about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/pydantic/v1/mypy.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/v1/mypy.py')
-rw-r--r--.venv/lib/python3.12/site-packages/pydantic/v1/mypy.py949
1 files changed, 949 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/v1/mypy.py b/.venv/lib/python3.12/site-packages/pydantic/v1/mypy.py
new file mode 100644
index 00000000..f4e27ab4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/pydantic/v1/mypy.py
@@ -0,0 +1,949 @@
+import sys
+from configparser import ConfigParser
+from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type as TypingType, Union
+
+from mypy.errorcodes import ErrorCode
+from mypy.nodes import (
+    ARG_NAMED,
+    ARG_NAMED_OPT,
+    ARG_OPT,
+    ARG_POS,
+    ARG_STAR2,
+    MDEF,
+    Argument,
+    AssignmentStmt,
+    Block,
+    CallExpr,
+    ClassDef,
+    Context,
+    Decorator,
+    EllipsisExpr,
+    FuncBase,
+    FuncDef,
+    JsonDict,
+    MemberExpr,
+    NameExpr,
+    PassStmt,
+    PlaceholderNode,
+    RefExpr,
+    StrExpr,
+    SymbolNode,
+    SymbolTableNode,
+    TempNode,
+    TypeInfo,
+    TypeVarExpr,
+    Var,
+)
+from mypy.options import Options
+from mypy.plugin import (
+    CheckerPluginInterface,
+    ClassDefContext,
+    FunctionContext,
+    MethodContext,
+    Plugin,
+    ReportConfigContext,
+    SemanticAnalyzerPluginInterface,
+)
+from mypy.plugins import dataclasses
+from mypy.semanal import set_callable_name  # type: ignore
+from mypy.server.trigger import make_wildcard_trigger
+from mypy.types import (
+    AnyType,
+    CallableType,
+    Instance,
+    NoneType,
+    Overloaded,
+    ProperType,
+    Type,
+    TypeOfAny,
+    TypeType,
+    TypeVarId,
+    TypeVarType,
+    UnionType,
+    get_proper_type,
+)
+from mypy.typevars import fill_typevars
+from mypy.util import get_unique_redefinition_name
+from mypy.version import __version__ as mypy_version
+
+from pydantic.v1.utils import is_valid_field
+
+try:
+    from mypy.types import TypeVarDef  # type: ignore[attr-defined]
+except ImportError:  # pragma: no cover
+    # Backward-compatible with TypeVarDef from Mypy 0.910.
+    from mypy.types import TypeVarType as TypeVarDef
+
+CONFIGFILE_KEY = 'pydantic-mypy'
+METADATA_KEY = 'pydantic-mypy-metadata'
+_NAMESPACE = __name__[:-5]  # 'pydantic' in 1.10.X, 'pydantic.v1' in v2.X
+BASEMODEL_FULLNAME = f'{_NAMESPACE}.main.BaseModel'
+BASESETTINGS_FULLNAME = f'{_NAMESPACE}.env_settings.BaseSettings'
+MODEL_METACLASS_FULLNAME = f'{_NAMESPACE}.main.ModelMetaclass'
+FIELD_FULLNAME = f'{_NAMESPACE}.fields.Field'
+DATACLASS_FULLNAME = f'{_NAMESPACE}.dataclasses.dataclass'
+
+
+def parse_mypy_version(version: str) -> Tuple[int, ...]:
+    return tuple(map(int, version.partition('+')[0].split('.')))
+
+
+MYPY_VERSION_TUPLE = parse_mypy_version(mypy_version)
+BUILTINS_NAME = 'builtins' if MYPY_VERSION_TUPLE >= (0, 930) else '__builtins__'
+
+# Increment version if plugin changes and mypy caches should be invalidated
+__version__ = 2
+
+
+def plugin(version: str) -> 'TypingType[Plugin]':
+    """
+    `version` is the mypy version string
+
+    We might want to use this to print a warning if the mypy version being used is
+    newer, or especially older, than we expect (or need).
+    """
+    return PydanticPlugin
+
+
+class PydanticPlugin(Plugin):
+    def __init__(self, options: Options) -> None:
+        self.plugin_config = PydanticPluginConfig(options)
+        self._plugin_data = self.plugin_config.to_data()
+        super().__init__(options)
+
+    def get_base_class_hook(self, fullname: str) -> 'Optional[Callable[[ClassDefContext], None]]':
+        sym = self.lookup_fully_qualified(fullname)
+        if sym and isinstance(sym.node, TypeInfo):  # pragma: no branch
+            # No branching may occur if the mypy cache has not been cleared
+            if any(get_fullname(base) == BASEMODEL_FULLNAME for base in sym.node.mro):
+                return self._pydantic_model_class_maker_callback
+        return None
+
+    def get_metaclass_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]:
+        if fullname == MODEL_METACLASS_FULLNAME:
+            return self._pydantic_model_metaclass_marker_callback
+        return None
+
+    def get_function_hook(self, fullname: str) -> 'Optional[Callable[[FunctionContext], Type]]':
+        sym = self.lookup_fully_qualified(fullname)
+        if sym and sym.fullname == FIELD_FULLNAME:
+            return self._pydantic_field_callback
+        return None
+
+    def get_method_hook(self, fullname: str) -> Optional[Callable[[MethodContext], Type]]:
+        if fullname.endswith('.from_orm'):
+            return from_orm_callback
+        return None
+
+    def get_class_decorator_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]:
+        """Mark pydantic.dataclasses as dataclass.
+
+        Mypy version 1.1.1 added support for `@dataclass_transform` decorator.
+        """
+        if fullname == DATACLASS_FULLNAME and MYPY_VERSION_TUPLE < (1, 1):
+            return dataclasses.dataclass_class_maker_callback  # type: ignore[return-value]
+        return None
+
+    def report_config_data(self, ctx: ReportConfigContext) -> Dict[str, Any]:
+        """Return all plugin config data.
+
+        Used by mypy to determine if cache needs to be discarded.
+        """
+        return self._plugin_data
+
+    def _pydantic_model_class_maker_callback(self, ctx: ClassDefContext) -> None:
+        transformer = PydanticModelTransformer(ctx, self.plugin_config)
+        transformer.transform()
+
+    def _pydantic_model_metaclass_marker_callback(self, ctx: ClassDefContext) -> None:
+        """Reset dataclass_transform_spec attribute of ModelMetaclass.
+
+        Let the plugin handle it. This behavior can be disabled
+        if 'debug_dataclass_transform' is set to True', for testing purposes.
+        """
+        if self.plugin_config.debug_dataclass_transform:
+            return
+        info_metaclass = ctx.cls.info.declared_metaclass
+        assert info_metaclass, "callback not passed from 'get_metaclass_hook'"
+        if getattr(info_metaclass.type, 'dataclass_transform_spec', None):
+            info_metaclass.type.dataclass_transform_spec = None  # type: ignore[attr-defined]
+
+    def _pydantic_field_callback(self, ctx: FunctionContext) -> 'Type':
+        """
+        Extract the type of the `default` argument from the Field function, and use it as the return type.
+
+        In particular:
+        * Check whether the default and default_factory argument is specified.
+        * Output an error if both are specified.
+        * Retrieve the type of the argument which is specified, and use it as return type for the function.
+        """
+        default_any_type = ctx.default_return_type
+
+        assert ctx.callee_arg_names[0] == 'default', '"default" is no longer first argument in Field()'
+        assert ctx.callee_arg_names[1] == 'default_factory', '"default_factory" is no longer second argument in Field()'
+        default_args = ctx.args[0]
+        default_factory_args = ctx.args[1]
+
+        if default_args and default_factory_args:
+            error_default_and_default_factory_specified(ctx.api, ctx.context)
+            return default_any_type
+
+        if default_args:
+            default_type = ctx.arg_types[0][0]
+            default_arg = default_args[0]
+
+            # Fallback to default Any type if the field is required
+            if not isinstance(default_arg, EllipsisExpr):
+                return default_type
+
+        elif default_factory_args:
+            default_factory_type = ctx.arg_types[1][0]
+
+            # Functions which use `ParamSpec` can be overloaded, exposing the callable's types as a parameter
+            # Pydantic calls the default factory without any argument, so we retrieve the first item
+            if isinstance(default_factory_type, Overloaded):
+                if MYPY_VERSION_TUPLE > (0, 910):
+                    default_factory_type = default_factory_type.items[0]
+                else:
+                    # Mypy0.910 exposes the items of overloaded types in a function
+                    default_factory_type = default_factory_type.items()[0]  # type: ignore[operator]
+
+            if isinstance(default_factory_type, CallableType):
+                ret_type = default_factory_type.ret_type
+                # mypy doesn't think `ret_type` has `args`, you'd think mypy should know,
+                # add this check in case it varies by version
+                args = getattr(ret_type, 'args', None)
+                if args:
+                    if all(isinstance(arg, TypeVarType) for arg in args):
+                        # Looks like the default factory is a type like `list` or `dict`, replace all args with `Any`
+                        ret_type.args = tuple(default_any_type for _ in args)  # type: ignore[attr-defined]
+                return ret_type
+
+        return default_any_type
+
+
+class PydanticPluginConfig:
+    __slots__ = (
+        'init_forbid_extra',
+        'init_typed',
+        'warn_required_dynamic_aliases',
+        'warn_untyped_fields',
+        'debug_dataclass_transform',
+    )
+    init_forbid_extra: bool
+    init_typed: bool
+    warn_required_dynamic_aliases: bool
+    warn_untyped_fields: bool
+    debug_dataclass_transform: bool  # undocumented
+
+    def __init__(self, options: Options) -> None:
+        if options.config_file is None:  # pragma: no cover
+            return
+
+        toml_config = parse_toml(options.config_file)
+        if toml_config is not None:
+            config = toml_config.get('tool', {}).get('pydantic-mypy', {})
+            for key in self.__slots__:
+                setting = config.get(key, False)
+                if not isinstance(setting, bool):
+                    raise ValueError(f'Configuration value must be a boolean for key: {key}')
+                setattr(self, key, setting)
+        else:
+            plugin_config = ConfigParser()
+            plugin_config.read(options.config_file)
+            for key in self.__slots__:
+                setting = plugin_config.getboolean(CONFIGFILE_KEY, key, fallback=False)
+                setattr(self, key, setting)
+
+    def to_data(self) -> Dict[str, Any]:
+        return {key: getattr(self, key) for key in self.__slots__}
+
+
+def from_orm_callback(ctx: MethodContext) -> Type:
+    """
+    Raise an error if orm_mode is not enabled
+    """
+    model_type: Instance
+    ctx_type = ctx.type
+    if isinstance(ctx_type, TypeType):
+        ctx_type = ctx_type.item
+    if isinstance(ctx_type, CallableType) and isinstance(ctx_type.ret_type, Instance):
+        model_type = ctx_type.ret_type  # called on the class
+    elif isinstance(ctx_type, Instance):
+        model_type = ctx_type  # called on an instance (unusual, but still valid)
+    else:  # pragma: no cover
+        detail = f'ctx.type: {ctx_type} (of type {ctx_type.__class__.__name__})'
+        error_unexpected_behavior(detail, ctx.api, ctx.context)
+        return ctx.default_return_type
+    pydantic_metadata = model_type.type.metadata.get(METADATA_KEY)
+    if pydantic_metadata is None:
+        return ctx.default_return_type
+    orm_mode = pydantic_metadata.get('config', {}).get('orm_mode')
+    if orm_mode is not True:
+        error_from_orm(get_name(model_type.type), ctx.api, ctx.context)
+    return ctx.default_return_type
+
+
+class PydanticModelTransformer:
+    tracked_config_fields: Set[str] = {
+        'extra',
+        'allow_mutation',
+        'frozen',
+        'orm_mode',
+        'allow_population_by_field_name',
+        'alias_generator',
+    }
+
+    def __init__(self, ctx: ClassDefContext, plugin_config: PydanticPluginConfig) -> None:
+        self._ctx = ctx
+        self.plugin_config = plugin_config
+
+    def transform(self) -> None:
+        """
+        Configures the BaseModel subclass according to the plugin settings.
+
+        In particular:
+        * determines the model config and fields,
+        * adds a fields-aware signature for the initializer and construct methods
+        * freezes the class if allow_mutation = False or frozen = True
+        * stores the fields, config, and if the class is settings in the mypy metadata for access by subclasses
+        """
+        ctx = self._ctx
+        info = ctx.cls.info
+
+        self.adjust_validator_signatures()
+        config = self.collect_config()
+        fields = self.collect_fields(config)
+        is_settings = any(get_fullname(base) == BASESETTINGS_FULLNAME for base in info.mro[:-1])
+        self.add_initializer(fields, config, is_settings)
+        self.add_construct_method(fields)
+        self.set_frozen(fields, frozen=config.allow_mutation is False or config.frozen is True)
+        info.metadata[METADATA_KEY] = {
+            'fields': {field.name: field.serialize() for field in fields},
+            'config': config.set_values_dict(),
+        }
+
+    def adjust_validator_signatures(self) -> None:
+        """When we decorate a function `f` with `pydantic.validator(...), mypy sees
+        `f` as a regular method taking a `self` instance, even though pydantic
+        internally wraps `f` with `classmethod` if necessary.
+
+        Teach mypy this by marking any function whose outermost decorator is a
+        `validator()` call as a classmethod.
+        """
+        for name, sym in self._ctx.cls.info.names.items():
+            if isinstance(sym.node, Decorator):
+                first_dec = sym.node.original_decorators[0]
+                if (
+                    isinstance(first_dec, CallExpr)
+                    and isinstance(first_dec.callee, NameExpr)
+                    and first_dec.callee.fullname == f'{_NAMESPACE}.class_validators.validator'
+                ):
+                    sym.node.func.is_class = True
+
+    def collect_config(self) -> 'ModelConfigData':
+        """
+        Collects the values of the config attributes that are used by the plugin, accounting for parent classes.
+        """
+        ctx = self._ctx
+        cls = ctx.cls
+        config = ModelConfigData()
+        for stmt in cls.defs.body:
+            if not isinstance(stmt, ClassDef):
+                continue
+            if stmt.name == 'Config':
+                for substmt in stmt.defs.body:
+                    if not isinstance(substmt, AssignmentStmt):
+                        continue
+                    config.update(self.get_config_update(substmt))
+                if (
+                    config.has_alias_generator
+                    and not config.allow_population_by_field_name
+                    and self.plugin_config.warn_required_dynamic_aliases
+                ):
+                    error_required_dynamic_aliases(ctx.api, stmt)
+        for info in cls.info.mro[1:]:  # 0 is the current class
+            if METADATA_KEY not in info.metadata:
+                continue
+
+            # Each class depends on the set of fields in its ancestors
+            ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info)))
+            for name, value in info.metadata[METADATA_KEY]['config'].items():
+                config.setdefault(name, value)
+        return config
+
+    def collect_fields(self, model_config: 'ModelConfigData') -> List['PydanticModelField']:
+        """
+        Collects the fields for the model, accounting for parent classes
+        """
+        # First, collect fields belonging to the current class.
+        ctx = self._ctx
+        cls = self._ctx.cls
+        fields = []  # type: List[PydanticModelField]
+        known_fields = set()  # type: Set[str]
+        for stmt in cls.defs.body:
+            if not isinstance(stmt, AssignmentStmt):  # `and stmt.new_syntax` to require annotation
+                continue
+
+            lhs = stmt.lvalues[0]
+            if not isinstance(lhs, NameExpr) or not is_valid_field(lhs.name):
+                continue
+
+            if not stmt.new_syntax and self.plugin_config.warn_untyped_fields:
+                error_untyped_fields(ctx.api, stmt)
+
+            # if lhs.name == '__config__':  # BaseConfig not well handled; I'm not sure why yet
+            #     continue
+
+            sym = cls.info.names.get(lhs.name)
+            if sym is None:  # pragma: no cover
+                # This is likely due to a star import (see the dataclasses plugin for a more detailed explanation)
+                # This is the same logic used in the dataclasses plugin
+                continue
+
+            node = sym.node
+            if isinstance(node, PlaceholderNode):  # pragma: no cover
+                # See the PlaceholderNode docstring for more detail about how this can occur
+                # Basically, it is an edge case when dealing with complex import logic
+                # This is the same logic used in the dataclasses plugin
+                continue
+            if not isinstance(node, Var):  # pragma: no cover
+                # Don't know if this edge case still happens with the `is_valid_field` check above
+                # but better safe than sorry
+                continue
+
+            # x: ClassVar[int] is ignored by dataclasses.
+            if node.is_classvar:
+                continue
+
+            is_required = self.get_is_required(cls, stmt, lhs)
+            alias, has_dynamic_alias = self.get_alias_info(stmt)
+            if (
+                has_dynamic_alias
+                and not model_config.allow_population_by_field_name
+                and self.plugin_config.warn_required_dynamic_aliases
+            ):
+                error_required_dynamic_aliases(ctx.api, stmt)
+            fields.append(
+                PydanticModelField(
+                    name=lhs.name,
+                    is_required=is_required,
+                    alias=alias,
+                    has_dynamic_alias=has_dynamic_alias,
+                    line=stmt.line,
+                    column=stmt.column,
+                )
+            )
+            known_fields.add(lhs.name)
+        all_fields = fields.copy()
+        for info in cls.info.mro[1:]:  # 0 is the current class, -2 is BaseModel, -1 is object
+            if METADATA_KEY not in info.metadata:
+                continue
+
+            superclass_fields = []
+            # Each class depends on the set of fields in its ancestors
+            ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info)))
+
+            for name, data in info.metadata[METADATA_KEY]['fields'].items():
+                if name not in known_fields:
+                    field = PydanticModelField.deserialize(info, data)
+                    known_fields.add(name)
+                    superclass_fields.append(field)
+                else:
+                    (field,) = (a for a in all_fields if a.name == name)
+                    all_fields.remove(field)
+                    superclass_fields.append(field)
+            all_fields = superclass_fields + all_fields
+        return all_fields
+
+    def add_initializer(self, fields: List['PydanticModelField'], config: 'ModelConfigData', is_settings: bool) -> None:
+        """
+        Adds a fields-aware `__init__` method to the class.
+
+        The added `__init__` will be annotated with types vs. all `Any` depending on the plugin settings.
+        """
+        ctx = self._ctx
+        typed = self.plugin_config.init_typed
+        use_alias = config.allow_population_by_field_name is not True
+        force_all_optional = is_settings or bool(
+            config.has_alias_generator and not config.allow_population_by_field_name
+        )
+        init_arguments = self.get_field_arguments(
+            fields, typed=typed, force_all_optional=force_all_optional, use_alias=use_alias
+        )
+        if not self.should_init_forbid_extra(fields, config):
+            var = Var('kwargs')
+            init_arguments.append(Argument(var, AnyType(TypeOfAny.explicit), None, ARG_STAR2))
+
+        if '__init__' not in ctx.cls.info.names:
+            add_method(ctx, '__init__', init_arguments, NoneType())
+
+    def add_construct_method(self, fields: List['PydanticModelField']) -> None:
+        """
+        Adds a fully typed `construct` classmethod to the class.
+
+        Similar to the fields-aware __init__ method, but always uses the field names (not aliases),
+        and does not treat settings fields as optional.
+        """
+        ctx = self._ctx
+        set_str = ctx.api.named_type(f'{BUILTINS_NAME}.set', [ctx.api.named_type(f'{BUILTINS_NAME}.str')])
+        optional_set_str = UnionType([set_str, NoneType()])
+        fields_set_argument = Argument(Var('_fields_set', optional_set_str), optional_set_str, None, ARG_OPT)
+        construct_arguments = self.get_field_arguments(fields, typed=True, force_all_optional=False, use_alias=False)
+        construct_arguments = [fields_set_argument] + construct_arguments
+
+        obj_type = ctx.api.named_type(f'{BUILTINS_NAME}.object')
+        self_tvar_name = '_PydanticBaseModel'  # Make sure it does not conflict with other names in the class
+        tvar_fullname = ctx.cls.fullname + '.' + self_tvar_name
+        if MYPY_VERSION_TUPLE >= (1, 4):
+            tvd = TypeVarType(
+                self_tvar_name,
+                tvar_fullname,
+                (
+                    TypeVarId(-1, namespace=ctx.cls.fullname + '.construct')
+                    if MYPY_VERSION_TUPLE >= (1, 11)
+                    else TypeVarId(-1)
+                ),
+                [],
+                obj_type,
+                AnyType(TypeOfAny.from_omitted_generics),  # type: ignore[arg-type]
+            )
+            self_tvar_expr = TypeVarExpr(
+                self_tvar_name,
+                tvar_fullname,
+                [],
+                obj_type,
+                AnyType(TypeOfAny.from_omitted_generics),  # type: ignore[arg-type]
+            )
+        else:
+            tvd = TypeVarDef(self_tvar_name, tvar_fullname, -1, [], obj_type)
+            self_tvar_expr = TypeVarExpr(self_tvar_name, tvar_fullname, [], obj_type)
+        ctx.cls.info.names[self_tvar_name] = SymbolTableNode(MDEF, self_tvar_expr)
+
+        # Backward-compatible with TypeVarDef from Mypy 0.910.
+        if isinstance(tvd, TypeVarType):
+            self_type = tvd
+        else:
+            self_type = TypeVarType(tvd)
+
+        add_method(
+            ctx,
+            'construct',
+            construct_arguments,
+            return_type=self_type,
+            self_type=self_type,
+            tvar_def=tvd,
+            is_classmethod=True,
+        )
+
+    def set_frozen(self, fields: List['PydanticModelField'], frozen: bool) -> None:
+        """
+        Marks all fields as properties so that attempts to set them trigger mypy errors.
+
+        This is the same approach used by the attrs and dataclasses plugins.
+        """
+        ctx = self._ctx
+        info = ctx.cls.info
+        for field in fields:
+            sym_node = info.names.get(field.name)
+            if sym_node is not None:
+                var = sym_node.node
+                if isinstance(var, Var):
+                    var.is_property = frozen
+                elif isinstance(var, PlaceholderNode) and not ctx.api.final_iteration:
+                    # See https://github.com/pydantic/pydantic/issues/5191 to hit this branch for test coverage
+                    ctx.api.defer()
+                else:  # pragma: no cover
+                    # I don't know whether it's possible to hit this branch, but I've added it for safety
+                    try:
+                        var_str = str(var)
+                    except TypeError:
+                        # This happens for PlaceholderNode; perhaps it will happen for other types in the future..
+                        var_str = repr(var)
+                    detail = f'sym_node.node: {var_str} (of type {var.__class__})'
+                    error_unexpected_behavior(detail, ctx.api, ctx.cls)
+            else:
+                var = field.to_var(info, use_alias=False)
+                var.info = info
+                var.is_property = frozen
+                var._fullname = get_fullname(info) + '.' + get_name(var)
+                info.names[get_name(var)] = SymbolTableNode(MDEF, var)
+
+    def get_config_update(self, substmt: AssignmentStmt) -> Optional['ModelConfigData']:
+        """
+        Determines the config update due to a single statement in the Config class definition.
+
+        Warns if a tracked config attribute is set to a value the plugin doesn't know how to interpret (e.g., an int)
+        """
+        lhs = substmt.lvalues[0]
+        if not (isinstance(lhs, NameExpr) and lhs.name in self.tracked_config_fields):
+            return None
+        if lhs.name == 'extra':
+            if isinstance(substmt.rvalue, StrExpr):
+                forbid_extra = substmt.rvalue.value == 'forbid'
+            elif isinstance(substmt.rvalue, MemberExpr):
+                forbid_extra = substmt.rvalue.name == 'forbid'
+            else:
+                error_invalid_config_value(lhs.name, self._ctx.api, substmt)
+                return None
+            return ModelConfigData(forbid_extra=forbid_extra)
+        if lhs.name == 'alias_generator':
+            has_alias_generator = True
+            if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname == 'builtins.None':
+                has_alias_generator = False
+            return ModelConfigData(has_alias_generator=has_alias_generator)
+        if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname in ('builtins.True', 'builtins.False'):
+            return ModelConfigData(**{lhs.name: substmt.rvalue.fullname == 'builtins.True'})
+        error_invalid_config_value(lhs.name, self._ctx.api, substmt)
+        return None
+
+    @staticmethod
+    def get_is_required(cls: ClassDef, stmt: AssignmentStmt, lhs: NameExpr) -> bool:
+        """
+        Returns a boolean indicating whether the field defined in `stmt` is a required field.
+        """
+        expr = stmt.rvalue
+        if isinstance(expr, TempNode):
+            # TempNode means annotation-only, so only non-required if Optional
+            value_type = get_proper_type(cls.info[lhs.name].type)
+            return not PydanticModelTransformer.type_has_implicit_default(value_type)
+        if isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME:
+            # The "default value" is a call to `Field`; at this point, the field is
+            # only required if default is Ellipsis (i.e., `field_name: Annotation = Field(...)`) or if default_factory
+            # is specified.
+            for arg, name in zip(expr.args, expr.arg_names):
+                # If name is None, then this arg is the default because it is the only positional argument.
+                if name is None or name == 'default':
+                    return arg.__class__ is EllipsisExpr
+                if name == 'default_factory':
+                    return False
+            # In this case, default and default_factory are not specified, so we need to look at the annotation
+            value_type = get_proper_type(cls.info[lhs.name].type)
+            return not PydanticModelTransformer.type_has_implicit_default(value_type)
+        # Only required if the "default value" is Ellipsis (i.e., `field_name: Annotation = ...`)
+        return isinstance(expr, EllipsisExpr)
+
+    @staticmethod
+    def type_has_implicit_default(type_: Optional[ProperType]) -> bool:
+        """
+        Returns True if the passed type will be given an implicit default value.
+
+        In pydantic v1, this is the case for Optional types and Any (with default value None).
+        """
+        if isinstance(type_, AnyType):
+            # Annotated as Any
+            return True
+        if isinstance(type_, UnionType) and any(
+            isinstance(item, NoneType) or isinstance(item, AnyType) for item in type_.items
+        ):
+            # Annotated as Optional, or otherwise having NoneType or AnyType in the union
+            return True
+        return False
+
+    @staticmethod
+    def get_alias_info(stmt: AssignmentStmt) -> Tuple[Optional[str], bool]:
+        """
+        Returns a pair (alias, has_dynamic_alias), extracted from the declaration of the field defined in `stmt`.
+
+        `has_dynamic_alias` is True if and only if an alias is provided, but not as a string literal.
+        If `has_dynamic_alias` is True, `alias` will be None.
+        """
+        expr = stmt.rvalue
+        if isinstance(expr, TempNode):
+            # TempNode means annotation-only
+            return None, False
+
+        if not (
+            isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME
+        ):
+            # Assigned value is not a call to pydantic.fields.Field
+            return None, False
+
+        for i, arg_name in enumerate(expr.arg_names):
+            if arg_name != 'alias':
+                continue
+            arg = expr.args[i]
+            if isinstance(arg, StrExpr):
+                return arg.value, False
+            else:
+                return None, True
+        return None, False
+
+    def get_field_arguments(
+        self, fields: List['PydanticModelField'], typed: bool, force_all_optional: bool, use_alias: bool
+    ) -> List[Argument]:
+        """
+        Helper function used during the construction of the `__init__` and `construct` method signatures.
+
+        Returns a list of mypy Argument instances for use in the generated signatures.
+        """
+        info = self._ctx.cls.info
+        arguments = [
+            field.to_argument(info, typed=typed, force_optional=force_all_optional, use_alias=use_alias)
+            for field in fields
+            if not (use_alias and field.has_dynamic_alias)
+        ]
+        return arguments
+
+    def should_init_forbid_extra(self, fields: List['PydanticModelField'], config: 'ModelConfigData') -> bool:
+        """
+        Indicates whether the generated `__init__` should get a `**kwargs` at the end of its signature
+
+        We disallow arbitrary kwargs if the extra config setting is "forbid", or if the plugin config says to,
+        *unless* a required dynamic alias is present (since then we can't determine a valid signature).
+        """
+        if not config.allow_population_by_field_name:
+            if self.is_dynamic_alias_present(fields, bool(config.has_alias_generator)):
+                return False
+        if config.forbid_extra:
+            return True
+        return self.plugin_config.init_forbid_extra
+
+    @staticmethod
+    def is_dynamic_alias_present(fields: List['PydanticModelField'], has_alias_generator: bool) -> bool:
+        """
+        Returns whether any fields on the model have a "dynamic alias", i.e., an alias that cannot be
+        determined during static analysis.
+        """
+        for field in fields:
+            if field.has_dynamic_alias:
+                return True
+        if has_alias_generator:
+            for field in fields:
+                if field.alias is None:
+                    return True
+        return False
+
+
+class PydanticModelField:
+    def __init__(
+        self, name: str, is_required: bool, alias: Optional[str], has_dynamic_alias: bool, line: int, column: int
+    ):
+        self.name = name
+        self.is_required = is_required
+        self.alias = alias
+        self.has_dynamic_alias = has_dynamic_alias
+        self.line = line
+        self.column = column
+
+    def to_var(self, info: TypeInfo, use_alias: bool) -> Var:
+        name = self.name
+        if use_alias and self.alias is not None:
+            name = self.alias
+        return Var(name, info[self.name].type)
+
+    def to_argument(self, info: TypeInfo, typed: bool, force_optional: bool, use_alias: bool) -> Argument:
+        if typed and info[self.name].type is not None:
+            type_annotation = info[self.name].type
+        else:
+            type_annotation = AnyType(TypeOfAny.explicit)
+        return Argument(
+            variable=self.to_var(info, use_alias),
+            type_annotation=type_annotation,
+            initializer=None,
+            kind=ARG_NAMED_OPT if force_optional or not self.is_required else ARG_NAMED,
+        )
+
+    def serialize(self) -> JsonDict:
+        return self.__dict__
+
+    @classmethod
+    def deserialize(cls, info: TypeInfo, data: JsonDict) -> 'PydanticModelField':
+        return cls(**data)
+
+
+class ModelConfigData:
+    def __init__(
+        self,
+        forbid_extra: Optional[bool] = None,
+        allow_mutation: Optional[bool] = None,
+        frozen: Optional[bool] = None,
+        orm_mode: Optional[bool] = None,
+        allow_population_by_field_name: Optional[bool] = None,
+        has_alias_generator: Optional[bool] = None,
+    ):
+        self.forbid_extra = forbid_extra
+        self.allow_mutation = allow_mutation
+        self.frozen = frozen
+        self.orm_mode = orm_mode
+        self.allow_population_by_field_name = allow_population_by_field_name
+        self.has_alias_generator = has_alias_generator
+
+    def set_values_dict(self) -> Dict[str, Any]:
+        return {k: v for k, v in self.__dict__.items() if v is not None}
+
+    def update(self, config: Optional['ModelConfigData']) -> None:
+        if config is None:
+            return
+        for k, v in config.set_values_dict().items():
+            setattr(self, k, v)
+
+    def setdefault(self, key: str, value: Any) -> None:
+        if getattr(self, key) is None:
+            setattr(self, key, value)
+
+
+ERROR_ORM = ErrorCode('pydantic-orm', 'Invalid from_orm call', 'Pydantic')
+ERROR_CONFIG = ErrorCode('pydantic-config', 'Invalid config value', 'Pydantic')
+ERROR_ALIAS = ErrorCode('pydantic-alias', 'Dynamic alias disallowed', 'Pydantic')
+ERROR_UNEXPECTED = ErrorCode('pydantic-unexpected', 'Unexpected behavior', 'Pydantic')
+ERROR_UNTYPED = ErrorCode('pydantic-field', 'Untyped field disallowed', 'Pydantic')
+ERROR_FIELD_DEFAULTS = ErrorCode('pydantic-field', 'Invalid Field defaults', 'Pydantic')
+
+
+def error_from_orm(model_name: str, api: CheckerPluginInterface, context: Context) -> None:
+    api.fail(f'"{model_name}" does not have orm_mode=True', context, code=ERROR_ORM)
+
+
+def error_invalid_config_value(name: str, api: SemanticAnalyzerPluginInterface, context: Context) -> None:
+    api.fail(f'Invalid value for "Config.{name}"', context, code=ERROR_CONFIG)
+
+
+def error_required_dynamic_aliases(api: SemanticAnalyzerPluginInterface, context: Context) -> None:
+    api.fail('Required dynamic aliases disallowed', context, code=ERROR_ALIAS)
+
+
+def error_unexpected_behavior(
+    detail: str, api: Union[CheckerPluginInterface, SemanticAnalyzerPluginInterface], context: Context
+) -> None:  # pragma: no cover
+    # Can't think of a good way to test this, but I confirmed it renders as desired by adding to a non-error path
+    link = 'https://github.com/pydantic/pydantic/issues/new/choose'
+    full_message = f'The pydantic mypy plugin ran into unexpected behavior: {detail}\n'
+    full_message += f'Please consider reporting this bug at {link} so we can try to fix it!'
+    api.fail(full_message, context, code=ERROR_UNEXPECTED)
+
+
+def error_untyped_fields(api: SemanticAnalyzerPluginInterface, context: Context) -> None:
+    api.fail('Untyped fields disallowed', context, code=ERROR_UNTYPED)
+
+
+def error_default_and_default_factory_specified(api: CheckerPluginInterface, context: Context) -> None:
+    api.fail('Field default and default_factory cannot be specified together', context, code=ERROR_FIELD_DEFAULTS)
+
+
+def add_method(
+    ctx: ClassDefContext,
+    name: str,
+    args: List[Argument],
+    return_type: Type,
+    self_type: Optional[Type] = None,
+    tvar_def: Optional[TypeVarDef] = None,
+    is_classmethod: bool = False,
+    is_new: bool = False,
+    # is_staticmethod: bool = False,
+) -> None:
+    """
+    Adds a new method to a class.
+
+    This can be dropped if/when https://github.com/python/mypy/issues/7301 is merged
+    """
+    info = ctx.cls.info
+
+    # First remove any previously generated methods with the same name
+    # to avoid clashes and problems in the semantic analyzer.
+    if name in info.names:
+        sym = info.names[name]
+        if sym.plugin_generated and isinstance(sym.node, FuncDef):
+            ctx.cls.defs.body.remove(sym.node)  # pragma: no cover
+
+    self_type = self_type or fill_typevars(info)
+    if is_classmethod or is_new:
+        first = [Argument(Var('_cls'), TypeType.make_normalized(self_type), None, ARG_POS)]
+    # elif is_staticmethod:
+    #     first = []
+    else:
+        self_type = self_type or fill_typevars(info)
+        first = [Argument(Var('__pydantic_self__'), self_type, None, ARG_POS)]
+    args = first + args
+    arg_types, arg_names, arg_kinds = [], [], []
+    for arg in args:
+        assert arg.type_annotation, 'All arguments must be fully typed.'
+        arg_types.append(arg.type_annotation)
+        arg_names.append(get_name(arg.variable))
+        arg_kinds.append(arg.kind)
+
+    function_type = ctx.api.named_type(f'{BUILTINS_NAME}.function')
+    signature = CallableType(arg_types, arg_kinds, arg_names, return_type, function_type)
+    if tvar_def:
+        signature.variables = [tvar_def]
+
+    func = FuncDef(name, args, Block([PassStmt()]))
+    func.info = info
+    func.type = set_callable_name(signature, func)
+    func.is_class = is_classmethod
+    # func.is_static = is_staticmethod
+    func._fullname = get_fullname(info) + '.' + name
+    func.line = info.line
+
+    # NOTE: we would like the plugin generated node to dominate, but we still
+    # need to keep any existing definitions so they get semantically analyzed.
+    if name in info.names:
+        # Get a nice unique name instead.
+        r_name = get_unique_redefinition_name(name, info.names)
+        info.names[r_name] = info.names[name]
+
+    if is_classmethod:  # or is_staticmethod:
+        func.is_decorated = True
+        v = Var(name, func.type)
+        v.info = info
+        v._fullname = func._fullname
+        # if is_classmethod:
+        v.is_classmethod = True
+        dec = Decorator(func, [NameExpr('classmethod')], v)
+        # else:
+        #     v.is_staticmethod = True
+        #     dec = Decorator(func, [NameExpr('staticmethod')], v)
+
+        dec.line = info.line
+        sym = SymbolTableNode(MDEF, dec)
+    else:
+        sym = SymbolTableNode(MDEF, func)
+    sym.plugin_generated = True
+
+    info.names[name] = sym
+    info.defn.defs.body.append(func)
+
+
+def get_fullname(x: Union[FuncBase, SymbolNode]) -> str:
+    """
+    Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped.
+    """
+    fn = x.fullname
+    if callable(fn):  # pragma: no cover
+        return fn()
+    return fn
+
+
+def get_name(x: Union[FuncBase, SymbolNode]) -> str:
+    """
+    Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped.
+    """
+    fn = x.name
+    if callable(fn):  # pragma: no cover
+        return fn()
+    return fn
+
+
+def parse_toml(config_file: str) -> Optional[Dict[str, Any]]:
+    if not config_file.endswith('.toml'):
+        return None
+
+    read_mode = 'rb'
+    if sys.version_info >= (3, 11):
+        import tomllib as toml_
+    else:
+        try:
+            import tomli as toml_
+        except ImportError:
+            # older versions of mypy have toml as a dependency, not tomli
+            read_mode = 'r'
+            try:
+                import toml as toml_  # type: ignore[no-redef]
+            except ImportError:  # pragma: no cover
+                import warnings
+
+                warnings.warn('No TOML parser installed, cannot read configuration from `pyproject.toml`.')
+                return None
+
+    with open(config_file, read_mode) as rf:
+        return toml_.load(rf)  # type: ignore[arg-type]