diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/v1/mypy.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/pydantic/v1/mypy.py | 949 |
1 files changed, 949 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/v1/mypy.py b/.venv/lib/python3.12/site-packages/pydantic/v1/mypy.py new file mode 100644 index 00000000..f4e27ab4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/pydantic/v1/mypy.py @@ -0,0 +1,949 @@ +import sys +from configparser import ConfigParser +from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type as TypingType, Union + +from mypy.errorcodes import ErrorCode +from mypy.nodes import ( + ARG_NAMED, + ARG_NAMED_OPT, + ARG_OPT, + ARG_POS, + ARG_STAR2, + MDEF, + Argument, + AssignmentStmt, + Block, + CallExpr, + ClassDef, + Context, + Decorator, + EllipsisExpr, + FuncBase, + FuncDef, + JsonDict, + MemberExpr, + NameExpr, + PassStmt, + PlaceholderNode, + RefExpr, + StrExpr, + SymbolNode, + SymbolTableNode, + TempNode, + TypeInfo, + TypeVarExpr, + Var, +) +from mypy.options import Options +from mypy.plugin import ( + CheckerPluginInterface, + ClassDefContext, + FunctionContext, + MethodContext, + Plugin, + ReportConfigContext, + SemanticAnalyzerPluginInterface, +) +from mypy.plugins import dataclasses +from mypy.semanal import set_callable_name # type: ignore +from mypy.server.trigger import make_wildcard_trigger +from mypy.types import ( + AnyType, + CallableType, + Instance, + NoneType, + Overloaded, + ProperType, + Type, + TypeOfAny, + TypeType, + TypeVarId, + TypeVarType, + UnionType, + get_proper_type, +) +from mypy.typevars import fill_typevars +from mypy.util import get_unique_redefinition_name +from mypy.version import __version__ as mypy_version + +from pydantic.v1.utils import is_valid_field + +try: + from mypy.types import TypeVarDef # type: ignore[attr-defined] +except ImportError: # pragma: no cover + # Backward-compatible with TypeVarDef from Mypy 0.910. + from mypy.types import TypeVarType as TypeVarDef + +CONFIGFILE_KEY = 'pydantic-mypy' +METADATA_KEY = 'pydantic-mypy-metadata' +_NAMESPACE = __name__[:-5] # 'pydantic' in 1.10.X, 'pydantic.v1' in v2.X +BASEMODEL_FULLNAME = f'{_NAMESPACE}.main.BaseModel' +BASESETTINGS_FULLNAME = f'{_NAMESPACE}.env_settings.BaseSettings' +MODEL_METACLASS_FULLNAME = f'{_NAMESPACE}.main.ModelMetaclass' +FIELD_FULLNAME = f'{_NAMESPACE}.fields.Field' +DATACLASS_FULLNAME = f'{_NAMESPACE}.dataclasses.dataclass' + + +def parse_mypy_version(version: str) -> Tuple[int, ...]: + return tuple(map(int, version.partition('+')[0].split('.'))) + + +MYPY_VERSION_TUPLE = parse_mypy_version(mypy_version) +BUILTINS_NAME = 'builtins' if MYPY_VERSION_TUPLE >= (0, 930) else '__builtins__' + +# Increment version if plugin changes and mypy caches should be invalidated +__version__ = 2 + + +def plugin(version: str) -> 'TypingType[Plugin]': + """ + `version` is the mypy version string + + We might want to use this to print a warning if the mypy version being used is + newer, or especially older, than we expect (or need). + """ + return PydanticPlugin + + +class PydanticPlugin(Plugin): + def __init__(self, options: Options) -> None: + self.plugin_config = PydanticPluginConfig(options) + self._plugin_data = self.plugin_config.to_data() + super().__init__(options) + + def get_base_class_hook(self, fullname: str) -> 'Optional[Callable[[ClassDefContext], None]]': + sym = self.lookup_fully_qualified(fullname) + if sym and isinstance(sym.node, TypeInfo): # pragma: no branch + # No branching may occur if the mypy cache has not been cleared + if any(get_fullname(base) == BASEMODEL_FULLNAME for base in sym.node.mro): + return self._pydantic_model_class_maker_callback + return None + + def get_metaclass_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]: + if fullname == MODEL_METACLASS_FULLNAME: + return self._pydantic_model_metaclass_marker_callback + return None + + def get_function_hook(self, fullname: str) -> 'Optional[Callable[[FunctionContext], Type]]': + sym = self.lookup_fully_qualified(fullname) + if sym and sym.fullname == FIELD_FULLNAME: + return self._pydantic_field_callback + return None + + def get_method_hook(self, fullname: str) -> Optional[Callable[[MethodContext], Type]]: + if fullname.endswith('.from_orm'): + return from_orm_callback + return None + + def get_class_decorator_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]: + """Mark pydantic.dataclasses as dataclass. + + Mypy version 1.1.1 added support for `@dataclass_transform` decorator. + """ + if fullname == DATACLASS_FULLNAME and MYPY_VERSION_TUPLE < (1, 1): + return dataclasses.dataclass_class_maker_callback # type: ignore[return-value] + return None + + def report_config_data(self, ctx: ReportConfigContext) -> Dict[str, Any]: + """Return all plugin config data. + + Used by mypy to determine if cache needs to be discarded. + """ + return self._plugin_data + + def _pydantic_model_class_maker_callback(self, ctx: ClassDefContext) -> None: + transformer = PydanticModelTransformer(ctx, self.plugin_config) + transformer.transform() + + def _pydantic_model_metaclass_marker_callback(self, ctx: ClassDefContext) -> None: + """Reset dataclass_transform_spec attribute of ModelMetaclass. + + Let the plugin handle it. This behavior can be disabled + if 'debug_dataclass_transform' is set to True', for testing purposes. + """ + if self.plugin_config.debug_dataclass_transform: + return + info_metaclass = ctx.cls.info.declared_metaclass + assert info_metaclass, "callback not passed from 'get_metaclass_hook'" + if getattr(info_metaclass.type, 'dataclass_transform_spec', None): + info_metaclass.type.dataclass_transform_spec = None # type: ignore[attr-defined] + + def _pydantic_field_callback(self, ctx: FunctionContext) -> 'Type': + """ + Extract the type of the `default` argument from the Field function, and use it as the return type. + + In particular: + * Check whether the default and default_factory argument is specified. + * Output an error if both are specified. + * Retrieve the type of the argument which is specified, and use it as return type for the function. + """ + default_any_type = ctx.default_return_type + + assert ctx.callee_arg_names[0] == 'default', '"default" is no longer first argument in Field()' + assert ctx.callee_arg_names[1] == 'default_factory', '"default_factory" is no longer second argument in Field()' + default_args = ctx.args[0] + default_factory_args = ctx.args[1] + + if default_args and default_factory_args: + error_default_and_default_factory_specified(ctx.api, ctx.context) + return default_any_type + + if default_args: + default_type = ctx.arg_types[0][0] + default_arg = default_args[0] + + # Fallback to default Any type if the field is required + if not isinstance(default_arg, EllipsisExpr): + return default_type + + elif default_factory_args: + default_factory_type = ctx.arg_types[1][0] + + # Functions which use `ParamSpec` can be overloaded, exposing the callable's types as a parameter + # Pydantic calls the default factory without any argument, so we retrieve the first item + if isinstance(default_factory_type, Overloaded): + if MYPY_VERSION_TUPLE > (0, 910): + default_factory_type = default_factory_type.items[0] + else: + # Mypy0.910 exposes the items of overloaded types in a function + default_factory_type = default_factory_type.items()[0] # type: ignore[operator] + + if isinstance(default_factory_type, CallableType): + ret_type = default_factory_type.ret_type + # mypy doesn't think `ret_type` has `args`, you'd think mypy should know, + # add this check in case it varies by version + args = getattr(ret_type, 'args', None) + if args: + if all(isinstance(arg, TypeVarType) for arg in args): + # Looks like the default factory is a type like `list` or `dict`, replace all args with `Any` + ret_type.args = tuple(default_any_type for _ in args) # type: ignore[attr-defined] + return ret_type + + return default_any_type + + +class PydanticPluginConfig: + __slots__ = ( + 'init_forbid_extra', + 'init_typed', + 'warn_required_dynamic_aliases', + 'warn_untyped_fields', + 'debug_dataclass_transform', + ) + init_forbid_extra: bool + init_typed: bool + warn_required_dynamic_aliases: bool + warn_untyped_fields: bool + debug_dataclass_transform: bool # undocumented + + def __init__(self, options: Options) -> None: + if options.config_file is None: # pragma: no cover + return + + toml_config = parse_toml(options.config_file) + if toml_config is not None: + config = toml_config.get('tool', {}).get('pydantic-mypy', {}) + for key in self.__slots__: + setting = config.get(key, False) + if not isinstance(setting, bool): + raise ValueError(f'Configuration value must be a boolean for key: {key}') + setattr(self, key, setting) + else: + plugin_config = ConfigParser() + plugin_config.read(options.config_file) + for key in self.__slots__: + setting = plugin_config.getboolean(CONFIGFILE_KEY, key, fallback=False) + setattr(self, key, setting) + + def to_data(self) -> Dict[str, Any]: + return {key: getattr(self, key) for key in self.__slots__} + + +def from_orm_callback(ctx: MethodContext) -> Type: + """ + Raise an error if orm_mode is not enabled + """ + model_type: Instance + ctx_type = ctx.type + if isinstance(ctx_type, TypeType): + ctx_type = ctx_type.item + if isinstance(ctx_type, CallableType) and isinstance(ctx_type.ret_type, Instance): + model_type = ctx_type.ret_type # called on the class + elif isinstance(ctx_type, Instance): + model_type = ctx_type # called on an instance (unusual, but still valid) + else: # pragma: no cover + detail = f'ctx.type: {ctx_type} (of type {ctx_type.__class__.__name__})' + error_unexpected_behavior(detail, ctx.api, ctx.context) + return ctx.default_return_type + pydantic_metadata = model_type.type.metadata.get(METADATA_KEY) + if pydantic_metadata is None: + return ctx.default_return_type + orm_mode = pydantic_metadata.get('config', {}).get('orm_mode') + if orm_mode is not True: + error_from_orm(get_name(model_type.type), ctx.api, ctx.context) + return ctx.default_return_type + + +class PydanticModelTransformer: + tracked_config_fields: Set[str] = { + 'extra', + 'allow_mutation', + 'frozen', + 'orm_mode', + 'allow_population_by_field_name', + 'alias_generator', + } + + def __init__(self, ctx: ClassDefContext, plugin_config: PydanticPluginConfig) -> None: + self._ctx = ctx + self.plugin_config = plugin_config + + def transform(self) -> None: + """ + Configures the BaseModel subclass according to the plugin settings. + + In particular: + * determines the model config and fields, + * adds a fields-aware signature for the initializer and construct methods + * freezes the class if allow_mutation = False or frozen = True + * stores the fields, config, and if the class is settings in the mypy metadata for access by subclasses + """ + ctx = self._ctx + info = ctx.cls.info + + self.adjust_validator_signatures() + config = self.collect_config() + fields = self.collect_fields(config) + is_settings = any(get_fullname(base) == BASESETTINGS_FULLNAME for base in info.mro[:-1]) + self.add_initializer(fields, config, is_settings) + self.add_construct_method(fields) + self.set_frozen(fields, frozen=config.allow_mutation is False or config.frozen is True) + info.metadata[METADATA_KEY] = { + 'fields': {field.name: field.serialize() for field in fields}, + 'config': config.set_values_dict(), + } + + def adjust_validator_signatures(self) -> None: + """When we decorate a function `f` with `pydantic.validator(...), mypy sees + `f` as a regular method taking a `self` instance, even though pydantic + internally wraps `f` with `classmethod` if necessary. + + Teach mypy this by marking any function whose outermost decorator is a + `validator()` call as a classmethod. + """ + for name, sym in self._ctx.cls.info.names.items(): + if isinstance(sym.node, Decorator): + first_dec = sym.node.original_decorators[0] + if ( + isinstance(first_dec, CallExpr) + and isinstance(first_dec.callee, NameExpr) + and first_dec.callee.fullname == f'{_NAMESPACE}.class_validators.validator' + ): + sym.node.func.is_class = True + + def collect_config(self) -> 'ModelConfigData': + """ + Collects the values of the config attributes that are used by the plugin, accounting for parent classes. + """ + ctx = self._ctx + cls = ctx.cls + config = ModelConfigData() + for stmt in cls.defs.body: + if not isinstance(stmt, ClassDef): + continue + if stmt.name == 'Config': + for substmt in stmt.defs.body: + if not isinstance(substmt, AssignmentStmt): + continue + config.update(self.get_config_update(substmt)) + if ( + config.has_alias_generator + and not config.allow_population_by_field_name + and self.plugin_config.warn_required_dynamic_aliases + ): + error_required_dynamic_aliases(ctx.api, stmt) + for info in cls.info.mro[1:]: # 0 is the current class + if METADATA_KEY not in info.metadata: + continue + + # Each class depends on the set of fields in its ancestors + ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info))) + for name, value in info.metadata[METADATA_KEY]['config'].items(): + config.setdefault(name, value) + return config + + def collect_fields(self, model_config: 'ModelConfigData') -> List['PydanticModelField']: + """ + Collects the fields for the model, accounting for parent classes + """ + # First, collect fields belonging to the current class. + ctx = self._ctx + cls = self._ctx.cls + fields = [] # type: List[PydanticModelField] + known_fields = set() # type: Set[str] + for stmt in cls.defs.body: + if not isinstance(stmt, AssignmentStmt): # `and stmt.new_syntax` to require annotation + continue + + lhs = stmt.lvalues[0] + if not isinstance(lhs, NameExpr) or not is_valid_field(lhs.name): + continue + + if not stmt.new_syntax and self.plugin_config.warn_untyped_fields: + error_untyped_fields(ctx.api, stmt) + + # if lhs.name == '__config__': # BaseConfig not well handled; I'm not sure why yet + # continue + + sym = cls.info.names.get(lhs.name) + if sym is None: # pragma: no cover + # This is likely due to a star import (see the dataclasses plugin for a more detailed explanation) + # This is the same logic used in the dataclasses plugin + continue + + node = sym.node + if isinstance(node, PlaceholderNode): # pragma: no cover + # See the PlaceholderNode docstring for more detail about how this can occur + # Basically, it is an edge case when dealing with complex import logic + # This is the same logic used in the dataclasses plugin + continue + if not isinstance(node, Var): # pragma: no cover + # Don't know if this edge case still happens with the `is_valid_field` check above + # but better safe than sorry + continue + + # x: ClassVar[int] is ignored by dataclasses. + if node.is_classvar: + continue + + is_required = self.get_is_required(cls, stmt, lhs) + alias, has_dynamic_alias = self.get_alias_info(stmt) + if ( + has_dynamic_alias + and not model_config.allow_population_by_field_name + and self.plugin_config.warn_required_dynamic_aliases + ): + error_required_dynamic_aliases(ctx.api, stmt) + fields.append( + PydanticModelField( + name=lhs.name, + is_required=is_required, + alias=alias, + has_dynamic_alias=has_dynamic_alias, + line=stmt.line, + column=stmt.column, + ) + ) + known_fields.add(lhs.name) + all_fields = fields.copy() + for info in cls.info.mro[1:]: # 0 is the current class, -2 is BaseModel, -1 is object + if METADATA_KEY not in info.metadata: + continue + + superclass_fields = [] + # Each class depends on the set of fields in its ancestors + ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info))) + + for name, data in info.metadata[METADATA_KEY]['fields'].items(): + if name not in known_fields: + field = PydanticModelField.deserialize(info, data) + known_fields.add(name) + superclass_fields.append(field) + else: + (field,) = (a for a in all_fields if a.name == name) + all_fields.remove(field) + superclass_fields.append(field) + all_fields = superclass_fields + all_fields + return all_fields + + def add_initializer(self, fields: List['PydanticModelField'], config: 'ModelConfigData', is_settings: bool) -> None: + """ + Adds a fields-aware `__init__` method to the class. + + The added `__init__` will be annotated with types vs. all `Any` depending on the plugin settings. + """ + ctx = self._ctx + typed = self.plugin_config.init_typed + use_alias = config.allow_population_by_field_name is not True + force_all_optional = is_settings or bool( + config.has_alias_generator and not config.allow_population_by_field_name + ) + init_arguments = self.get_field_arguments( + fields, typed=typed, force_all_optional=force_all_optional, use_alias=use_alias + ) + if not self.should_init_forbid_extra(fields, config): + var = Var('kwargs') + init_arguments.append(Argument(var, AnyType(TypeOfAny.explicit), None, ARG_STAR2)) + + if '__init__' not in ctx.cls.info.names: + add_method(ctx, '__init__', init_arguments, NoneType()) + + def add_construct_method(self, fields: List['PydanticModelField']) -> None: + """ + Adds a fully typed `construct` classmethod to the class. + + Similar to the fields-aware __init__ method, but always uses the field names (not aliases), + and does not treat settings fields as optional. + """ + ctx = self._ctx + set_str = ctx.api.named_type(f'{BUILTINS_NAME}.set', [ctx.api.named_type(f'{BUILTINS_NAME}.str')]) + optional_set_str = UnionType([set_str, NoneType()]) + fields_set_argument = Argument(Var('_fields_set', optional_set_str), optional_set_str, None, ARG_OPT) + construct_arguments = self.get_field_arguments(fields, typed=True, force_all_optional=False, use_alias=False) + construct_arguments = [fields_set_argument] + construct_arguments + + obj_type = ctx.api.named_type(f'{BUILTINS_NAME}.object') + self_tvar_name = '_PydanticBaseModel' # Make sure it does not conflict with other names in the class + tvar_fullname = ctx.cls.fullname + '.' + self_tvar_name + if MYPY_VERSION_TUPLE >= (1, 4): + tvd = TypeVarType( + self_tvar_name, + tvar_fullname, + ( + TypeVarId(-1, namespace=ctx.cls.fullname + '.construct') + if MYPY_VERSION_TUPLE >= (1, 11) + else TypeVarId(-1) + ), + [], + obj_type, + AnyType(TypeOfAny.from_omitted_generics), # type: ignore[arg-type] + ) + self_tvar_expr = TypeVarExpr( + self_tvar_name, + tvar_fullname, + [], + obj_type, + AnyType(TypeOfAny.from_omitted_generics), # type: ignore[arg-type] + ) + else: + tvd = TypeVarDef(self_tvar_name, tvar_fullname, -1, [], obj_type) + self_tvar_expr = TypeVarExpr(self_tvar_name, tvar_fullname, [], obj_type) + ctx.cls.info.names[self_tvar_name] = SymbolTableNode(MDEF, self_tvar_expr) + + # Backward-compatible with TypeVarDef from Mypy 0.910. + if isinstance(tvd, TypeVarType): + self_type = tvd + else: + self_type = TypeVarType(tvd) + + add_method( + ctx, + 'construct', + construct_arguments, + return_type=self_type, + self_type=self_type, + tvar_def=tvd, + is_classmethod=True, + ) + + def set_frozen(self, fields: List['PydanticModelField'], frozen: bool) -> None: + """ + Marks all fields as properties so that attempts to set them trigger mypy errors. + + This is the same approach used by the attrs and dataclasses plugins. + """ + ctx = self._ctx + info = ctx.cls.info + for field in fields: + sym_node = info.names.get(field.name) + if sym_node is not None: + var = sym_node.node + if isinstance(var, Var): + var.is_property = frozen + elif isinstance(var, PlaceholderNode) and not ctx.api.final_iteration: + # See https://github.com/pydantic/pydantic/issues/5191 to hit this branch for test coverage + ctx.api.defer() + else: # pragma: no cover + # I don't know whether it's possible to hit this branch, but I've added it for safety + try: + var_str = str(var) + except TypeError: + # This happens for PlaceholderNode; perhaps it will happen for other types in the future.. + var_str = repr(var) + detail = f'sym_node.node: {var_str} (of type {var.__class__})' + error_unexpected_behavior(detail, ctx.api, ctx.cls) + else: + var = field.to_var(info, use_alias=False) + var.info = info + var.is_property = frozen + var._fullname = get_fullname(info) + '.' + get_name(var) + info.names[get_name(var)] = SymbolTableNode(MDEF, var) + + def get_config_update(self, substmt: AssignmentStmt) -> Optional['ModelConfigData']: + """ + Determines the config update due to a single statement in the Config class definition. + + Warns if a tracked config attribute is set to a value the plugin doesn't know how to interpret (e.g., an int) + """ + lhs = substmt.lvalues[0] + if not (isinstance(lhs, NameExpr) and lhs.name in self.tracked_config_fields): + return None + if lhs.name == 'extra': + if isinstance(substmt.rvalue, StrExpr): + forbid_extra = substmt.rvalue.value == 'forbid' + elif isinstance(substmt.rvalue, MemberExpr): + forbid_extra = substmt.rvalue.name == 'forbid' + else: + error_invalid_config_value(lhs.name, self._ctx.api, substmt) + return None + return ModelConfigData(forbid_extra=forbid_extra) + if lhs.name == 'alias_generator': + has_alias_generator = True + if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname == 'builtins.None': + has_alias_generator = False + return ModelConfigData(has_alias_generator=has_alias_generator) + if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname in ('builtins.True', 'builtins.False'): + return ModelConfigData(**{lhs.name: substmt.rvalue.fullname == 'builtins.True'}) + error_invalid_config_value(lhs.name, self._ctx.api, substmt) + return None + + @staticmethod + def get_is_required(cls: ClassDef, stmt: AssignmentStmt, lhs: NameExpr) -> bool: + """ + Returns a boolean indicating whether the field defined in `stmt` is a required field. + """ + expr = stmt.rvalue + if isinstance(expr, TempNode): + # TempNode means annotation-only, so only non-required if Optional + value_type = get_proper_type(cls.info[lhs.name].type) + return not PydanticModelTransformer.type_has_implicit_default(value_type) + if isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME: + # The "default value" is a call to `Field`; at this point, the field is + # only required if default is Ellipsis (i.e., `field_name: Annotation = Field(...)`) or if default_factory + # is specified. + for arg, name in zip(expr.args, expr.arg_names): + # If name is None, then this arg is the default because it is the only positional argument. + if name is None or name == 'default': + return arg.__class__ is EllipsisExpr + if name == 'default_factory': + return False + # In this case, default and default_factory are not specified, so we need to look at the annotation + value_type = get_proper_type(cls.info[lhs.name].type) + return not PydanticModelTransformer.type_has_implicit_default(value_type) + # Only required if the "default value" is Ellipsis (i.e., `field_name: Annotation = ...`) + return isinstance(expr, EllipsisExpr) + + @staticmethod + def type_has_implicit_default(type_: Optional[ProperType]) -> bool: + """ + Returns True if the passed type will be given an implicit default value. + + In pydantic v1, this is the case for Optional types and Any (with default value None). + """ + if isinstance(type_, AnyType): + # Annotated as Any + return True + if isinstance(type_, UnionType) and any( + isinstance(item, NoneType) or isinstance(item, AnyType) for item in type_.items + ): + # Annotated as Optional, or otherwise having NoneType or AnyType in the union + return True + return False + + @staticmethod + def get_alias_info(stmt: AssignmentStmt) -> Tuple[Optional[str], bool]: + """ + Returns a pair (alias, has_dynamic_alias), extracted from the declaration of the field defined in `stmt`. + + `has_dynamic_alias` is True if and only if an alias is provided, but not as a string literal. + If `has_dynamic_alias` is True, `alias` will be None. + """ + expr = stmt.rvalue + if isinstance(expr, TempNode): + # TempNode means annotation-only + return None, False + + if not ( + isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME + ): + # Assigned value is not a call to pydantic.fields.Field + return None, False + + for i, arg_name in enumerate(expr.arg_names): + if arg_name != 'alias': + continue + arg = expr.args[i] + if isinstance(arg, StrExpr): + return arg.value, False + else: + return None, True + return None, False + + def get_field_arguments( + self, fields: List['PydanticModelField'], typed: bool, force_all_optional: bool, use_alias: bool + ) -> List[Argument]: + """ + Helper function used during the construction of the `__init__` and `construct` method signatures. + + Returns a list of mypy Argument instances for use in the generated signatures. + """ + info = self._ctx.cls.info + arguments = [ + field.to_argument(info, typed=typed, force_optional=force_all_optional, use_alias=use_alias) + for field in fields + if not (use_alias and field.has_dynamic_alias) + ] + return arguments + + def should_init_forbid_extra(self, fields: List['PydanticModelField'], config: 'ModelConfigData') -> bool: + """ + Indicates whether the generated `__init__` should get a `**kwargs` at the end of its signature + + We disallow arbitrary kwargs if the extra config setting is "forbid", or if the plugin config says to, + *unless* a required dynamic alias is present (since then we can't determine a valid signature). + """ + if not config.allow_population_by_field_name: + if self.is_dynamic_alias_present(fields, bool(config.has_alias_generator)): + return False + if config.forbid_extra: + return True + return self.plugin_config.init_forbid_extra + + @staticmethod + def is_dynamic_alias_present(fields: List['PydanticModelField'], has_alias_generator: bool) -> bool: + """ + Returns whether any fields on the model have a "dynamic alias", i.e., an alias that cannot be + determined during static analysis. + """ + for field in fields: + if field.has_dynamic_alias: + return True + if has_alias_generator: + for field in fields: + if field.alias is None: + return True + return False + + +class PydanticModelField: + def __init__( + self, name: str, is_required: bool, alias: Optional[str], has_dynamic_alias: bool, line: int, column: int + ): + self.name = name + self.is_required = is_required + self.alias = alias + self.has_dynamic_alias = has_dynamic_alias + self.line = line + self.column = column + + def to_var(self, info: TypeInfo, use_alias: bool) -> Var: + name = self.name + if use_alias and self.alias is not None: + name = self.alias + return Var(name, info[self.name].type) + + def to_argument(self, info: TypeInfo, typed: bool, force_optional: bool, use_alias: bool) -> Argument: + if typed and info[self.name].type is not None: + type_annotation = info[self.name].type + else: + type_annotation = AnyType(TypeOfAny.explicit) + return Argument( + variable=self.to_var(info, use_alias), + type_annotation=type_annotation, + initializer=None, + kind=ARG_NAMED_OPT if force_optional or not self.is_required else ARG_NAMED, + ) + + def serialize(self) -> JsonDict: + return self.__dict__ + + @classmethod + def deserialize(cls, info: TypeInfo, data: JsonDict) -> 'PydanticModelField': + return cls(**data) + + +class ModelConfigData: + def __init__( + self, + forbid_extra: Optional[bool] = None, + allow_mutation: Optional[bool] = None, + frozen: Optional[bool] = None, + orm_mode: Optional[bool] = None, + allow_population_by_field_name: Optional[bool] = None, + has_alias_generator: Optional[bool] = None, + ): + self.forbid_extra = forbid_extra + self.allow_mutation = allow_mutation + self.frozen = frozen + self.orm_mode = orm_mode + self.allow_population_by_field_name = allow_population_by_field_name + self.has_alias_generator = has_alias_generator + + def set_values_dict(self) -> Dict[str, Any]: + return {k: v for k, v in self.__dict__.items() if v is not None} + + def update(self, config: Optional['ModelConfigData']) -> None: + if config is None: + return + for k, v in config.set_values_dict().items(): + setattr(self, k, v) + + def setdefault(self, key: str, value: Any) -> None: + if getattr(self, key) is None: + setattr(self, key, value) + + +ERROR_ORM = ErrorCode('pydantic-orm', 'Invalid from_orm call', 'Pydantic') +ERROR_CONFIG = ErrorCode('pydantic-config', 'Invalid config value', 'Pydantic') +ERROR_ALIAS = ErrorCode('pydantic-alias', 'Dynamic alias disallowed', 'Pydantic') +ERROR_UNEXPECTED = ErrorCode('pydantic-unexpected', 'Unexpected behavior', 'Pydantic') +ERROR_UNTYPED = ErrorCode('pydantic-field', 'Untyped field disallowed', 'Pydantic') +ERROR_FIELD_DEFAULTS = ErrorCode('pydantic-field', 'Invalid Field defaults', 'Pydantic') + + +def error_from_orm(model_name: str, api: CheckerPluginInterface, context: Context) -> None: + api.fail(f'"{model_name}" does not have orm_mode=True', context, code=ERROR_ORM) + + +def error_invalid_config_value(name: str, api: SemanticAnalyzerPluginInterface, context: Context) -> None: + api.fail(f'Invalid value for "Config.{name}"', context, code=ERROR_CONFIG) + + +def error_required_dynamic_aliases(api: SemanticAnalyzerPluginInterface, context: Context) -> None: + api.fail('Required dynamic aliases disallowed', context, code=ERROR_ALIAS) + + +def error_unexpected_behavior( + detail: str, api: Union[CheckerPluginInterface, SemanticAnalyzerPluginInterface], context: Context +) -> None: # pragma: no cover + # Can't think of a good way to test this, but I confirmed it renders as desired by adding to a non-error path + link = 'https://github.com/pydantic/pydantic/issues/new/choose' + full_message = f'The pydantic mypy plugin ran into unexpected behavior: {detail}\n' + full_message += f'Please consider reporting this bug at {link} so we can try to fix it!' + api.fail(full_message, context, code=ERROR_UNEXPECTED) + + +def error_untyped_fields(api: SemanticAnalyzerPluginInterface, context: Context) -> None: + api.fail('Untyped fields disallowed', context, code=ERROR_UNTYPED) + + +def error_default_and_default_factory_specified(api: CheckerPluginInterface, context: Context) -> None: + api.fail('Field default and default_factory cannot be specified together', context, code=ERROR_FIELD_DEFAULTS) + + +def add_method( + ctx: ClassDefContext, + name: str, + args: List[Argument], + return_type: Type, + self_type: Optional[Type] = None, + tvar_def: Optional[TypeVarDef] = None, + is_classmethod: bool = False, + is_new: bool = False, + # is_staticmethod: bool = False, +) -> None: + """ + Adds a new method to a class. + + This can be dropped if/when https://github.com/python/mypy/issues/7301 is merged + """ + info = ctx.cls.info + + # First remove any previously generated methods with the same name + # to avoid clashes and problems in the semantic analyzer. + if name in info.names: + sym = info.names[name] + if sym.plugin_generated and isinstance(sym.node, FuncDef): + ctx.cls.defs.body.remove(sym.node) # pragma: no cover + + self_type = self_type or fill_typevars(info) + if is_classmethod or is_new: + first = [Argument(Var('_cls'), TypeType.make_normalized(self_type), None, ARG_POS)] + # elif is_staticmethod: + # first = [] + else: + self_type = self_type or fill_typevars(info) + first = [Argument(Var('__pydantic_self__'), self_type, None, ARG_POS)] + args = first + args + arg_types, arg_names, arg_kinds = [], [], [] + for arg in args: + assert arg.type_annotation, 'All arguments must be fully typed.' + arg_types.append(arg.type_annotation) + arg_names.append(get_name(arg.variable)) + arg_kinds.append(arg.kind) + + function_type = ctx.api.named_type(f'{BUILTINS_NAME}.function') + signature = CallableType(arg_types, arg_kinds, arg_names, return_type, function_type) + if tvar_def: + signature.variables = [tvar_def] + + func = FuncDef(name, args, Block([PassStmt()])) + func.info = info + func.type = set_callable_name(signature, func) + func.is_class = is_classmethod + # func.is_static = is_staticmethod + func._fullname = get_fullname(info) + '.' + name + func.line = info.line + + # NOTE: we would like the plugin generated node to dominate, but we still + # need to keep any existing definitions so they get semantically analyzed. + if name in info.names: + # Get a nice unique name instead. + r_name = get_unique_redefinition_name(name, info.names) + info.names[r_name] = info.names[name] + + if is_classmethod: # or is_staticmethod: + func.is_decorated = True + v = Var(name, func.type) + v.info = info + v._fullname = func._fullname + # if is_classmethod: + v.is_classmethod = True + dec = Decorator(func, [NameExpr('classmethod')], v) + # else: + # v.is_staticmethod = True + # dec = Decorator(func, [NameExpr('staticmethod')], v) + + dec.line = info.line + sym = SymbolTableNode(MDEF, dec) + else: + sym = SymbolTableNode(MDEF, func) + sym.plugin_generated = True + + info.names[name] = sym + info.defn.defs.body.append(func) + + +def get_fullname(x: Union[FuncBase, SymbolNode]) -> str: + """ + Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped. + """ + fn = x.fullname + if callable(fn): # pragma: no cover + return fn() + return fn + + +def get_name(x: Union[FuncBase, SymbolNode]) -> str: + """ + Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped. + """ + fn = x.name + if callable(fn): # pragma: no cover + return fn() + return fn + + +def parse_toml(config_file: str) -> Optional[Dict[str, Any]]: + if not config_file.endswith('.toml'): + return None + + read_mode = 'rb' + if sys.version_info >= (3, 11): + import tomllib as toml_ + else: + try: + import tomli as toml_ + except ImportError: + # older versions of mypy have toml as a dependency, not tomli + read_mode = 'r' + try: + import toml as toml_ # type: ignore[no-redef] + except ImportError: # pragma: no cover + import warnings + + warnings.warn('No TOML parser installed, cannot read configuration from `pyproject.toml`.') + return None + + with open(config_file, read_mode) as rf: + return toml_.load(rf) # type: ignore[arg-type] |