design of the current short-term rapamycin intervention trial.Dogs must weigh at least 40 pounds and be at least 6 years old at time of entry into the study.If no significant pre-existing health conditions are detected at the first exam, dogs are randomized into either placebo or one of the rapamycin treatment groups.Red indicates the 10-week period during which the dogs receive either rapamycin or placebo.Dogs receive the same generic rapamycin (sirolimus) pill that is provided to human patients.Asterisk Serum and feces are collected at each appointment for future metabolomic and microbiome analyses and for quantitation of circulating rapamycin levels",
+ "Pending the outcome of phase 1, we anticipate enrolling several hundred additional dogs with similar entry criteria into a longer-term, 3-5 year study, to carefully assess the extent to which rapamycin improves health and reduces mortality in middle-age companion dogs.In addition to cardiac function, assessments of multiple age-related phenotypes will be performed including measures of cognitive function, muscle function, kidney function, glucose homeostasis, and cancer incidence.Many of these parameters are beneficially impacted by rapamycin in aging mice (Johnson et al. 2015), and we predict that rapamycin will induce similar improvements in aging dogs.",
+ "Rapamycin is currently the most effective pharmacological intervention for extending lifespan and delaying a broad range of age-related functional declines in rodents (Johnson et al. 2013).However, the doses used clinically to prevent organ transplant rejection are associated with side effects, such as impaired wound healing, edema, elevated circulating triglycerides, impaired glucose homeostasis, gastrointestinal discomfort, and mouth ulcers (Augustine et al. 2007;de Oliveira et al. 2011).These adverse side effects would likely preclude long-term use of rapamycin at these levels in otherwise healthy people.With the possible exception of impaired glucose homeostasis (Lamming et al. 2012), these side effects have not been observed at doses that are associated with increased lifespan and healthspan in mice, however, raising the possibility that lower doses of this drug could promote healthy aging with minimal adverse effects.",
+ "Rapamycin Rapamycin is a macrolide isolated from Streptomyces hygroscopicus, a bacteria from Pascua Island (Rapa Nui).It has functions as an antibiotic, an immune suppressant drug, and it is also proposed as a CRM.After the first studies, it was found that rapamycin could induce the extension of the replicative life of yeast through the inhibition of TOR signaling [57].This compound could extend the lifetime useful in 20-month-old mice in correlation with TOR activity [58].These studies were the basis of the research to determine the function of rapamycin as a CRM, due to its modulating properties over proteostasis.In addition, studies suggest that rapamycin can be combined with other compounds (metformin, losartan, statins, propranolol, and aspirin among others) to potentiate their anti-aging activity [59].",
+ "Rapamycin Rapamycin is a macrolide isolated from Streptomyces hygroscopicus, a bacteria from Pascua Island (Rapa Nui).It has functions as an antibiotic, an immune suppressant drug, and it is also proposed as a CRM.After the first studies, it was found that rapamycin could induce the extension of the replicative life of yeast through the inhibition of TOR signaling [57].This compound could extend the lifetime useful in 20-month-old mice in correlation with TOR activity [58].These studies were the basis of the research to determine the function of rapamycin as a CRM, due to its modulating properties over proteostasis.In addition, studies suggest that rapamycin can be combined with other compounds (metformin, losartan, statins, propranolol, and aspirin among others) to potentiate their anti-aging activity [59].",
+ "One out of the 25 FDA approved Breast cancer drugs (Gemcitabine), was found in the top 20 drug list from LINCS from breast cancer stage I (dark magenta). As shown in Fig. 12, one drug out of 25 FDA approved Breast cancer drugs, Gemcitabine, was found as repurposed drug from LINCS for breast cancer stage III. Letrozole (Breast cancer drug) has similar structure (greater than 60%) with Ruxolitinib (repurposed drug from LINCS) a drug for the treatment of intermediate or high-risk myelofibrosis (Fig. 13).",
+ "One out of the 25 FDA approved Breast cancer drugs (Palbociclib), was found in the top 20 drug list from LINCS from breast cancer stage II (deep pink). Scientific Reports | 6:20518 | DOI: 10.1038/srep20518 13 www.nature.com/scientificreports/ Figure 11. Highlighted target genes that physically interact with genes from the breast cancer stage II common network pattern and their corresponding repurposed drugs from LINCS, along with their structurally similar Breast cancer drugs. As shown in Figs 16\u201317 two target genes (TOP2A and TYMS) are also involved in the Triple Negative pattern.",
+ "Two of them (Gemcitabine and Palbociclib) are included in the list of the 25 known FDA-approved Breast cancer therapeutic drugs. We performed a Hypergeometric distribution test in order to find the statistical significance of this drug overlapping. More precisely, LINCS_L1000 database is comprised from 20,413 chemical reagents. Twenty two out of twenty five breast cancer drugs are also included in LINCS database. Finally, from the 105 drugs that were found from our analysis, the probability of finding two drugs to overlap with the Breast Cancer drugs in LINCS is 0.005471157, pointing out that there is statistical significance in their selection.",
+ "Two from the 25 FDA approved Breast cancer drugs (Gemcitabine and Palbociclib), was found in the top 20 drug list from LINCS from Luminal A breast cancer (dark magenta and deep pink respectively).",
+ "18 two drugs out of 25 FDA approved Breast cancer drugs \u2013 Gemcitabine and Palbociclib \u2013 were also found as repurposed drugs from LINCS for breast cancer Luminal A (Fig. 18). Two genes from the Luminal A network pattern physically interact with four genes that involved in Histone deacetylases class (HDAC1, HDAC2, HDAC3 and HDAC8), which are target genes of Vorinostat (repurposed drug from LINCS). Vorinostat is a member of a larger class of compounds that inhibit histone deacetylases (HDAC) and it is used to treat cutaneous T cell lymphoma (CTCL).",
+ "One out of the 25 FDA approved Breast cancer drugs (Gemcitabine), was found in the top 20 drug list from LINCS from breast cancer stage III (dark magenta). that was found from the drug repurposing analysis of HER2 pattern. It has similar structure - 75% with WZ-4002 repurposed drug, which is a novel mutant-selective inhibitor of EGFR. Finally, both Palbociclib and WZ-4002 are structurally similar to Dasatinib (more than 60%), which is a cancer drug used to treat acute lymphoblastic leukemia.",
+ "Network pattern for each breast cancer subtype and the common interactions across Luminal A and Luminal B. As shown in Fig. 8, one drug out of 25 FDA approved Breast cancer drugs, Gemcitabine, was proposed as repurposed drug by the LINCS for breast cancer stage I. Furthermore, Gemcitabine is quite similar (tanimoto31 similarity greater than 80%) with Clofarabine and Kinetin-riboside (repurposed drugs from LINCS). Clofarabine is also an anti-cancer, antineoplastic chemotherapy drug and is classified as an antimetabolite.",
+ "Hierarchical clustering using tanimoto similarity (Soergel distance) was applied to each of the top 20 drug list from LINCS and the 25 known FDA-approved Breast cancer therapeutic drugs (Supplementary Figs 54\u201361). LINCS Drug Names were transformed into ChemSpider IDs (see Supplementary Table 1) In synopsis, the unique drugs for the breast cancer stages were 63 and for the breast cancer subtypes 58, as we have located common drugs across them. Taking their union and removing the duplicates we conclude to a total of 105 repurposed drugs.",
+ "13, is also structurally similar (greater than 60%) with 6-(1,3-Benzodioxol-5-yl)-N-(cyclopentylmethyl)-4-quinazolinamine (repurposed small molecule from LINCS). As in breast cancer stages I and III one drug out of 25 FDA approved Breast cancer drugs \u2013 Gemcitabine \u2013 was found as repurposed drug from LINCS for breast cancer stage IV (Fig. 14). A repurposed drug from LINCS \u2013 Homoharringtonine was found to be structurally similar with Everolimus and Vinblastine Breast cancer drugs (greater than 70%). On the other hand, as shown in Fig.",
+ "Rapamycin has serious side effects, particularly as an immunosuppressor, and thus it is not suitable as an antiaging drug.As in sirtuins, however, these studies highlight the road from basic discovery on the biology of aging to antiaging interventions.Further studies of the TOR pathway and of repressors more specific of its downstream signaling pathway are ongoing.Whether rapamycin produces a change in another parameter related to energy uptake or utilization is unknown, and determining which of its effects modulate lifespan is an important unsolved question.Like resveratrol, TOR has attracted considerable attention from the pharmaceutical industry, particularly in the context of cancer (Meric-Bernstam and Gonzalez-Angulo, 2009)."
+ ],
+ [
+ "FUTURE DIRECTIONS: HIGHER RESOLUTION DATA VIA HIGHER THROUGHPUT ASSAYS One inescapable conclusion of the aggregate results of genome-wide studies of aging to date (see summary Table 1) is that we have not come close to saturating the number of potentially lifespan-altering genes in any organism.This is in no small part because directly generating survival curves is a relatively time-consuming process in most model organisms using current methods.There are several possible ways to address this.One way that has been tried is by attempting to find surrogate phenotypes [72,73,126] that can be screened more rapidly, or even scored under selection.Another is mining candidates from the many whole-genome expression profiles.Results to date with these have been very fruitful, but have not suggested that these methods alone will rapidly saturate our search for lifespan-and healthspan-altering genes in tractable model organisms.",
+ "Genetic linkage studies of long-lived human families identified a longevity locus while candidate gene approaches have been used to identify and confirm the association between specific variants in the FOXO3A gene and human longevity [3\u20137]. Genome-wide association studies have also been used to identify the association of APOE with life 123 Aging Clin Exp Res span and have yielded insights into potential biological pathways and processes related to aging. Despite these successes, several problems are inherent in human longevity studies including potentially high degrees of environmental heterogeneity, genetic diversity, and lack of birth matched controls, among others [8].",
+ "Additional association studies with these families and replication of these results with an independent data set should facilitate the positional cloning of a gene that influences the ability to age well and achieve exceptional longevity.Identification of the genes in humans that allow certain individuals to live to extreme old age should lead to insights on cellular pathways that are important to the aging process.",
+ "The aging process most certainly is under highly polygenic controls\u2026 This should not discourage us from pursuing a search for those loci which may be of profound importance to human aging as it ordinarily occurs in most human beings.",
+ "In most experimentally modified animal model systems, single-gene mutations in many different genes have major life extension effects (Fontana et al., 2010;Kenyon, 2010).However, natural human and animal longevity is presumed to be a complex trait (Finch & Tanzi, 1997).In humans, both candidate gene and genome-wide genetic association approaches have been applied in an attempt to identify longevity loci.The frequency of genetic variants has been typically compared between nonagenarian cases and young controls, revealing loci at which genetic variants may contribute to a higher or lower probability of survival into old age.The initial candidate gene studies aimed at finding human longevity genes were dominated by contradictory results (Christensen et al., 2006).The more consistent evidence obtained by repeated observation in independent cohort studies for association with longevity has so far only been observed for three loci, the apolipoprotein E (APOE) locus (Schachter et al., 1994;Christensen et al., 2006), the FOXO3A locus (Willcox et al., 2008;Flachsbart et al., 2009;Pawlikowska et al., 2009;Soerensen et al., 2010), and the AKT1 locus (Pawlikowska et al., 2009).Thus, despite the expectation that longevity would be influenced by many genetic variants with small effect sizes, the effect of variants has consistently been shown in only three genes.",
+ "1993), and gene expression microarrays (Pletcher et al. 2002). Given the ambiguities and limitations of large-effect mutant studies of aging, discussed earlier, those publications do not provide very useful evidence with respect to the question of the number of loci that affect aging. At present, the best answer to the question of the number of genes controlling aging is many (Rose and Long 2002), in keeping with the original expectations of evolutionary biologists. However, studies of the genetics of the experimental evolution of aging are now amenable to the application of genomic methods.",
+ "Accepted Article \u00a9 2013 The Authors Aging Cell \u00a9 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland over 90 years and 1,955 controls between 55 and 80 years did not reveal genome-wide significant loci (Newman et al., 2010) and neither did the analyses of all-cause mortality and survival free of major disease in this cohort (Walter et al., 2011).A smaller Dutch study of 403 nonagenarians and 1,670 controls younger than 65 years identified the APOE gene as a mortality locus (Deelen et al., 2011), which was confirmed in a German study of 763 long-lived individuals and 1,085 younger controls (Nebel et al., 2011) and a longitudinal study of 1,606 Danes showed that the effect size of this association increases at the highest ages (Jacobsen et al., 2010).Apparently, the influence of the common genetic variation on longevity is small which requires large meta-GWA studies for identification.Alternatively, rare genetic variants may play a more important role in longevity.Since the previous linkage studies showed contradictory results potentially due to heterogeneity in the longevity phenotype, it is expected that longevity is influenced by many private rare variants.",
+ "The lack of success in the identification of genes related to aging in humans may be due to the complexity of the phenotype.One approach to investigate aging and longevity is to compare frequencies of genetic variants between nonagenarians or centenarians and the general population.This approach led to the discovery of an association between APOE (Deelen et al., 2011;Ewbank, 2007;Gerdes et al., 2000) and more recently FOXO3A (Anselmi et al., 2009;Flachsbart et al., 2009;Li et al., 2009a;Pawlikowska et al., 2009;Willcox et al., 2008) and human aging and longevity.However, a recent genome-wide association study (GWAS) of individuals reaching the age of 90 or older failed to identify genome-wide significant variants (Newman et al., 2010).",
+ "Several explanations are possible for the lack of genomewide significant findings.First, mortality is arguably 1 of the most complex phenotypes, and several trajectories toward extreme old age have been identified (Evert et al., 2003).Multiple genes could mediate the aging process but would have their effects through numerous different patho-physiological processes and diseases that act as intermediate factors on the pathway to death (de Magalhaes et al., 2010).Therefore, any common variation in genes associated with aging probably has a small effect.",
+ "Second, the largely negative findings of this and other studies contrast with the intriguing animal studies of longevity.Very large effects of single genes on lifespan have indeed been observed in laboratory animals, but humans often have several homologues of these genes which might significantly differ in function or compensate for mutated genes through redundant mechanisms (Kuningas et al., 2008).This could explain why our top findings did not include genes in these pathways found in animal models.Animal models also represent genetically homogenous populations and are exposed to controlled environmental influences.The lack of replication of animal model findings in humans suggests that the use of knockout animals may not provide the optimal approach to understanding the variation in survival in humans as interactions with environmental factors may obscure the associations and prevent the identification of loci in humans.",
+ "1993), and gene expression microarrays (Pletcher et al. 2002). Given the ambiguities and limitations of large-effect mutant studies of aging, discussed earlier, those publications do not provide very useful evidence with respect to the question of the number of loci that affect aging. At present, the best answer to the question of the number of genes controlling aging is many (Rose and Long 2002), in keeping with the original expectations of evolutionary biologists. However, studies of the genetics of the experimental evolution of aging are now amenable to the application of genomic methods.",
+ "The remarkable discoveries of the past 2 decades showing that single genes can regulate aging in model organisms demonstrate that aging can be genetically manipulated (Finch and Ruvkun, 2001;Kenyon, 2010).Hundreds of genes that modulate longevity have now been identified in model organisms (de Magalha \u02dces et al., 2009a).In some cases (e.g., in worms), mutations in single genes can extend lifespan by almost 10-fold (Ayyadevara et al., 2008).Nonetheless, aging is a complex process that derives not from single genes but from the interactions of multiple genes with each other and with the environment.Evidence from animal systems shows a major impact of the environment on aging, yet environmental manipulations of aging act through genes and proteins, usually by triggering signaling pathways and modulating gene expression.In fact, some genes have been shown in model organisms to have varying effects on lifespan depending on diet (Heikkinen et al., 2009).Genes that can regulate aging in model organisms cannot be directly applied to humans through genetic manipulations for numerous legal, ethical, and technical reasons.If we could understand how the environment modulates these aging-related genes, we might be able to create antiaging therapies applicable to humans, potentially through diet, lifestyle, and even pharmacological interventions.Therefore, understanding genome-environment interactions in the context of aging can be a powerful approach to identify attractive targets for drug design.",
+ "Results from mutational analysis across eukaryote model organisms have shown unexpected conservation of genes and processes regulating aging.While unique properties exist within particular organisms that modulate these foundational networks, the conservation provides a tool to refine human genetic studies.As noted, GWAS for human longevity metrics suffer from large sample size requirements to obtain statistical resolution due to multiple hypothesis testing across the genome.Assuming that evolutionary genesets for longevity could be generated with confidence, an intersection of them with human variation data would increase the sensitivity of association studies.This would serve as a selective filter to refine the number of loci investigated for association in human populations.Similarly, such evolutionary filters could refine analysis of rare, unique variation within genome sequence data from extremely long-lived cohorts.A similar approach to refine human longevity GWAS used an intersection with age-related disease datasets.This 'disease-informed' GWAS helped refine candidates (iGWAS, Fortney et al., 2015), though, it should be noted that this particular strategy would further blur the distinction between aging and longevity as discussed above.The definition of gene sets from evolutionary experiments in longevity, across clades, would similarly empower detection of networks previously hidden under GWAS in human population analyses (Figure 3).",
+ "ANALYSIS OF HUMAN VARIATION IN THE GENETIC CONTROL OF LONGEVITY Heritability studies have convincingly demonstrated that at least some fraction of human lifespan is heritable.In tandem, large-scale genome-wide association studies (GWAS) have identified numerous loci associated with age-related traits (Buniello et al., 2019).While genetic studies have functionally shown an inverse effect of multiple age-related, diseaseassociated variants on lifespan regulation, the number of well-replicated longevity-conferring variants remains limited to variants in APOE (ApoE \u03b52), and more recently, CDKN2A/B and IL6 (see Table 1).To date, studies in humans have been hampered by the specific phenotype definitions used, sample sizes of the extreme phenotypes, and modest heritability of the longevity-related traits (Breitbach et al., 2019).This is due to the complex interplay of biological and social factors involved in human aging, as well as the limited power of GWAS, which require sampling thousands of subjects to achieve statistical significance (Breitbach et al., 2019).Genetic studies of aging have also been hindered by an inconsistent use of definitions of aging (reviewed in Baghdadi et al., 2020).The two main ways of conducting research on the genetics of longevity in human populations are by studying (i) the lifespan (continuous trait, years lived) and (ii) the longevity (dichotomous trait, i.e., being among the longest-lived individuals within a specific population).These complexities have limited the resolution and capability of broad association studies of human longevity.Importantly, these genomic analyses focus on a shift of survival in a population; these variables may be genetically distinct from the mechanisms establishing potential for longevity overall (Figure 1A).We argue that an understanding of this shift in lifespan as well as genetic mechanisms of regulating a species specific 'set points' (Figure 1B) will aid in the conceptual distinction of aging and longevity in humans.",
+ "TRANSLATION OF LONGEVITY MODEL ORGANISMS AND CORE AGING PATHWAYS Genetic studies on lifespan have proven to be challenging.While longevity is a defining trait for a given species, the lifespan of individuals is of limited heritability, making analyses more difficult.Exceptional human life span, although a rare phenotype, is likely multifactorial; refined analyses are required to obtain statistically robust genomic signatures of longevity (Zhang et al., 2020) and these have proven elusive.Unlike laboratory models, the effect of environmental variance cannot be controlled in human studies, potentially masking purely biological aging mechanisms.Even laboratory models cannot replicate the complex \"environment\" of humans; it includes psychosocial, economic, and cultural factors, rather than strictly biological.These human-specific confounders are difficult or impossible to target in traditional model organisms.Despite these limitations, experimentally tractable model organisms have proven invaluable in deciphering the purely genetic contribution to lifespan, including genes and pathways conserved across the tree of life.",
+ "Our analyses show that it is extremely unlikely that there is a single gene harboring rare protein-altering variants shared by all supercentenarians but no controls.It is not surprising that a highly complex trait such as longevity is not explained by a single Mendelian gene.",
+ "With modern genomic technologies and largescale data analysis methods, it is possible to sift through the genes of populations to find the loci that act to postpone aging. [3]There are uncertainties with the comparison of populations with different rates of aging.However, it is superior to experimental designs that only consider age-dependence or dietary-response, without determining causal mechanisms.",
+ "Although the models data set comprises all genes (to our knowledge) shown by the time of the latest update to statistically increase longevity or alter the aging process in a noticeable way, in the human data set we try to evaluate whether a given intervention is affecting the aging process itself or not.For example, many mutations may increase longevity by decreasing the incidence of specific diseases, rather than by altering the basic process of aging (de Magalh\u00e3es et al ., 2005a(de Magalh\u00e3es et al ., , 2005b)).Therefore, the human data set is not merely an extension of the work conducted in model organisms and of its bibliography, but a manually selected list of the most pertinent human aging candidate genes, each presented with a higher annotation level.We cite studies on whether the functions of aging-associated genes in model organisms are conserved in their human orthologues.Likewise, we cite flaws in previous studies based on new published observations, although we have a neutral stance on conflicting findings from different research groups.Our policy is to cite all conflicting reports and let visitors make their own decisions on how to interpret them.By contrast, each entry in GenAge model organisms has only one reference: the first publication reporting an association of the gene with longevity or aging.Moreover, one of the latest enhancements in the human data set was the inclusion of Gene Ontology annotation.Gene Ontology terms and annotation files were obtained from the Gene Ontology Consortium website (http://www.geneontology.org/ ) and provide an additional layer of description for the gene products in a cellular context (Ashburner et al ., 2000).",
+ "Conclusions and prospects Over the past two decades the human aging field has built up the necessary resources to study the biology of aging and longevity by establishing human populations with a diversity of designs.Meta-analyses integrating genetic and phenotypic datasets have successfully identified variants associated with a range of age-related traits and diseases.Despite these accomplishments, the number of novel leads contributing to human lifespan regulation is limited.Although positive regions of linkage and suggestive GWAS hits have been reported, the field has not yet identified the loci that explain the clustering of longevity in families and the variation in biological aging rate in the population.As for animal models, down-signaling of the IIS and mTOR pathway appeared to be relevant in humans.These findings are being followed up by molecular and physiological profiling using skin, fat and muscle tissue of long-lived family members and controls.Human studies now also include the response of nutrient sensing systems to the application of dietary and physical challenges.",
+ "Most of the human candidate gene studies were performed in cross-sectional designs (Box 1 and Fig. 1), comparing allele frequencies of potential longevity loci between highly aged individuals and young controls.The candidate gene studies based on single genes have pointed a role for genes involved in, e.g., GH/insulin/IGF-1 signaling, immune regulation, and lipoprotein metabolism (Supporting Information Table S1), although most of these results have not (yet) been confirmed in sufficient independent studies.The most convincing human longevity loci today are APOE and FOXO3A which have frequently been associated with longevity in cross-sectional studies (see for a review [26]) and survival in prospective studies [27][28][29] (Fig. 3).APOE encodes the protein apolipoprotein E which seems to play a role in e.g., lipoprotein metabolism, cognitive function, and immune regulation [30].FOXO3A encodes the protein forkhead box O3 which acts as a transcription factor for many different genes involved in processes like apoptosis and oxidative stress [31]."
+ ],
+ [
+ "Funding: See page 22 Preprinted: 24 June 2021 Received: 03 November 2021 Accepted: 01 April 2022 Published: 07 April 2022 Reviewing Editor: Joris Deelen, Max Planck Institute for Biology of Ageing, Germany \u200d \u200dCopyright Mozhui et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. Editor's evaluation This article used three newly generated epigenetic predictors to test how they differ between genetically diverse mice from the BXD family (by looking at metabolic traits and lifespan).",
+ "Longevity data was obtained from a parallel cohort of BXD mice housed in the same UTHSC colony, and members of this \u2018longevity cohort\u2019 were allowed to age until natural death (more detail on the longevity cohort can be found in Roy et al. , 2021). Males were excluded and strain-\u00adby-\u00addiet lifespan summary statistics were derived. Only strain-\u00adby-\u00addiet groups with five or more observations for lifespan were included in the correlational analyses with the epigenetic predictors. Multivariable EWAS Site-\u00adby-\u00adsite differential methylation analysis (EWAS) was performed on the 27,966 CpGs using a multivariable regression model.",
+ "Funding: See page 22 Preprinted: 24 June 2021 Received: 03 November 2021 Accepted: 01 April 2022 Published: 07 April 2022 Reviewing Editor: Joris Deelen, Max Planck Institute for Biology of Ageing, Germany \u200d \u200dCopyright Mozhui et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. Editor's evaluation This article used three newly generated epigenetic predictors to test how they differ between genetically diverse mice from the BXD family (by looking at metabolic traits and lifespan).",
+ "Longevity data was obtained from a parallel cohort of BXD mice housed in the same UTHSC colony, and members of this \u2018longevity cohort\u2019 were allowed to age until natural death (more detail on the longevity cohort can be found in Roy et al. , 2021). Males were excluded and strain-\u00adby-\u00addiet lifespan summary statistics were derived. Only strain-\u00adby-\u00addiet groups with five or more observations for lifespan were included in the correlational analyses with the epigenetic predictors. Multivariable EWAS Site-\u00adby-\u00adsite differential methylation analysis (EWAS) was performed on the 27,966 CpGs using a multivariable regression model.",
+ "Conclusions These results suggest a novel locus influencing survival in the B6/D2 genetic background, perhaps via a metabolic disorder that emerges by 200 days of age in male animals. Keywords Pathology Longevity \u2401 Lifespan \u2401 Mouse \u2401 Linkage \u2401 Introduction Longevity, the quintessential complex trait, likely reflects all aspects of an organism\u2019s life history. In humans, the estimated heritability of age at death is estimated at 25\u201333 % [1]. Genetic contributions to mortality rates are thus of great interest and may aid in the understanding of disease etiology and the process of aging itself [2].",
+ "Leduc MS, Hageman RS, Meng Q et al (2010) Identification of genetic determinants of IGF-1 levels and longevity among mouse inbred strains. Aging Cell 9(5):823\u2013836. doi:10.1111/j.14749726.2010.00612.x 10. Lang DH, Gerhard GS, Griffith JW et al (2010) Quantitative trait loci (QTL) analysis of longevity in C57BL/6J by DBA/2J (BXD) recombinant inbred mice. Aging Clin Exp Res 22(1):8\u201319 11. Gelman R, Watson A, Bronson R et al (1988) Murine chromosomal regions correlated with longevity. Genetics 118(4):693\u2013704 12. Jackson AU, Galecki AT, Burke DT et al (2002) Mouse loci associated with life span exhibit sex-specific and epistatic effects.",
+ "Here, we have extended this analysis to search for genotypes related to survival to the age of 800 days in a population of a reciprocal F2 cross between (B6) and (D2) mice. Since QTL for longevity in mice have shown strong sex specificity [10, 12], we conducted sex-specific analyses. In addition, we also determined whether there were any change in pathology changes associated with the loci that showed frequency distortions with aging. To confirm the associations of the loci of interest with longevity and pathology, we performed replication analyses on a panel of BXD recombinant inbred strains.",
+ "Methods We examined a population of 1200 mice that were F2 generation offspring of a 4-way reciprocal cross between C57BL6/J and DBA2/J strains. Animals were sacrificed at age 200, 500, or 800 days and genotyped at 96 markers. The 800 days old cohort, which were the survivors of a much larger breeding group, were examined for enriched frequency of alleles that benefit survival and depletion of alleles that reduce survival. Results Loci on Chr 13 in males and on Chr X in females were significantly distorted from Mendelian expectations, even after conservative correction for multiple testing.",
+ "Assessing epigenetic age in long-lived mice The epigenetic-aging model was applied to the methylation profiles of long-lived mice and the age-matched controls not used for training (Additional file 2: Datasets used summary).Reductions in age were calculated by subtracting the epigenetic ages of the untreated, wild-type mice from those of the treated mice of the same genetic background.To assess the significance, we used an ANOVA for all 22-month-old mice or only 22-month-old UM-HET3 mice.We also compared the epigenetic ages between treatments with their agematched controls from the same genetic background using a t-test (Additional file 4: Treatment vs wild type stats).",
+ "Editor's evaluation This article used three newly generated epigenetic predictors to test how they differ between genetically diverse mice from the BXD family (by looking at metabolic traits and lifespan).The authors subsequently identified several quantitative trait loci for the different predictors, using linkage analysis, and performed transcriptome and proteome analyses of liver and adipose tissue.The described results provide some important new insights on the underlying biology of epigenetic mouse aging and may be used to inform future studies in other model organisms and humans focused on studying the relationship between epigenetic aging and metabolism.",
+ "352(6291): p. aad0189. Liao, C.Y. , et al. , Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell, 2010. 9(1): p. 92-5. Johnson, M., Laboratory Mice and Rats. Mater. Methods, 2012. 2: p. 113. Fontaine, D.A. and D.B. Davis, Attention to Background Strain Is Essential for Metabolic Research: C57BL/6 and the International Knockout Mouse Consortium. Diabetes, 2016. 65(1): p. 25-33. Simon, M.M. , et al. , A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol, 2013. 14(7): p. R82. Lilue, J., et al.",
+ "Materials and Methods Study Design.Female mice of the long-lived F 1 hybrid strain C3B10RF1 were fed and maintained as described (7).Briefly, mice were weaned at 28 days, individually housed, given free access to water, and randomly assigned to study groups.Comparisons between five groups of mice were used to determine the effects of aging and CR on gene expression.Control young (7-month-old; n \u03ed 3) and old (27-month-old; n \u03ed 3) mice were fed 95 kcal of a semipurified control diet (Harlan Teklad, Madison, WI; no.TD94145) per week after weaning.Long-term CR (LT-CR) young (7-month-old; n \u03ed 3) and old (27-month-old; n \u03ed 3) mice were fed 53 kcal of a semipurified CR diet (Harlan Teklad; no.TD94146) per week after weaning.Short-term CR (ST-CR) mice were 34-monthold control mice that were switched to 80 kcal of CR diet for 2 weeks, followed by 53 kcal for 2 weeks (n \u03ed 3).The effects of age on gene expression in control mice were determined by comparison between results from the young control and the old control groups.The effects of LT-CR on gene expression were determined by comparison between results from the young control and the young LT-CR groups, and from the old control and the old LT-CR groups.The effects of ST-CR were determined by comparison between results from the old control and the ST-CR groups.Mice were fasted for 48 h before killing.Mice were killed by cervical dislocation, and the livers were rapidly excised and flash frozen in liquid nitrogen.No signs of pathology were detected in any of the animals used.All animal use protocols were approved by the institutional animal use committee of the University of California, Riverside.",
+ "Accessing data resources in the mouse phenome database for genetic analysis of murine life span and health span. J. Gerontol. A Biol. Sci. Med. Sci. 71 (2), 170\u2013177. Brown, R.E. , Stanford, L., Schellinck, H.M., 2000. Developing standardized behavioral tests for knockout and mutant mice. ILAR J. 41 (3), 163\u2013174. Bubier, J.A. , Jay, J.J., Baker, C.L. , Bergeson, S.E. , Ohno, H., Metten, P., Crabbe, J.C., Chesler, E.J. , 2014. Identi\ufb01cation of a QTL in Mus musculus for alcohol preference, withdrawal, and Ap3m2 expression using integrative functional genomics and precision genetics. Genetics 197 (4), 1377\u20131393. Burn, C.C. , 2008.",
+ "Our own work has taken a different tack: we have attempted to determine whether mutations with differential effects on aging may be present within the many available populations of laboratory-adopted inbred mice.The goal is not so much to clone these genes-if indeed they existbecause positional cloning strategies of this kind require many thousands of animals and would be extremely expensive using an assay, age at death, that is itself so costly.Instead, the goal has been to use gene mapping methods to test hypotheses about aging and to develop new animal models that will be useful for testing well-specified hypotheses about the molecular basis for age-dependent changes.In the absence of a validated battery of biomarkers of aging, we (like most others) have reluctantly decided to use mouse life span as a crude surrogate for aging itself, reasoning that genetic alleles that extend life span well beyond the median for the tested population may be operating via an influence on aging itself.Work conducted using recombinant inbred mouse stocks (Gelman et al., 1988;de Haan and Van Zant, 1999) has suggested that life-span differences between pairs of inbred mouse lines might reflect the influence of as few as 4-7 polymorphic loci, providing some basis for hope that some of these would have an effect large enough to be detected by a genome scan experiment involving 300-1,200 mice.",
+ "The available dataset also provides examples in which genetic variants seem to influence the risk of specific late-life diseases.Figure 8-6, for example, shows longevity results for mice stratified by their inheritance at the 12th chromosome locus D12Mit167.This is a locus associated with differential longevity in both male and female mice, with the strongest effect (adjusted p < 0.01) seen in those mice living more than 657 days (Jackson et al., unpublished results).The longest-lived mice are those that inherit both the C57BL/6 allele from their mother and the C3H allele from their father; on average, they survive 93 days longer than siblings with the BALB plus C3H combination.Figure 8-6 shows that the D12Mit167, like the pair of loci illustrated in Figure 8-5, has significant and similar effects in mice dying of cancer (85 days) and in mice dying of non-neoplastic diseases (126 days).A more detailed analysis of the cancers, however, suggests that while lymphoma and hepatoma victims are equally protected by the favorable alleles (effect sizes of 93 and 167 days, respec- mice of two subgroups: those dying of the urinary syndrome MUS, and those dying of all other causes.The genetic analysis contrasts mice with both the C57BL/6 allele at D4Mit84 and the C3H allele at D9Mit110 to mice with any of the three other allele combinations.In the males dying of causes other than MUS, this allele pair is associated with a 170-day increment in longevity (post-hoc p < 0.00003).But for males that do die of MUS, the same allele combination is associated with a 187-day decline in mean life span (post-hoc p < 0.03).This effect is thus pleiotropic, in that these alleles accelerate death in mice susceptible to MUS, while postponing death for all other males in the population.Although these loci are associated with differential longevity in mice that do develop MUS, they do not have a significant effect on the chances that MUS will indeed occur (not shown).The risk of developing MUS seems to be under control of a separate locus on chromosome 6.As shown in the bottom panel of Figure 8-7, males that inherit the C3H allele at D6Mit268 are far more likely to develop MUS (28 percent risk) than are their brothers who receive the DBA/2 allele at this locus (7 percent risk; p = 0.012 by two-tailed Fisher's exact test).",
+ "Previously, the methylation status of CpG sites within the genes Prima1, Hsf4, Kcns1 was shown to qualify as a reliable predictor of chronological age of B6 mice.10 This same study also revealed enhanced epigenetic aging of the D2 strain in accordance with its general reduced mean life span, supporting the possibility that the panel might also serve as a marker for the biological age in mice. Applying this B6trained marker panel to our (congenic) experimental strains, we observed that epigenetic age predictions correlated with chronological age in B6 (R2=0.93) and line A mice (R2=0.89).",
+ "34. Gelman R, Watson A, Bronson R & Yunis E Murine chromosomal regions correlated with longevity. Genetics 118, 693\u2013704 (1988). [PubMed: 3163317] 35. Houtkooper RHet al.The metabolic footprint of aging in mice. Sci. Rep1, (2011). 36. Houtkooper RHet al.Mitonuclear protein imbalance as a conserved longevity mechanism. Nature497, 451\u2013457 (2013). [PubMed: 23698443] 37. Williams EGet al.An Evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement. PLOS Genet. 10, e1004673 (2014). [PubMed: 25255223] 38. Lang DHet al.Quantitative trait loci (QTL) analysis of longevity in C57BL/6J by DBA/2J (BXD) recombinant inbred mice. Aging Clin. Exp. Res. 22, 8\u201319 (2010).",
+ "For females, hairs of the congenic mice grew 31% faster, also highly significant (P = 0.0006, 1-tailed). These results validated the presence of a gene in the differential region affecting FE. Discussion We report the outcomes of a quantitative genetic study on aging and longevity in the mouse. We studied an extant series of recombinant inbred strains (ILSXISS) that have been used both in DR aging studies as well as to study alcohol sensitivity (Williams et al. , 2004).",
+ "FOURTH STEP: MEDICAL TESTING OF CANDIDATE DRUGS Many genes are common between fruit flies and mammals, but by no means all.Therefore, it is important to test biochemical pathways that work in fruit flies with mammals.Mice are the system of choice, as they have relatively short lifespans (2 -3 years) and a great deal is known of their genetics.Mortality rate measurements, like those studied in fruit flies, [10] might speed up mouse trials to just 6-12 months.Mouse trials would also help address issues of safety, such as liver and kidney toxicity, before going on to human trials.",
+ "Experimental Procedures Mouse Breeding, Maintenance, and Longevity.Cdc42GAP \u03ea/\u03ea and p53 \u03ea/\u03ea mice were generated as previously described (6,35), and the mice used in the studies were mixed C57BL/6 \u03e9/\u03ea 129/Sv inbred.Littermates of different genotypes were housed and fed freely with standard mouse chow over their life span in a pathogen-free environment and were monitored for vitality and longevity.Mice exhibiting extreme morbidity were euthanized and subjected to necropsy.All animal procedures were approved by the Institutional Animal Care and Use Committee at the Children's Hospital Research Foundation."
+ ],
+ [
+ "Genetic associations for two biological age measures point to distinct aging phenotypes. Aging Cell 20:e13376. DOI: https://doi.org/10.1111/acel.13376, PMID: 34038024 Lang DH, Gerhard GS, Griffith JW, Vogler GP, Vandenbergh DJ, Blizard DA, Stout JT, Lakoski JM, McClearn GE. 2010. Quantitative trait loci (QTL) analysis of longevity in C57BL/6J by DBA/2J (BXD) recombinant inbred mice. Aging Clinical and Experimental Research 22:8\u201319. DOI: https://doi.org/10.1007/BF03324809, PMID: 20305363 Lappalainen T. 2015. Functional genomics bridges the gap between quantitative genetics and molecular biology. Genome Research 25:1427\u20131431.",
+ "Pharmacol Biochem Behav 81, 764\u2013768. Hsu, H.C., Lu, L., Yi, N., Van Zant, G., Williams, R.W. & Mountz, J.D. (2007) Quantitative trait locus (QTL) mapping in aging systems. Methods Mol Biol 371, 321\u2013348. Hurlin, P.J. & Huang, J. (2006) The MAX-interacting transcription factor network. Semin Cancer Biol 16, 265\u2013274. Jones, B.C. , Tarantino, L.M. , Rodriguez, L.A., Reed, C.L. , McClearn, G.E. , Plomin, R. & Erwin, V.G. (1999) Quantitative-trait loci analysis of cocaine-related behaviours and neurochemistry. Pharmacogenetics 9, 607\u2013617. Jones, B.C. , Beard, J.L. , Gibson, J.N. , Unger, E.L., Allen, R.P. , McCarthy, K.A. & Earley, C.J.",
+ "Genetic associations for two biological age measures point to distinct aging phenotypes. Aging Cell 20:e13376. DOI: https://doi.org/10.1111/acel.13376, PMID: 34038024 Lang DH, Gerhard GS, Griffith JW, Vogler GP, Vandenbergh DJ, Blizard DA, Stout JT, Lakoski JM, McClearn GE. 2010. Quantitative trait loci (QTL) analysis of longevity in C57BL/6J by DBA/2J (BXD) recombinant inbred mice. Aging Clinical and Experimental Research 22:8\u201319. DOI: https://doi.org/10.1007/BF03324809, PMID: 20305363 Lappalainen T. 2015. Functional genomics bridges the gap between quantitative genetics and molecular biology. Genome Research 25:1427\u20131431.",
+ "Interestingly, the correlation analysis indicates QTL Mapping in Aging Systems 333 Fig. 5. Basic statistics provided by the WebQTL GeneNetwork website. The strain distribution pattern (SDP) of the quantitative trait is presented in the basic statistics page of WebQTL in the following ways: (A) the raw data of the quantitative trait obtained from each BXD recombinant inbred (RI) strain, (B) data mean and distribution, (C) bar graph showing the mean and variable of each strain, and (D) the normal probability plot of the SDP.",
+ "23 Quantitative Trait Locus (QTL) Mapping in Aging Systems Hui-Chen Hsu, Lu Lu, Nengjun Yi, Gary Van Zant, Robert W. Williams, and John D. Mountz Summary Understanding the genetic basis of the effects of aging on the decline in the immune response is an enormous undertaking. The most prominent age-related change in the immune system is thymic involution. This chapter will focus on the use of C57BL/6 J X DBA/2 J (BXD) recombinant inbred (RI) strains of mice to map genetic loci associated with age-related thymic involution in mice.",
+ "For further prioritization, we converted the mouse QTL regions to the corresponding syntenic regions in the human genome and retrieved GWAS annotations for these intervals (Buniello et al., 2019).We specifically searched for the traits: epigenetic aging, longevity, age of menarche/menopause/puberty, Alzheimer's disease, and age-related cognitive decline and dementia.This highlighted five genes in Eaa11 and three genes in Eaa19 (Supplementary file 4c).We also identified a GWAS that found associations between variants near Myof-Cyp26a1 and human longevity (Yashin et al., 2018), and a meta-GWAS that found gene-level associations between Nkx2-3 and Cutc, and epigenetic aging (Supplementary file 4c; McCartney et al., 2021).",
+ "Jiang, C. and Zeng, Z. B. (1995). Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111\u20131127. Jin, W., Riley, R. M., Wolfinger, R. D.et al. (2001). The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat Genet 29, 389\u2013395. Kempermann, G., Chesler, E. J., Lu, L. et al. (2006). Natural variation and genetic covariance in adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 103, 780\u2013785. Kendziorski, C. M., Chen, M., Yuan, M. et al. (2006). Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62, 19\u201327.",
+ "Hypothesis-free genome-wide approaches have also been undertaken.Genome-wide linkage scans reported evidence for linkage with longevity on chromosome 4q25 (Puca et al., 2001), 3p24-22, 9q31-34, and12q24 (Boyden &Kunkel, 2010).However, the evidence for these loci is still very weak as the results, obtained in centenarians and their families, could not be replicated in nonagenarian sibling pairs (Beekman et al., 2006) or have yet to be tested in other studies.A meta GWAS of survival to 90 years or older in 1836 cases and 1955 controls did not find any significant genome-wide associations (Newman et al., 2010).Thus far, hypothesis-free approaches have not identified any loci involved in longevity.",
+ "Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B, et al. The nature and identification of quantitative trait loci: a community\u2019s view. Nat Rev Genet. Nature Publishing Group; 2003; 4: 911\u2013916. https://doi.org/10.1038/nrg1206 PMID: 14634638 18. Grupe A, Germer S, Usuka J, Aud D, Belknap JK, Klein RF, et al. In silico mapping of complex diseaserelated traits in mice. Science. American Association for the Advancement of Science; 2001; 292: 1915\u20131918. https://doi.org/10.1126/science.1058889 PMID: 11397946 19. Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, et al.",
+ "coid levels, etc.The mapping project should thus help to guide the search for human genes that regulate these interesting phenotypes and at the same time spark new investigations, in animal models, for the biochemical differences that mediate the genetic effects we detect.At the same time, the dataset that emerges should also allow us to test more general questions about the nature of aging and its genetic control.We may, for example, be able to identify QTLs that not only retard the development of one or more age-sensitive T-cell subsets, but also retard age-dependent changes in protein conformation, bone matrix turnover, and brain GFAP levels.Such a finding would imply that these changes are influenced, together, by a common biochemical pathway, and the corresponding QTLs would be excellent candidates for genes that regulate aging per se, rather than merely one among the many more agesensitive traits.In the same way, it will be of particular interest to determine if QTLs that regulate age-sensitive traits also are associated with differences in life span, and conversely if QTLs identified on the basis of longevity effects modify one (or nearly all?) of the age-sensitive traits in our test battery.",
+ "The strategy for mapping such quantitative trait loci (QTL) involves looking for preferential segregation of specific alleles or allele combina-tions in mice that differ in life span (or, more generally, any age-sensitive trait of interest).Our test population, called UM-HET3, consisted of a group of mice bred as the progeny of females of the (BALB/c \u00d7 C57BL/6)F1 genotype and males of the (C3H/HeJ \u00d7 DBA/2)F1 genotype.Mice bred in this way are, from a genetic perspective, all siblings; each shares a random half of its alleles with every other animal in the UM-HET3 population.The current set of analyses was conducted when genotype and longevity data were available from a group of 110 virgin males and 143 virgin females.The analytical method adjusted, by permutation testing, for Type I errors attributable to the simultaneous evaluation of multiple linkage hypotheses, and also included gender as a covariate to look for instances of sex-specific genetic effects.Because we had particular interest in regulation of late-life diseases rather than in causes of premature death, and because of evidence that genetic influences on mouse longevity were particularly strong when early deaths were not considered (Covelli et al., 1989), we repeated each analysis after exclusion of those animals dying before 657 days of age, i.e., the age at which 20 percent of the animals had already died.",
+ "The proportion of the phenotypic variance accounted for by the QTL yield for Hbact and Hbrear was substantial and of the same order of magnitude as that contributed by age. A small number of age-dependent QTL were found in the midst of a majority of age-stable QTL (see discussion above). These age-sensitive loci point toward genes whose functions are correlated with important behavioral changes during aging.",
+ "Ageing genes and pathways.Assessing the loci of interest for colocalisation with gene expression quantitative trait loci (eQTL), we find strong evidence (FDR SMR < 5%; P HEIDI > 1%; see \"Methods\") of cis-acting eQTL colocalisation for eight out of 10 loci.In total, we highlight 27 unique genes acting across 32 tissues, especially whole blood (12 genes) and the tibial nerve (7 genes) (Supplementary Data 5).In blood, higher expression levels of BCL3 and CKM (near APOE); CTC-510F12.2, ILF3, KANK2 and PDE4A (near LDLR); USP28 and ANKK1 (near ZW10); and CDKN2B are linked to an increase in multivariate ageing traits (i.e.improved survival), while the opposite is true for EXOC3L2 (near APOE), TTC12 (near ZW10), and FOXO3.For the multivariate signal near SLC4A7 we find colocalisation with expression of NEK10 (liver); for the signal near LPA we find colocalisation with expression of SLC22A1/A3 (multiple tissues) and MAP3K4 (pituitary); and for the signal near FGD6 we find colocalisation with expression of FGD6 itself (adipose/arterial).Including trans-acting eQTL from blood, while keeping the same thresholds for colocalisation, we additionally discover higher expression levels of FOXO3B colocalises with the life-extending signal near FOXO3.When we include genes which could not be tested for heterogeneity (N eQTL < 3), we identify one additional cis-acting and 49 additional trans-acting genes (of which 10 colocalise with the signal near LINC02513) (Table 2; Supplementary Data 5).",
+ "Jiang, C. and Zeng, Z. B. (1995). Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111\u20131127. Jin, W., Riley, R. M., Wolfinger, R. D.et al. (2001). The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat Genet 29, 389\u2013395. Kempermann, G., Chesler, E. J., Lu, L. et al. (2006). Natural variation and genetic covariance in adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 103, 780\u2013785. Kendziorski, C. M., Chen, M., Yuan, M. et al. (2006). Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62, 19\u201327.",
+ "Quantitative trait loci (QTLs) can be identified in several ways, but is there a definitive test of whether a candidate locus actually corresponds to a specific QTL? NIH-PA Author Manuscript Much of the genetic variation that underlies disease susceptibility and morphology is complex and is governed by loci that have quantitative effects on the phenotype. Gene-gene and geneenvironment interactions are common and make these loci difficult to analyse. Here, we present a community\u2019s view on the steps that are necessary to identify genetic loci that govern quantitative traits, along with a set of interpretive guidelines.",
+ "QTL Analysis in Hematopoiesis 47 3 Quantitative Trait Analysis in the Investigation of Function and Aging of Hematopoietic Stem Cells Hans-Willem Snoeck Summary Extensive genetically determined quantitative variation exists in the number and function of hematopoietic stem cells in inbred mouse strains. Furthermore, aging of hematopoietic stem cells is genetically determined. Gene identification of quantitative trait loci involved in the regulation and aging of hematopoietic stem cells would provide novel insights into regulatory mechanisms that are relevant in vivo and may be clinically important.",
+ "In order to find the causal loci for heritable differences in transcript levels and possible interactions between age and genotype, we applied a two-time-point model.In this model, we used three factors-(1) relative age, (2) genotype (marker), and (3) the interaction between factors 1 and 2-to explain the differences in gene expression between RILs and age groups.With this mapping procedure, we found almost 900 genes that had an eQTL or gxa eQTL in developing and/or aging worms (P < 0.0001; Fig. 2).Almost half of these genes with heritable transcript differences were found to have a genotype-by-age effect (396 at P < 0.0001; Table 1) allocated to a specific marker, which we coined genotype-by-age expression-QTL ( gxa eQTL).One specific hotspot (trans-band) for gxa eQTL was found on chromosome IV for aging worms and a trans-band for eQTL on chromosome I was detected in developing worms (Fig. 2).",
+ "NIH-PA Author Manuscript We found three significant QTLs (genetic regions harboring genes controlling these various aging traits, Supplementary Table 5). On chromosome 7, we found a QTL affecting lifespan and fertility after DR that we have named Lfdr1 for \u201clongevity and fertility response to dietary restriction, QTL 1; this QTL also has suggestive effects on FE (Fig. 5D). Two QTLs having significant effects on FE were identified on chromosomes 9 and 15. These we have named Fedr1 and Fedr2, respectively, for \u201cfuel efficiency response to dietary restriction\u201d QTLs 1 and 2.",
+ "Quantitative trait locus (QTL) mapping in aging systems. Methods in Molecular Biology (Clifton, NJ ). 2007; 371:321\u2013348. Hunter KW, Crawford NPS. The future of mouse QTL mapping to diagnose disease in mice in the age of whole-genome association studies. Annual Review of Genetics. 2008; 42:131\u2013141. Ito R, Robbins TW, Everitt BJ. Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nature Neuroscience. 2004; 7:389\u2013397. [PubMed: 15034590] Kapp MB. Ethical and legal issues in research involving human subjects: do you want a piece of me? Journal of Clinical Pathology. 2006; 59:335\u2013339.",
+ "Jiang, C. and Zeng, Z. B. (1995). Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111\u20131127. Jin, W., Riley, R. M., Wolfinger, R. D.et al. (2001). The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat Genet 29, 389\u2013395. Kempermann, G., Chesler, E. J., Lu, L. et al. (2006). Natural variation and genetic covariance in adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 103, 780\u2013785. Kendziorski, C. M., Chen, M., Yuan, M. et al. (2006). Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62, 19\u201327."
+ ],
+ [
+ "Introduction With the development of human genomics research, a large number of studies of the genetics of longevity have been conducted.Scientists from various countries have proposed many different theories concerning the mechanisms of aging from different perspectives, involving oxidative stress, energy metabolism, signal transduction pathways, immune response, etc. [1,2].These mechanisms interact with each other and are influenced by heredity to some degree [2,3].The identification of longevity-related biological markers is critical to an indepth understanding of the mechanisms of carrier protection against common disease and/or of the retardation of the process of aging.",
+ "INTRODUCTION Human aging is affected by genes, life style, and environmental factors.The genetic contribution to average human aging can be modest with genes explaining \u223c20-25% of the variability of human survival to the mid-eighties (Herskind et al., 1996;Fraser and Shavlik, 2001).By contrast, genetic factors may have greater impact on survival to the ninth through eleventh decades (Tan et al., 2008).Notably, exceptional longevity is rare and may involve biological mechanisms that differ from those implicated in usual human aging.",
+ "Introduction Geroscience refers to research aimed at understanding the mechanisms of biological aging (Kennedy et al. 2014).A major goal of geroscience is to define the genetic, epigenetic, and environmental features that determine individual rates of aging.From a translational perspective, a further goal is to use this knowledge to develop interventions that can slow or delay aging in order to promote healthy longevity and increase healthspan, the period of life spent in good health free from chronic disease and disability (Burch et al. 2014;Pitt and Kaeberlein 2015).",
+ "the maximum human life span.Several avenues to studying aging have placed us on Department of Biology Massachusetts Institute of Technology the threshold of understanding basic underlying mechanisms.These approaches include the identification of Cambridge, Massachusetts 02139 key genes and pathways important in aging; genetic studies of heritable diseases that cause the appearance of premature aging in affected people; physiological ex-Introduction periments that relate the pace of aging to caloric intake; Is aging the final act in the script of developmental bioland advances in human genetics, as well as cell and ogy?The characteristic changes that are part and parcel molecular biology leading to an understanding of the of aging appear similar to developmentally regulated basis of many diseases of aging.Strikingly, single gene programs.But why would aging mechanisms have been mutations have been found to significantly extend the evolutionarily selected as advantageous?Indeed, evolife span in C. elegans, yeast, and, most recently, Drolutionary biologists might argue that aging occurs by sophila, suggesting that aging may be relatively simple, default due to the absence of selection in the postreproat least in these organisms.Further, the limited replicaductive phase of life.By this view, the aging process is tion potential of human cells in culture has been attribnot programmed, but, rather, the detritus of the absence uted to a specific mechanism (i.e., the shortening of of selection for maintenance (Medawar, 1952; Kirkwood, telomeric ends of chromosomes).An important chal- 1977).However, it is quite reasonable that any mechalenge is now to relate these recent findings to the more nisms that sprang up to slow or regulate the pace of complex case of human aging.aging would be selected, because lucky individualsIn this review, we will discuss several important mocould potentially give rise to more progeny.Therefore, lecular models of aging that come from current research.it is reasonable to suppose that life span extending pro-These are damage by reactive oxygen species (ROS) cesses have been selected and that these can be viewed generated by metabolism, genome instability, genetias an elaboration of development itself.In principle, cally programmed extension mechanisms, cell death, such extension mechanisms may act to slow or forestall and systemic aging.Questions to be posed include the deleterious changes in an organism that progressively following.What evidence exists for and against these lead to death.The life span of an organism, therefore, models?Can more than one of these models apply to is the sum of deleterious changes and counteracting aging of different tissues in humans-specifically do repair and maintenance mechanisms that respond to organs with continually dividing cells age by the same the damage (Figure 1).mechanism as organs that are postmitotic?Finally, is A priori, one imagines such longevity mechanisms to aging amenable to therapeutic intervention, and would be much less complex than those regulating embryonic such intervention be advisable?development.The spatial and temporal constraints on embryonic development are many, while requirements Oxidative Damage for longevity mechanisms might be much more specific One theory of aging proposes that ROS which are generif there were a single process (or a few processes) whose ated by metabolism cause cumulative damage over a breakdown is the limiting event in longevity (i.e., the lifetime (Harman, 1981).Roughly two to three percent Achilles heel).of oxygen taken up is chemically reduced by the addition Aging is defined when two criteria are met.First, the of single electrons, which are sequentially converted probability of death at any point in time increases with into ROS, including the superoxide anion, hydrogen perthe age of the organism.This statistical definition applies oxide, and the hydroxyl radical.ROS have been shown from yeast to mammals and reflects the progressive to cause molecular damage relatively indiscriminately nature of aging.Second, characteristic changes in pheto proteins, lipids, and nucleic acids.In addition, specific notype occur in all individuals over time due to the limdamage has been observed in the mitochondrial DNA, iting processes.which we consider below in Genome Instability.The phenotypic definition is equally general and is What is the evidence that oxidative damage causes useful in distinguishing the aging process itself from aging?One category of study that is supportive of this diseases of aging, such as cancer and heart disease.view involves animals transgenic for genes encoding Phenotypes of aging affect all of the individuals in a antioxidants.Transgenic Drosophila overexpressing both population, while diseases of aging affect only a subset.Cu/Zn SOD and catalase live 34% longer than controls Both impact on life span, but in different ways.For exam-(Orr and Sohal, 1994).A more recent study shows that ple, the many advances in medicine and public health expression of human SOD1 exclusively in Drosophila in this century have caused a large increase in the averadult motor neurons leads to a 40% extension in life age life span of humans in developed countries.Howspan (Parkes et al., 1998).Further experiments are necever, because these advances have not altered the aging essary to clarify the nature of this primary role of motor neurons in life span.Conversely, mice knocked out for either GPX1 (encoding glutathione peroxidase), SOD1,",
+ "the maximum human life span.Several avenues to studying aging have placed us on Department of Biology Massachusetts Institute of Technology the threshold of understanding basic underlying mechanisms.These approaches include the identification of Cambridge, Massachusetts 02139 key genes and pathways important in aging; genetic studies of heritable diseases that cause the appearance of premature aging in affected people; physiological ex-Introduction periments that relate the pace of aging to caloric intake; Is aging the final act in the script of developmental bioland advances in human genetics, as well as cell and ogy?The characteristic changes that are part and parcel molecular biology leading to an understanding of the of aging appear similar to developmentally regulated basis of many diseases of aging.Strikingly, single gene programs.But why would aging mechanisms have been mutations have been found to significantly extend the evolutionarily selected as advantageous?Indeed, evolife span in C. elegans, yeast, and, most recently, Drolutionary biologists might argue that aging occurs by sophila, suggesting that aging may be relatively simple, default due to the absence of selection in the postreproat least in these organisms.Further, the limited replicaductive phase of life.By this view, the aging process is tion potential of human cells in culture has been attribnot programmed, but, rather, the detritus of the absence uted to a specific mechanism (i.e., the shortening of of selection for maintenance (Medawar, 1952; Kirkwood, telomeric ends of chromosomes).An important chal- 1977).However, it is quite reasonable that any mechalenge is now to relate these recent findings to the more nisms that sprang up to slow or regulate the pace of complex case of human aging.aging would be selected, because lucky individuals",
+ "Currently prevailing studies of genetic and biological origin of human health and longevity follow largely two approaches which focus on the aging-related diseases and on individuals with exceptionally long lives (Martin et al. 2007).This study provides de facto the rationale for a new approach.Specifically, Fig. 2 suggests that a promising strategy could be to focus on individuals who died prematurely.Studies of genetic profiles of short-lived subjects compared to those who aged more successfully (i.e., those who lived longer and perhaps healthier lives) can be a core of this strategy.Importantly, this strategy can be naturally implemented in longitudinal studies of aging and longevity by focusing on individuals who died first.",
+ "T he average human life expectancy has been increasing for centuries 1 .Based on twin studies, the heritability of human lifespan has been estimated to be ~25%, although this estimate differs among studies 2 .On the other hand, the heritability of lifespan based on the correlation of the mid-parent (i.e., the average of the father and mother) and offspring difference between age at death and expected lifespan was estimated to be 12% 3 .A recent study has indicated that the different heritability estimates may be inflated due to assortative mating, leaving a true heritability that is below 10% 4 .The heritability of lifespan, estimated using the sibling relative risk, increases with age 5 and is assumed to be enriched in long-lived families, particularly when belonging to the 10% longest-lived of their generation 6 .To identify genetic associations with human lifespan, several genome-wide association (GWA) studies have been performed [7][8][9][10][11][12][13][14][15][16][17][18][19][20] .These studies have used a discrete (i.e., older cases versus younger controls) or a continuous phenotype (such as age at death of individuals or their parents).The selection of cases for the studies using a discrete longevity phenotype has been based on the survival to ages above 90 or 100 years or belonging to the top 10% or 1% of survivors in a population.Studies defining cases using a discrete longevity phenotype often need to rely on controls from more contemporary birth cohorts, because all others from the case birth cohorts have died before sample collection.Previous GWA studies have identified several genetic variants, but the only locus that has shown genome-wide significance (P \u2264 5 \u00d7 10 \u22128 ) in multiple independent meta-analyses of GWA studies is apolipoprotein E (APOE) 21 , where the ApoE \u03b54 variant is associated with lower odds of being a long-lived case.",
+ "Introduction Worldwide human populations have shown an increase in mean life expectancy in the past two centuries (Oeppen & Vaupel, 2002).This is mainly because of environmental factors such as improved hygiene, nutrition, and health care.The large variation in healthy lifespan among the elderly has prompted research into the determinants of aging and lifespan regulation.The genetic contribution to human lifespan variation was estimated at 25-30% in twin studies (Gudmundsson et al., 2000;Skytthe et al., 2003;Hjelmborg et al., 2006).The most prominent genetic influence is observed in families in which the capacity to attain a long lifespan clusters (Perls et al., 2000;Schoenmaker et al., 2006).Exceptional longevity can be reached with a low degree of age-related disability (Christensen et al., 2008;Terry et al., 2008), raising the question whether protective mechanisms against disease exist in long-lived subjects.",
+ "Introduction Human life expectancies are increasing almost everywhere in the world where socio-economic circumstances are permissive (Tuljapurkar et al., 2000) and there is no evidence that a limit to life is anywhere near (Oeppen and Vaupel, 2002).While this increase in life span would prevent a proposed compression of morbidity (Fries, 1980), there is no evidence that higher average life spans are associated with an extension of the period of increased morbidity (Manton and Gu, 2001).On the contrary, older individuals have never been so healthy and further improvements in life style, environmental conditions and medical care are likely to help this trend to continue.Especially the medical sciences now seem poised to push the biological limits of longevity further by a number of innovations that seem to affect basic mechanisms of ageing and disease rather than merely alleviating its symptoms.While in the past medicine contributed mainly to public health advances by redu-cing infectious diseases, thereby helping infant mortality to decline, more recent developments hold promise for a more basic intervention in the processes that underlie age-related decline.An example is atherosclerosis, a common problem in ageing and, along with hypertension, the cause of most cardiovascular disease.Basic medical research has likely contributed significantly to the current dramatic decline in cardiovascular disease by actively intervening in some of its main risk factors, i.e., lipid levels and hypertension (Levi et al., 2002).However, one could question whether age-related diseases should be seen as separate from ageing.In this respect, ageing has been considered as a process of cellular degeneration and death universal to all or most species, increasing the risk of fatal disease in humans and other mammals.Would it be possible to define such a process and ultimately understand it in terms of the timedependent, coordinated action of the products of multiple genes interacting with the environment?If so, then ageing per se rather than the diseases associated with it, may offer a more logical starting point for further increasing healthy life expectancies through prevention and therapy.This is especially true now that we have a working draft of the human genome and are in a position to determine the functional significance of each gene as part of the dynamic network of all genes that ultimately determine the physiology of an organism.Termed 'Functional Genomics', this new discipline is now often called upon to solve the complex problems in biology, such as to understand functional control mechanisms and investigate the role that genotype and environment play in determining disease phenotypes.The question is then if this same approach would apply to ageing as a complex phenotype.What is ageing, how does it differ from its diametrical opposite, i.e., organismal development, and what role can functional genomics play in unraveling the basic causes of ageing and exploit such knowledge for developing new, rational strategies for extending healthy life span?",
+ "Introduction As a result of improvements in health care and living conditions over the past two centuries, the average human life expectancy has dramatically increased in many regions of the world [1].This major success reflects the great malleability of the ageing process.Unfortunately, for most people, ageing is accompanied with an increased risk of developing age-related illnesses/disabilities and frailty.Therefore new approaches are required to understand the genetic, cellular, and molecular factors controlling ageing to identify strategies to extend healthy life span.",
+ "The search for the genetic determinants of extreme human longevity has been challenged by the phenotype's rarity and its nonspecific definition by investigators.To address these issues, we established a consortium of four studies of extreme longevity that contributed 2,070 individuals who survived to the oldest one percentile of survival for the 1900 U.S. birth year cohort.We conducted various analyses to discover longevity-associated variants (LAV) and characterized those LAVs that differentiate survival to extreme age at death (eSAVs) from those LAVs that become more frequent in centenarians because of mortality selection (eg, survival to younger years).The analyses identified new rare variants in chromosomes 4 and 7 associated with extreme survival and with reduced risk for cardiovascular disease and Alzheimer's disease.The results confirm the importance of studying truly rare survival to discover those combinations of common and rare variants associated with extreme longevity and longer health span.",
+ "The search for the genetic determinants of extreme human longevity has been challenged by the phenotype's rarity and its nonspecific definition by investigators.To address these issues, we established a consortium of four studies of extreme longevity that contributed 2,070 individuals who survived to the oldest one percentile of survival for the 1900 U.S. birth year cohort.We conducted various analyses to discover longevity-associated variants (LAV) and characterized those LAVs that differentiate survival to extreme age at death (eSAVs) from those LAVs that become more frequent in centenarians because of mortality selection (eg, survival to younger years).The analyses identified new rare variants in chromosomes 4 and 7 associated with extreme survival and with reduced risk for cardiovascular disease and Alzheimer's disease.The results confirm the importance of studying truly rare survival to discover those combinations of common and rare variants associated with extreme longevity and longer health span.",
+ "Introduction The recent, remarkable extension of life expectancy is largely attributed to the postponement of mortality at old age (Vaupel, 1997(Vaupel, , 2010)).The years of life gained in the older population residing in developed nations are a success story of public health measures and improved health care.In addition to such external factors, longevity and healthy aging consistently show a modest heritability between 20% and 50% and aging-associated genetic research may provide further insights into the mechanisms of aging (Herskind et al., 1996;McGue et al., 1993;Reed and Dick, 2003).It has been postulated that genes involved in pathways associated with aging identified in animal models, such as insulin-like growth factor (IGF)-insulin signaling, regulation of lipoprotein metabolism, the mTOR pathway, and the oxidative stress response may also influence survival to old or even exceptionally old age in humans (Christensen et al., 2006;Kenyon, 2010;Vellai et al., 2003).However, in humans, common variants within genes involved in these pathways have not been consistently associated with lifespan (Chris-tensen et al., 2006;Kenyon, 2010;Kuningas et al., 2008;Vijg and Suh, 2005).",
+ "DESIGNS TO STUDY PARAMETERS OF HEALTHY AGEING, MORBIDITY, MORTALITY AND LONGEVITY Human cohorts may vary considerably in their morbidity, mortality and longevity characteristics and yet they have shown a common increase in mean life expectancy in the past two centuries [5].This is mainly due to improved hygiene, nutrition and healthcare.There is a large variation in healthy lifespan among the elderly and remarkably exceptional longevity (EL) can be reached with a low degree of agerelated disability [6,7].Heritability studies comparing the concordance of lifespan in monozygous and dizygous twins estimated a 25 -30% genetic contribution to human lifespan variation [8 -11], which becomes increasingly important at higher ages.The most prominent genetic influence is present in families in which survival to high ages clusters [12,13].Unlike model systems where single-gene mutations have major life extension effects, human longevity is presumed to be a complex trait [14].",
+ "INTRODUCTION Genomic studies into human longevity are inspired by the fact that, in animal models, healthy lifespan has proved to be remarkably plastic, and major pathways of lifespan regulation have been identified.Considerable lifespan extension has been induced in models as diverse as yeast, worms, fish, flies and rodents by applying genetic manipulation and dietary restriction (DR) (see [1] for review).Reduced activity of nutrient-sensing pathways such as insulin/insulin-like growth factor (IGF-1) signalling (IIS) and target of rapamycin (TOR) signalling mediated lifespan extension, and also the extension of lifespan by DR [2].An interesting observation from the perspective of human ageing is that, in rodents and monkeys, diets restricted in glucose, fat or protein uptake reduced or delayed the risk of cancer and metabolic disease, thus extending the healthspan of the animals [2].Following the discovery of genes and pathways involved in animal lifespan extension, human research has focused on the corresponding candidate human genes with genetic, genomic and epigenetic studies into ageing and longevity.The designs of these studies differ with respect to the selection of naturally occurring phenotypes and the study populations, which include population-based, patient-based, family-based and exposure-based cohorts.",
+ "GENETIC STUDIES OF HUMAN LONGEVITY Genetic and genomic studies into longevity have been performed based on a hypothesis, referred to as a candidate gene approach.Alternatively, explorative genome-wide analyses have been applied in which genetic variation and gene transcription across the complete genome are being studied for associations with longevity and related traits.Genetic studies into human disease and longevity include candidate gene approaches, genome-wide association studies (GWASs) and genome-wide linkage studies.",
+ "ANALYSIS OF HUMAN VARIATION IN THE GENETIC CONTROL OF LONGEVITY Heritability studies have convincingly demonstrated that at least some fraction of human lifespan is heritable.In tandem, large-scale genome-wide association studies (GWAS) have identified numerous loci associated with age-related traits (Buniello et al., 2019).While genetic studies have functionally shown an inverse effect of multiple age-related, diseaseassociated variants on lifespan regulation, the number of well-replicated longevity-conferring variants remains limited to variants in APOE (ApoE \u03b52), and more recently, CDKN2A/B and IL6 (see Table 1).To date, studies in humans have been hampered by the specific phenotype definitions used, sample sizes of the extreme phenotypes, and modest heritability of the longevity-related traits (Breitbach et al., 2019).This is due to the complex interplay of biological and social factors involved in human aging, as well as the limited power of GWAS, which require sampling thousands of subjects to achieve statistical significance (Breitbach et al., 2019).Genetic studies of aging have also been hindered by an inconsistent use of definitions of aging (reviewed in Baghdadi et al., 2020).The two main ways of conducting research on the genetics of longevity in human populations are by studying (i) the lifespan (continuous trait, years lived) and (ii) the longevity (dichotomous trait, i.e., being among the longest-lived individuals within a specific population).These complexities have limited the resolution and capability of broad association studies of human longevity.Importantly, these genomic analyses focus on a shift of survival in a population; these variables may be genetically distinct from the mechanisms establishing potential for longevity overall (Figure 1A).We argue that an understanding of this shift in lifespan as well as genetic mechanisms of regulating a species specific 'set points' (Figure 1B) will aid in the conceptual distinction of aging and longevity in humans.",
+ "Introduction Human longevity is influenced by multiple genetic and environmental factors.Approximately 25-32% of the overall variation in adult lifespan is because of genetic variation that becomes particularly important for survival at advanced age (Hjelmborg et al., 2006).Epidemiological studies have revealed that long-lived individuals (LLI), that is, people surviving to the 95th percentile of the respective birth cohort-specific age distributions (Gudmundsson et al., 2000), frequently show a favorable ('healthy') course of the aging process, with the absence or a delayed onset of agerelated diseases (Hitt et al., 1999).Hence, the LLI offer the key to elucidate the molecular mechanisms underlying the 'healthy aging' phenotype (Perls, 2006).",
+ "Conclusions and prospects Over the past two decades the human aging field has built up the necessary resources to study the biology of aging and longevity by establishing human populations with a diversity of designs.Meta-analyses integrating genetic and phenotypic datasets have successfully identified variants associated with a range of age-related traits and diseases.Despite these accomplishments, the number of novel leads contributing to human lifespan regulation is limited.Although positive regions of linkage and suggestive GWAS hits have been reported, the field has not yet identified the loci that explain the clustering of longevity in families and the variation in biological aging rate in the population.As for animal models, down-signaling of the IIS and mTOR pathway appeared to be relevant in humans.These findings are being followed up by molecular and physiological profiling using skin, fat and muscle tissue of long-lived family members and controls.Human studies now also include the response of nutrient sensing systems to the application of dietary and physical challenges.",
+ "Human lifespan variation is mainly determined by environmental factors, whereas the genetic contribution is 25-30% and expected to be polygenic.Two complementary fields go hand in hand in order to unravel the mechanisms of biological aging: genomic and biomarker research.Explorative and candidate gene studies of the human genome by genetic, transcriptomic, and epigenomic approaches have resulted in the identification of a limited number of interesting positive linkage regions, genes, and pathways that contribute to lifespan variation.The possibilities to further exploit these findings are rapidly increasing through the use of novel technologies, such as next-generation sequencing.Genomic research is progressively being integrated with biomarker studies on aging, including the application of (noninvasive) deep phenotyping and omics data -generated using novel technologies -in a wealth of studies in human populations.Hence, these studies may assist in obtaining a more holistic perspective on the role of the genome in aging and lifespan regulation."
+ ],
+ [
+ "There is a great need for continuing efforts to increase public knowledge about genomic research.As individuals and communities from diverse social backgrounds become more aware of genomic research and the potential role of genetics in contributing to health outcomes, the public will hopefully be more informed about the implications of genomic research for personal medical care, public health and more broadly the public representation of diverse population groups based on genetic findings.This knowledge should reinforce the ability of potential participants to make informed choices about joining a genetic study.There are complicated issues underlying public trust in medicine as well as scientific and genetic research that must be addressed.Innovative strategies for public education and community engagement should take into account cultural settings and historical experiences that have contributed to distrust in the past.",
+ "The issues discussed in this section refl ect key current concerns, but, given the rapid advances in genetic and genomic research, new issues will continue to confront families in the next few years.For example, major advances in the developing area of neuropsychiatric genetics, studies of the heritable nature of psychiatric and other nervous system disorders, characterized at the molecular, cellular, or behavioral levels, will challenge family members to address the potential role genes play in the development of schizophrenia, bipolar, or affective disorders (Genomics Network, n.d.).",
+ "Future Implications and Communication Research Directions Given ever-expanding research on genetics and genomics, scholars interested in family interaction will be challenged to stay abreast of the implications for family disclosure and discussion of genetic health.We believe that the following issues will emerge as key concerns:",
+ "Conclusion After more than four decades of working, genetics and genomic medicine still faces a considerable challenge to be addressed.Lack of awareness of health professionals and government, lack of interest of researcher on genetic diseases, limited research funding, limited access to high technology, low national health budget and low income family are seem to be the main obstacles to be overcome in implementation of genetics and genomic medicine.Despite these conditions, several research centers still managed to do some studies and few numbers of genetic testing.Several collaborations with countries abroad have been done to overcome some obstacles.Yet, Indonesia still has to accelerate this effort to be able to catch up its lag.Mentoring and collaborations are needed to enable Indonesia in doing so.",
+ "Opportunities for Population-Based Research on Aging Human Subjects: Pathology and Genetics",
+ "Concluding remarks The next decade will provide a window of opportunity to prepare health professionals, public health practitioners, the public and policy makers for the advent of genomics on health and health care.This will be a doable project but will require regional, national, European and global coordination on both the vertical and horizontal levels.We argue that there is an ethical obligation to prepare society to meet this challenge and to take up the opportunities provided by the science in a medically useful, effective, efficient, socially desirable and ethically justifiable manner.Here, health literacy, health communication and empowerment in managing risks are key for opening the doors to a truly beneficial Public Health Genomics practice.This can be facilitated by implementing ethical benchmarks and legal safeguards 70 such as respect for autonomy and social justice in the context of policy development.",
+ "Clarifying the general conditions under which genomic knowledge can be put to best practice in the field of public health, paying particular consideration to the ethical, legal and social implications 12,17,35 is currently the most pressing task in Public Health Genomics.Aiming the application of genetic and molecular science to the promotion of health and disease prevention through the organised efforts of society, integral to its activities is a dialogue with all stakeholders in society, including industry, governments, health professionals and the general public. 18Thus, the integration of genomics into public health research, policy and practice is one of the major future challenges for our health-care systems. 36,37Expertise is already feasible and can be clustered and evaluated for a socially accountable use.",
+ "Public health needs to prepare itself for the upcoming challenges, which derive from genomics.In this sense, it needs to strengthen the communication efforts among all sciences involved.Public health can serve as the umbrella, that spans the disciplines such as genetics, ethics, law and all other stakeholders.",
+ "Economic and health disparities related to genetics and genomics.",
+ "Capabilities and limitations of current genetic/genomic technologies.",
+ "Identify ethical, legal, and social issues associated with genetic/genomic information.",
+ "Ongoing research contributing to improved understanding of the genetic/genomic influences on health.",
+ "Economic and health disparities related to genetics and genomics. Integrate knowledge from psychology, history, politics, sociology and culture when delivering genetic and genomic care.",
+ "Ethical and legal issues surrounding genetic and genomic information and services.",
+ "Developments in genetics and genomics occur very rapidly and bring with them new ethical, legal and social questions that need swift, sensible and responsible responses (Pepper, 2011).Examples include next-generation sequencing, genetic cohort studies and biobanks, which have raised questions about data management, including quality of interpretation of data, data storage, data sharing, consent for re-use of data, as well as concerns about identifiability and privacy interests of those who provide samples (Kaye, 2012;Wolf, 2013;Pinxten and Howard, 2014).However, the rapidity of advancement poses difficulties for those who must determine the responses to these questions.They are often slow or even overtaken by further advancements.Ethical, legal and social-related challenges should be prioritised for policymakers, researchers, clinicians and public health practitioners to maximise the benefits of genomic and genetic applications while minimising the risk of harm to people (Geller et al., 2014).Any education strategy developed should therefore be dynamic.",
+ "Query 2. Perceptions of Genetics and Genomics Awareness of Genetic and Genomic Advancements.",
+ "In addition, 4 scholarly commentaries in this issue provide insights into several current practical issues and developments in genetics and genomics.Feero and colleagues 11 describe advances in genomics science and explore many of the issues surrounding translation of these advances to routine \"personalized\" patient care.Offit 12 discusses the increasing availability of direct-to-consumer marketing of genomic and genetic testing and sounds an appropriately cautionary note about the need for standards, quality control, and appropriate regulation.Uhlmann and Guttmacher 13 present a useful collection of practical Internet genetics resources for clinicians and patients, including genetics information on specific diseases; guidelines for genetic testing; and educational resources to help clinicians integrate genetics into patient care.Ginsberg and colleagues 14 discuss the importance of centralized biorepositories for genetics and genomics research and empha-size the need to develop and implement standards for informed consent, informatics, and governance.",
+ "Key Themes Relevant To Genomic Research . . . . . . . . . . . . . . . . . . . . . . . . . . 3",
+ "A first step is to define the challenges that stand in the way of realizing the promise of genomic medicine.These include addressing gaps in the oversight of genetic testing (including regulation of companies providing test interpretation services), ensuring that realistic claims are made in promotional materials for genetic testing, determining the appropriate role of new genomic technologies in patient care, ensuring the privacy of patients' genomic data, and improving insurance coverage and reimbursement for genetic services.The Secretary's Advisory Committee on Genetics, Health, and Society (SACGHS), on which two of us serve, advises the secretary of health and human services and reports on these issues.",
+ "How can we maximize the benefits of these new developments and minimize the harms?How can we encourage patients' involvement and autonomy yet establish appropriate safeguards while avoiding inappropriate paternalism?How do we promote Preparing for a Consumer-Driven Genomic Age the understanding that interpretations of genomic information may evolve as research unravels the meaning of gene-gene and gene-environment interactions and the roles of noncoding DNA sequences, copy-number variants, epigenetic mechanisms, and behavioral factors in health and disease?"
+ ],
+ [
+ "A supervised (pathway driven) approach was used to specifically query three general gene ontology (GO) areas of interest, namely xenobiotic metabolism, DNA damage repair, and oxidative stress-related genes (Table 1).These gene categories are hypothesized to play important roles in sex-and age-related susceptibility to adverse drug effects [18,30].Of the 122 genes included in the xenobiotic metabolism gene list in the Ingenuity Knowledge Base, 61 were differentially expressed.These included Cyp2d4, the rat ortholog of human gene CYP2D6, which is speculated to metabolize up to 25% of commonly prescribed drugs [31].Genes involved in DNA Damage Repair, derived from Ingenuity, were combined with the list by Wood et al. [32] to give 222 genes involved in DNA damage repair.Sixty-five of these genes (approximately 25%) were found to be differentially expressed in the liver.Oxidative Stress genes were defined by 68 genes included in \"response to oxidative stress\" (IPA) of which 23 genes were differentially expressed (Table 1).",
+ "Pharmacogenomics has advanced the field of drug-response assessment.For example, the first experiences with guiding vitamin K antagonist therapy with the aid of CYP2C9 (cytochrome P450, family 2, subfamily C, polypeptide 9) or VKORC1 (vitamin K epox- ide reductase complex, subunit 1) polymorphisms (93 ), and the use of cytochrome P450 polymorphisms for assessing clopidogrel response have entered US Food and Drug Administration recommendations (94 ).Disease prevention lags behind.Gene chips and modern sequencing approaches that allow largescale interrogation of the genome at the population level will generate novel hypotheses of disease causation.Furthermore, with the continuing drop in the costs of whole-genome sequencing, the practicing physician may soon be faced with having to comment on the disease risks of a patient's \u03fe4 \u03eb 10 6 sequence variants before any clinical signs occur, a task that no certified genetic counselor could fulfill at present.With advent of GWASs, ethical and practical concerns of reporting genetic research results have become apparent.Initial efforts at defining rules of reporting large-scale association results and assessing the level of evidence also apply to nextgeneration large-scale genomics (95,96 ).Reports have suggested that on the consumer side, genomewide genetic profiling of employees of health and technology companies does not change anxiety symptoms, dietary fat intake, or exercise behavior (i.e., lifestyle factors) over a 6-month period (97 ); however, the association of genetic variation with risk and the dissection of objective markers of risk and risk factors that reside in the causal pathways of disease will need careful assessment before these approaches can enter clinical decision making (98 ).A data set containing 80 genes associated with coronary heart disease in GWASs was uploaded and overlaid onto the molecular networks developed from information contained in the Ingenuity Knowledge Base.Networks of Network Eligible Molecules were then algorithmically generated on the basis of their connectivity.The most substantially enriched network, as shown, comprises 36 genes, of which 20 are coronary heart disease genes.",
+ "19.3.1 An environmental or pharmacogenetic basis for drug efficacy and ADR? Before getting into the complexities of PGx, it is important to recognize that many non-genetic factors also influence the efficacy of medications, including the patient\u2019s age, sex and general health, but also environmental factors, such as concomitant therapies, drug interactions and diet. To give a seemingly innocuous example, grapefruit juice is an inhibitor of intestinal cytochrome P-450 3A4, which is responsible for the first-pass metabolism of many medications.",
+ "Finally, it is possible that other molecules (or drugs) might modulate the biological context within which the drug\u2013 target interaction takes place. Variation in any of the elements that control these types of processes can lead to variability in drug action, which might well confound the search for causative genes among the usual ADME and target-related candidates. 19.3 PHARMACOGENETICS (PGx) 519 19.3.5 Using bioinformatics to gain understanding of adverse drug reaction (ADR) One of the biggest concerns during the development of any medication is the possibility of unintended consequences in the patient.",
+ "19.3 Pharmacogenetics (PGx) It is well known that after exposure to a drug, almost any given cohort of patients show a wide variety of responses. In an ideal situation, patients show a beneficial response to the therapy, although they may also show no response or a weak response, and perhaps most worryingly, they may experience an adverse drug reaction (ADR), which in extreme situations could lead to serious illness or even death. ADR is an increasingly serious problem with a huge toll in lives and health-care costs every year.",
+ "A good understanding of disease biology and effective chemistry is not the only requirement for an efficacious drug; we also must understand how variation at the target affects drug action, and how variation in other genes affects the way drugs are absorbed, disseminated, metabolized and excreted. Genetic analysis in the drug development paradigm also faces some unique challenges; for example, the exquisite rarity of some adverse reactions makes collection of sufficient samples for well-powered genetic analysis almost impossible.",
+ "19.3.1 An environmental or pharmacogenetic basis for drug efficacy and ADR? Before getting into the complexities of PGx, it is important to recognize that many non-genetic factors also influence the efficacy of medications, including the patient\u2019s age, sex and general health, but also environmental factors, such as concomitant therapies, drug interactions and diet. To give a seemingly innocuous example, grapefruit juice is an inhibitor of intestinal cytochrome P-450 3A4, which is responsible for the first-pass metabolism of many medications.",
+ "Finally, it is possible that other molecules (or drugs) might modulate the biological context within which the drug\u2013 target interaction takes place. Variation in any of the elements that control these types of processes can lead to variability in drug action, which might well confound the search for causative genes among the usual ADME and target-related candidates. 19.3 PHARMACOGENETICS (PGx) 519 19.3.5 Using bioinformatics to gain understanding of adverse drug reaction (ADR) One of the biggest concerns during the development of any medication is the possibility of unintended consequences in the patient.",
+ "19.3 Pharmacogenetics (PGx) It is well known that after exposure to a drug, almost any given cohort of patients show a wide variety of responses. In an ideal situation, patients show a beneficial response to the therapy, although they may also show no response or a weak response, and perhaps most worryingly, they may experience an adverse drug reaction (ADR), which in extreme situations could lead to serious illness or even death. ADR is an increasingly serious problem with a huge toll in lives and health-care costs every year.",
+ "A good understanding of disease biology and effective chemistry is not the only requirement for an efficacious drug; we also must understand how variation at the target affects drug action, and how variation in other genes affects the way drugs are absorbed, disseminated, metabolized and excreted. Genetic analysis in the drug development paradigm also faces some unique challenges; for example, the exquisite rarity of some adverse reactions makes collection of sufficient samples for well-powered genetic analysis almost impossible.",
+ "Drug-Gene Interactions Predicting Efficacy In 1 candidate gene study, a genetic variant in the HMG-CoA reductase gene, present in 6.7% of patients, modified the LDL-C response to pravastatin by 6.4 mg/dL. 244][247] However, these effect sizes are small and difficult to distinguish from random variation in individual patients.Indeed, the metformin finding is less important for its potential clinical applications than for the biological insight provided by this link between glucose control and a gene involved in the response to DNA damage. 245,246",
+ "Nutrition and metabolism The power of these new experimental protocols, comparing gene expression profiles to understand spontaneous differences in phenotype due to disease, was extended by inducing phenotypic differences using creative molecular intervention.The first experiments to manipulate phenotype in this way used drugs.A comparison of the gene expression of a drug-induced phenotype with that of the normal phenotype was brilliantly executed in a single study that simultaneously identified a mechanism for the regulation of sterol uptake in the intestine and a genetic disease, sitosterolemia [17 \u2022 ], mice were treated with a lipid-metabolism altering compound and the expression profiles of various tissues compared with normal mice using gene arrays.Differentially expressed genes were evaluated 'in silico,' and an unknown gene was found using bioinformatic tools to be homologous to the ATP-binding cassette (ABC) family of genes.Members of the ABC family include cellular cholesterol transport proteins.Defects in a member of this family (ABCA1) form the basis for the poor cholesterol delivery to high-density lipoprotein (HDL) that underlies Tangiers disease [18], another cholesterol-related disease [19].Through the use of a variety of in silico techniques, Berge et al. [17 \u2022\u2022 ] concluded that the proteins produced from the newly discovered genes, ABCG5 and ABCG8, were responsible for the regulated reverse transport of newly absorbed cholesterol and phytosterols out of the apical surface of intestinal cells.Using public gene databases, a human homolog of the putative mouse transporter was identified, cloned and used to screen sitosterolemic humans.Dysfunctional mutations were found in these genes in all individuals suffering from sitosterolemia.Thus, individuals suffering from sitosterolemia lack the machinery responsible for the selective and controlled transport of cholesterol, and therefore hyperabsorb various sterols (including plant sterols).This study illustrated many of the strengths of genomic experimentation: the identification of phenotypically important genes using global differential gene expression analysis; querying internet databases to deduce structure/function relationships from sequence comparison; and the characterization of individual variation (polymorphism) linked to health.These findings have transformed our understanding of lipid absorption and metabolism, begging the question: how long would this knowledge have waited to be discovered without genomics?",
+ "19.3.1 An environmental or pharmacogenetic basis for drug efficacy and ADR? Before getting into the complexities of PGx, it is important to recognize that many non-genetic factors also influence the efficacy of medications, including the patient\u2019s age, sex and general health, but also environmental factors, such as concomitant therapies, drug interactions and diet. To give a seemingly innocuous example, grapefruit juice is an inhibitor of intestinal cytochrome P-450 3A4, which is responsible for the first-pass metabolism of many medications.",
+ "Finally, it is possible that other molecules (or drugs) might modulate the biological context within which the drug\u2013 target interaction takes place. Variation in any of the elements that control these types of processes can lead to variability in drug action, which might well confound the search for causative genes among the usual ADME and target-related candidates. 19.3 PHARMACOGENETICS (PGx) 519 19.3.5 Using bioinformatics to gain understanding of adverse drug reaction (ADR) One of the biggest concerns during the development of any medication is the possibility of unintended consequences in the patient.",
+ "19.3 Pharmacogenetics (PGx) It is well known that after exposure to a drug, almost any given cohort of patients show a wide variety of responses. In an ideal situation, patients show a beneficial response to the therapy, although they may also show no response or a weak response, and perhaps most worryingly, they may experience an adverse drug reaction (ADR), which in extreme situations could lead to serious illness or even death. ADR is an increasingly serious problem with a huge toll in lives and health-care costs every year.",
+ "A good understanding of disease biology and effective chemistry is not the only requirement for an efficacious drug; we also must understand how variation at the target affects drug action, and how variation in other genes affects the way drugs are absorbed, disseminated, metabolized and excreted. Genetic analysis in the drug development paradigm also faces some unique challenges; for example, the exquisite rarity of some adverse reactions makes collection of sufficient samples for well-powered genetic analysis almost impossible.",
+ "19.3.1 An environmental or pharmacogenetic basis for drug efficacy and ADR? Before getting into the complexities of PGx, it is important to recognize that many non-genetic factors also influence the efficacy of medications, including the patient\u2019s age, sex and general health, but also environmental factors, such as concomitant therapies, drug interactions and diet. To give a seemingly innocuous example, grapefruit juice is an inhibitor of intestinal cytochrome P-450 3A4, which is responsible for the first-pass metabolism of many medications.",
+ "Finally, it is possible that other molecules (or drugs) might modulate the biological context within which the drug\u2013 target interaction takes place. Variation in any of the elements that control these types of processes can lead to variability in drug action, which might well confound the search for causative genes among the usual ADME and target-related candidates. 19.3 PHARMACOGENETICS (PGx) 519 19.3.5 Using bioinformatics to gain understanding of adverse drug reaction (ADR) One of the biggest concerns during the development of any medication is the possibility of unintended consequences in the patient.",
+ "19.3 Pharmacogenetics (PGx) It is well known that after exposure to a drug, almost any given cohort of patients show a wide variety of responses. In an ideal situation, patients show a beneficial response to the therapy, although they may also show no response or a weak response, and perhaps most worryingly, they may experience an adverse drug reaction (ADR), which in extreme situations could lead to serious illness or even death. ADR is an increasingly serious problem with a huge toll in lives and health-care costs every year.",
+ "A good understanding of disease biology and effective chemistry is not the only requirement for an efficacious drug; we also must understand how variation at the target affects drug action, and how variation in other genes affects the way drugs are absorbed, disseminated, metabolized and excreted. Genetic analysis in the drug development paradigm also faces some unique challenges; for example, the exquisite rarity of some adverse reactions makes collection of sufficient samples for well-powered genetic analysis almost impossible."
+ ],
+ [
+ "In one case, a gene identified by mutation recovered from a genetic screen in the laboratory, methuselah, may have variants in natural populations.In particular, the common ATATC haplotype has a sharp geographic (north-south) cline in U.S. populations, which, intriguingly, is associated with an 18% difference in life span (97).It would be interesting to examine these natural populations for differences in their reproductive schedule.Extensive studies show that life span can be rapidly selected as an indirect outcome of artificial selection for age at reproduction.Samples from natural populations of Drosophila contain genetic variants that can be rapidly selected, within 15 generations, for 50% or greater differences in life span on the basis of choosing individuals that are reproductive at early versus later ages (93).Selection was reversible, indicating that these life history variants depended on existing gene combinations not new mutations.Among the genes that differed in quantitative expression between young-and old-selected lines were heat shock proteins, e.g., hsp 22 (60).An overarching conclusion from fly aging genetics is that stress resistance is coupled to longevity (94), as in C. elegans.Other gene candidates are being sought by QTL analysis and show complex interactions with gender and population density (17,115).",
+ "Murabito JM, Yuan R, Lunetta KL (2012) The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals. J Gerontol A Biol Sci Med Sci 67(5):470\u2013479. doi:10.1093/gerona/gls089 20. Nuzhdin SV, Pasyukova EG, Dilda CL et al (1997) Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci USA 94(18):9734\u20139739 21. Gems D, Riddle DL (2000) Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154(4):1597\u20131610 123 22.",
+ "Somatic mutations with the inherited gene variations of each individual cumulatively or synergistically influence the health span and life span [11].Very few genetic variants have been associated with human longevity, but those found include the transcription factor FOXO3 gene, the APOE/TOMM40 and the CDKN2B/ ANRIL loci, which are associated with Alzheimer's disease and cellular senescence [12][13][14].In fact, the heritability for human longevity has been estimated to be approximately 20-30%, according to studies of twins, suggesting that external factors such as diet, environment, physical activity and microbiomes are important factors that influence the health span [14][15][16].The increase in the rate of retrotranscription reflects genome deregulation, creating additional mutations, DNA damage, and other forms of genome instability.For instance, the expression of several families of retrotransposable elements increases with age, as observed in mouse skeletal muscle and human fibroblasts, particularly the long interspersed nuclear element-1 (L1 LINE) [17,18].",
+ "Our study has several limitations.First, we did not analyse the sex and mitochondrial chromosomes, since we were unable to gather enough cohorts that could contribute to the analysis of these chromosomes.However, these chromosomes may harbour loci associated with longevity that we thus have missed.Second, although we included as many cohorts as possible, the sample size of our study is still relatively small (especially for the 99th percentile analysis) in comparison to GWA studies of age-related diseases, such as T2D and cardiovascular disease, and parental age at death 11,51,52 .Hence, this limited our power to detect loci with a low MAF (<1%) that contribute to longevity.Third, we did not perform sex-stratified analyses and may thus have missed sexspecific longevity-related genetic variants.The reason for this is that (1) we only identified a limited number of suggestive significant associations in our unstratified 90th and 99th percentile analyses, (2) our sample size is modest (especially when stratified by sex), and (3) thus far, there has been no report of any genomewide significant sex-specific longevity locus.",
+ "In most experimentally modified animal model systems, single-gene mutations in many different genes have major life extension effects (Fontana et al., 2010;Kenyon, 2010).However, natural human and animal longevity is presumed to be a complex trait (Finch & Tanzi, 1997).In humans, both candidate gene and genome-wide genetic association approaches have been applied in an attempt to identify longevity loci.The frequency of genetic variants has been typically compared between nonagenarian cases and young controls, revealing loci at which genetic variants may contribute to a higher or lower probability of survival into old age.The initial candidate gene studies aimed at finding human longevity genes were dominated by contradictory results (Christensen et al., 2006).The more consistent evidence obtained by repeated observation in independent cohort studies for association with longevity has so far only been observed for three loci, the apolipoprotein E (APOE) locus (Schachter et al., 1994;Christensen et al., 2006), the FOXO3A locus (Willcox et al., 2008;Flachsbart et al., 2009;Pawlikowska et al., 2009;Soerensen et al., 2010), and the AKT1 locus (Pawlikowska et al., 2009).Thus, despite the expectation that longevity would be influenced by many genetic variants with small effect sizes, the effect of variants has consistently been shown in only three genes.",
+ "Previously, it has been suggested that genetic variation in the FOXO1 gene is specifically contributing to human female longevity (reviewed in Chung et al., 2010).However, at chromosome 13q14.11harboring the FOXO1 gene we found no evidence for linkage with female longevity (LOD<0.05)and at the gene position of FOXO1 we found no evidence for association in the females-only metaanalysis (p-values>0.042) in the GEHA Study.Potentially, the effect of this locus is not only influenced by gender but also by genetic background.",
+ ", 2003), to study GXE and consequences of treatments as a function of age, diet, and sex (Fleet et al. , 2016; Philip et al. , 2010; Roy et al. , 2020; Sandoval-Sierra et al. , 2020; Williams et al. , 2016, 2020), gene pleiotropy (Wang et al. , 2016a), and to test behavioral predictions based on differences in brain architecture (Yang et al. , 2008). Author Manuscript Author Manuscript Here we summarize the current status of this resource with a focus on genetic structure, and on the power and precision of mapping trait variance to loci and genes.",
+ "Somatic mutations with the inherited gene variations of each individual cumulatively or synergistically influence the health span and life span [11].Very few genetic variants have been associated with human longevity, but those found include the transcription factor FOXO3 gene, the APOE/TOMM40 and the CDKN2B/ ANRIL loci, which are associated with Alzheimer's disease and cellular senescence [12][13][14].In fact, the heritability for human longevity has been estimated to be approximately 20-30%, according to studies of twins, suggesting that external factors such as diet, environment, physical activity and microbiomes are important factors that influence the health span [14][15][16].The increase in the rate of retrotranscription reflects genome deregulation, creating additional mutations, DNA damage, and other forms of genome instability.For instance, the expression of several families of retrotransposable elements increases with age, as observed in mouse skeletal muscle and human fibroblasts, particularly the long interspersed nuclear element-1 (L1 LINE) [17,18].",
+ "The Height-Life Span Nexus Several observations and lines of experimentation have raised the issue of whether interindividual differences in aging rate are influenced by genes that modulate body size and early-life growth patterns.These include (a) the association between small stature and exceptional longevity in calorically restricted rodents (Yu et al., 1985), methionine-restricted rats (Orentreich et al., 1993), and mutant dwarf mice (Brown-Borg et al., 1996;Miller, 1999); and (b) the association between small body size and longer life span in natural populations of mice (Falconer et al., 1978), flies (Hillesheim and Stearns, 1992), dogs (Li et al., 1996), and, possibly, people (Samaras andStorms, 1992).The correlation in dogs is particularly striking: selective breeding for dogs of different body size has produced breeds varying in size from Chihuahua to Irish wolfhound.These breeds also vary greatly in mean longevity, from approximately 7 to 10.5 years, and the correlation between breed longevity and breed body weight (Miller, 1999) is a remarkable R 2 = 0.56.These differences are genetic and affect stature rather than obesity: no amount of overeating will convert a West Highland white terrier to a St. Bernard.The selective pressures applied were designed to create dogs of specific sizes and temperaments and were not intended to influence aging rate or life span.The clear implication is that the effects on longevity are pleiotropic, i.e., that genes selected for their effect on body size and conformation influenced life span as a side effect.It is of interest to note that the few analyses (Eigenmann et al., 1984(Eigenmann et al., , 1988) ) of the hormonal basis for interbreed differences in body size have shown that the genes in question influence levels of IGF-1, the most likely mediator of the life-span effects in the long-lived df/df and dw/dw mouse mutants.Could it be mere coincidence that long-lived mutant nematode worms (Kimura et al., 1997) also show mutations in genes related to insulin and IGF-1 receptors?",
+ "The antagonistic pleiotropy and hyperfunction theories of ageing predict the presence of genetic variants important for growth and development in early life with deleterious effects towards the end of the reproductive window 19,20 .While we are unable to directly capture the genetic effects on individuals before age 40 due to the study design of our datasets, we found that the life-extending variant near FOXO3 is associated with a delay in the age at menarche and a decrease in intracranial volume and cognitive abilities.It thus appears that there are loci exhibiting antagonistic effects, although we are unable to discern whether this is due to true pleiotropy or due to linkage of causal variants within a region Genes which showed a significant effect (FDR < 5%) of gene expression on ageing traits are displayed here.Gene names are annotated with the direction of effect, where + andindicate whether the life-extending association of the locus is linked with higher or lower gene expression, respectively.Locus: nearest gene to lead variant in the multivariate analysis, Chr: chromosome, Position: base-pair position of lead variant (GRCh37), Cis-genes: genes in physical proximity (<500 kb) to the lead variant of the locus which colocalise with the multivariate signal, Trans-genes: genes located more than 500 kb from the lead variant of the locus.",
+ "Ageing phenotypes, such as years lived in good health (healthspan), total years lived (lifespan), and survival until an exceptional old age (longevity), are of interest to us all but require exceptionally large sample sizes to study genetically.Here we combine existing genome-wide association summary statistics for healthspan, parental lifespan, and longevity in a multivariate framework, increasing statistical power, and identify 10 genomic loci which influence all three phenotypes, of which five (near FOXO3, SLC4A7, LINC02513, ZW10, and FGD6) have not been reported previously at genome-wide significance.The majority of these 10 loci are associated with cardiovascular disease and some affect the expression of genes known to change their activity with age.In total, we implicate 78 genes, and find these to be enriched for ageing pathways previously highlighted in model organisms, such as the response to DNA damage, apoptosis, and homeostasis.Finally, we identify a pathway worthy of further study: haem metabolism.",
+ "Here, we assess the degree of genetic overlap between published GWAS of three different kinds of ageing phenotypeshealthspan, parental lifespan, and longevity (defined as survival to an age above the 90th percentile)-and perform a multivariate meta-analysis to identify genetic variants related to healthy ageing.We subsequently characterise the sex-and age-specific effects of loci which affect all three ageing traits and look up reported associations with age-related phenotypes and diseases.Finally, we link the observed signal in these loci to the expression of specific genes, including some that are currently studied in model organisms, and identify pathways involved in healthy ageing.",
+ "Ageing phenotypes, such as years lived in good health (healthspan), total years lived (lifespan), and survival until an exceptional old age (longevity), are of interest to us all but require exceptionally large sample sizes to study genetically.Here we combine existing genome-wide association summary statistics for healthspan, parental lifespan, and longevity in a multivariate framework, increasing statistical power, and identify 10 genomic loci which influence all three phenotypes, of which five (near FOXO3, SLC4A7, LINC02513, ZW10, and FGD6) have not been reported previously at genome-wide significance.The majority of these 10 loci are associated with cardiovascular disease and some affect the expression of genes known to change their activity with age.In total, we implicate 78 genes, and find these to be enriched for ageing pathways previously highlighted in model organisms, such as the response to DNA damage, apoptosis, and homeostasis.Finally, we identify a pathway worthy of further study: haem metabolism.",
+ "LongevityMap--human genetic variants associated with longevity Variation in human lifespan has been found to be 20-30% heritable, with increasing heritability at advanced ages (27).As next-generation sequencing and genome-wide approaches advance, so does the capacity for performing longevity association studies.To catalog the increasing volume of data in genetic studies of human longevity, we created LongevityMap (http://genomics.senescence.info/longevity/), a database of genes, gene variants and chromosomal locations associated with longevity (28).This differs from the GenAge database, which focuses mostly on data from model organisms and the few genes associated with human ageing (e.g.genes causing progeroid syndromes).",
+ "Genes/loci identified by genome-wide association studies of longevity and lifespan traits.",
+ "ANALYSIS OF HUMAN VARIATION IN THE GENETIC CONTROL OF LONGEVITY Heritability studies have convincingly demonstrated that at least some fraction of human lifespan is heritable.In tandem, large-scale genome-wide association studies (GWAS) have identified numerous loci associated with age-related traits (Buniello et al., 2019).While genetic studies have functionally shown an inverse effect of multiple age-related, diseaseassociated variants on lifespan regulation, the number of well-replicated longevity-conferring variants remains limited to variants in APOE (ApoE \u03b52), and more recently, CDKN2A/B and IL6 (see Table 1).To date, studies in humans have been hampered by the specific phenotype definitions used, sample sizes of the extreme phenotypes, and modest heritability of the longevity-related traits (Breitbach et al., 2019).This is due to the complex interplay of biological and social factors involved in human aging, as well as the limited power of GWAS, which require sampling thousands of subjects to achieve statistical significance (Breitbach et al., 2019).Genetic studies of aging have also been hindered by an inconsistent use of definitions of aging (reviewed in Baghdadi et al., 2020).The two main ways of conducting research on the genetics of longevity in human populations are by studying (i) the lifespan (continuous trait, years lived) and (ii) the longevity (dichotomous trait, i.e., being among the longest-lived individuals within a specific population).These complexities have limited the resolution and capability of broad association studies of human longevity.Importantly, these genomic analyses focus on a shift of survival in a population; these variables may be genetically distinct from the mechanisms establishing potential for longevity overall (Figure 1A).We argue that an understanding of this shift in lifespan as well as genetic mechanisms of regulating a species specific 'set points' (Figure 1B) will aid in the conceptual distinction of aging and longevity in humans.",
+ "Put more simply: What is the strength of evidence in favor of GXE effects on lifespan? We ask if youthful adult body weight (~120 days) predicts lifespan. Is the change in body weight in adults in response to a HFD a causal predictor of lifespan? Finally, we ask whether levels of classic serum metabolites or metabolic hormones measured in middle-age or old-age predict variation in lifespan? Our focus is both on overall effects and on strain-specific difference in effect of diet on lifespan and weight gain, rather than on specific genetic modifiers or loci of lifespan.",
+ "Studies in various models have revealed that genetic differences and somatic mutations underlie longevity, but non-genetic contributions also play a major role (Cournil and Kirkwood, 2001).Calorie restriction (Bordone and Guarente, 2005), lowering of basal metabolic rate (Ruggiero et al., 2008), upregulated stress response (Migliaccio et al., 1999), restoration of mi-tonuclear protein balance (Houtkooper et al., 2013), and reduced fertility (Westendorp and Kirkwood, 1998) have all been shown to correlate with lifespan extension.These observations illuminate the role of ''epi''-genetic mechanisms in modulating longevity pathways.",
+ "Introduction Approximately 25-30% of the variation in adult lifespan is attributable to genetic factors that become more important with increasing age and exert their strongest effects in nonagenarians and centenarians (Go \u00a8gele et al., 2010;Hjelmborg et al., 2006).As yet, however, only a few genetic variants have been found consistently to influence longevity.The first to be discovered was the e4 allele of the apolipoprotein E (APOE) gene, a mortality factor that predisposes to both Alzheimer's and cardiovascular diseases (Corder et al., 1993; Panza et al., 2004).APOE e4 is the only variant with a reportedly large adverse effect upon survival at advanced age (Scha \u00a8chter et al., 1994), and this association has been replicated in several populations (Christensen et al., 2006).Variation in the human forkhead box O3A gene (FOXO3A), in contrast, has been found to be associated with the ability to live long, an effect corroborated by studies in Japanese, German, Italian, US-American, Jewish, Chinese and Danish populations (Anselmi et al., 2009;Flachsbart et al., 2009;Li et al., 2009;Pawlikowska et al., 2009;Soerensen et al., 2010;Willcox et al., 2008).More recently, we have identified exonuclease 1 (EXO1) as a potential novel longevity gene (Nebel et al., 2009).All three genes were detected through candidate-gene approaches.",
+ "Studies of mono-and dizygous twins have revealed that the genetic contribution to the variation in human lifespan is about 25-30% [12,13], and is most prominent in families clustered for longevity [14,15].This genetic contribution is mainly apparent after the age of 60 years and seems to increase with age [13,16].Furthermore, human lifespan is a complex trait which is assumed to be determined by many genes with small individual effects [17], although the polygenic architecture still needs to be characterized [18,19].The diverse health features of long-lived families illustrate that different age-related diseases have common determinants and implicate that pathways can be identified that attenuate aging and delay age-related disease.From a genomic perspective, individuals from long-lived families are assumed to be characterized by a decreased prevalence of disease-promoting variants (referred to as disease-susceptibility alleles) and an increased prevalence of variants conferring maintenance of health and protection from disease, when compared to population controls.In the last 5 years, many diseasesusceptibility alleles have been identified (National Human Genome Research Institute (NHGRI) genome-wide association study (GWAS) Catalog; http://www.genome.gov/gwastudies/)[20].A first comparison between long-lived individuals, selected from both long-lived families (LLS) and the general population (Leiden 85-plus study), and young controls showed no difference in the distribution or frequency of disease-susceptibility alleles identified in cancer, coronary artery disease and type 2 diabetes [21].The search for lifespan regulating loci -contributing to longevity and population mortality -must therefore extend beyond a focus on disease-susceptibility alleles.We will first discuss the efforts to identify longevity loci by genetics approaches."
+ ],
+ [
+ "One surprising result of our experiment was the relatively weak support for involvement of the insulin/insulin-like signaling (IIS) or target-of-rapamycin (TOR) pathways in the evolution of late-life performance.Mutations in genes within these pathways can alter life span and fertility in flies and other organisms (Partridge and Gems 2002); natural genetic variation in expression of IIS/TOR-pathway genes has been reported to predict agingrelated phenotypes (Nuzhdin et al. 2009), and natural clinal variation in the insulin receptor gene InR has been associated with variation in stress resistance and fecundity (Paaby et al. 2010).We therefore expected that some of these genes would contribute to the evolution of life span and late-life fecundity in our experiment.Only one gene previously annotated with the Gene Ontology biological function \"determination of adult life span\" (Cct1) was among the genes bearing the strongest signature of selection, no more than would be expected by chance (1/96 of the candidate genes that had some biological process annotation, compared to 116/10,792 of all genes with some biological-process annotation, \u03c7 [1] 2 = 0.002, P > 0.96).Genes annotated with the functions \"aging\" or \"determination of adult life span\" were also significantly underrepresented among differentially expressed genes (43/215 transcripts with these annotations had P < 0.05 for line or line-by-age effects, compared to 4488/13,258 of all annotated transcripts, \u03c7 [1] 2 = 18.1, P < 0.0001).Most of the genes we identified are therefore novel candidates for the regulation of life span and late-age performance.",
+ "Rapamycin Rapamycin has been shown to robustly increase lifespan in at least three different mouse strains and to improve healthspan measures including cognitive function, cardiac function, immune function, obesity, and cancer incidence (Johnson et al. 2015;Kaeberlein 2014).",
+ "mTOR activates the kinase S6K, which phosphorylates S6, inhibiting autophagy [92].Rapamycin can extend the life span of organisms from yeast to mammals in a dose-dependent manner [95].However, some data suggest that rapamycin has unwanted metabolic effects, including insulin resistance, hyperlipidemia, glucose intolerance, and hypophosphatemia; however, whether rapamycin is responsible for these effects remains controversial, and some of the effects are reversible [96,97].The mTOR pathway integrates different signals from insulin, cytokines, nutrients, oxygen, and mitogenic stimuli, and its regulation has important implications for longevity and against the negative effects of aging [92].",
+ "The molecular mechanisms that drive cellular senescence in proliferative and nonproliferative cells are being discovered.One of the metabolic pathways associated with aging is the growth-promoting mitogen/nutrient-sensing pathway, in which the target of rapamycin (mTOR) is considered a central signaling molecule that affects multiple cellular pathways associated with aging [137].In particular, mTOR participates in the transition of cells from quiescence to senescence [138].",
+ "Inductors of Autophagy and its Impact on Aging Autophagy has a role in homeostasis, which plays an essential role in the maintenance of cellular physiology and the prevention of cellular damage.Among the inducers of autophagy have been described the already-mentioned rapamycin, resveratrol, and polyamines; however, only polyamines have demonstrated results in clinical research in humans [65].It is known that these compounds can induce the canonical autophagy pathway, which includes inactivation of the mammalian objective of the rapamycin complex 1 (mTORC1), allowing phosphorylation and activation of the Unc-51 complex (Ulk1/2), where the cascade of the other members of the complex is subsequently activated, ULK as FIP200 and ATG13 [65].",
+ "A third example illustrates that pharmacological targeting of pathways that have been implicated in promoting aging may also restore youthfulness at cellular and biochemical levels.Among the key regulators associated with interventions that extend life span is the enzyme mTOR, which senses cellular nutrient levels and in turn regulates rates of protein synthesis and energy utilization.Notably, administration of rapamycin, an mTOR inhibitor, starting at midlife can extend the life span of mice, suggesting that aging can be delayed or reversed in multiple cell types (Harrison et al., 2009).In the hematopoietic system, aging is associated with an increase in mTOR activation in stem cells and progenitors (Chen et al., 2009).Administration of rapamycin to old mice to inhibit mTOR not only limited the normal age-related increases in hematopoietic stem cells and biomarkers of aging in those cells, but also enhanced the performance of the stem cells to become as effective as young stem cells in heterochronic transplantation experiments (Chen et al., 2009) (Figure 1).",
+ "Rapamycin inhibits TOR signalling to alter nDNA translation, inducing mitonuclear protein imbalance35, and increases lifespan in various species, including mice33. Rapamycin also increased mean worm lifespan (by 16%)34 in a ubl-5-dependent manner, induced UPRmt, but not UPRER or heat shock response, and increased respiration (Fig. 6a, c and Supplementary Fig. 9a). This was associated with increased ATP levels, equal citrate synthase activity and altered nDNA/mtDNA oxidative phosphorylation protein ratio (Fig. 6d, e). Additionally, rapamycin changed the balance between nDNA- and mtDNA-encoded oxidative phosphorylation subunits in mouse hepatocytes in a dose dependent manner (Fig. 6f, g).",
+ "Zylbee, E., Vesco, C. & Penman, S. Selective inhibition of the synthesis of mitochondria-associated RNA by ethidium bromide. J. Mol. Biol. 44, 195\u2013204 (1969). 33. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392\u2013395 (2009). 34. Robida-Stubbs, S. et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 15, 713\u2013724 (2012). 35. Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149\u2013160 (2009). 36. Schulz, T. J. et al.",
+ "a, Rapamycin (Rapa, 1 nM) extends worm lifespan in a ubl-5-dependent manner; b, ubl-5-dependently induced UPRmt (hsp-6::GFP) but not UPRER (hsp-4::GFP) (n 5 4). c\u2013e, Rapamycin increased respiration (c, n 5 10) and ATP content but not citrate synthase activity (d, n 5 3) and induced mitonuclear protein imbalance (e). f\u2013h, In mouse hepatocytes, rapamycin induces mitonuclear protein imbalance (f, g) and induces UPRmt as shown at the protein (f, g, n 5 3), and transcriptional (h, n 5 8) level. i, Resveratrol (Resv, 25 mM) induced mitonuclear protein imbalance in mouse hepatocytes (n 5 4).",
+ "pivotal in this aspect providing molecular insights and having huge conceptual contributions in the field.Characterising the contribution of individual mutants in ageing is a continuously active and informative activity in the field.On top of these studies, genome-wide screens have provided insights on the role of evolutionarily conserved processes and signalling pathways in ageing such as nutrient response [17,18], protein translation, oxidative damage [19,20], mitochondrial function [21,22] and autophagy [22,23] opening new avenues for biogerontology research.Yeasts have proved informative and helped in understanding mechanisms of highly conserved pathways (from yeast to human) in physiology, health and disease such as the Target of Rapamycin (TOR) [24], glucose sensing (PKA) and stress response pathways (Sty1/p38) [25].",
+ "mTOR activates the kinase S6K, which phosphorylates S6, inhibiting autophagy [92].Rapamycin can extend the life span of organisms from yeast to mammals in a dose-dependent manner [95].However, some data suggest that rapamycin has unwanted metabolic effects, including insulin resistance, hyperlipidemia, glucose intolerance, and hypophosphatemia; however, whether rapamycin is responsible for these effects remains controversial, and some of the effects are reversible [96,97].The mTOR pathway integrates different signals from insulin, cytokines, nutrients, oxygen, and mitogenic stimuli, and its regulation has important implications for longevity and against the negative effects of aging [92].",
+ "The molecular mechanisms that drive cellular senescence in proliferative and nonproliferative cells are being discovered.One of the metabolic pathways associated with aging is the growth-promoting mitogen/nutrient-sensing pathway, in which the target of rapamycin (mTOR) is considered a central signaling molecule that affects multiple cellular pathways associated with aging [137].In particular, mTOR participates in the transition of cells from quiescence to senescence [138].",
+ "Inductors of Autophagy and its Impact on Aging Autophagy has a role in homeostasis, which plays an essential role in the maintenance of cellular physiology and the prevention of cellular damage.Among the inducers of autophagy have been described the already-mentioned rapamycin, resveratrol, and polyamines; however, only polyamines have demonstrated results in clinical research in humans [65].It is known that these compounds can induce the canonical autophagy pathway, which includes inactivation of the mammalian objective of the rapamycin complex 1 (mTORC1), allowing phosphorylation and activation of the Unc-51 complex (Ulk1/2), where the cascade of the other members of the complex is subsequently activated, ULK as FIP200 and ATG13 [65].",
+ "Background Genetic, dietary and drug interventions can enhance longevity and suppress age-associated disease, such as cancer.Prominent genetic interventions that robustly extend longevity and healthspan in mammals include those that decrease growth hormone (GH) and insulin-like growth factor (IGF) signalling; for example, Ames dwarf mice live more than 50% longer than their wild-type siblings [1].These diminutive mice result from a point mutation in a gene (Prop1 df/df ) that drives development of the pituitary gland, so that mutant mice are deficient in specific hormones.The GH deficiency, in particular, has been shown to underlie their enhanced health span and extended lifespan.Ames mice are highly insulinsensitive, resistant to some stresses and the incidence of cancer is delayed [2][3][4].Dietary and drug interventions that extend lifespan include calorie restriction (CR) and the mTOR inhibitor rapamycin [5].Like the Ames dwarf mutation, CR and rapamycin also suppress and/ or delay the incidence of cancer [5][6][7].A detailed understanding of how these interventions exert their beneficial effects is essential to develop strategies to promote healthy aging in humans [8].Currently, these interventions are thought to exert their effects by related and interconnected effects on some or all of the following: genome stability, the epigenome, telomere attrition and/or function, protein quality control, mitochondrial function, nutrient sensing, cellular senescence, stem cell exhaustion, cellular stress responses and altered intercellular communication [9].Of note, the effects of longevity promoting interventions on the epigenome, a key determinant of cell phenotype, are poorly understood.",
+ "The target of rapamycin (TOR) signaling pathway has also emerged as a major regulator of lifespan.TOR is a highly conserved kinase that transduces signals from nutrients to regulate cell size, cell growth, and metabolism (Martin & Hall, 2005).Genetic studies in yeast Saccharomyces cerevisiae have shown that reduced levels of nutrients, namely amino acids and sugars, can extend yeast lifespan through regulation of the TOR signaling pathway (Kaeberlein et al ., 2005;Powers et al ., 2006).In Drosophila , recent studies have shown that amino acid restriction, rather than 'calorie restriction', extends lifespan (Min & Tatar, 2006).In C. elegans , either inactivation of CeTOR/let-363 by RNAi, or mutations in Raptor/daf-15 , encoding a regulatory subunit of CeTOR, leads to lifespan extension (Vellai et al ., 2003;Jia et al ., 2004).",
+ "As mentioned above, a number of genes regulating longevity also control growth and development.Some of these, such as the insulin/IGF1/GH pathway, have been suggested to play a role in the mechanisms of CR (Fig. 1).An emerging critical player is the target of rapamycin (TOR) signaling pathway, which involves both nutrient sensing and regulation of growth.Several genes in the TOR pathway, and the TOR gene itself, regulate longevity in flies (Kapahi et al., 2004) and both longevity and dauer diapause in worms (Jia et al., 2004).Strikingly, not only have genetic manipulations of the TOR gene extended lifespan in yeast and worms (Stanfel et al., 2009) but also feeding rapamycin (which inhibits TOR and is also known as sirolimus) to middle-aged mice significantly (9 -14%) increased lifespan (Harrison et al., 2009).Whether rapamycin is extending lifespan by delaying of aging or by affecting a specific disease, such as cancer, remains unclear.More recent studies show that starting rapamycin administration earlier in life does AGING GENES AS TARGETS FOR DRUG DISCOVERY not result in a significantly greater increase in lifespan (10 -18%) than that obtained in middle-aged mice (Miller et al., 2011).",
+ "Replacement of the C/ebp\u03b1 gene with C/ebp\u03b2 increases lifespan by 20% [35,36], and may alter the rate of aging [37], indicating that altering the isoform expression of these genes can affect lifespan.Moreover, the life-extending drug rapamycin may affect isoform ratios of C/ebp\u03b2.Rapamycin has been shown to increase lifespan via the suppression of Mtor [38] which in turn controls the isoform ratios of C/ebp\u03b2 [39].Therefore, we speculate that rapamycin may in part exert its life extending effect through C/ebp\u03b2.",
+ "The genome-wide RNAi study conducted by the Ruvkun lab, authored by Hamilton et al. [88], identified a total of 89 additional aging genes with disparate functions including cell structure, cell surface proteins, cell signaling, cellular metabolism, and protein turnover.Of the 66 genes with previously known functions, 17 corresponded to various aspects of carbon metabolism, including citric acid cycle enzymes and subunits of complexes I, IV, and V of the ETC.Researchers also speculated that protein translation might play a role in lifespan regulation, based on the identification of iff-1 (T05G5.10),a gene that has homology to the translation initiation factor eIF5A.Other hits from this screen included two genes containing PH domains known to interact with phosphatidylinositol lipids, multiple G protein-coupled receptors, protein processing and degradation genes such as proteases and ubiquitin ligases/hydrolases, and chromatin modifying factors.",
+ "How cellular processes that regulate aging impact genome stability also remain unclear.Compelling evidence now exists that in all eukaryotes, aging is regulated by conserved insulin/insulin-like growth factor (I-(IFG-1)) pathways and growth-signaling pathways regulated by the target of rapamycin (TOR) family of kinases (4).In general, experimental manipulations that upregulate these pathways promote aging, and manipulations that downregulate these pathways-including mutational inactivation or caloric restriction-extend life span and mitigate age-related pathologies.Downregulation of these pathways often leads to a reduction in oxidative stress and oxidative damage to DNA and other cellular constituents.For the most part, however, the relationship between aging and changes in oxidative damage downstream of alterations in growth-signaling pathways remains correlative rather than causal.",
+ "The potential of interventional approaches targeted at aging has yet to be realized in part because aging is a complicated multisystem process that has remained enigmatic.However, research over the last two decades has led to significant excitement.One of the most striking findings is that it is possible to administer a clinically approved drug, rapamycin, to mice at 20 months of age and extend both their life span and health span (Harrison et al., 2009).Surprisingly, much of the recent success of aging research can be traced back to one of its simplest model organisms: yeast.Two of the major pathways studied in the context of aging and age-related disease are the sirtuin pathway and the TOR signaling pathway, and yeast was pivotal in their discovery."
+ ],
+ [
+ "We briefly comment on rare mutations that shorten life span through the early onset of diseases that are increasingly common during aging in the general population, e.g., familial forms of Alzheimer, breast cancer, coronary artery disease, type II diabetes, etc.The later onset forms of these diseases are associated with causes of death at later ages.A major question is what role the more common allelic variants of these same genes have in \"normal aging\".Although examination of this huge emerging topic goes beyond the present discussion, we may consider the example of Werner's syndrome, a rare autosomal recessive that causes adult onset progeria with a high incidence of cancer and atherosclerosis (70).The absence of Alzheimer-type dementia in Werner's syndrome illustrates the \"segmental\" nature of this and other progerias (70).Thus, heritable shortening of life span should not be considered as a simple acceleration of general aging processes.The Werner's lesion maps to a defective gene encoding a helicase and exonuclease, which also has several polymorphisms.In Japan, 1367Arg was associated with a lower risk of myocardial infarction (70), although it was not associated with longevity in Finland (14).In general, we know little of the genetic factors involved in frailty and morbidity at later ages, which are important to the geneenvironment interactions implied in the major longevity increase seen during the twentieth century.",
+ "Indicative diseases associated with the candidate aging genes",
+ "D ementia has an age-and sex-standardized prevalence of ~7.1% in Europeans 1 , with Alzheimer's disease (AD) being the most common form of dementia (50-70% of cases) 2 .AD is pathologically characterized by the presence of amyloid-beta plaques and tau neurofibrillary tangles in the brain 3 .Most patients are diagnosed with AD after the age of 65, termed late-onset AD (LOAD), while only 1% of AD cases have an early onset (before the age of 65) 3 .On the basis of twin studies, the heritability of LOAD is estimated to be ~60-80% (refs. 4,5 ), suggesting that a large proportion of individual differences in LOAD risk is driven by genetics.The heritability of LOAD is spread across many genetic variants; however, Zhang et al. 6 suggested that LOAD is more of an oligogenic than a polygenic disorder due to the large effects of APOE variants.Zhang et al. 6 and Holland et al. 7 predicted there to be ~100-10,000 causal variants contributing to LOAD; however, only a fraction have been identified.Increasing the sample size of genome-wide association studies (GWAS) will improve the statistical power to identify the missing causal variants and may highlight additional disease mechanisms.In combination with increasing the number of samples, it is beneficial to use different approaches to identify rare and private variation to help identify additional causal variants and increase understanding of disease mechanisms; however, we deem this to be out of the scope of the current analysis.",
+ "Dementia has an age-and sex-standardized prevalence of ~7.1% in Europeans 1 , with Alzheimer's disease (AD) being the most common form of dementia (50-70% of cases) 2 .AD is pathologically characterized by the presence of amyloid-beta plaques and tau neurofibrillary tangles in the brain 3 .Most patients are diagnosed with AD after the age of 65, termed late-onset AD (LOAD), while only 1% of AD cases have an early onset (before the age of 65) 3 .On the basis of twin studies, the heritability of LOAD is estimated to be ~60-80% (refs. 4,5 ), suggesting that a large proportion of individual differences in LOAD risk is driven by genetics.The heritability of LOAD is spread across many genetic variants; however, Zhang et al. 6 suggested that LOAD is more of an oligogenic than a polygenic disorder due to the large effects of APOE variants.Zhang et al. 6 and Holland et al. 7 predicted there to be ~100-10,000 causal variants contributing to LOAD; however, only a fraction have been identified.Increasing the sample size of genome-wide association studies (GWAS) will improve the statistical power to identify the missing causal variants and may highlight additional disease mechanisms.In combination with increasing the number of samples, it is beneficial to use different approaches to identify rare and private variation to help identify additional causal variants and increase understanding of disease mechanisms; however, we deem this to be out of the scope of the current analysis.The largest previous GWAS of LOAD, identified 29 risk loci from 71,880 (46,613 proxy) cases and 383,378 (318,246 proxy) controls 8 .Our current study expands this to include 90,338 (46,613 proxy) cases and 1,036,225 (318,246 proxy) controls.The recruitment of LOAD cases can be difficult due to the late age of onset, so proxy cases can allow for the inclusion of younger individuals by estimating their risk of LOAD using parental status.Proxy cases and controls were defined on the basis of known parental LOAD status weighted by parental age (Supplementary Information).In the current study, we identified 38 loci, including seven loci that have not been reported previously.Functional follow-up analyses implicated tissues, cell types and genes of interest through tissue and cell type enrichment, colocalization and statistical fine-mapping.This study highlights microglia, immune cells and protein catabolism as relevant to LOAD, while identifying previously unidentified genes of potential interest. ResultsGenome-wide inferences.We performed meta-analysis on data from 13 cohorts, totaling 1,126,563 individuals (Supplementary",
+ "Introduction Alzheimer's disease (AD) is a complex disorder and is the most common form of dementia [1].After age, family history is the single greatest risk factor for AD.AD can be classified into early and late onset forms.Mutations in three genes: PSEN1/2 and APP are known to cause early onset AD in an autosomal dominant manner [2,3].The majority of AD cases, however, are late onset (LOAD) and the APOE e4 allele is the strongest known genetic risk factor.Many additional genetic polymorphisms have been identified, though with substantially lower risk estimates [1,4,5,6,7,8,9,10].LOAD appears to be inherited and/or sporadic and there is evidence of a maternal inheritance pattern [11].Current estimates suggest that more than 20% of inherited LOAD cases are maternally inherited [12].",
+ "INTRODUCTION Many common noninfectious diseases exhibit a more severe clinical presentation in older individuals.These diseases often exhibit complex etiology and can affect different tissues and cell types, with a wide spectrum of clinical outcomes.Prominent aging-associated neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), and age-related macular degeneration (AMD), all of which can severely compromise the quality of life and have serious repercussions on both the individual and society at large.These late-onset diseases generally result from the interplay between multiple genetic susceptibility factors and environmental components.Sequencing of the human genome, cataloging of millions of single nucleotide polymorphisms (SNPs) together with the development of a map of common haplotypes, and technological innovations in genotyping are among the major milestones that are facilitating exploration of the genetic basis of common diseases (1,7,50).In the field of AMD genetics, these advances have led to the identification of several genetic susceptibility factors and enabled us to start dissecting the relationship between environmental risk factors and the genetic constitution of each individual (66,118,148).As a result, new opportunities are emerging for improved understanding of disease pathogenesis that may lead to better management and treatment of AMD.Clinical aspects of AMD are discussed only briefly (for a more in-depth discussion, see Reference 79).",
+ "Aging-associated neurodegenerative diseases significantly influence the quality of life of affected individuals.Genetic approaches, combined with genomic technology, have provided powerful insights into common late-onset diseases, such as age-related macular degeneration (AMD).Here, we discuss current findings on the genetics of AMD to highlight areas of rapid progress and new challenges.We also attempt to integrate available genetic and biochemical data with cellular pathways involved in aging to formulate an integrated model of AMD pathogenesis.",
+ "Aging-associated neurodegenerative diseases significantly influence the quality of life of affected individuals.Genetic approaches, combined with genomic technology, have provided powerful insights into common late-onset diseases, such as age-related macular degeneration (AMD).Here, we discuss current findings on the genetics of AMD to highlight areas of rapid progress and new challenges.We also attempt to integrate available genetic and biochemical data with cellular pathways involved in aging to formulate an integrated model of AMD pathogenesis.",
+ "Genetics of Alzheimer Disease: Early-Onset AD In the early to mid-1990s, genetic studies of AD focused on extended families with high burden of disease (two or more cases among first-degree relatives), and used linkage analysis of highly polymorphic genetic markers called short tandem repeats (STRs, or microsattelites) in order to identify genomic regions co-transmitting with disease in affected family members.This strategy, followed by \"fine mapping\"-the positional cloning of candidate genes-was used to identify genes and genetic variants contributing to AD risk.The first three genes known to cause AD were identified among families with multiple early-onset cases (age-at-onset <60 years): APP, encoding amyloid precursor protein [Goate et al., 1991], and PS1 and PS2, encoding presenilins I and II respectively [Levy-Lahad et al., 1995;Rogaev et al., 1995;Sherrington et al., 1995], each transmitting disease-causing variants in the predicted autosomal-dominant fashion.",
+ "Alzheimer's disease (AD) (MIM: 104300) is a highly heritable disease with great complexity in its genetic contributors, and represents the most common form of dementia.With the gradual aging of the world's population, leading to increased prevalence of AD, and the substantial cost of care for those afflicted, identifying the genetic causes of disease represents a critical effort in identifying therapeutic targets.Here we provide a comprehensive review of genomic studies of AD, from the earliest linkage studies identifying monogenic contributors to early-onset forms of AD to the genome-wide and rare variant association studies of recent years that are being used to characterize the mosaic of genetic contributors to late-onset AD (LOAD), and which have identified approximately $20 genes with common variants contributing to LOAD risk.In addition, we explore studies employing alternative approaches to identify genetic contributors to AD, including studies of AD-related phenotypes and multi-variant association studies such as pathway analyses.Finally, we introduce studies of next-generation sequencing, which have recently helped identify multiple lowfrequency and rare variant contributors to AD, and discuss ongoing efforts with next-generation sequencing studies to develop statistically well-powered and comprehensive genomic studies of AD.Through this review, we help uncover the many insights the genetics of AD have provided into the pathways and pathophysiology of AD.",
+ "Alzheimer's disease (AD) (MIM: 104300) is a highly heritable disease with great complexity in its genetic contributors, and represents the most common form of dementia.With the gradual aging of the world's population, leading to increased prevalence of AD, and the substantial cost of care for those afflicted, identifying the genetic causes of disease represents a critical effort in identifying therapeutic targets.Here we provide a comprehensive review of genomic studies of AD, from the earliest linkage studies identifying monogenic contributors to early-onset forms of AD to the genome-wide and rare variant association studies of recent years that are being used to characterize the mosaic of genetic contributors to late-onset AD (LOAD), and which have identified approximately $20 genes with common variants contributing to LOAD risk.In addition, we explore studies employing alternative approaches to identify genetic contributors to AD, including studies of AD-related phenotypes and multi-variant association studies such as pathway analyses.Finally, we introduce studies of next-generation sequencing, which have recently helped identify multiple lowfrequency and rare variant contributors to AD, and discuss ongoing efforts with next-generation sequencing studies to develop statistically well-powered and comprehensive genomic studies of AD.Through this review, we help uncover the many insights the genetics of AD have provided into the pathways and pathophysiology of AD.",
+ "Indeed, as age increases, there is an exponential increase in the incidence of AD, with a corresponding effect on healthcare costs and quality of life. AD is a complex disease involving several genetic and environmental components (Hardy, 1997; Munoz & Feldman, 2000), and 15% of patients have a genetic predisposition. Almost 100 candidate genes are currently known to be involved in the development of AD, and only 4 (APP, PSEN1, PSEN2, APOE) in humans have been proven to play a direct role in AD pathogenesis (Thomas & Fenech, 2007).",
+ "T he genetics of Alzheimer disease (AD) to date support an age-dependent dichotomous model whereby earlier age of disease onset (\u03fd60 years) is explained by 3 fully penetrant genes (APP [NCBI Entrez gene 351], PSEN1 [NCBI Entrez gene 5663], and PSEN2 [NCBI Entrez gene 5664]), whereas later age of disease onset (\u054665 years) representing most cases of AD has yet to be explained by a purely genetic model.The APOE gene (NCBI Entrez gene 348) is the strongest genetic risk factor for later onset, although it is neither sufficient nor necessary to explain all occurrences of disease.Numerous putative genetic risk alleles and genetic variants have been reported.Although all have relevance to biological mechanisms that may be associated with AD pathogenesis, they await replication in large representative populations.Genome-wide association studies have emerged as an increasingly effective tool for identifying genetic contributions to complex diseases and represent the next frontier for furthering our understanding of the underlying etiologic, biological, and pathologic mechanisms associated with chronic complex disorders.There have already been success stories for diseases such as macular degeneration and diabetes mellitus.Whether this will hold true for a genetically complex and heterogeneous disease such as AD is not known, although early reports are encouraging.This review considers recent publications from studies that have successfully applied genome-wide association methods to investigations of AD by taking advantage of the currently available high-throughput arrays, bioinformatics, and software advances.The inherent strengths, limitations, and challenges associated with study design issues in the context of AD are presented herein.",
+ "Arch Neurol.2008;65(3): 329-334 Alzheimer disease (AD) is the most common cause of dementia and the most prevalent neurodegenerative disorder associated with aging. 1 Alzheimer disease is a heterogeneous disorder with a complex etiology owing to genetic and environmental influences as causal or risk modifiers.The neuropathologic hallmarks of disease are extracellular amyloid plaques and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. 2 Only 10% of AD cases occurring before 60 years of age (early-onset AD) are due to rare, fully penetrant (autosomal dominant) mutations in 3 genes: A\u2424 precursor protein (APP) on chromosome 21, 3 presenilin 1 (PSEN1) on chromosome 14, 4 and presenilin 2 (PSEN2) on chromosome 1. 5,6In contrast, most cases of AD are later in onset (\u0546 65 years of age) (late-onset AD), are nonfamilial, and are likely the result of highly prevalent genetic variants with low penetrance. 7To date, the only genetic risk factor for lateonset AD remains the apolipoprotein E gene (APOE), specifically the \u03b54 allele, which is moderately penetrant, accounting for up to 50% of cases. 8owever, a robust literature reports numerous putative genetic risk alleles and promising genetic variants.Recent reports from individual studies reveal significant associations with the sortilin-related receptor (SORL1 [NCBI Entrez gene 6653]) 9,10 and glycine-rich protein 2-associated binding protein 2 (GAB2 [NCBI Entrez gene 9846]) 11 on chromosome 11; death-associated protein kinase 1 (DAPK1 [NCBI Entrez gene 1612]), 12 ubiquilin 1 (UBQLN1 [NCBI Entrez gene 299798]), 13 and adenosine triphosphate-binding cassette transporter 1, subfamily A (ABCA1 [NCBI Entrez gene 19]), on chromosome 9 14 ; and low-density lipoprotein receptor-related protein 6 (LRP6 [NCBI Entrez gene 4040]) on chromosome 12. 15 All of these putative variants still lack replication in large representative populations but have relevance to neuropathologic mechanisms and pathways that may be associated with AD pathogenesis ( A large meta-analysis from the AlzGene database 16 17 All are associated with relevant biological mechanisms and pathways but await replication to further elucidate their utility as significant markers for AD.",
+ "Background Alzheimer's disease (AD) is the most common neurodegenerative disorder and the leading cause of dementia in the elderly [1].Diagnosis of AD is based on the presence of neurofibrillary tangles and amyloid plaques [2], and symptoms typically include memory loss and impaired cognitive ability.Although the pathological hallmarks associated with dementia-related symptoms in AD appear largely similar between both the early-onset and late-onset forms of the disease, their underlying etiologies contrast [3].Whereas early-onset AD is a familial autosomal dominant disorder caused by rare, highly penetrant mutations in one of a small set of genes (APP, PSEN1, and PSEN2), the more common late-onset form of the disease (accounting for 90-95 % of cases) occurs sporadically, and risk is determined by complex underlying mechanisms [3][4][5][6].Estimates based on twin concordance rates suggest heritability of late-onset AD is as high as 70 %, implicating major roles for genetic as well as non-genetic factors [6].Indeed, through candidate gene studies, as well as more recent genome-wide association studies (GWASs) and whole-exome sequencing, both common and rare variants associated with the late-onset form of AD have been identified [7][8][9][10][11].Collectively, however, common GWAS variants account for only a modest proportion (~30 %) of the underlying variance in disease susceptibility [12].Several environmental factors are also thought to play a role [5,6], yet exactly how these contribute to risk, onset, and progression remains poorly defined.",
+ "Alzheimer's disease is the most common type of dementia, and it is characterized by a decline in memory or other thinking skills.The greatest risk factor for Alzheimer's disease is advanced age.A recent genome-wide study identified a locus on chromosome 17 associated with the age at onset, and a specific variant in CCL11 is probably responsible for the association.The association of a protective haplotype with a 10-year delay in the onset of Alzheimer's disease and the identification of a CCL11 variant with possible functional roles in this association might allow the future development of immunomodulators with the potential to halve disease incidence.",
+ "Alzheimer's disease is the most common type of dementia, and it is characterized by a decline in memory or other thinking skills.The greatest risk factor for Alzheimer's disease is advanced age.A recent genome-wide study identified a locus on chromosome 17 associated with the age at onset, and a specific variant in CCL11 is probably responsible for the association.The association of a protective haplotype with a 10-year delay in the onset of Alzheimer's disease and the identification of a CCL11 variant with possible functional roles in this association might allow the future development of immunomodulators with the potential to halve disease incidence.",
+ "INTRODUCTION Alzheimer's disease (AD) is a common debilitating disorder with a prevalence that rises steeply with age from below 1% at 65 years to as high as 40% after the age of 90 [Bachman et al., 1992].Genes are known to play a role in the development of AD.Twin studies show heritabilities of around 60% [Bergem et al., 1997;Gatz et al., 1997].Indeed, variation in four genes has already been shown to cause rare forms of early-onset AD [the Amyloid Precursor Protein Gene (APP); Goate et al., 1991; Presenilin 1 (PS1); Sherrington et al., 1995; Presenilin 2 (PS2); Levy Lahad et al., 1995, Rogaev et al., 1995] or increase the general risk of disease development [Apolipoprotein E (APOE), Corder et al., 1993].As well as increasing disease susceptibility, APOE e4 alleles are associated with reduced age at onset (AAO) and appear to show their strongest effect below 70 years [Farrer et al., 1997].There is also evidence from both twin [Pedersen et al., 2001] and family studies [Tunstall et al., 2000;Li et al., 2002] that AAO in AD is heritable.Daw et al. [2000] have estimated that in addition to APOE, there are at least four loci with similar effect sizes, which contribute to AAO in AD.",
+ "Introduction Alzheimer's disease (AD), a devastating neurodegenerative disease, is the most common form of dementia among the elderly.Genetically, AD is a complex and multifactorial disease with the possible involvement of multiple genes.The rare early-onset form of the disease usually follows an autosomal-dominant inheritance pattern and to date three genes have been identified: amyloid precursor protein (APP) and presenilin 1 and 2 (PSEN1 and PSEN2).The common late-onset form of the disease is much more complex than the early-onset form and until recently the apolipoprotein E (APOE) gene was the only major genetic factor accounting for 20-29% of the risk for late-onset AD. 1,2 Recent large genome-wide association studies (GWAS) have identi-fied nine additional genes for late-onset AD, including CR1, BIN1, CLU (a.k.a.4][5][6][7] There is high heritability for AD risk (up to 80%), 8 but the total risk attributable to all confirmed loci is about 50%, indicating the presence of additional risk genes for late-onset AD.",
+ "NE OF EVERY 5 PERSONS AGED 65 years is predicted to develop Alzheimer disease (AD) in their lifetime, and genetic variants may play an important part in the development of the disease. 1 The apparent substantial heritability of late-onset AD 2 is inadequately explained by genetic variation within the well-replicated genes (apolipoprotein E [APOE; RefSeq NG_007084], presenilin-1 [PSEN1; RefSeq NG_007386], presenilin-2 [PSEN2; RefSeq NG_007381], and amyloid beta precursor protein [APP;"
+ ]
+ ]
+}