about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/wrapt/wrappers.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/wrapt/wrappers.py')
-rw-r--r--.venv/lib/python3.12/site-packages/wrapt/wrappers.py821
1 files changed, 821 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/wrapt/wrappers.py b/.venv/lib/python3.12/site-packages/wrapt/wrappers.py
new file mode 100644
index 00000000..62da8a30
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/wrapt/wrappers.py
@@ -0,0 +1,821 @@
+import sys
+import operator
+import inspect
+
+PY2 = sys.version_info[0] == 2
+
+if PY2:
+    string_types = basestring,
+else:
+    string_types = str,
+
+def with_metaclass(meta, *bases):
+    """Create a base class with a metaclass."""
+    return meta("NewBase", bases, {})
+
+class _ObjectProxyMethods(object):
+
+    # We use properties to override the values of __module__ and
+    # __doc__. If we add these in ObjectProxy, the derived class
+    # __dict__ will still be setup to have string variants of these
+    # attributes and the rules of descriptors means that they appear to
+    # take precedence over the properties in the base class. To avoid
+    # that, we copy the properties into the derived class type itself
+    # via a meta class. In that way the properties will always take
+    # precedence.
+
+    @property
+    def __module__(self):
+        return self.__wrapped__.__module__
+
+    @__module__.setter
+    def __module__(self, value):
+        self.__wrapped__.__module__ = value
+
+    @property
+    def __doc__(self):
+        return self.__wrapped__.__doc__
+
+    @__doc__.setter
+    def __doc__(self, value):
+        self.__wrapped__.__doc__ = value
+
+    # We similar use a property for __dict__. We need __dict__ to be
+    # explicit to ensure that vars() works as expected.
+
+    @property
+    def __dict__(self):
+        return self.__wrapped__.__dict__
+
+    # Need to also propagate the special __weakref__ attribute for case
+    # where decorating classes which will define this. If do not define
+    # it and use a function like inspect.getmembers() on a decorator
+    # class it will fail. This can't be in the derived classes.
+
+    @property
+    def __weakref__(self):
+        return self.__wrapped__.__weakref__
+
+class _ObjectProxyMetaType(type):
+    def __new__(cls, name, bases, dictionary):
+        # Copy our special properties into the class so that they
+        # always take precedence over attributes of the same name added
+        # during construction of a derived class. This is to save
+        # duplicating the implementation for them in all derived classes.
+
+        dictionary.update(vars(_ObjectProxyMethods))
+
+        return type.__new__(cls, name, bases, dictionary)
+
+class ObjectProxy(with_metaclass(_ObjectProxyMetaType)):
+
+    __slots__ = '__wrapped__'
+
+    def __init__(self, wrapped):
+        object.__setattr__(self, '__wrapped__', wrapped)
+
+        # Python 3.2+ has the __qualname__ attribute, but it does not
+        # allow it to be overridden using a property and it must instead
+        # be an actual string object instead.
+
+        try:
+            object.__setattr__(self, '__qualname__', wrapped.__qualname__)
+        except AttributeError:
+            pass
+
+        # Python 3.10 onwards also does not allow itself to be overridden
+        # using a property and it must instead be set explicitly.
+
+        try:
+            object.__setattr__(self, '__annotations__', wrapped.__annotations__)
+        except AttributeError:
+            pass
+
+    def __self_setattr__(self, name, value):
+        object.__setattr__(self, name, value)
+
+    @property
+    def __name__(self):
+        return self.__wrapped__.__name__
+
+    @__name__.setter
+    def __name__(self, value):
+        self.__wrapped__.__name__ = value
+
+    @property
+    def __class__(self):
+        return self.__wrapped__.__class__
+
+    @__class__.setter
+    def __class__(self, value):
+        self.__wrapped__.__class__ = value
+
+    def __dir__(self):
+        return dir(self.__wrapped__)
+
+    def __str__(self):
+        return str(self.__wrapped__)
+
+    if not PY2:
+        def __bytes__(self):
+            return bytes(self.__wrapped__)
+
+    def __repr__(self):
+        return '<{} at 0x{:x} for {} at 0x{:x}>'.format(
+                type(self).__name__, id(self),
+                type(self.__wrapped__).__name__,
+                id(self.__wrapped__))
+
+    def __format__(self, format_spec):
+        return format(self.__wrapped__, format_spec)
+
+    def __reversed__(self):
+        return reversed(self.__wrapped__)
+
+    if not PY2:
+        def __round__(self, ndigits=None):
+            return round(self.__wrapped__, ndigits)
+
+    if sys.hexversion >= 0x03070000:
+        def __mro_entries__(self, bases):
+            return (self.__wrapped__,)
+
+    def __lt__(self, other):
+        return self.__wrapped__ < other
+
+    def __le__(self, other):
+        return self.__wrapped__ <= other
+
+    def __eq__(self, other):
+        return self.__wrapped__ == other
+
+    def __ne__(self, other):
+        return self.__wrapped__ != other
+
+    def __gt__(self, other):
+        return self.__wrapped__ > other
+
+    def __ge__(self, other):
+        return self.__wrapped__ >= other
+
+    def __hash__(self):
+        return hash(self.__wrapped__)
+
+    def __nonzero__(self):
+        return bool(self.__wrapped__)
+
+    def __bool__(self):
+        return bool(self.__wrapped__)
+
+    def __setattr__(self, name, value):
+        if name.startswith('_self_'):
+            object.__setattr__(self, name, value)
+
+        elif name == '__wrapped__':
+            object.__setattr__(self, name, value)
+            try:
+                object.__delattr__(self, '__qualname__')
+            except AttributeError:
+                pass
+            try:
+                object.__setattr__(self, '__qualname__', value.__qualname__)
+            except AttributeError:
+                pass
+            try:
+                object.__delattr__(self, '__annotations__')
+            except AttributeError:
+                pass
+            try:
+                object.__setattr__(self, '__annotations__', value.__annotations__)
+            except AttributeError:
+                pass
+
+        elif name == '__qualname__':
+            setattr(self.__wrapped__, name, value)
+            object.__setattr__(self, name, value)
+
+        elif name == '__annotations__':
+            setattr(self.__wrapped__, name, value)
+            object.__setattr__(self, name, value)
+
+        elif hasattr(type(self), name):
+            object.__setattr__(self, name, value)
+
+        else:
+            setattr(self.__wrapped__, name, value)
+
+    def __getattr__(self, name):
+        # If we are being to lookup '__wrapped__' then the
+        # '__init__()' method cannot have been called.
+
+        if name == '__wrapped__':
+            raise ValueError('wrapper has not been initialised')
+
+        return getattr(self.__wrapped__, name)
+
+    def __delattr__(self, name):
+        if name.startswith('_self_'):
+            object.__delattr__(self, name)
+
+        elif name == '__wrapped__':
+            raise TypeError('__wrapped__ must be an object')
+
+        elif name == '__qualname__':
+            object.__delattr__(self, name)
+            delattr(self.__wrapped__, name)
+
+        elif hasattr(type(self), name):
+            object.__delattr__(self, name)
+
+        else:
+            delattr(self.__wrapped__, name)
+
+    def __add__(self, other):
+        return self.__wrapped__ + other
+
+    def __sub__(self, other):
+        return self.__wrapped__ - other
+
+    def __mul__(self, other):
+        return self.__wrapped__ * other
+
+    def __div__(self, other):
+        return operator.div(self.__wrapped__, other)
+
+    def __truediv__(self, other):
+        return operator.truediv(self.__wrapped__, other)
+
+    def __floordiv__(self, other):
+        return self.__wrapped__ // other
+
+    def __mod__(self, other):
+        return self.__wrapped__ % other
+
+    def __divmod__(self, other):
+        return divmod(self.__wrapped__, other)
+
+    def __pow__(self, other, *args):
+        return pow(self.__wrapped__, other, *args)
+
+    def __lshift__(self, other):
+        return self.__wrapped__ << other
+
+    def __rshift__(self, other):
+        return self.__wrapped__ >> other
+
+    def __and__(self, other):
+        return self.__wrapped__ & other
+
+    def __xor__(self, other):
+        return self.__wrapped__ ^ other
+
+    def __or__(self, other):
+        return self.__wrapped__ | other
+
+    def __radd__(self, other):
+        return other + self.__wrapped__
+
+    def __rsub__(self, other):
+        return other - self.__wrapped__
+
+    def __rmul__(self, other):
+        return other * self.__wrapped__
+
+    def __rdiv__(self, other):
+        return operator.div(other, self.__wrapped__)
+
+    def __rtruediv__(self, other):
+        return operator.truediv(other, self.__wrapped__)
+
+    def __rfloordiv__(self, other):
+        return other // self.__wrapped__
+
+    def __rmod__(self, other):
+        return other % self.__wrapped__
+
+    def __rdivmod__(self, other):
+        return divmod(other, self.__wrapped__)
+
+    def __rpow__(self, other, *args):
+        return pow(other, self.__wrapped__, *args)
+
+    def __rlshift__(self, other):
+        return other << self.__wrapped__
+
+    def __rrshift__(self, other):
+        return other >> self.__wrapped__
+
+    def __rand__(self, other):
+        return other & self.__wrapped__
+
+    def __rxor__(self, other):
+        return other ^ self.__wrapped__
+
+    def __ror__(self, other):
+        return other | self.__wrapped__
+
+    def __iadd__(self, other):
+        self.__wrapped__ += other
+        return self
+
+    def __isub__(self, other):
+        self.__wrapped__ -= other
+        return self
+
+    def __imul__(self, other):
+        self.__wrapped__ *= other
+        return self
+
+    def __idiv__(self, other):
+        self.__wrapped__ = operator.idiv(self.__wrapped__, other)
+        return self
+
+    def __itruediv__(self, other):
+        self.__wrapped__ = operator.itruediv(self.__wrapped__, other)
+        return self
+
+    def __ifloordiv__(self, other):
+        self.__wrapped__ //= other
+        return self
+
+    def __imod__(self, other):
+        self.__wrapped__ %= other
+        return self
+
+    def __ipow__(self, other):
+        self.__wrapped__ **= other
+        return self
+
+    def __ilshift__(self, other):
+        self.__wrapped__ <<= other
+        return self
+
+    def __irshift__(self, other):
+        self.__wrapped__ >>= other
+        return self
+
+    def __iand__(self, other):
+        self.__wrapped__ &= other
+        return self
+
+    def __ixor__(self, other):
+        self.__wrapped__ ^= other
+        return self
+
+    def __ior__(self, other):
+        self.__wrapped__ |= other
+        return self
+
+    def __neg__(self):
+        return -self.__wrapped__
+
+    def __pos__(self):
+        return +self.__wrapped__
+
+    def __abs__(self):
+        return abs(self.__wrapped__)
+
+    def __invert__(self):
+        return ~self.__wrapped__
+
+    def __int__(self):
+        return int(self.__wrapped__)
+
+    def __long__(self):
+        return long(self.__wrapped__)
+
+    def __float__(self):
+        return float(self.__wrapped__)
+
+    def __complex__(self):
+        return complex(self.__wrapped__)
+
+    def __oct__(self):
+        return oct(self.__wrapped__)
+
+    def __hex__(self):
+        return hex(self.__wrapped__)
+
+    def __index__(self):
+        return operator.index(self.__wrapped__)
+
+    def __len__(self):
+        return len(self.__wrapped__)
+
+    def __contains__(self, value):
+        return value in self.__wrapped__
+
+    def __getitem__(self, key):
+        return self.__wrapped__[key]
+
+    def __setitem__(self, key, value):
+        self.__wrapped__[key] = value
+
+    def __delitem__(self, key):
+        del self.__wrapped__[key]
+
+    def __getslice__(self, i, j):
+        return self.__wrapped__[i:j]
+
+    def __setslice__(self, i, j, value):
+        self.__wrapped__[i:j] = value
+
+    def __delslice__(self, i, j):
+        del self.__wrapped__[i:j]
+
+    def __enter__(self):
+        return self.__wrapped__.__enter__()
+
+    def __exit__(self, *args, **kwargs):
+        return self.__wrapped__.__exit__(*args, **kwargs)
+
+    def __iter__(self):
+        return iter(self.__wrapped__)
+
+    def __copy__(self):
+        raise NotImplementedError('object proxy must define __copy__()')
+
+    def __deepcopy__(self, memo):
+        raise NotImplementedError('object proxy must define __deepcopy__()')
+
+    def __reduce__(self):
+        raise NotImplementedError(
+                'object proxy must define __reduce__()')
+
+    def __reduce_ex__(self, protocol):
+        raise NotImplementedError(
+                'object proxy must define __reduce_ex__()')
+
+class CallableObjectProxy(ObjectProxy):
+
+    def __call__(*args, **kwargs):
+        def _unpack_self(self, *args):
+            return self, args
+
+        self, args = _unpack_self(*args)
+
+        return self.__wrapped__(*args, **kwargs)
+
+class PartialCallableObjectProxy(ObjectProxy):
+
+    def __init__(*args, **kwargs):
+        def _unpack_self(self, *args):
+            return self, args
+
+        self, args = _unpack_self(*args)
+
+        if len(args) < 1:
+            raise TypeError('partial type takes at least one argument')
+
+        wrapped, args = args[0], args[1:]
+
+        if not callable(wrapped):
+            raise TypeError('the first argument must be callable')
+
+        super(PartialCallableObjectProxy, self).__init__(wrapped)
+
+        self._self_args = args
+        self._self_kwargs = kwargs
+
+    def __call__(*args, **kwargs):
+        def _unpack_self(self, *args):
+            return self, args
+
+        self, args = _unpack_self(*args)
+    
+        _args = self._self_args + args
+
+        _kwargs = dict(self._self_kwargs)
+        _kwargs.update(kwargs)
+
+        return self.__wrapped__(*_args, **_kwargs)
+
+class _FunctionWrapperBase(ObjectProxy):
+
+    __slots__ = ('_self_instance', '_self_wrapper', '_self_enabled',
+            '_self_binding', '_self_parent', '_self_owner')
+
+    def __init__(self, wrapped, instance, wrapper, enabled=None,
+            binding='callable', parent=None, owner=None):
+
+        super(_FunctionWrapperBase, self).__init__(wrapped)
+
+        object.__setattr__(self, '_self_instance', instance)
+        object.__setattr__(self, '_self_wrapper', wrapper)
+        object.__setattr__(self, '_self_enabled', enabled)
+        object.__setattr__(self, '_self_binding', binding)
+        object.__setattr__(self, '_self_parent', parent)
+        object.__setattr__(self, '_self_owner', owner)
+
+    def __get__(self, instance, owner):
+        # This method is actually doing double duty for both unbound and bound
+        # derived wrapper classes. It should possibly be broken up and the
+        # distinct functionality moved into the derived classes. Can't do that
+        # straight away due to some legacy code which is relying on it being
+        # here in this base class.
+        #
+        # The distinguishing attribute which determines whether we are being
+        # called in an unbound or bound wrapper is the parent attribute. If
+        # binding has never occurred, then the parent will be None.
+        #
+        # First therefore, is if we are called in an unbound wrapper. In this
+        # case we perform the binding.
+        #
+        # We have two special cases to worry about here. These are where we are
+        # decorating a class or builtin function as neither provide a __get__()
+        # method to call. In this case we simply return self.
+        #
+        # Note that we otherwise still do binding even if instance is None and
+        # accessing an unbound instance method from a class. This is because we
+        # need to be able to later detect that specific case as we will need to
+        # extract the instance from the first argument of those passed in.
+
+        if self._self_parent is None:
+            # Technically can probably just check for existence of __get__ on
+            # the wrapped object, but this is more explicit.
+
+            if self._self_binding == 'builtin':
+                return self
+            
+            if self._self_binding == "class":
+                return self
+
+            binder = getattr(self.__wrapped__, '__get__', None)
+
+            if binder is None:
+                return self
+
+            descriptor =  binder(instance, owner)
+
+            return self.__bound_function_wrapper__(descriptor, instance,
+                    self._self_wrapper, self._self_enabled,
+                    self._self_binding, self, owner)
+
+        # Now we have the case of binding occurring a second time on what was
+        # already a bound function. In this case we would usually return
+        # ourselves again. This mirrors what Python does.
+        #
+        # The special case this time is where we were originally bound with an
+        # instance of None and we were likely an instance method. In that case
+        # we rebind against the original wrapped function from the parent again.
+
+        if self._self_instance is None and self._self_binding in ('function', 'instancemethod', 'callable'):
+            descriptor = self._self_parent.__wrapped__.__get__(
+                    instance, owner)
+
+            return self._self_parent.__bound_function_wrapper__(
+                    descriptor, instance, self._self_wrapper,
+                    self._self_enabled, self._self_binding,
+                    self._self_parent, owner)
+
+        return self
+
+    def __call__(*args, **kwargs):
+        def _unpack_self(self, *args):
+            return self, args
+
+        self, args = _unpack_self(*args)
+
+        # If enabled has been specified, then evaluate it at this point
+        # and if the wrapper is not to be executed, then simply return
+        # the bound function rather than a bound wrapper for the bound
+        # function. When evaluating enabled, if it is callable we call
+        # it, otherwise we evaluate it as a boolean.
+
+        if self._self_enabled is not None:
+            if callable(self._self_enabled):
+                if not self._self_enabled():
+                    return self.__wrapped__(*args, **kwargs)
+            elif not self._self_enabled:
+                return self.__wrapped__(*args, **kwargs)
+
+        # This can occur where initial function wrapper was applied to
+        # a function that was already bound to an instance. In that case
+        # we want to extract the instance from the function and use it.
+
+        if self._self_binding in ('function', 'instancemethod', 'classmethod', 'callable'):
+            if self._self_instance is None:
+                instance = getattr(self.__wrapped__, '__self__', None)
+                if instance is not None:
+                    return self._self_wrapper(self.__wrapped__, instance,
+                            args, kwargs)
+
+        # This is generally invoked when the wrapped function is being
+        # called as a normal function and is not bound to a class as an
+        # instance method. This is also invoked in the case where the
+        # wrapped function was a method, but this wrapper was in turn
+        # wrapped using the staticmethod decorator.
+
+        return self._self_wrapper(self.__wrapped__, self._self_instance,
+                args, kwargs)
+
+    def __set_name__(self, owner, name):
+        # This is a special method use to supply information to
+        # descriptors about what the name of variable in a class
+        # definition is. Not wanting to add this to ObjectProxy as not
+        # sure of broader implications of doing that. Thus restrict to
+        # FunctionWrapper used by decorators.
+
+        if hasattr(self.__wrapped__, "__set_name__"):
+            self.__wrapped__.__set_name__(owner, name)
+
+    def __instancecheck__(self, instance):
+        # This is a special method used by isinstance() to make checks
+        # instance of the `__wrapped__`.
+        return isinstance(instance, self.__wrapped__)
+
+    def __subclasscheck__(self, subclass):
+        # This is a special method used by issubclass() to make checks
+        # about inheritance of classes. We need to upwrap any object
+        # proxy. Not wanting to add this to ObjectProxy as not sure of
+        # broader implications of doing that. Thus restrict to
+        # FunctionWrapper used by decorators.
+
+        if hasattr(subclass, "__wrapped__"):
+            return issubclass(subclass.__wrapped__, self.__wrapped__)
+        else:
+            return issubclass(subclass, self.__wrapped__)
+
+class BoundFunctionWrapper(_FunctionWrapperBase):
+
+    def __call__(*args, **kwargs):
+        def _unpack_self(self, *args):
+            return self, args
+
+        self, args = _unpack_self(*args)
+
+        # If enabled has been specified, then evaluate it at this point and if
+        # the wrapper is not to be executed, then simply return the bound
+        # function rather than a bound wrapper for the bound function. When
+        # evaluating enabled, if it is callable we call it, otherwise we
+        # evaluate it as a boolean.
+
+        if self._self_enabled is not None:
+            if callable(self._self_enabled):
+                if not self._self_enabled():
+                    return self.__wrapped__(*args, **kwargs)
+            elif not self._self_enabled:
+                return self.__wrapped__(*args, **kwargs)
+
+        # We need to do things different depending on whether we are likely
+        # wrapping an instance method vs a static method or class method.
+
+        if self._self_binding == 'function':
+            if self._self_instance is None and args:
+                instance, newargs = args[0], args[1:]
+                if isinstance(instance, self._self_owner):
+                    wrapped = PartialCallableObjectProxy(self.__wrapped__, instance)
+                    return self._self_wrapper(wrapped, instance, newargs, kwargs)
+
+            return self._self_wrapper(self.__wrapped__, self._self_instance,
+                    args, kwargs)
+
+        elif self._self_binding == 'callable':
+            if self._self_instance is None:
+                # This situation can occur where someone is calling the
+                # instancemethod via the class type and passing the instance as
+                # the first argument. We need to shift the args before making
+                # the call to the wrapper and effectively bind the instance to
+                # the wrapped function using a partial so the wrapper doesn't
+                # see anything as being different.
+
+                if not args:
+                    raise TypeError('missing 1 required positional argument')
+
+                instance, args = args[0], args[1:]
+                wrapped = PartialCallableObjectProxy(self.__wrapped__, instance)
+                return self._self_wrapper(wrapped, instance, args, kwargs)
+
+            return self._self_wrapper(self.__wrapped__, self._self_instance,
+                    args, kwargs)
+
+        else:
+            # As in this case we would be dealing with a classmethod or
+            # staticmethod, then _self_instance will only tell us whether
+            # when calling the classmethod or staticmethod they did it via an
+            # instance of the class it is bound to and not the case where
+            # done by the class type itself. We thus ignore _self_instance
+            # and use the __self__ attribute of the bound function instead.
+            # For a classmethod, this means instance will be the class type
+            # and for a staticmethod it will be None. This is probably the
+            # more useful thing we can pass through even though we loose
+            # knowledge of whether they were called on the instance vs the
+            # class type, as it reflects what they have available in the
+            # decoratored function.
+
+            instance = getattr(self.__wrapped__, '__self__', None)
+
+            return self._self_wrapper(self.__wrapped__, instance, args,
+                    kwargs)
+
+class FunctionWrapper(_FunctionWrapperBase):
+
+    __bound_function_wrapper__ = BoundFunctionWrapper
+
+    def __init__(self, wrapped, wrapper, enabled=None):
+        # What it is we are wrapping here could be anything. We need to
+        # try and detect specific cases though. In particular, we need
+        # to detect when we are given something that is a method of a
+        # class. Further, we need to know when it is likely an instance
+        # method, as opposed to a class or static method. This can
+        # become problematic though as there isn't strictly a fool proof
+        # method of knowing.
+        #
+        # The situations we could encounter when wrapping a method are:
+        #
+        # 1. The wrapper is being applied as part of a decorator which
+        # is a part of the class definition. In this case what we are
+        # given is the raw unbound function, classmethod or staticmethod
+        # wrapper objects.
+        #
+        # The problem here is that we will not know we are being applied
+        # in the context of the class being set up. This becomes
+        # important later for the case of an instance method, because in
+        # that case we just see it as a raw function and can't
+        # distinguish it from wrapping a normal function outside of
+        # a class context.
+        #
+        # 2. The wrapper is being applied when performing monkey
+        # patching of the class type afterwards and the method to be
+        # wrapped was retrieved direct from the __dict__ of the class
+        # type. This is effectively the same as (1) above.
+        #
+        # 3. The wrapper is being applied when performing monkey
+        # patching of the class type afterwards and the method to be
+        # wrapped was retrieved from the class type. In this case
+        # binding will have been performed where the instance against
+        # which the method is bound will be None at that point.
+        #
+        # This case is a problem because we can no longer tell if the
+        # method was a static method, plus if using Python3, we cannot
+        # tell if it was an instance method as the concept of an
+        # unnbound method no longer exists.
+        #
+        # 4. The wrapper is being applied when performing monkey
+        # patching of an instance of a class. In this case binding will
+        # have been perfomed where the instance was not None.
+        #
+        # This case is a problem because we can no longer tell if the
+        # method was a static method.
+        #
+        # Overall, the best we can do is look at the original type of the
+        # object which was wrapped prior to any binding being done and
+        # see if it is an instance of classmethod or staticmethod. In
+        # the case where other decorators are between us and them, if
+        # they do not propagate the __class__  attribute so that the
+        # isinstance() checks works, then likely this will do the wrong
+        # thing where classmethod and staticmethod are used.
+        #
+        # Since it is likely to be very rare that anyone even puts
+        # decorators around classmethod and staticmethod, likelihood of
+        # that being an issue is very small, so we accept it and suggest
+        # that those other decorators be fixed. It is also only an issue
+        # if a decorator wants to actually do things with the arguments.
+        #
+        # As to not being able to identify static methods properly, we
+        # just hope that that isn't something people are going to want
+        # to wrap, or if they do suggest they do it the correct way by
+        # ensuring that it is decorated in the class definition itself,
+        # or patch it in the __dict__ of the class type.
+        #
+        # So to get the best outcome we can, whenever we aren't sure what
+        # it is, we label it as a 'callable'. If it was already bound and
+        # that is rebound later, we assume that it will be an instance
+        # method and try and cope with the possibility that the 'self'
+        # argument it being passed as an explicit argument and shuffle
+        # the arguments around to extract 'self' for use as the instance.
+
+        binding = None
+
+        if isinstance(wrapped, _FunctionWrapperBase):
+            binding = wrapped._self_binding
+
+        if not binding:
+            if inspect.isbuiltin(wrapped):
+                binding = 'builtin'
+
+            elif inspect.isfunction(wrapped):
+                binding = 'function'
+
+            elif inspect.isclass(wrapped):
+                binding = 'class'
+
+            elif isinstance(wrapped, classmethod):
+                binding = 'classmethod'
+
+            elif isinstance(wrapped, staticmethod):
+                binding = 'staticmethod'
+
+            elif hasattr(wrapped, '__self__'):
+                if inspect.isclass(wrapped.__self__):
+                    binding = 'classmethod'
+                elif inspect.ismethod(wrapped):
+                    binding = 'instancemethod'
+                else:
+                    binding = 'callable'
+
+            else:
+                binding = 'callable'
+
+        super(FunctionWrapper, self).__init__(wrapped, None, wrapper,
+                enabled, binding)