diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/wrapt/wrappers.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/wrapt/wrappers.py | 821 |
1 files changed, 821 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/wrapt/wrappers.py b/.venv/lib/python3.12/site-packages/wrapt/wrappers.py new file mode 100644 index 00000000..62da8a30 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/wrapt/wrappers.py @@ -0,0 +1,821 @@ +import sys +import operator +import inspect + +PY2 = sys.version_info[0] == 2 + +if PY2: + string_types = basestring, +else: + string_types = str, + +def with_metaclass(meta, *bases): + """Create a base class with a metaclass.""" + return meta("NewBase", bases, {}) + +class _ObjectProxyMethods(object): + + # We use properties to override the values of __module__ and + # __doc__. If we add these in ObjectProxy, the derived class + # __dict__ will still be setup to have string variants of these + # attributes and the rules of descriptors means that they appear to + # take precedence over the properties in the base class. To avoid + # that, we copy the properties into the derived class type itself + # via a meta class. In that way the properties will always take + # precedence. + + @property + def __module__(self): + return self.__wrapped__.__module__ + + @__module__.setter + def __module__(self, value): + self.__wrapped__.__module__ = value + + @property + def __doc__(self): + return self.__wrapped__.__doc__ + + @__doc__.setter + def __doc__(self, value): + self.__wrapped__.__doc__ = value + + # We similar use a property for __dict__. We need __dict__ to be + # explicit to ensure that vars() works as expected. + + @property + def __dict__(self): + return self.__wrapped__.__dict__ + + # Need to also propagate the special __weakref__ attribute for case + # where decorating classes which will define this. If do not define + # it and use a function like inspect.getmembers() on a decorator + # class it will fail. This can't be in the derived classes. + + @property + def __weakref__(self): + return self.__wrapped__.__weakref__ + +class _ObjectProxyMetaType(type): + def __new__(cls, name, bases, dictionary): + # Copy our special properties into the class so that they + # always take precedence over attributes of the same name added + # during construction of a derived class. This is to save + # duplicating the implementation for them in all derived classes. + + dictionary.update(vars(_ObjectProxyMethods)) + + return type.__new__(cls, name, bases, dictionary) + +class ObjectProxy(with_metaclass(_ObjectProxyMetaType)): + + __slots__ = '__wrapped__' + + def __init__(self, wrapped): + object.__setattr__(self, '__wrapped__', wrapped) + + # Python 3.2+ has the __qualname__ attribute, but it does not + # allow it to be overridden using a property and it must instead + # be an actual string object instead. + + try: + object.__setattr__(self, '__qualname__', wrapped.__qualname__) + except AttributeError: + pass + + # Python 3.10 onwards also does not allow itself to be overridden + # using a property and it must instead be set explicitly. + + try: + object.__setattr__(self, '__annotations__', wrapped.__annotations__) + except AttributeError: + pass + + def __self_setattr__(self, name, value): + object.__setattr__(self, name, value) + + @property + def __name__(self): + return self.__wrapped__.__name__ + + @__name__.setter + def __name__(self, value): + self.__wrapped__.__name__ = value + + @property + def __class__(self): + return self.__wrapped__.__class__ + + @__class__.setter + def __class__(self, value): + self.__wrapped__.__class__ = value + + def __dir__(self): + return dir(self.__wrapped__) + + def __str__(self): + return str(self.__wrapped__) + + if not PY2: + def __bytes__(self): + return bytes(self.__wrapped__) + + def __repr__(self): + return '<{} at 0x{:x} for {} at 0x{:x}>'.format( + type(self).__name__, id(self), + type(self.__wrapped__).__name__, + id(self.__wrapped__)) + + def __format__(self, format_spec): + return format(self.__wrapped__, format_spec) + + def __reversed__(self): + return reversed(self.__wrapped__) + + if not PY2: + def __round__(self, ndigits=None): + return round(self.__wrapped__, ndigits) + + if sys.hexversion >= 0x03070000: + def __mro_entries__(self, bases): + return (self.__wrapped__,) + + def __lt__(self, other): + return self.__wrapped__ < other + + def __le__(self, other): + return self.__wrapped__ <= other + + def __eq__(self, other): + return self.__wrapped__ == other + + def __ne__(self, other): + return self.__wrapped__ != other + + def __gt__(self, other): + return self.__wrapped__ > other + + def __ge__(self, other): + return self.__wrapped__ >= other + + def __hash__(self): + return hash(self.__wrapped__) + + def __nonzero__(self): + return bool(self.__wrapped__) + + def __bool__(self): + return bool(self.__wrapped__) + + def __setattr__(self, name, value): + if name.startswith('_self_'): + object.__setattr__(self, name, value) + + elif name == '__wrapped__': + object.__setattr__(self, name, value) + try: + object.__delattr__(self, '__qualname__') + except AttributeError: + pass + try: + object.__setattr__(self, '__qualname__', value.__qualname__) + except AttributeError: + pass + try: + object.__delattr__(self, '__annotations__') + except AttributeError: + pass + try: + object.__setattr__(self, '__annotations__', value.__annotations__) + except AttributeError: + pass + + elif name == '__qualname__': + setattr(self.__wrapped__, name, value) + object.__setattr__(self, name, value) + + elif name == '__annotations__': + setattr(self.__wrapped__, name, value) + object.__setattr__(self, name, value) + + elif hasattr(type(self), name): + object.__setattr__(self, name, value) + + else: + setattr(self.__wrapped__, name, value) + + def __getattr__(self, name): + # If we are being to lookup '__wrapped__' then the + # '__init__()' method cannot have been called. + + if name == '__wrapped__': + raise ValueError('wrapper has not been initialised') + + return getattr(self.__wrapped__, name) + + def __delattr__(self, name): + if name.startswith('_self_'): + object.__delattr__(self, name) + + elif name == '__wrapped__': + raise TypeError('__wrapped__ must be an object') + + elif name == '__qualname__': + object.__delattr__(self, name) + delattr(self.__wrapped__, name) + + elif hasattr(type(self), name): + object.__delattr__(self, name) + + else: + delattr(self.__wrapped__, name) + + def __add__(self, other): + return self.__wrapped__ + other + + def __sub__(self, other): + return self.__wrapped__ - other + + def __mul__(self, other): + return self.__wrapped__ * other + + def __div__(self, other): + return operator.div(self.__wrapped__, other) + + def __truediv__(self, other): + return operator.truediv(self.__wrapped__, other) + + def __floordiv__(self, other): + return self.__wrapped__ // other + + def __mod__(self, other): + return self.__wrapped__ % other + + def __divmod__(self, other): + return divmod(self.__wrapped__, other) + + def __pow__(self, other, *args): + return pow(self.__wrapped__, other, *args) + + def __lshift__(self, other): + return self.__wrapped__ << other + + def __rshift__(self, other): + return self.__wrapped__ >> other + + def __and__(self, other): + return self.__wrapped__ & other + + def __xor__(self, other): + return self.__wrapped__ ^ other + + def __or__(self, other): + return self.__wrapped__ | other + + def __radd__(self, other): + return other + self.__wrapped__ + + def __rsub__(self, other): + return other - self.__wrapped__ + + def __rmul__(self, other): + return other * self.__wrapped__ + + def __rdiv__(self, other): + return operator.div(other, self.__wrapped__) + + def __rtruediv__(self, other): + return operator.truediv(other, self.__wrapped__) + + def __rfloordiv__(self, other): + return other // self.__wrapped__ + + def __rmod__(self, other): + return other % self.__wrapped__ + + def __rdivmod__(self, other): + return divmod(other, self.__wrapped__) + + def __rpow__(self, other, *args): + return pow(other, self.__wrapped__, *args) + + def __rlshift__(self, other): + return other << self.__wrapped__ + + def __rrshift__(self, other): + return other >> self.__wrapped__ + + def __rand__(self, other): + return other & self.__wrapped__ + + def __rxor__(self, other): + return other ^ self.__wrapped__ + + def __ror__(self, other): + return other | self.__wrapped__ + + def __iadd__(self, other): + self.__wrapped__ += other + return self + + def __isub__(self, other): + self.__wrapped__ -= other + return self + + def __imul__(self, other): + self.__wrapped__ *= other + return self + + def __idiv__(self, other): + self.__wrapped__ = operator.idiv(self.__wrapped__, other) + return self + + def __itruediv__(self, other): + self.__wrapped__ = operator.itruediv(self.__wrapped__, other) + return self + + def __ifloordiv__(self, other): + self.__wrapped__ //= other + return self + + def __imod__(self, other): + self.__wrapped__ %= other + return self + + def __ipow__(self, other): + self.__wrapped__ **= other + return self + + def __ilshift__(self, other): + self.__wrapped__ <<= other + return self + + def __irshift__(self, other): + self.__wrapped__ >>= other + return self + + def __iand__(self, other): + self.__wrapped__ &= other + return self + + def __ixor__(self, other): + self.__wrapped__ ^= other + return self + + def __ior__(self, other): + self.__wrapped__ |= other + return self + + def __neg__(self): + return -self.__wrapped__ + + def __pos__(self): + return +self.__wrapped__ + + def __abs__(self): + return abs(self.__wrapped__) + + def __invert__(self): + return ~self.__wrapped__ + + def __int__(self): + return int(self.__wrapped__) + + def __long__(self): + return long(self.__wrapped__) + + def __float__(self): + return float(self.__wrapped__) + + def __complex__(self): + return complex(self.__wrapped__) + + def __oct__(self): + return oct(self.__wrapped__) + + def __hex__(self): + return hex(self.__wrapped__) + + def __index__(self): + return operator.index(self.__wrapped__) + + def __len__(self): + return len(self.__wrapped__) + + def __contains__(self, value): + return value in self.__wrapped__ + + def __getitem__(self, key): + return self.__wrapped__[key] + + def __setitem__(self, key, value): + self.__wrapped__[key] = value + + def __delitem__(self, key): + del self.__wrapped__[key] + + def __getslice__(self, i, j): + return self.__wrapped__[i:j] + + def __setslice__(self, i, j, value): + self.__wrapped__[i:j] = value + + def __delslice__(self, i, j): + del self.__wrapped__[i:j] + + def __enter__(self): + return self.__wrapped__.__enter__() + + def __exit__(self, *args, **kwargs): + return self.__wrapped__.__exit__(*args, **kwargs) + + def __iter__(self): + return iter(self.__wrapped__) + + def __copy__(self): + raise NotImplementedError('object proxy must define __copy__()') + + def __deepcopy__(self, memo): + raise NotImplementedError('object proxy must define __deepcopy__()') + + def __reduce__(self): + raise NotImplementedError( + 'object proxy must define __reduce__()') + + def __reduce_ex__(self, protocol): + raise NotImplementedError( + 'object proxy must define __reduce_ex__()') + +class CallableObjectProxy(ObjectProxy): + + def __call__(*args, **kwargs): + def _unpack_self(self, *args): + return self, args + + self, args = _unpack_self(*args) + + return self.__wrapped__(*args, **kwargs) + +class PartialCallableObjectProxy(ObjectProxy): + + def __init__(*args, **kwargs): + def _unpack_self(self, *args): + return self, args + + self, args = _unpack_self(*args) + + if len(args) < 1: + raise TypeError('partial type takes at least one argument') + + wrapped, args = args[0], args[1:] + + if not callable(wrapped): + raise TypeError('the first argument must be callable') + + super(PartialCallableObjectProxy, self).__init__(wrapped) + + self._self_args = args + self._self_kwargs = kwargs + + def __call__(*args, **kwargs): + def _unpack_self(self, *args): + return self, args + + self, args = _unpack_self(*args) + + _args = self._self_args + args + + _kwargs = dict(self._self_kwargs) + _kwargs.update(kwargs) + + return self.__wrapped__(*_args, **_kwargs) + +class _FunctionWrapperBase(ObjectProxy): + + __slots__ = ('_self_instance', '_self_wrapper', '_self_enabled', + '_self_binding', '_self_parent', '_self_owner') + + def __init__(self, wrapped, instance, wrapper, enabled=None, + binding='callable', parent=None, owner=None): + + super(_FunctionWrapperBase, self).__init__(wrapped) + + object.__setattr__(self, '_self_instance', instance) + object.__setattr__(self, '_self_wrapper', wrapper) + object.__setattr__(self, '_self_enabled', enabled) + object.__setattr__(self, '_self_binding', binding) + object.__setattr__(self, '_self_parent', parent) + object.__setattr__(self, '_self_owner', owner) + + def __get__(self, instance, owner): + # This method is actually doing double duty for both unbound and bound + # derived wrapper classes. It should possibly be broken up and the + # distinct functionality moved into the derived classes. Can't do that + # straight away due to some legacy code which is relying on it being + # here in this base class. + # + # The distinguishing attribute which determines whether we are being + # called in an unbound or bound wrapper is the parent attribute. If + # binding has never occurred, then the parent will be None. + # + # First therefore, is if we are called in an unbound wrapper. In this + # case we perform the binding. + # + # We have two special cases to worry about here. These are where we are + # decorating a class or builtin function as neither provide a __get__() + # method to call. In this case we simply return self. + # + # Note that we otherwise still do binding even if instance is None and + # accessing an unbound instance method from a class. This is because we + # need to be able to later detect that specific case as we will need to + # extract the instance from the first argument of those passed in. + + if self._self_parent is None: + # Technically can probably just check for existence of __get__ on + # the wrapped object, but this is more explicit. + + if self._self_binding == 'builtin': + return self + + if self._self_binding == "class": + return self + + binder = getattr(self.__wrapped__, '__get__', None) + + if binder is None: + return self + + descriptor = binder(instance, owner) + + return self.__bound_function_wrapper__(descriptor, instance, + self._self_wrapper, self._self_enabled, + self._self_binding, self, owner) + + # Now we have the case of binding occurring a second time on what was + # already a bound function. In this case we would usually return + # ourselves again. This mirrors what Python does. + # + # The special case this time is where we were originally bound with an + # instance of None and we were likely an instance method. In that case + # we rebind against the original wrapped function from the parent again. + + if self._self_instance is None and self._self_binding in ('function', 'instancemethod', 'callable'): + descriptor = self._self_parent.__wrapped__.__get__( + instance, owner) + + return self._self_parent.__bound_function_wrapper__( + descriptor, instance, self._self_wrapper, + self._self_enabled, self._self_binding, + self._self_parent, owner) + + return self + + def __call__(*args, **kwargs): + def _unpack_self(self, *args): + return self, args + + self, args = _unpack_self(*args) + + # If enabled has been specified, then evaluate it at this point + # and if the wrapper is not to be executed, then simply return + # the bound function rather than a bound wrapper for the bound + # function. When evaluating enabled, if it is callable we call + # it, otherwise we evaluate it as a boolean. + + if self._self_enabled is not None: + if callable(self._self_enabled): + if not self._self_enabled(): + return self.__wrapped__(*args, **kwargs) + elif not self._self_enabled: + return self.__wrapped__(*args, **kwargs) + + # This can occur where initial function wrapper was applied to + # a function that was already bound to an instance. In that case + # we want to extract the instance from the function and use it. + + if self._self_binding in ('function', 'instancemethod', 'classmethod', 'callable'): + if self._self_instance is None: + instance = getattr(self.__wrapped__, '__self__', None) + if instance is not None: + return self._self_wrapper(self.__wrapped__, instance, + args, kwargs) + + # This is generally invoked when the wrapped function is being + # called as a normal function and is not bound to a class as an + # instance method. This is also invoked in the case where the + # wrapped function was a method, but this wrapper was in turn + # wrapped using the staticmethod decorator. + + return self._self_wrapper(self.__wrapped__, self._self_instance, + args, kwargs) + + def __set_name__(self, owner, name): + # This is a special method use to supply information to + # descriptors about what the name of variable in a class + # definition is. Not wanting to add this to ObjectProxy as not + # sure of broader implications of doing that. Thus restrict to + # FunctionWrapper used by decorators. + + if hasattr(self.__wrapped__, "__set_name__"): + self.__wrapped__.__set_name__(owner, name) + + def __instancecheck__(self, instance): + # This is a special method used by isinstance() to make checks + # instance of the `__wrapped__`. + return isinstance(instance, self.__wrapped__) + + def __subclasscheck__(self, subclass): + # This is a special method used by issubclass() to make checks + # about inheritance of classes. We need to upwrap any object + # proxy. Not wanting to add this to ObjectProxy as not sure of + # broader implications of doing that. Thus restrict to + # FunctionWrapper used by decorators. + + if hasattr(subclass, "__wrapped__"): + return issubclass(subclass.__wrapped__, self.__wrapped__) + else: + return issubclass(subclass, self.__wrapped__) + +class BoundFunctionWrapper(_FunctionWrapperBase): + + def __call__(*args, **kwargs): + def _unpack_self(self, *args): + return self, args + + self, args = _unpack_self(*args) + + # If enabled has been specified, then evaluate it at this point and if + # the wrapper is not to be executed, then simply return the bound + # function rather than a bound wrapper for the bound function. When + # evaluating enabled, if it is callable we call it, otherwise we + # evaluate it as a boolean. + + if self._self_enabled is not None: + if callable(self._self_enabled): + if not self._self_enabled(): + return self.__wrapped__(*args, **kwargs) + elif not self._self_enabled: + return self.__wrapped__(*args, **kwargs) + + # We need to do things different depending on whether we are likely + # wrapping an instance method vs a static method or class method. + + if self._self_binding == 'function': + if self._self_instance is None and args: + instance, newargs = args[0], args[1:] + if isinstance(instance, self._self_owner): + wrapped = PartialCallableObjectProxy(self.__wrapped__, instance) + return self._self_wrapper(wrapped, instance, newargs, kwargs) + + return self._self_wrapper(self.__wrapped__, self._self_instance, + args, kwargs) + + elif self._self_binding == 'callable': + if self._self_instance is None: + # This situation can occur where someone is calling the + # instancemethod via the class type and passing the instance as + # the first argument. We need to shift the args before making + # the call to the wrapper and effectively bind the instance to + # the wrapped function using a partial so the wrapper doesn't + # see anything as being different. + + if not args: + raise TypeError('missing 1 required positional argument') + + instance, args = args[0], args[1:] + wrapped = PartialCallableObjectProxy(self.__wrapped__, instance) + return self._self_wrapper(wrapped, instance, args, kwargs) + + return self._self_wrapper(self.__wrapped__, self._self_instance, + args, kwargs) + + else: + # As in this case we would be dealing with a classmethod or + # staticmethod, then _self_instance will only tell us whether + # when calling the classmethod or staticmethod they did it via an + # instance of the class it is bound to and not the case where + # done by the class type itself. We thus ignore _self_instance + # and use the __self__ attribute of the bound function instead. + # For a classmethod, this means instance will be the class type + # and for a staticmethod it will be None. This is probably the + # more useful thing we can pass through even though we loose + # knowledge of whether they were called on the instance vs the + # class type, as it reflects what they have available in the + # decoratored function. + + instance = getattr(self.__wrapped__, '__self__', None) + + return self._self_wrapper(self.__wrapped__, instance, args, + kwargs) + +class FunctionWrapper(_FunctionWrapperBase): + + __bound_function_wrapper__ = BoundFunctionWrapper + + def __init__(self, wrapped, wrapper, enabled=None): + # What it is we are wrapping here could be anything. We need to + # try and detect specific cases though. In particular, we need + # to detect when we are given something that is a method of a + # class. Further, we need to know when it is likely an instance + # method, as opposed to a class or static method. This can + # become problematic though as there isn't strictly a fool proof + # method of knowing. + # + # The situations we could encounter when wrapping a method are: + # + # 1. The wrapper is being applied as part of a decorator which + # is a part of the class definition. In this case what we are + # given is the raw unbound function, classmethod or staticmethod + # wrapper objects. + # + # The problem here is that we will not know we are being applied + # in the context of the class being set up. This becomes + # important later for the case of an instance method, because in + # that case we just see it as a raw function and can't + # distinguish it from wrapping a normal function outside of + # a class context. + # + # 2. The wrapper is being applied when performing monkey + # patching of the class type afterwards and the method to be + # wrapped was retrieved direct from the __dict__ of the class + # type. This is effectively the same as (1) above. + # + # 3. The wrapper is being applied when performing monkey + # patching of the class type afterwards and the method to be + # wrapped was retrieved from the class type. In this case + # binding will have been performed where the instance against + # which the method is bound will be None at that point. + # + # This case is a problem because we can no longer tell if the + # method was a static method, plus if using Python3, we cannot + # tell if it was an instance method as the concept of an + # unnbound method no longer exists. + # + # 4. The wrapper is being applied when performing monkey + # patching of an instance of a class. In this case binding will + # have been perfomed where the instance was not None. + # + # This case is a problem because we can no longer tell if the + # method was a static method. + # + # Overall, the best we can do is look at the original type of the + # object which was wrapped prior to any binding being done and + # see if it is an instance of classmethod or staticmethod. In + # the case where other decorators are between us and them, if + # they do not propagate the __class__ attribute so that the + # isinstance() checks works, then likely this will do the wrong + # thing where classmethod and staticmethod are used. + # + # Since it is likely to be very rare that anyone even puts + # decorators around classmethod and staticmethod, likelihood of + # that being an issue is very small, so we accept it and suggest + # that those other decorators be fixed. It is also only an issue + # if a decorator wants to actually do things with the arguments. + # + # As to not being able to identify static methods properly, we + # just hope that that isn't something people are going to want + # to wrap, or if they do suggest they do it the correct way by + # ensuring that it is decorated in the class definition itself, + # or patch it in the __dict__ of the class type. + # + # So to get the best outcome we can, whenever we aren't sure what + # it is, we label it as a 'callable'. If it was already bound and + # that is rebound later, we assume that it will be an instance + # method and try and cope with the possibility that the 'self' + # argument it being passed as an explicit argument and shuffle + # the arguments around to extract 'self' for use as the instance. + + binding = None + + if isinstance(wrapped, _FunctionWrapperBase): + binding = wrapped._self_binding + + if not binding: + if inspect.isbuiltin(wrapped): + binding = 'builtin' + + elif inspect.isfunction(wrapped): + binding = 'function' + + elif inspect.isclass(wrapped): + binding = 'class' + + elif isinstance(wrapped, classmethod): + binding = 'classmethod' + + elif isinstance(wrapped, staticmethod): + binding = 'staticmethod' + + elif hasattr(wrapped, '__self__'): + if inspect.isclass(wrapped.__self__): + binding = 'classmethod' + elif inspect.ismethod(wrapped): + binding = 'instancemethod' + else: + binding = 'callable' + + else: + binding = 'callable' + + super(FunctionWrapper, self).__init__(wrapped, None, wrapper, + enabled, binding) |