aboutsummaryrefslogtreecommitdiff
path: root/R2R/r2r/base/abstractions/search.py
diff options
context:
space:
mode:
Diffstat (limited to 'R2R/r2r/base/abstractions/search.py')
-rwxr-xr-xR2R/r2r/base/abstractions/search.py84
1 files changed, 84 insertions, 0 deletions
diff --git a/R2R/r2r/base/abstractions/search.py b/R2R/r2r/base/abstractions/search.py
new file mode 100755
index 00000000..b13cc5aa
--- /dev/null
+++ b/R2R/r2r/base/abstractions/search.py
@@ -0,0 +1,84 @@
+"""Abstractions for search functionality."""
+
+import uuid
+from typing import Any, Dict, List, Optional, Tuple
+
+from pydantic import BaseModel, Field
+
+from .llm import GenerationConfig
+
+
+class VectorSearchRequest(BaseModel):
+ """Request for a search operation."""
+
+ query: str
+ limit: int
+ filters: Optional[dict[str, Any]] = None
+
+
+class VectorSearchResult(BaseModel):
+ """Result of a search operation."""
+
+ id: uuid.UUID
+ score: float
+ metadata: dict[str, Any]
+
+ def __str__(self) -> str:
+ return f"VectorSearchResult(id={self.id}, score={self.score}, metadata={self.metadata})"
+
+ def __repr__(self) -> str:
+ return f"VectorSearchResult(id={self.id}, score={self.score}, metadata={self.metadata})"
+
+ def dict(self) -> dict:
+ return {
+ "id": self.id,
+ "score": self.score,
+ "metadata": self.metadata,
+ }
+
+
+class KGSearchRequest(BaseModel):
+ """Request for a knowledge graph search operation."""
+
+ query: str
+
+
+# [query, ...]
+KGSearchResult = List[Tuple[str, List[Dict[str, Any]]]]
+
+
+class AggregateSearchResult(BaseModel):
+ """Result of an aggregate search operation."""
+
+ vector_search_results: Optional[List[VectorSearchResult]]
+ kg_search_results: Optional[KGSearchResult] = None
+
+ def __str__(self) -> str:
+ return f"AggregateSearchResult(vector_search_results={self.vector_search_results}, kg_search_results={self.kg_search_results})"
+
+ def __repr__(self) -> str:
+ return f"AggregateSearchResult(vector_search_results={self.vector_search_results}, kg_search_results={self.kg_search_results})"
+
+ def dict(self) -> dict:
+ return {
+ "vector_search_results": (
+ [result.dict() for result in self.vector_search_results]
+ if self.vector_search_results
+ else []
+ ),
+ "kg_search_results": self.kg_search_results or [],
+ }
+
+
+class VectorSearchSettings(BaseModel):
+ use_vector_search: bool = True
+ search_filters: dict[str, Any] = Field(default_factory=dict)
+ search_limit: int = 10
+ do_hybrid_search: bool = False
+
+
+class KGSearchSettings(BaseModel):
+ use_kg_search: bool = False
+ agent_generation_config: Optional[GenerationConfig] = Field(
+ default_factory=GenerationConfig
+ )