diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/v1/schema.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/pydantic/v1/schema.py | 1163 |
1 files changed, 1163 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/v1/schema.py b/.venv/lib/python3.12/site-packages/pydantic/v1/schema.py new file mode 100644 index 00000000..a91fe2cd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/pydantic/v1/schema.py @@ -0,0 +1,1163 @@ +import re +import warnings +from collections import defaultdict +from dataclasses import is_dataclass +from datetime import date, datetime, time, timedelta +from decimal import Decimal +from enum import Enum +from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network +from pathlib import Path +from typing import ( + TYPE_CHECKING, + Any, + Callable, + Dict, + ForwardRef, + FrozenSet, + Generic, + Iterable, + List, + Optional, + Pattern, + Sequence, + Set, + Tuple, + Type, + TypeVar, + Union, + cast, +) +from uuid import UUID + +from typing_extensions import Annotated, Literal + +from pydantic.v1.fields import ( + MAPPING_LIKE_SHAPES, + SHAPE_DEQUE, + SHAPE_FROZENSET, + SHAPE_GENERIC, + SHAPE_ITERABLE, + SHAPE_LIST, + SHAPE_SEQUENCE, + SHAPE_SET, + SHAPE_SINGLETON, + SHAPE_TUPLE, + SHAPE_TUPLE_ELLIPSIS, + FieldInfo, + ModelField, +) +from pydantic.v1.json import pydantic_encoder +from pydantic.v1.networks import AnyUrl, EmailStr +from pydantic.v1.types import ( + ConstrainedDecimal, + ConstrainedFloat, + ConstrainedFrozenSet, + ConstrainedInt, + ConstrainedList, + ConstrainedSet, + ConstrainedStr, + SecretBytes, + SecretStr, + StrictBytes, + StrictStr, + conbytes, + condecimal, + confloat, + confrozenset, + conint, + conlist, + conset, + constr, +) +from pydantic.v1.typing import ( + all_literal_values, + get_args, + get_origin, + get_sub_types, + is_callable_type, + is_literal_type, + is_namedtuple, + is_none_type, + is_union, +) +from pydantic.v1.utils import ROOT_KEY, get_model, lenient_issubclass + +if TYPE_CHECKING: + from pydantic.v1.dataclasses import Dataclass + from pydantic.v1.main import BaseModel + +default_prefix = '#/definitions/' +default_ref_template = '#/definitions/{model}' + +TypeModelOrEnum = Union[Type['BaseModel'], Type[Enum]] +TypeModelSet = Set[TypeModelOrEnum] + + +def _apply_modify_schema( + modify_schema: Callable[..., None], field: Optional[ModelField], field_schema: Dict[str, Any] +) -> None: + from inspect import signature + + sig = signature(modify_schema) + args = set(sig.parameters.keys()) + if 'field' in args or 'kwargs' in args: + modify_schema(field_schema, field=field) + else: + modify_schema(field_schema) + + +def schema( + models: Sequence[Union[Type['BaseModel'], Type['Dataclass']]], + *, + by_alias: bool = True, + title: Optional[str] = None, + description: Optional[str] = None, + ref_prefix: Optional[str] = None, + ref_template: str = default_ref_template, +) -> Dict[str, Any]: + """ + Process a list of models and generate a single JSON Schema with all of them defined in the ``definitions`` + top-level JSON key, including their sub-models. + + :param models: a list of models to include in the generated JSON Schema + :param by_alias: generate the schemas using the aliases defined, if any + :param title: title for the generated schema that includes the definitions + :param description: description for the generated schema + :param ref_prefix: the JSON Pointer prefix for schema references with ``$ref``, if None, will be set to the + default of ``#/definitions/``. Update it if you want the schemas to reference the definitions somewhere + else, e.g. for OpenAPI use ``#/components/schemas/``. The resulting generated schemas will still be at the + top-level key ``definitions``, so you can extract them from there. But all the references will have the set + prefix. + :param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful + for references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For + a sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``. + :return: dict with the JSON Schema with a ``definitions`` top-level key including the schema definitions for + the models and sub-models passed in ``models``. + """ + clean_models = [get_model(model) for model in models] + flat_models = get_flat_models_from_models(clean_models) + model_name_map = get_model_name_map(flat_models) + definitions = {} + output_schema: Dict[str, Any] = {} + if title: + output_schema['title'] = title + if description: + output_schema['description'] = description + for model in clean_models: + m_schema, m_definitions, m_nested_models = model_process_schema( + model, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + ) + definitions.update(m_definitions) + model_name = model_name_map[model] + definitions[model_name] = m_schema + if definitions: + output_schema['definitions'] = definitions + return output_schema + + +def model_schema( + model: Union[Type['BaseModel'], Type['Dataclass']], + by_alias: bool = True, + ref_prefix: Optional[str] = None, + ref_template: str = default_ref_template, +) -> Dict[str, Any]: + """ + Generate a JSON Schema for one model. With all the sub-models defined in the ``definitions`` top-level + JSON key. + + :param model: a Pydantic model (a class that inherits from BaseModel) + :param by_alias: generate the schemas using the aliases defined, if any + :param ref_prefix: the JSON Pointer prefix for schema references with ``$ref``, if None, will be set to the + default of ``#/definitions/``. Update it if you want the schemas to reference the definitions somewhere + else, e.g. for OpenAPI use ``#/components/schemas/``. The resulting generated schemas will still be at the + top-level key ``definitions``, so you can extract them from there. But all the references will have the set + prefix. + :param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful for + references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For a + sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``. + :return: dict with the JSON Schema for the passed ``model`` + """ + model = get_model(model) + flat_models = get_flat_models_from_model(model) + model_name_map = get_model_name_map(flat_models) + model_name = model_name_map[model] + m_schema, m_definitions, nested_models = model_process_schema( + model, by_alias=by_alias, model_name_map=model_name_map, ref_prefix=ref_prefix, ref_template=ref_template + ) + if model_name in nested_models: + # model_name is in Nested models, it has circular references + m_definitions[model_name] = m_schema + m_schema = get_schema_ref(model_name, ref_prefix, ref_template, False) + if m_definitions: + m_schema.update({'definitions': m_definitions}) + return m_schema + + +def get_field_info_schema(field: ModelField, schema_overrides: bool = False) -> Tuple[Dict[str, Any], bool]: + # If no title is explicitly set, we don't set title in the schema for enums. + # The behaviour is the same as `BaseModel` reference, where the default title + # is in the definitions part of the schema. + schema_: Dict[str, Any] = {} + if field.field_info.title or not lenient_issubclass(field.type_, Enum): + schema_['title'] = field.field_info.title or field.alias.title().replace('_', ' ') + + if field.field_info.title: + schema_overrides = True + + if field.field_info.description: + schema_['description'] = field.field_info.description + schema_overrides = True + + if not field.required and field.default is not None and not is_callable_type(field.outer_type_): + schema_['default'] = encode_default(field.default) + schema_overrides = True + + return schema_, schema_overrides + + +def field_schema( + field: ModelField, + *, + by_alias: bool = True, + model_name_map: Dict[TypeModelOrEnum, str], + ref_prefix: Optional[str] = None, + ref_template: str = default_ref_template, + known_models: Optional[TypeModelSet] = None, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + Process a Pydantic field and return a tuple with a JSON Schema for it as the first item. + Also return a dictionary of definitions with models as keys and their schemas as values. If the passed field + is a model and has sub-models, and those sub-models don't have overrides (as ``title``, ``default``, etc), they + will be included in the definitions and referenced in the schema instead of included recursively. + + :param field: a Pydantic ``ModelField`` + :param by_alias: use the defined alias (if any) in the returned schema + :param model_name_map: used to generate the JSON Schema references to other models included in the definitions + :param ref_prefix: the JSON Pointer prefix to use for references to other schemas, if None, the default of + #/definitions/ will be used + :param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful for + references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For a + sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``. + :param known_models: used to solve circular references + :return: tuple of the schema for this field and additional definitions + """ + s, schema_overrides = get_field_info_schema(field) + + validation_schema = get_field_schema_validations(field) + if validation_schema: + s.update(validation_schema) + schema_overrides = True + + f_schema, f_definitions, f_nested_models = field_type_schema( + field, + by_alias=by_alias, + model_name_map=model_name_map, + schema_overrides=schema_overrides, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models or set(), + ) + + # $ref will only be returned when there are no schema_overrides + if '$ref' in f_schema: + return f_schema, f_definitions, f_nested_models + else: + s.update(f_schema) + return s, f_definitions, f_nested_models + + +numeric_types = (int, float, Decimal) +_str_types_attrs: Tuple[Tuple[str, Union[type, Tuple[type, ...]], str], ...] = ( + ('max_length', numeric_types, 'maxLength'), + ('min_length', numeric_types, 'minLength'), + ('regex', str, 'pattern'), +) + +_numeric_types_attrs: Tuple[Tuple[str, Union[type, Tuple[type, ...]], str], ...] = ( + ('gt', numeric_types, 'exclusiveMinimum'), + ('lt', numeric_types, 'exclusiveMaximum'), + ('ge', numeric_types, 'minimum'), + ('le', numeric_types, 'maximum'), + ('multiple_of', numeric_types, 'multipleOf'), +) + + +def get_field_schema_validations(field: ModelField) -> Dict[str, Any]: + """ + Get the JSON Schema validation keywords for a ``field`` with an annotation of + a Pydantic ``FieldInfo`` with validation arguments. + """ + f_schema: Dict[str, Any] = {} + + if lenient_issubclass(field.type_, Enum): + # schema is already updated by `enum_process_schema`; just update with field extra + if field.field_info.extra: + f_schema.update(field.field_info.extra) + return f_schema + + if lenient_issubclass(field.type_, (str, bytes)): + for attr_name, t, keyword in _str_types_attrs: + attr = getattr(field.field_info, attr_name, None) + if isinstance(attr, t): + f_schema[keyword] = attr + if lenient_issubclass(field.type_, numeric_types) and not issubclass(field.type_, bool): + for attr_name, t, keyword in _numeric_types_attrs: + attr = getattr(field.field_info, attr_name, None) + if isinstance(attr, t): + f_schema[keyword] = attr + if field.field_info is not None and field.field_info.const: + f_schema['const'] = field.default + if field.field_info.extra: + f_schema.update(field.field_info.extra) + modify_schema = getattr(field.outer_type_, '__modify_schema__', None) + if modify_schema: + _apply_modify_schema(modify_schema, field, f_schema) + return f_schema + + +def get_model_name_map(unique_models: TypeModelSet) -> Dict[TypeModelOrEnum, str]: + """ + Process a set of models and generate unique names for them to be used as keys in the JSON Schema + definitions. By default the names are the same as the class name. But if two models in different Python + modules have the same name (e.g. "users.Model" and "items.Model"), the generated names will be + based on the Python module path for those conflicting models to prevent name collisions. + + :param unique_models: a Python set of models + :return: dict mapping models to names + """ + name_model_map = {} + conflicting_names: Set[str] = set() + for model in unique_models: + model_name = normalize_name(model.__name__) + if model_name in conflicting_names: + model_name = get_long_model_name(model) + name_model_map[model_name] = model + elif model_name in name_model_map: + conflicting_names.add(model_name) + conflicting_model = name_model_map.pop(model_name) + name_model_map[get_long_model_name(conflicting_model)] = conflicting_model + name_model_map[get_long_model_name(model)] = model + else: + name_model_map[model_name] = model + return {v: k for k, v in name_model_map.items()} + + +def get_flat_models_from_model(model: Type['BaseModel'], known_models: Optional[TypeModelSet] = None) -> TypeModelSet: + """ + Take a single ``model`` and generate a set with itself and all the sub-models in the tree. I.e. if you pass + model ``Foo`` (subclass of Pydantic ``BaseModel``) as ``model``, and it has a field of type ``Bar`` (also + subclass of ``BaseModel``) and that model ``Bar`` has a field of type ``Baz`` (also subclass of ``BaseModel``), + the return value will be ``set([Foo, Bar, Baz])``. + + :param model: a Pydantic ``BaseModel`` subclass + :param known_models: used to solve circular references + :return: a set with the initial model and all its sub-models + """ + known_models = known_models or set() + flat_models: TypeModelSet = set() + flat_models.add(model) + known_models |= flat_models + fields = cast(Sequence[ModelField], model.__fields__.values()) + flat_models |= get_flat_models_from_fields(fields, known_models=known_models) + return flat_models + + +def get_flat_models_from_field(field: ModelField, known_models: TypeModelSet) -> TypeModelSet: + """ + Take a single Pydantic ``ModelField`` (from a model) that could have been declared as a subclass of BaseModel + (so, it could be a submodel), and generate a set with its model and all the sub-models in the tree. + I.e. if you pass a field that was declared to be of type ``Foo`` (subclass of BaseModel) as ``field``, and that + model ``Foo`` has a field of type ``Bar`` (also subclass of ``BaseModel``) and that model ``Bar`` has a field of + type ``Baz`` (also subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``. + + :param field: a Pydantic ``ModelField`` + :param known_models: used to solve circular references + :return: a set with the model used in the declaration for this field, if any, and all its sub-models + """ + from pydantic.v1.main import BaseModel + + flat_models: TypeModelSet = set() + + field_type = field.type_ + if lenient_issubclass(getattr(field_type, '__pydantic_model__', None), BaseModel): + field_type = field_type.__pydantic_model__ + + if field.sub_fields and not lenient_issubclass(field_type, BaseModel): + flat_models |= get_flat_models_from_fields(field.sub_fields, known_models=known_models) + elif lenient_issubclass(field_type, BaseModel) and field_type not in known_models: + flat_models |= get_flat_models_from_model(field_type, known_models=known_models) + elif lenient_issubclass(field_type, Enum): + flat_models.add(field_type) + return flat_models + + +def get_flat_models_from_fields(fields: Sequence[ModelField], known_models: TypeModelSet) -> TypeModelSet: + """ + Take a list of Pydantic ``ModelField``s (from a model) that could have been declared as subclasses of ``BaseModel`` + (so, any of them could be a submodel), and generate a set with their models and all the sub-models in the tree. + I.e. if you pass a the fields of a model ``Foo`` (subclass of ``BaseModel``) as ``fields``, and on of them has a + field of type ``Bar`` (also subclass of ``BaseModel``) and that model ``Bar`` has a field of type ``Baz`` (also + subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``. + + :param fields: a list of Pydantic ``ModelField``s + :param known_models: used to solve circular references + :return: a set with any model declared in the fields, and all their sub-models + """ + flat_models: TypeModelSet = set() + for field in fields: + flat_models |= get_flat_models_from_field(field, known_models=known_models) + return flat_models + + +def get_flat_models_from_models(models: Sequence[Type['BaseModel']]) -> TypeModelSet: + """ + Take a list of ``models`` and generate a set with them and all their sub-models in their trees. I.e. if you pass + a list of two models, ``Foo`` and ``Bar``, both subclasses of Pydantic ``BaseModel`` as models, and ``Bar`` has + a field of type ``Baz`` (also subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``. + """ + flat_models: TypeModelSet = set() + for model in models: + flat_models |= get_flat_models_from_model(model) + return flat_models + + +def get_long_model_name(model: TypeModelOrEnum) -> str: + return f'{model.__module__}__{model.__qualname__}'.replace('.', '__') + + +def field_type_schema( + field: ModelField, + *, + by_alias: bool, + model_name_map: Dict[TypeModelOrEnum, str], + ref_template: str, + schema_overrides: bool = False, + ref_prefix: Optional[str] = None, + known_models: TypeModelSet, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + Used by ``field_schema()``, you probably should be using that function. + + Take a single ``field`` and generate the schema for its type only, not including additional + information as title, etc. Also return additional schema definitions, from sub-models. + """ + from pydantic.v1.main import BaseModel # noqa: F811 + + definitions = {} + nested_models: Set[str] = set() + f_schema: Dict[str, Any] + if field.shape in { + SHAPE_LIST, + SHAPE_TUPLE_ELLIPSIS, + SHAPE_SEQUENCE, + SHAPE_SET, + SHAPE_FROZENSET, + SHAPE_ITERABLE, + SHAPE_DEQUE, + }: + items_schema, f_definitions, f_nested_models = field_singleton_schema( + field, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + definitions.update(f_definitions) + nested_models.update(f_nested_models) + f_schema = {'type': 'array', 'items': items_schema} + if field.shape in {SHAPE_SET, SHAPE_FROZENSET}: + f_schema['uniqueItems'] = True + + elif field.shape in MAPPING_LIKE_SHAPES: + f_schema = {'type': 'object'} + key_field = cast(ModelField, field.key_field) + regex = getattr(key_field.type_, 'regex', None) + items_schema, f_definitions, f_nested_models = field_singleton_schema( + field, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + definitions.update(f_definitions) + nested_models.update(f_nested_models) + if regex: + # Dict keys have a regex pattern + # items_schema might be a schema or empty dict, add it either way + f_schema['patternProperties'] = {ConstrainedStr._get_pattern(regex): items_schema} + if items_schema: + # The dict values are not simply Any, so they need a schema + f_schema['additionalProperties'] = items_schema + elif field.shape == SHAPE_TUPLE or (field.shape == SHAPE_GENERIC and not issubclass(field.type_, BaseModel)): + sub_schema = [] + sub_fields = cast(List[ModelField], field.sub_fields) + for sf in sub_fields: + sf_schema, sf_definitions, sf_nested_models = field_type_schema( + sf, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + definitions.update(sf_definitions) + nested_models.update(sf_nested_models) + sub_schema.append(sf_schema) + + sub_fields_len = len(sub_fields) + if field.shape == SHAPE_GENERIC: + all_of_schemas = sub_schema[0] if sub_fields_len == 1 else {'type': 'array', 'items': sub_schema} + f_schema = {'allOf': [all_of_schemas]} + else: + f_schema = { + 'type': 'array', + 'minItems': sub_fields_len, + 'maxItems': sub_fields_len, + } + if sub_fields_len >= 1: + f_schema['items'] = sub_schema + else: + assert field.shape in {SHAPE_SINGLETON, SHAPE_GENERIC}, field.shape + f_schema, f_definitions, f_nested_models = field_singleton_schema( + field, + by_alias=by_alias, + model_name_map=model_name_map, + schema_overrides=schema_overrides, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + definitions.update(f_definitions) + nested_models.update(f_nested_models) + + # check field type to avoid repeated calls to the same __modify_schema__ method + if field.type_ != field.outer_type_: + if field.shape == SHAPE_GENERIC: + field_type = field.type_ + else: + field_type = field.outer_type_ + modify_schema = getattr(field_type, '__modify_schema__', None) + if modify_schema: + _apply_modify_schema(modify_schema, field, f_schema) + return f_schema, definitions, nested_models + + +def model_process_schema( + model: TypeModelOrEnum, + *, + by_alias: bool = True, + model_name_map: Dict[TypeModelOrEnum, str], + ref_prefix: Optional[str] = None, + ref_template: str = default_ref_template, + known_models: Optional[TypeModelSet] = None, + field: Optional[ModelField] = None, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + Used by ``model_schema()``, you probably should be using that function. + + Take a single ``model`` and generate its schema. Also return additional schema definitions, from sub-models. The + sub-models of the returned schema will be referenced, but their definitions will not be included in the schema. All + the definitions are returned as the second value. + """ + from inspect import getdoc, signature + + known_models = known_models or set() + if lenient_issubclass(model, Enum): + model = cast(Type[Enum], model) + s = enum_process_schema(model, field=field) + return s, {}, set() + model = cast(Type['BaseModel'], model) + s = {'title': model.__config__.title or model.__name__} + doc = getdoc(model) + if doc: + s['description'] = doc + known_models.add(model) + m_schema, m_definitions, nested_models = model_type_schema( + model, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + s.update(m_schema) + schema_extra = model.__config__.schema_extra + if callable(schema_extra): + if len(signature(schema_extra).parameters) == 1: + schema_extra(s) + else: + schema_extra(s, model) + else: + s.update(schema_extra) + return s, m_definitions, nested_models + + +def model_type_schema( + model: Type['BaseModel'], + *, + by_alias: bool, + model_name_map: Dict[TypeModelOrEnum, str], + ref_template: str, + ref_prefix: Optional[str] = None, + known_models: TypeModelSet, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + You probably should be using ``model_schema()``, this function is indirectly used by that function. + + Take a single ``model`` and generate the schema for its type only, not including additional + information as title, etc. Also return additional schema definitions, from sub-models. + """ + properties = {} + required = [] + definitions: Dict[str, Any] = {} + nested_models: Set[str] = set() + for k, f in model.__fields__.items(): + try: + f_schema, f_definitions, f_nested_models = field_schema( + f, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + except SkipField as skip: + warnings.warn(skip.message, UserWarning) + continue + definitions.update(f_definitions) + nested_models.update(f_nested_models) + if by_alias: + properties[f.alias] = f_schema + if f.required: + required.append(f.alias) + else: + properties[k] = f_schema + if f.required: + required.append(k) + if ROOT_KEY in properties: + out_schema = properties[ROOT_KEY] + out_schema['title'] = model.__config__.title or model.__name__ + else: + out_schema = {'type': 'object', 'properties': properties} + if required: + out_schema['required'] = required + if model.__config__.extra == 'forbid': + out_schema['additionalProperties'] = False + return out_schema, definitions, nested_models + + +def enum_process_schema(enum: Type[Enum], *, field: Optional[ModelField] = None) -> Dict[str, Any]: + """ + Take a single `enum` and generate its schema. + + This is similar to the `model_process_schema` function, but applies to ``Enum`` objects. + """ + import inspect + + schema_: Dict[str, Any] = { + 'title': enum.__name__, + # Python assigns all enums a default docstring value of 'An enumeration', so + # all enums will have a description field even if not explicitly provided. + 'description': inspect.cleandoc(enum.__doc__ or 'An enumeration.'), + # Add enum values and the enum field type to the schema. + 'enum': [item.value for item in cast(Iterable[Enum], enum)], + } + + add_field_type_to_schema(enum, schema_) + + modify_schema = getattr(enum, '__modify_schema__', None) + if modify_schema: + _apply_modify_schema(modify_schema, field, schema_) + + return schema_ + + +def field_singleton_sub_fields_schema( + field: ModelField, + *, + by_alias: bool, + model_name_map: Dict[TypeModelOrEnum, str], + ref_template: str, + schema_overrides: bool = False, + ref_prefix: Optional[str] = None, + known_models: TypeModelSet, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + This function is indirectly used by ``field_schema()``, you probably should be using that function. + + Take a list of Pydantic ``ModelField`` from the declaration of a type with parameters, and generate their + schema. I.e., fields used as "type parameters", like ``str`` and ``int`` in ``Tuple[str, int]``. + """ + sub_fields = cast(List[ModelField], field.sub_fields) + definitions = {} + nested_models: Set[str] = set() + if len(sub_fields) == 1: + return field_type_schema( + sub_fields[0], + by_alias=by_alias, + model_name_map=model_name_map, + schema_overrides=schema_overrides, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + else: + s: Dict[str, Any] = {} + # https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#discriminator-object + field_has_discriminator: bool = field.discriminator_key is not None + if field_has_discriminator: + assert field.sub_fields_mapping is not None + + discriminator_models_refs: Dict[str, Union[str, Dict[str, Any]]] = {} + + for discriminator_value, sub_field in field.sub_fields_mapping.items(): + if isinstance(discriminator_value, Enum): + discriminator_value = str(discriminator_value.value) + # sub_field is either a `BaseModel` or directly an `Annotated` `Union` of many + if is_union(get_origin(sub_field.type_)): + sub_models = get_sub_types(sub_field.type_) + discriminator_models_refs[discriminator_value] = { + model_name_map[sub_model]: get_schema_ref( + model_name_map[sub_model], ref_prefix, ref_template, False + ) + for sub_model in sub_models + } + else: + sub_field_type = sub_field.type_ + if hasattr(sub_field_type, '__pydantic_model__'): + sub_field_type = sub_field_type.__pydantic_model__ + + discriminator_model_name = model_name_map[sub_field_type] + discriminator_model_ref = get_schema_ref(discriminator_model_name, ref_prefix, ref_template, False) + discriminator_models_refs[discriminator_value] = discriminator_model_ref['$ref'] + + s['discriminator'] = { + 'propertyName': field.discriminator_alias if by_alias else field.discriminator_key, + 'mapping': discriminator_models_refs, + } + + sub_field_schemas = [] + for sf in sub_fields: + sub_schema, sub_definitions, sub_nested_models = field_type_schema( + sf, + by_alias=by_alias, + model_name_map=model_name_map, + schema_overrides=schema_overrides, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + definitions.update(sub_definitions) + if schema_overrides and 'allOf' in sub_schema: + # if the sub_field is a referenced schema we only need the referenced + # object. Otherwise we will end up with several allOf inside anyOf/oneOf. + # See https://github.com/pydantic/pydantic/issues/1209 + sub_schema = sub_schema['allOf'][0] + + if sub_schema.keys() == {'discriminator', 'oneOf'}: + # we don't want discriminator information inside oneOf choices, this is dealt with elsewhere + sub_schema.pop('discriminator') + sub_field_schemas.append(sub_schema) + nested_models.update(sub_nested_models) + s['oneOf' if field_has_discriminator else 'anyOf'] = sub_field_schemas + return s, definitions, nested_models + + +# Order is important, e.g. subclasses of str must go before str +# this is used only for standard library types, custom types should use __modify_schema__ instead +field_class_to_schema: Tuple[Tuple[Any, Dict[str, Any]], ...] = ( + (Path, {'type': 'string', 'format': 'path'}), + (datetime, {'type': 'string', 'format': 'date-time'}), + (date, {'type': 'string', 'format': 'date'}), + (time, {'type': 'string', 'format': 'time'}), + (timedelta, {'type': 'number', 'format': 'time-delta'}), + (IPv4Network, {'type': 'string', 'format': 'ipv4network'}), + (IPv6Network, {'type': 'string', 'format': 'ipv6network'}), + (IPv4Interface, {'type': 'string', 'format': 'ipv4interface'}), + (IPv6Interface, {'type': 'string', 'format': 'ipv6interface'}), + (IPv4Address, {'type': 'string', 'format': 'ipv4'}), + (IPv6Address, {'type': 'string', 'format': 'ipv6'}), + (Pattern, {'type': 'string', 'format': 'regex'}), + (str, {'type': 'string'}), + (bytes, {'type': 'string', 'format': 'binary'}), + (bool, {'type': 'boolean'}), + (int, {'type': 'integer'}), + (float, {'type': 'number'}), + (Decimal, {'type': 'number'}), + (UUID, {'type': 'string', 'format': 'uuid'}), + (dict, {'type': 'object'}), + (list, {'type': 'array', 'items': {}}), + (tuple, {'type': 'array', 'items': {}}), + (set, {'type': 'array', 'items': {}, 'uniqueItems': True}), + (frozenset, {'type': 'array', 'items': {}, 'uniqueItems': True}), +) + +json_scheme = {'type': 'string', 'format': 'json-string'} + + +def add_field_type_to_schema(field_type: Any, schema_: Dict[str, Any]) -> None: + """ + Update the given `schema` with the type-specific metadata for the given `field_type`. + + This function looks through `field_class_to_schema` for a class that matches the given `field_type`, + and then modifies the given `schema` with the information from that type. + """ + for type_, t_schema in field_class_to_schema: + # Fallback for `typing.Pattern` and `re.Pattern` as they are not a valid class + if lenient_issubclass(field_type, type_) or field_type is type_ is Pattern: + schema_.update(t_schema) + break + + +def get_schema_ref(name: str, ref_prefix: Optional[str], ref_template: str, schema_overrides: bool) -> Dict[str, Any]: + if ref_prefix: + schema_ref = {'$ref': ref_prefix + name} + else: + schema_ref = {'$ref': ref_template.format(model=name)} + return {'allOf': [schema_ref]} if schema_overrides else schema_ref + + +def field_singleton_schema( # noqa: C901 (ignore complexity) + field: ModelField, + *, + by_alias: bool, + model_name_map: Dict[TypeModelOrEnum, str], + ref_template: str, + schema_overrides: bool = False, + ref_prefix: Optional[str] = None, + known_models: TypeModelSet, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + This function is indirectly used by ``field_schema()``, you should probably be using that function. + + Take a single Pydantic ``ModelField``, and return its schema and any additional definitions from sub-models. + """ + from pydantic.v1.main import BaseModel + + definitions: Dict[str, Any] = {} + nested_models: Set[str] = set() + field_type = field.type_ + + # Recurse into this field if it contains sub_fields and is NOT a + # BaseModel OR that BaseModel is a const + if field.sub_fields and ( + (field.field_info and field.field_info.const) or not lenient_issubclass(field_type, BaseModel) + ): + return field_singleton_sub_fields_schema( + field, + by_alias=by_alias, + model_name_map=model_name_map, + schema_overrides=schema_overrides, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + if field_type is Any or field_type is object or field_type.__class__ == TypeVar or get_origin(field_type) is type: + return {}, definitions, nested_models # no restrictions + if is_none_type(field_type): + return {'type': 'null'}, definitions, nested_models + if is_callable_type(field_type): + raise SkipField(f'Callable {field.name} was excluded from schema since JSON schema has no equivalent type.') + f_schema: Dict[str, Any] = {} + if field.field_info is not None and field.field_info.const: + f_schema['const'] = field.default + + if is_literal_type(field_type): + values = tuple(x.value if isinstance(x, Enum) else x for x in all_literal_values(field_type)) + + if len({v.__class__ for v in values}) > 1: + return field_schema( + multitypes_literal_field_for_schema(values, field), + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + + # All values have the same type + field_type = values[0].__class__ + f_schema['enum'] = list(values) + add_field_type_to_schema(field_type, f_schema) + elif lenient_issubclass(field_type, Enum): + enum_name = model_name_map[field_type] + f_schema, schema_overrides = get_field_info_schema(field, schema_overrides) + f_schema.update(get_schema_ref(enum_name, ref_prefix, ref_template, schema_overrides)) + definitions[enum_name] = enum_process_schema(field_type, field=field) + elif is_namedtuple(field_type): + sub_schema, *_ = model_process_schema( + field_type.__pydantic_model__, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + field=field, + ) + items_schemas = list(sub_schema['properties'].values()) + f_schema.update( + { + 'type': 'array', + 'items': items_schemas, + 'minItems': len(items_schemas), + 'maxItems': len(items_schemas), + } + ) + elif not hasattr(field_type, '__pydantic_model__'): + add_field_type_to_schema(field_type, f_schema) + + modify_schema = getattr(field_type, '__modify_schema__', None) + if modify_schema: + _apply_modify_schema(modify_schema, field, f_schema) + + if f_schema: + return f_schema, definitions, nested_models + + # Handle dataclass-based models + if lenient_issubclass(getattr(field_type, '__pydantic_model__', None), BaseModel): + field_type = field_type.__pydantic_model__ + + if issubclass(field_type, BaseModel): + model_name = model_name_map[field_type] + if field_type not in known_models: + sub_schema, sub_definitions, sub_nested_models = model_process_schema( + field_type, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + field=field, + ) + definitions.update(sub_definitions) + definitions[model_name] = sub_schema + nested_models.update(sub_nested_models) + else: + nested_models.add(model_name) + schema_ref = get_schema_ref(model_name, ref_prefix, ref_template, schema_overrides) + return schema_ref, definitions, nested_models + + # For generics with no args + args = get_args(field_type) + if args is not None and not args and Generic in field_type.__bases__: + return f_schema, definitions, nested_models + + raise ValueError(f'Value not declarable with JSON Schema, field: {field}') + + +def multitypes_literal_field_for_schema(values: Tuple[Any, ...], field: ModelField) -> ModelField: + """ + To support `Literal` with values of different types, we split it into multiple `Literal` with same type + e.g. `Literal['qwe', 'asd', 1, 2]` becomes `Union[Literal['qwe', 'asd'], Literal[1, 2]]` + """ + literal_distinct_types = defaultdict(list) + for v in values: + literal_distinct_types[v.__class__].append(v) + distinct_literals = (Literal[tuple(same_type_values)] for same_type_values in literal_distinct_types.values()) + + return ModelField( + name=field.name, + type_=Union[tuple(distinct_literals)], # type: ignore + class_validators=field.class_validators, + model_config=field.model_config, + default=field.default, + required=field.required, + alias=field.alias, + field_info=field.field_info, + ) + + +def encode_default(dft: Any) -> Any: + from pydantic.v1.main import BaseModel + + if isinstance(dft, BaseModel) or is_dataclass(dft): + dft = cast('dict[str, Any]', pydantic_encoder(dft)) + + if isinstance(dft, dict): + return {encode_default(k): encode_default(v) for k, v in dft.items()} + elif isinstance(dft, Enum): + return dft.value + elif isinstance(dft, (int, float, str)): + return dft + elif isinstance(dft, (list, tuple)): + t = dft.__class__ + seq_args = (encode_default(v) for v in dft) + return t(*seq_args) if is_namedtuple(t) else t(seq_args) + elif dft is None: + return None + else: + return pydantic_encoder(dft) + + +_map_types_constraint: Dict[Any, Callable[..., type]] = {int: conint, float: confloat, Decimal: condecimal} + + +def get_annotation_from_field_info( + annotation: Any, field_info: FieldInfo, field_name: str, validate_assignment: bool = False +) -> Type[Any]: + """ + Get an annotation with validation implemented for numbers and strings based on the field_info. + :param annotation: an annotation from a field specification, as ``str``, ``ConstrainedStr`` + :param field_info: an instance of FieldInfo, possibly with declarations for validations and JSON Schema + :param field_name: name of the field for use in error messages + :param validate_assignment: default False, flag for BaseModel Config value of validate_assignment + :return: the same ``annotation`` if unmodified or a new annotation with validation in place + """ + constraints = field_info.get_constraints() + used_constraints: Set[str] = set() + if constraints: + annotation, used_constraints = get_annotation_with_constraints(annotation, field_info) + if validate_assignment: + used_constraints.add('allow_mutation') + + unused_constraints = constraints - used_constraints + if unused_constraints: + raise ValueError( + f'On field "{field_name}" the following field constraints are set but not enforced: ' + f'{", ".join(unused_constraints)}. ' + f'\nFor more details see https://docs.pydantic.dev/usage/schema/#unenforced-field-constraints' + ) + + return annotation + + +def get_annotation_with_constraints(annotation: Any, field_info: FieldInfo) -> Tuple[Type[Any], Set[str]]: # noqa: C901 + """ + Get an annotation with used constraints implemented for numbers and strings based on the field_info. + + :param annotation: an annotation from a field specification, as ``str``, ``ConstrainedStr`` + :param field_info: an instance of FieldInfo, possibly with declarations for validations and JSON Schema + :return: the same ``annotation`` if unmodified or a new annotation along with the used constraints. + """ + used_constraints: Set[str] = set() + + def go(type_: Any) -> Type[Any]: + if ( + is_literal_type(type_) + or isinstance(type_, ForwardRef) + or lenient_issubclass(type_, (ConstrainedList, ConstrainedSet, ConstrainedFrozenSet)) + ): + return type_ + origin = get_origin(type_) + if origin is not None: + args: Tuple[Any, ...] = get_args(type_) + if any(isinstance(a, ForwardRef) for a in args): + # forward refs cause infinite recursion below + return type_ + + if origin is Annotated: + return go(args[0]) + if is_union(origin): + return Union[tuple(go(a) for a in args)] # type: ignore + + if issubclass(origin, List) and ( + field_info.min_items is not None + or field_info.max_items is not None + or field_info.unique_items is not None + ): + used_constraints.update({'min_items', 'max_items', 'unique_items'}) + return conlist( + go(args[0]), + min_items=field_info.min_items, + max_items=field_info.max_items, + unique_items=field_info.unique_items, + ) + + if issubclass(origin, Set) and (field_info.min_items is not None or field_info.max_items is not None): + used_constraints.update({'min_items', 'max_items'}) + return conset(go(args[0]), min_items=field_info.min_items, max_items=field_info.max_items) + + if issubclass(origin, FrozenSet) and (field_info.min_items is not None or field_info.max_items is not None): + used_constraints.update({'min_items', 'max_items'}) + return confrozenset(go(args[0]), min_items=field_info.min_items, max_items=field_info.max_items) + + for t in (Tuple, List, Set, FrozenSet, Sequence): + if issubclass(origin, t): # type: ignore + return t[tuple(go(a) for a in args)] # type: ignore + + if issubclass(origin, Dict): + return Dict[args[0], go(args[1])] # type: ignore + + attrs: Optional[Tuple[str, ...]] = None + constraint_func: Optional[Callable[..., type]] = None + if isinstance(type_, type): + if issubclass(type_, (SecretStr, SecretBytes)): + attrs = ('max_length', 'min_length') + + def constraint_func(**kw: Any) -> Type[Any]: # noqa: F811 + return type(type_.__name__, (type_,), kw) + + elif issubclass(type_, str) and not issubclass(type_, (EmailStr, AnyUrl)): + attrs = ('max_length', 'min_length', 'regex') + if issubclass(type_, StrictStr): + + def constraint_func(**kw: Any) -> Type[Any]: + return type(type_.__name__, (type_,), kw) + + else: + constraint_func = constr + elif issubclass(type_, bytes): + attrs = ('max_length', 'min_length', 'regex') + if issubclass(type_, StrictBytes): + + def constraint_func(**kw: Any) -> Type[Any]: + return type(type_.__name__, (type_,), kw) + + else: + constraint_func = conbytes + elif issubclass(type_, numeric_types) and not issubclass( + type_, + ( + ConstrainedInt, + ConstrainedFloat, + ConstrainedDecimal, + ConstrainedList, + ConstrainedSet, + ConstrainedFrozenSet, + bool, + ), + ): + # Is numeric type + attrs = ('gt', 'lt', 'ge', 'le', 'multiple_of') + if issubclass(type_, float): + attrs += ('allow_inf_nan',) + if issubclass(type_, Decimal): + attrs += ('max_digits', 'decimal_places') + numeric_type = next(t for t in numeric_types if issubclass(type_, t)) # pragma: no branch + constraint_func = _map_types_constraint[numeric_type] + + if attrs: + used_constraints.update(set(attrs)) + kwargs = { + attr_name: attr + for attr_name, attr in ((attr_name, getattr(field_info, attr_name)) for attr_name in attrs) + if attr is not None + } + if kwargs: + constraint_func = cast(Callable[..., type], constraint_func) + return constraint_func(**kwargs) + return type_ + + return go(annotation), used_constraints + + +def normalize_name(name: str) -> str: + """ + Normalizes the given name. This can be applied to either a model *or* enum. + """ + return re.sub(r'[^a-zA-Z0-9.\-_]', '_', name) + + +class SkipField(Exception): + """ + Utility exception used to exclude fields from schema. + """ + + def __init__(self, message: str) -> None: + self.message = message |