aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/tqdm/keras.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/tqdm/keras.py')
-rw-r--r--.venv/lib/python3.12/site-packages/tqdm/keras.py122
1 files changed, 122 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/tqdm/keras.py b/.venv/lib/python3.12/site-packages/tqdm/keras.py
new file mode 100644
index 00000000..cce9467c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tqdm/keras.py
@@ -0,0 +1,122 @@
+from copy import copy
+from functools import partial
+
+from .auto import tqdm as tqdm_auto
+
+try:
+ import keras
+except (ImportError, AttributeError) as e:
+ try:
+ from tensorflow import keras
+ except ImportError:
+ raise e
+__author__ = {"github.com/": ["casperdcl"]}
+__all__ = ['TqdmCallback']
+
+
+class TqdmCallback(keras.callbacks.Callback):
+ """Keras callback for epoch and batch progress."""
+ @staticmethod
+ def bar2callback(bar, pop=None, delta=(lambda logs: 1)):
+ def callback(_, logs=None):
+ n = delta(logs)
+ if logs:
+ if pop:
+ logs = copy(logs)
+ [logs.pop(i, 0) for i in pop]
+ bar.set_postfix(logs, refresh=False)
+ bar.update(n)
+
+ return callback
+
+ def __init__(self, epochs=None, data_size=None, batch_size=None, verbose=1,
+ tqdm_class=tqdm_auto, **tqdm_kwargs):
+ """
+ Parameters
+ ----------
+ epochs : int, optional
+ data_size : int, optional
+ Number of training pairs.
+ batch_size : int, optional
+ Number of training pairs per batch.
+ verbose : int
+ 0: epoch, 1: batch (transient), 2: batch. [default: 1].
+ Will be set to `0` unless both `data_size` and `batch_size`
+ are given.
+ tqdm_class : optional
+ `tqdm` class to use for bars [default: `tqdm.auto.tqdm`].
+ tqdm_kwargs : optional
+ Any other arguments used for all bars.
+ """
+ if tqdm_kwargs:
+ tqdm_class = partial(tqdm_class, **tqdm_kwargs)
+ self.tqdm_class = tqdm_class
+ self.epoch_bar = tqdm_class(total=epochs, unit='epoch')
+ self.on_epoch_end = self.bar2callback(self.epoch_bar)
+ if data_size and batch_size:
+ self.batches = batches = (data_size + batch_size - 1) // batch_size
+ else:
+ self.batches = batches = None
+ self.verbose = verbose
+ if verbose == 1:
+ self.batch_bar = tqdm_class(total=batches, unit='batch', leave=False)
+ self.on_batch_end = self.bar2callback(
+ self.batch_bar, pop=['batch', 'size'],
+ delta=lambda logs: logs.get('size', 1))
+
+ def on_train_begin(self, *_, **__):
+ params = self.params.get
+ auto_total = params('epochs', params('nb_epoch', None))
+ if auto_total is not None and auto_total != self.epoch_bar.total:
+ self.epoch_bar.reset(total=auto_total)
+
+ def on_epoch_begin(self, epoch, *_, **__):
+ if self.epoch_bar.n < epoch:
+ ebar = self.epoch_bar
+ ebar.n = ebar.last_print_n = ebar.initial = epoch
+ if self.verbose:
+ params = self.params.get
+ total = params('samples', params(
+ 'nb_sample', params('steps', None))) or self.batches
+ if self.verbose == 2:
+ if hasattr(self, 'batch_bar'):
+ self.batch_bar.close()
+ self.batch_bar = self.tqdm_class(
+ total=total, unit='batch', leave=True,
+ unit_scale=1 / (params('batch_size', 1) or 1))
+ self.on_batch_end = self.bar2callback(
+ self.batch_bar, pop=['batch', 'size'],
+ delta=lambda logs: logs.get('size', 1))
+ elif self.verbose == 1:
+ self.batch_bar.unit_scale = 1 / (params('batch_size', 1) or 1)
+ self.batch_bar.reset(total=total)
+ else:
+ raise KeyError('Unknown verbosity')
+
+ def on_train_end(self, *_, **__):
+ if hasattr(self, 'batch_bar'):
+ self.batch_bar.close()
+ self.epoch_bar.close()
+
+ def display(self):
+ """Displays in the current cell in Notebooks."""
+ container = getattr(self.epoch_bar, 'container', None)
+ if container is None:
+ return
+ from .notebook import display
+ display(container)
+ batch_bar = getattr(self, 'batch_bar', None)
+ if batch_bar is not None:
+ display(batch_bar.container)
+
+ @staticmethod
+ def _implements_train_batch_hooks():
+ return True
+
+ @staticmethod
+ def _implements_test_batch_hooks():
+ return True
+
+ @staticmethod
+ def _implements_predict_batch_hooks():
+ return True