aboutsummaryrefslogtreecommitdiff
path: root/R2R/r2r/base/logging/log_processor.py
diff options
context:
space:
mode:
Diffstat (limited to 'R2R/r2r/base/logging/log_processor.py')
-rwxr-xr-xR2R/r2r/base/logging/log_processor.py196
1 files changed, 196 insertions, 0 deletions
diff --git a/R2R/r2r/base/logging/log_processor.py b/R2R/r2r/base/logging/log_processor.py
new file mode 100755
index 00000000..e85d8de2
--- /dev/null
+++ b/R2R/r2r/base/logging/log_processor.py
@@ -0,0 +1,196 @@
+import contextlib
+import json
+import logging
+import statistics
+from collections import defaultdict
+from typing import Any, Callable, Dict, List, Optional, Sequence
+
+from pydantic import BaseModel
+
+logger = logging.getLogger(__name__)
+
+
+class FilterCriteria(BaseModel):
+ filters: Optional[dict[str, str]] = None
+
+
+class LogProcessor:
+ timestamp_format = "%Y-%m-%d %H:%M:%S"
+
+ def __init__(self, filters: Dict[str, Callable[[Dict[str, Any]], bool]]):
+ self.filters = filters
+ self.populations = {name: [] for name in filters}
+
+ def process_log(self, log: Dict[str, Any]):
+ for name, filter_func in self.filters.items():
+ if filter_func(log):
+ self.populations[name].append(log)
+
+
+class StatisticsCalculator:
+ @staticmethod
+ def calculate_statistics(
+ population: List[Dict[str, Any]],
+ stat_functions: Dict[str, Callable[[List[Dict[str, Any]]], Any]],
+ ) -> Dict[str, Any]:
+ return {
+ name: func(population) for name, func in stat_functions.items()
+ }
+
+
+class DistributionGenerator:
+ @staticmethod
+ def generate_distributions(
+ population: List[Dict[str, Any]],
+ dist_functions: Dict[str, Callable[[List[Dict[str, Any]]], Any]],
+ ) -> Dict[str, Any]:
+ return {
+ name: func(population) for name, func in dist_functions.items()
+ }
+
+
+class VisualizationPreparer:
+ @staticmethod
+ def prepare_visualization_data(
+ data: Dict[str, Any],
+ vis_functions: Dict[str, Callable[[Dict[str, Any]], Any]],
+ ) -> Dict[str, Any]:
+ return {name: func(data) for name, func in vis_functions.items()}
+
+
+class LogAnalyticsConfig:
+ def __init__(self, filters, stat_functions, dist_functions, vis_functions):
+ self.filters = filters
+ self.stat_functions = stat_functions
+ self.dist_functions = dist_functions
+ self.vis_functions = vis_functions
+
+
+class AnalysisTypes(BaseModel):
+ analysis_types: Optional[dict[str, Sequence[str]]] = None
+
+ @staticmethod
+ def generate_bar_chart_data(logs, key):
+ chart_data = {"labels": [], "datasets": []}
+ value_counts = defaultdict(int)
+
+ for log in logs:
+ if "entries" in log:
+ for entry in log["entries"]:
+ if entry["key"] == key:
+ value_counts[entry["value"]] += 1
+ elif "key" in log and log["key"] == key:
+ value_counts[log["value"]] += 1
+
+ for value, count in value_counts.items():
+ chart_data["labels"].append(value)
+ chart_data["datasets"].append({"label": key, "data": [count]})
+
+ return chart_data
+
+ @staticmethod
+ def calculate_basic_statistics(logs, key):
+ values = []
+ for log in logs:
+ if log["key"] == "search_results":
+ results = json.loads(log["value"])
+ scores = [
+ float(json.loads(result)["score"]) for result in results
+ ]
+ values.extend(scores)
+ else:
+ value = log.get("value")
+ if value is not None:
+ with contextlib.suppress(ValueError):
+ values.append(float(value))
+
+ if not values:
+ return {
+ "Mean": None,
+ "Median": None,
+ "Mode": None,
+ "Standard Deviation": None,
+ "Variance": None,
+ }
+
+ if len(values) == 1:
+ single_value = round(values[0], 3)
+ return {
+ "Mean": single_value,
+ "Median": single_value,
+ "Mode": single_value,
+ "Standard Deviation": 0,
+ "Variance": 0,
+ }
+
+ mean = round(sum(values) / len(values), 3)
+ median = round(statistics.median(values), 3)
+ mode = (
+ round(statistics.mode(values), 3)
+ if len(set(values)) != len(values)
+ else None
+ )
+ std_dev = round(statistics.stdev(values) if len(values) > 1 else 0, 3)
+ variance = round(
+ statistics.variance(values) if len(values) > 1 else 0, 3
+ )
+
+ return {
+ "Mean": mean,
+ "Median": median,
+ "Mode": mode,
+ "Standard Deviation": std_dev,
+ "Variance": variance,
+ }
+
+ @staticmethod
+ def calculate_percentile(logs, key, percentile):
+ values = []
+ for log in logs:
+ if log["key"] == key:
+ value = log.get("value")
+ if value is not None:
+ with contextlib.suppress(ValueError):
+ values.append(float(value))
+
+ if not values:
+ return {"percentile": percentile, "value": None}
+
+ values.sort()
+ index = int((percentile / 100) * (len(values) - 1))
+ return {"percentile": percentile, "value": round(values[index], 3)}
+
+
+class LogAnalytics:
+ def __init__(self, logs: List[Dict[str, Any]], config: LogAnalyticsConfig):
+ self.logs = logs
+ self.log_processor = LogProcessor(config.filters)
+ self.statistics_calculator = StatisticsCalculator()
+ self.distribution_generator = DistributionGenerator()
+ self.visualization_preparer = VisualizationPreparer()
+ self.config = config
+
+ def count_logs(self) -> Dict[str, Any]:
+ """Count the logs for each filter."""
+ return {
+ name: len(population)
+ for name, population in self.log_processor.populations.items()
+ }
+
+ def process_logs(self) -> Dict[str, Any]:
+ for log in self.logs:
+ self.log_processor.process_log(log)
+
+ analytics = {}
+ for name, population in self.log_processor.populations.items():
+ stats = self.statistics_calculator.calculate_statistics(
+ population, self.config.stat_functions
+ )
+ dists = self.distribution_generator.generate_distributions(
+ population, self.config.dist_functions
+ )
+ analytics[name] = {"statistics": stats, "distributions": dists}
+
+ return self.visualization_preparer.prepare_visualization_data(
+ analytics, self.config.vis_functions
+ )