aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/tiktoken/load.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/tiktoken/load.py')
-rw-r--r--.venv/lib/python3.12/site-packages/tiktoken/load.py148
1 files changed, 148 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/tiktoken/load.py b/.venv/lib/python3.12/site-packages/tiktoken/load.py
new file mode 100644
index 00000000..8434c234
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tiktoken/load.py
@@ -0,0 +1,148 @@
+from __future__ import annotations
+
+import base64
+import hashlib
+import json
+import os
+import tempfile
+import uuid
+
+import requests
+
+
+def read_file(blobpath: str) -> bytes:
+ if not blobpath.startswith("http://") and not blobpath.startswith("https://"):
+ try:
+ import blobfile
+ except ImportError as e:
+ raise ImportError(
+ "blobfile is not installed. Please install it by running `pip install blobfile`."
+ ) from e
+ with blobfile.BlobFile(blobpath, "rb") as f:
+ return f.read()
+ # avoiding blobfile for public files helps avoid auth issues, like MFA prompts
+ resp = requests.get(blobpath)
+ resp.raise_for_status()
+ return resp.content
+
+
+def check_hash(data: bytes, expected_hash: str) -> bool:
+ actual_hash = hashlib.sha256(data).hexdigest()
+ return actual_hash == expected_hash
+
+
+def read_file_cached(blobpath: str, expected_hash: str | None = None) -> bytes:
+ user_specified_cache = True
+ if "TIKTOKEN_CACHE_DIR" in os.environ:
+ cache_dir = os.environ["TIKTOKEN_CACHE_DIR"]
+ elif "DATA_GYM_CACHE_DIR" in os.environ:
+ cache_dir = os.environ["DATA_GYM_CACHE_DIR"]
+ else:
+ cache_dir = os.path.join(tempfile.gettempdir(), "data-gym-cache")
+ user_specified_cache = False
+
+ if cache_dir == "":
+ # disable caching
+ return read_file(blobpath)
+
+ cache_key = hashlib.sha1(blobpath.encode()).hexdigest()
+
+ cache_path = os.path.join(cache_dir, cache_key)
+ if os.path.exists(cache_path):
+ with open(cache_path, "rb") as f:
+ data = f.read()
+ if expected_hash is None or check_hash(data, expected_hash):
+ return data
+
+ # the cached file does not match the hash, remove it and re-fetch
+ try:
+ os.remove(cache_path)
+ except OSError:
+ pass
+
+ contents = read_file(blobpath)
+ if expected_hash and not check_hash(contents, expected_hash):
+ raise ValueError(
+ f"Hash mismatch for data downloaded from {blobpath} (expected {expected_hash}). "
+ f"This may indicate a corrupted download. Please try again."
+ )
+
+ try:
+ os.makedirs(cache_dir, exist_ok=True)
+ tmp_filename = cache_path + "." + str(uuid.uuid4()) + ".tmp"
+ with open(tmp_filename, "wb") as f:
+ f.write(contents)
+ os.rename(tmp_filename, cache_path)
+ except OSError:
+ # don't raise if we can't write to the default cache, e.g. issue #75
+ if user_specified_cache:
+ raise
+
+ return contents
+
+
+def data_gym_to_mergeable_bpe_ranks(
+ vocab_bpe_file: str,
+ encoder_json_file: str,
+ vocab_bpe_hash: str | None = None,
+ encoder_json_hash: str | None = None,
+) -> dict[bytes, int]:
+ # NB: do not add caching to this function
+ rank_to_intbyte = [b for b in range(2**8) if chr(b).isprintable() and chr(b) != " "]
+
+ data_gym_byte_to_byte = {chr(b): b for b in rank_to_intbyte}
+ n = 0
+ for b in range(2**8):
+ if b not in rank_to_intbyte:
+ rank_to_intbyte.append(b)
+ data_gym_byte_to_byte[chr(2**8 + n)] = b
+ n += 1
+ assert len(rank_to_intbyte) == 2**8
+
+ # vocab_bpe contains the merges along with associated ranks
+ vocab_bpe_contents = read_file_cached(vocab_bpe_file, vocab_bpe_hash).decode()
+ bpe_merges = [tuple(merge_str.split()) for merge_str in vocab_bpe_contents.split("\n")[1:-1]]
+
+ def decode_data_gym(value: str) -> bytes:
+ return bytes(data_gym_byte_to_byte[b] for b in value)
+
+ # add the single byte tokens
+ bpe_ranks = {bytes([b]): i for i, b in enumerate(rank_to_intbyte)}
+ # add the merged tokens
+ n = len(bpe_ranks)
+ for first, second in bpe_merges:
+ bpe_ranks[decode_data_gym(first) + decode_data_gym(second)] = n
+ n += 1
+
+ # check that the encoder file matches the merges file
+ # this sanity check is important since tiktoken assumes that ranks are ordered the same
+ # as merge priority
+ encoder_json = json.loads(read_file_cached(encoder_json_file, encoder_json_hash))
+ encoder_json_loaded = {decode_data_gym(k): v for k, v in encoder_json.items()}
+ # drop these two special tokens if present, since they're not mergeable bpe tokens
+ encoder_json_loaded.pop(b"<|endoftext|>", None)
+ encoder_json_loaded.pop(b"<|startoftext|>", None)
+ assert bpe_ranks == encoder_json_loaded
+
+ return bpe_ranks
+
+
+def dump_tiktoken_bpe(bpe_ranks: dict[bytes, int], tiktoken_bpe_file: str) -> None:
+ try:
+ import blobfile
+ except ImportError as e:
+ raise ImportError(
+ "blobfile is not installed. Please install it by running `pip install blobfile`."
+ ) from e
+ with blobfile.BlobFile(tiktoken_bpe_file, "wb") as f:
+ for token, rank in sorted(bpe_ranks.items(), key=lambda x: x[1]):
+ f.write(base64.b64encode(token) + b" " + str(rank).encode() + b"\n")
+
+
+def load_tiktoken_bpe(tiktoken_bpe_file: str, expected_hash: str | None = None) -> dict[bytes, int]:
+ # NB: do not add caching to this function
+ contents = read_file_cached(tiktoken_bpe_file, expected_hash)
+ return {
+ base64.b64decode(token): int(rank)
+ for token, rank in (line.split() for line in contents.splitlines() if line)
+ }