about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/tokenizers/models
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/tokenizers/models')
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/models/__init__.py8
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/models/__init__.pyi591
2 files changed, 599 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/models/__init__.py b/.venv/lib/python3.12/site-packages/tokenizers/models/__init__.py
new file mode 100644
index 00000000..68ac211a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/models/__init__.py
@@ -0,0 +1,8 @@
+# Generated content DO NOT EDIT
+from .. import models
+
+Model = models.Model
+BPE = models.BPE
+Unigram = models.Unigram
+WordLevel = models.WordLevel
+WordPiece = models.WordPiece
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/models/__init__.pyi b/.venv/lib/python3.12/site-packages/tokenizers/models/__init__.pyi
new file mode 100644
index 00000000..955b9a16
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/models/__init__.pyi
@@ -0,0 +1,591 @@
+# Generated content DO NOT EDIT
+class Model:
+    """
+    Base class for all models
+
+    The model represents the actual tokenization algorithm. This is the part that
+    will contain and manage the learned vocabulary.
+
+    This class cannot be constructed directly. Please use one of the concrete models.
+    """
+    def get_trainer(self):
+        """
+        Get the associated :class:`~tokenizers.trainers.Trainer`
+
+        Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this
+        :class:`~tokenizers.models.Model`.
+
+        Returns:
+            :class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model
+        """
+        pass
+
+    def id_to_token(self, id):
+        """
+        Get the token associated to an ID
+
+        Args:
+            id (:obj:`int`):
+                An ID to convert to a token
+
+        Returns:
+            :obj:`str`: The token associated to the ID
+        """
+        pass
+
+    def save(self, folder, prefix):
+        """
+        Save the current model
+
+        Save the current model in the given folder, using the given prefix for the various
+        files that will get created.
+        Any file with the same name that already exists in this folder will be overwritten.
+
+        Args:
+            folder (:obj:`str`):
+                The path to the target folder in which to save the various files
+
+            prefix (:obj:`str`, `optional`):
+                An optional prefix, used to prefix each file name
+
+        Returns:
+            :obj:`List[str]`: The list of saved files
+        """
+        pass
+
+    def token_to_id(self, tokens):
+        """
+        Get the ID associated to a token
+
+        Args:
+            token (:obj:`str`):
+                A token to convert to an ID
+
+        Returns:
+            :obj:`int`: The ID associated to the token
+        """
+        pass
+
+    def tokenize(self, sequence):
+        """
+        Tokenize a sequence
+
+        Args:
+            sequence (:obj:`str`):
+                A sequence to tokenize
+
+        Returns:
+            A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens
+        """
+        pass
+
+class BPE(Model):
+    """
+    An implementation of the BPE (Byte-Pair Encoding) algorithm
+
+    Args:
+        vocab (:obj:`Dict[str, int]`, `optional`):
+            A dictionnary of string keys and their ids :obj:`{"am": 0,...}`
+
+        merges (:obj:`List[Tuple[str, str]]`, `optional`):
+            A list of pairs of tokens (:obj:`Tuple[str, str]`) :obj:`[("a", "b"),...]`
+
+        cache_capacity (:obj:`int`, `optional`):
+            The number of words that the BPE cache can contain. The cache allows
+            to speed-up the process by keeping the result of the merge operations
+            for a number of words.
+
+        dropout (:obj:`float`, `optional`):
+            A float between 0 and 1 that represents the BPE dropout to use.
+
+        unk_token (:obj:`str`, `optional`):
+            The unknown token to be used by the model.
+
+        continuing_subword_prefix (:obj:`str`, `optional`):
+            The prefix to attach to subword units that don't represent a beginning of word.
+
+        end_of_word_suffix (:obj:`str`, `optional`):
+            The suffix to attach to subword units that represent an end of word.
+
+        fuse_unk (:obj:`bool`, `optional`):
+            Whether to fuse any subsequent unknown tokens into a single one
+
+        byte_fallback (:obj:`bool`, `optional`):
+            Whether to use spm byte-fallback trick (defaults to False)
+
+        ignore_merges (:obj:`bool`, `optional`):
+            Whether or not to match tokens with the vocab before using merges.
+    """
+    def __init__(
+        self,
+        vocab=None,
+        merges=None,
+        cache_capacity=None,
+        dropout=None,
+        unk_token=None,
+        continuing_subword_prefix=None,
+        end_of_word_suffix=None,
+        fuse_unk=None,
+        byte_fallback=False,
+        ignore_merges=False,
+    ):
+        pass
+
+    @staticmethod
+    def from_file(cls, vocab, merge, **kwargs):
+        """
+        Instantiate a BPE model from the given files.
+
+        This method is roughly equivalent to doing::
+
+           vocab, merges = BPE.read_file(vocab_filename, merges_filename)
+           bpe = BPE(vocab, merges)
+
+        If you don't need to keep the :obj:`vocab, merges` values lying around,
+        this method is more optimized than manually calling
+        :meth:`~tokenizers.models.BPE.read_file` to initialize a :class:`~tokenizers.models.BPE`
+
+        Args:
+            vocab (:obj:`str`):
+                The path to a :obj:`vocab.json` file
+
+            merges (:obj:`str`):
+                The path to a :obj:`merges.txt` file
+
+        Returns:
+            :class:`~tokenizers.models.BPE`: An instance of BPE loaded from these files
+        """
+        pass
+
+    def get_trainer(self):
+        """
+        Get the associated :class:`~tokenizers.trainers.Trainer`
+
+        Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this
+        :class:`~tokenizers.models.Model`.
+
+        Returns:
+            :class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model
+        """
+        pass
+
+    def id_to_token(self, id):
+        """
+        Get the token associated to an ID
+
+        Args:
+            id (:obj:`int`):
+                An ID to convert to a token
+
+        Returns:
+            :obj:`str`: The token associated to the ID
+        """
+        pass
+
+    @staticmethod
+    def read_file(self, vocab, merges):
+        """
+        Read a :obj:`vocab.json` and a :obj:`merges.txt` files
+
+        This method provides a way to read and parse the content of these files,
+        returning the relevant data structures. If you want to instantiate some BPE models
+        from memory, this method gives you the expected input from the standard files.
+
+        Args:
+            vocab (:obj:`str`):
+                The path to a :obj:`vocab.json` file
+
+            merges (:obj:`str`):
+                The path to a :obj:`merges.txt` file
+
+        Returns:
+            A :obj:`Tuple` with the vocab and the merges:
+                The vocabulary and merges loaded into memory
+        """
+        pass
+
+    def save(self, folder, prefix):
+        """
+        Save the current model
+
+        Save the current model in the given folder, using the given prefix for the various
+        files that will get created.
+        Any file with the same name that already exists in this folder will be overwritten.
+
+        Args:
+            folder (:obj:`str`):
+                The path to the target folder in which to save the various files
+
+            prefix (:obj:`str`, `optional`):
+                An optional prefix, used to prefix each file name
+
+        Returns:
+            :obj:`List[str]`: The list of saved files
+        """
+        pass
+
+    def token_to_id(self, tokens):
+        """
+        Get the ID associated to a token
+
+        Args:
+            token (:obj:`str`):
+                A token to convert to an ID
+
+        Returns:
+            :obj:`int`: The ID associated to the token
+        """
+        pass
+
+    def tokenize(self, sequence):
+        """
+        Tokenize a sequence
+
+        Args:
+            sequence (:obj:`str`):
+                A sequence to tokenize
+
+        Returns:
+            A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens
+        """
+        pass
+
+class Unigram(Model):
+    """
+    An implementation of the Unigram algorithm
+
+    Args:
+        vocab (:obj:`List[Tuple[str, float]]`, `optional`, `optional`):
+            A list of vocabulary items and their relative score [("am", -0.2442),...]
+    """
+    def __init__(self, vocab, unk_id, byte_fallback):
+        pass
+
+    def get_trainer(self):
+        """
+        Get the associated :class:`~tokenizers.trainers.Trainer`
+
+        Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this
+        :class:`~tokenizers.models.Model`.
+
+        Returns:
+            :class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model
+        """
+        pass
+
+    def id_to_token(self, id):
+        """
+        Get the token associated to an ID
+
+        Args:
+            id (:obj:`int`):
+                An ID to convert to a token
+
+        Returns:
+            :obj:`str`: The token associated to the ID
+        """
+        pass
+
+    def save(self, folder, prefix):
+        """
+        Save the current model
+
+        Save the current model in the given folder, using the given prefix for the various
+        files that will get created.
+        Any file with the same name that already exists in this folder will be overwritten.
+
+        Args:
+            folder (:obj:`str`):
+                The path to the target folder in which to save the various files
+
+            prefix (:obj:`str`, `optional`):
+                An optional prefix, used to prefix each file name
+
+        Returns:
+            :obj:`List[str]`: The list of saved files
+        """
+        pass
+
+    def token_to_id(self, tokens):
+        """
+        Get the ID associated to a token
+
+        Args:
+            token (:obj:`str`):
+                A token to convert to an ID
+
+        Returns:
+            :obj:`int`: The ID associated to the token
+        """
+        pass
+
+    def tokenize(self, sequence):
+        """
+        Tokenize a sequence
+
+        Args:
+            sequence (:obj:`str`):
+                A sequence to tokenize
+
+        Returns:
+            A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens
+        """
+        pass
+
+class WordLevel(Model):
+    """
+    An implementation of the WordLevel algorithm
+
+    Most simple tokenizer model based on mapping tokens to their corresponding id.
+
+    Args:
+        vocab (:obj:`str`, `optional`):
+            A dictionnary of string keys and their ids :obj:`{"am": 0,...}`
+
+        unk_token (:obj:`str`, `optional`):
+            The unknown token to be used by the model.
+    """
+    def __init__(self, vocab, unk_token):
+        pass
+
+    @staticmethod
+    def from_file(vocab, unk_token):
+        """
+        Instantiate a WordLevel model from the given file
+
+        This method is roughly equivalent to doing::
+
+            vocab = WordLevel.read_file(vocab_filename)
+            wordlevel = WordLevel(vocab)
+
+        If you don't need to keep the :obj:`vocab` values lying around, this method is
+        more optimized than manually calling :meth:`~tokenizers.models.WordLevel.read_file` to
+        initialize a :class:`~tokenizers.models.WordLevel`
+
+        Args:
+            vocab (:obj:`str`):
+                The path to a :obj:`vocab.json` file
+
+        Returns:
+            :class:`~tokenizers.models.WordLevel`: An instance of WordLevel loaded from file
+        """
+        pass
+
+    def get_trainer(self):
+        """
+        Get the associated :class:`~tokenizers.trainers.Trainer`
+
+        Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this
+        :class:`~tokenizers.models.Model`.
+
+        Returns:
+            :class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model
+        """
+        pass
+
+    def id_to_token(self, id):
+        """
+        Get the token associated to an ID
+
+        Args:
+            id (:obj:`int`):
+                An ID to convert to a token
+
+        Returns:
+            :obj:`str`: The token associated to the ID
+        """
+        pass
+
+    @staticmethod
+    def read_file(vocab):
+        """
+        Read a :obj:`vocab.json`
+
+        This method provides a way to read and parse the content of a vocabulary file,
+        returning the relevant data structures. If you want to instantiate some WordLevel models
+        from memory, this method gives you the expected input from the standard files.
+
+        Args:
+            vocab (:obj:`str`):
+                The path to a :obj:`vocab.json` file
+
+        Returns:
+            :obj:`Dict[str, int]`: The vocabulary as a :obj:`dict`
+        """
+        pass
+
+    def save(self, folder, prefix):
+        """
+        Save the current model
+
+        Save the current model in the given folder, using the given prefix for the various
+        files that will get created.
+        Any file with the same name that already exists in this folder will be overwritten.
+
+        Args:
+            folder (:obj:`str`):
+                The path to the target folder in which to save the various files
+
+            prefix (:obj:`str`, `optional`):
+                An optional prefix, used to prefix each file name
+
+        Returns:
+            :obj:`List[str]`: The list of saved files
+        """
+        pass
+
+    def token_to_id(self, tokens):
+        """
+        Get the ID associated to a token
+
+        Args:
+            token (:obj:`str`):
+                A token to convert to an ID
+
+        Returns:
+            :obj:`int`: The ID associated to the token
+        """
+        pass
+
+    def tokenize(self, sequence):
+        """
+        Tokenize a sequence
+
+        Args:
+            sequence (:obj:`str`):
+                A sequence to tokenize
+
+        Returns:
+            A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens
+        """
+        pass
+
+class WordPiece(Model):
+    """
+    An implementation of the WordPiece algorithm
+
+    Args:
+        vocab (:obj:`Dict[str, int]`, `optional`):
+            A dictionnary of string keys and their ids :obj:`{"am": 0,...}`
+
+        unk_token (:obj:`str`, `optional`):
+            The unknown token to be used by the model.
+
+        max_input_chars_per_word (:obj:`int`, `optional`):
+            The maximum number of characters to authorize in a single word.
+    """
+    def __init__(self, vocab, unk_token, max_input_chars_per_word):
+        pass
+
+    @staticmethod
+    def from_file(vocab, **kwargs):
+        """
+        Instantiate a WordPiece model from the given file
+
+        This method is roughly equivalent to doing::
+
+            vocab = WordPiece.read_file(vocab_filename)
+            wordpiece = WordPiece(vocab)
+
+        If you don't need to keep the :obj:`vocab` values lying around, this method is
+        more optimized than manually calling :meth:`~tokenizers.models.WordPiece.read_file` to
+        initialize a :class:`~tokenizers.models.WordPiece`
+
+        Args:
+            vocab (:obj:`str`):
+                The path to a :obj:`vocab.txt` file
+
+        Returns:
+            :class:`~tokenizers.models.WordPiece`: An instance of WordPiece loaded from file
+        """
+        pass
+
+    def get_trainer(self):
+        """
+        Get the associated :class:`~tokenizers.trainers.Trainer`
+
+        Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this
+        :class:`~tokenizers.models.Model`.
+
+        Returns:
+            :class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model
+        """
+        pass
+
+    def id_to_token(self, id):
+        """
+        Get the token associated to an ID
+
+        Args:
+            id (:obj:`int`):
+                An ID to convert to a token
+
+        Returns:
+            :obj:`str`: The token associated to the ID
+        """
+        pass
+
+    @staticmethod
+    def read_file(vocab):
+        """
+        Read a :obj:`vocab.txt` file
+
+        This method provides a way to read and parse the content of a standard `vocab.txt`
+        file as used by the WordPiece Model, returning the relevant data structures. If you
+        want to instantiate some WordPiece models from memory, this method gives you the
+        expected input from the standard files.
+
+        Args:
+            vocab (:obj:`str`):
+                The path to a :obj:`vocab.txt` file
+
+        Returns:
+            :obj:`Dict[str, int]`: The vocabulary as a :obj:`dict`
+        """
+        pass
+
+    def save(self, folder, prefix):
+        """
+        Save the current model
+
+        Save the current model in the given folder, using the given prefix for the various
+        files that will get created.
+        Any file with the same name that already exists in this folder will be overwritten.
+
+        Args:
+            folder (:obj:`str`):
+                The path to the target folder in which to save the various files
+
+            prefix (:obj:`str`, `optional`):
+                An optional prefix, used to prefix each file name
+
+        Returns:
+            :obj:`List[str]`: The list of saved files
+        """
+        pass
+
+    def token_to_id(self, tokens):
+        """
+        Get the ID associated to a token
+
+        Args:
+            token (:obj:`str`):
+                A token to convert to an ID
+
+        Returns:
+            :obj:`int`: The ID associated to the token
+        """
+        pass
+
+    def tokenize(self, sequence):
+        """
+        Tokenize a sequence
+
+        Args:
+            sequence (:obj:`str`):
+                A sequence to tokenize
+
+        Returns:
+            A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens
+        """
+        pass