aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/tenacity/wait.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/tenacity/wait.py')
-rw-r--r--.venv/lib/python3.12/site-packages/tenacity/wait.py234
1 files changed, 234 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/tenacity/wait.py b/.venv/lib/python3.12/site-packages/tenacity/wait.py
new file mode 100644
index 00000000..dc3c8505
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tenacity/wait.py
@@ -0,0 +1,234 @@
+# Copyright 2016–2021 Julien Danjou
+# Copyright 2016 Joshua Harlow
+# Copyright 2013-2014 Ray Holder
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import abc
+import random
+import typing
+
+from tenacity import _utils
+
+if typing.TYPE_CHECKING:
+ from tenacity import RetryCallState
+
+
+class wait_base(abc.ABC):
+ """Abstract base class for wait strategies."""
+
+ @abc.abstractmethod
+ def __call__(self, retry_state: "RetryCallState") -> float:
+ pass
+
+ def __add__(self, other: "wait_base") -> "wait_combine":
+ return wait_combine(self, other)
+
+ def __radd__(self, other: "wait_base") -> typing.Union["wait_combine", "wait_base"]:
+ # make it possible to use multiple waits with the built-in sum function
+ if other == 0: # type: ignore[comparison-overlap]
+ return self
+ return self.__add__(other)
+
+
+WaitBaseT = typing.Union[
+ wait_base, typing.Callable[["RetryCallState"], typing.Union[float, int]]
+]
+
+
+class wait_fixed(wait_base):
+ """Wait strategy that waits a fixed amount of time between each retry."""
+
+ def __init__(self, wait: _utils.time_unit_type) -> None:
+ self.wait_fixed = _utils.to_seconds(wait)
+
+ def __call__(self, retry_state: "RetryCallState") -> float:
+ return self.wait_fixed
+
+
+class wait_none(wait_fixed):
+ """Wait strategy that doesn't wait at all before retrying."""
+
+ def __init__(self) -> None:
+ super().__init__(0)
+
+
+class wait_random(wait_base):
+ """Wait strategy that waits a random amount of time between min/max."""
+
+ def __init__(
+ self, min: _utils.time_unit_type = 0, max: _utils.time_unit_type = 1
+ ) -> None: # noqa
+ self.wait_random_min = _utils.to_seconds(min)
+ self.wait_random_max = _utils.to_seconds(max)
+
+ def __call__(self, retry_state: "RetryCallState") -> float:
+ return self.wait_random_min + (
+ random.random() * (self.wait_random_max - self.wait_random_min)
+ )
+
+
+class wait_combine(wait_base):
+ """Combine several waiting strategies."""
+
+ def __init__(self, *strategies: wait_base) -> None:
+ self.wait_funcs = strategies
+
+ def __call__(self, retry_state: "RetryCallState") -> float:
+ return sum(x(retry_state=retry_state) for x in self.wait_funcs)
+
+
+class wait_chain(wait_base):
+ """Chain two or more waiting strategies.
+
+ If all strategies are exhausted, the very last strategy is used
+ thereafter.
+
+ For example::
+
+ @retry(wait=wait_chain(*[wait_fixed(1) for i in range(3)] +
+ [wait_fixed(2) for j in range(5)] +
+ [wait_fixed(5) for k in range(4)))
+ def wait_chained():
+ print("Wait 1s for 3 attempts, 2s for 5 attempts and 5s
+ thereafter.")
+ """
+
+ def __init__(self, *strategies: wait_base) -> None:
+ self.strategies = strategies
+
+ def __call__(self, retry_state: "RetryCallState") -> float:
+ wait_func_no = min(max(retry_state.attempt_number, 1), len(self.strategies))
+ wait_func = self.strategies[wait_func_no - 1]
+ return wait_func(retry_state=retry_state)
+
+
+class wait_incrementing(wait_base):
+ """Wait an incremental amount of time after each attempt.
+
+ Starting at a starting value and incrementing by a value for each attempt
+ (and restricting the upper limit to some maximum value).
+ """
+
+ def __init__(
+ self,
+ start: _utils.time_unit_type = 0,
+ increment: _utils.time_unit_type = 100,
+ max: _utils.time_unit_type = _utils.MAX_WAIT, # noqa
+ ) -> None:
+ self.start = _utils.to_seconds(start)
+ self.increment = _utils.to_seconds(increment)
+ self.max = _utils.to_seconds(max)
+
+ def __call__(self, retry_state: "RetryCallState") -> float:
+ result = self.start + (self.increment * (retry_state.attempt_number - 1))
+ return max(0, min(result, self.max))
+
+
+class wait_exponential(wait_base):
+ """Wait strategy that applies exponential backoff.
+
+ It allows for a customized multiplier and an ability to restrict the
+ upper and lower limits to some maximum and minimum value.
+
+ The intervals are fixed (i.e. there is no jitter), so this strategy is
+ suitable for balancing retries against latency when a required resource is
+ unavailable for an unknown duration, but *not* suitable for resolving
+ contention between multiple processes for a shared resource. Use
+ wait_random_exponential for the latter case.
+ """
+
+ def __init__(
+ self,
+ multiplier: typing.Union[int, float] = 1,
+ max: _utils.time_unit_type = _utils.MAX_WAIT, # noqa
+ exp_base: typing.Union[int, float] = 2,
+ min: _utils.time_unit_type = 0, # noqa
+ ) -> None:
+ self.multiplier = multiplier
+ self.min = _utils.to_seconds(min)
+ self.max = _utils.to_seconds(max)
+ self.exp_base = exp_base
+
+ def __call__(self, retry_state: "RetryCallState") -> float:
+ try:
+ exp = self.exp_base ** (retry_state.attempt_number - 1)
+ result = self.multiplier * exp
+ except OverflowError:
+ return self.max
+ return max(max(0, self.min), min(result, self.max))
+
+
+class wait_random_exponential(wait_exponential):
+ """Random wait with exponentially widening window.
+
+ An exponential backoff strategy used to mediate contention between multiple
+ uncoordinated processes for a shared resource in distributed systems. This
+ is the sense in which "exponential backoff" is meant in e.g. Ethernet
+ networking, and corresponds to the "Full Jitter" algorithm described in
+ this blog post:
+
+ https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
+
+ Each retry occurs at a random time in a geometrically expanding interval.
+ It allows for a custom multiplier and an ability to restrict the upper
+ limit of the random interval to some maximum value.
+
+ Example::
+
+ wait_random_exponential(multiplier=0.5, # initial window 0.5s
+ max=60) # max 60s timeout
+
+ When waiting for an unavailable resource to become available again, as
+ opposed to trying to resolve contention for a shared resource, the
+ wait_exponential strategy (which uses a fixed interval) may be preferable.
+
+ """
+
+ def __call__(self, retry_state: "RetryCallState") -> float:
+ high = super().__call__(retry_state=retry_state)
+ return random.uniform(self.min, high)
+
+
+class wait_exponential_jitter(wait_base):
+ """Wait strategy that applies exponential backoff and jitter.
+
+ It allows for a customized initial wait, maximum wait and jitter.
+
+ This implements the strategy described here:
+ https://cloud.google.com/storage/docs/retry-strategy
+
+ The wait time is min(initial * 2**n + random.uniform(0, jitter), maximum)
+ where n is the retry count.
+ """
+
+ def __init__(
+ self,
+ initial: float = 1,
+ max: float = _utils.MAX_WAIT, # noqa
+ exp_base: float = 2,
+ jitter: float = 1,
+ ) -> None:
+ self.initial = initial
+ self.max = max
+ self.exp_base = exp_base
+ self.jitter = jitter
+
+ def __call__(self, retry_state: "RetryCallState") -> float:
+ jitter = random.uniform(0, self.jitter)
+ try:
+ exp = self.exp_base ** (retry_state.attempt_number - 1)
+ result = self.initial * exp + jitter
+ except OverflowError:
+ result = self.max
+ return max(0, min(result, self.max))