diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/v1/_hypothesis_plugin.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/pydantic/v1/_hypothesis_plugin.py | 391 |
1 files changed, 391 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/v1/_hypothesis_plugin.py b/.venv/lib/python3.12/site-packages/pydantic/v1/_hypothesis_plugin.py new file mode 100644 index 00000000..b62234d5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/pydantic/v1/_hypothesis_plugin.py @@ -0,0 +1,391 @@ +""" +Register Hypothesis strategies for Pydantic custom types. + +This enables fully-automatic generation of test data for most Pydantic classes. + +Note that this module has *no* runtime impact on Pydantic itself; instead it +is registered as a setuptools entry point and Hypothesis will import it if +Pydantic is installed. See also: + +https://hypothesis.readthedocs.io/en/latest/strategies.html#registering-strategies-via-setuptools-entry-points +https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.register_type_strategy +https://hypothesis.readthedocs.io/en/latest/strategies.html#interaction-with-pytest-cov +https://docs.pydantic.dev/usage/types/#pydantic-types + +Note that because our motivation is to *improve user experience*, the strategies +are always sound (never generate invalid data) but sacrifice completeness for +maintainability (ie may be unable to generate some tricky but valid data). + +Finally, this module makes liberal use of `# type: ignore[<code>]` pragmas. +This is because Hypothesis annotates `register_type_strategy()` with +`(T, SearchStrategy[T])`, but in most cases we register e.g. `ConstrainedInt` +to generate instances of the builtin `int` type which match the constraints. +""" + +import contextlib +import datetime +import ipaddress +import json +import math +from fractions import Fraction +from typing import Callable, Dict, Type, Union, cast, overload + +import hypothesis.strategies as st + +import pydantic +import pydantic.color +import pydantic.types +from pydantic.v1.utils import lenient_issubclass + +# FilePath and DirectoryPath are explicitly unsupported, as we'd have to create +# them on-disk, and that's unsafe in general without being told *where* to do so. +# +# URLs are unsupported because it's easy for users to define their own strategy for +# "normal" URLs, and hard for us to define a general strategy which includes "weird" +# URLs but doesn't also have unpredictable performance problems. +# +# conlist() and conset() are unsupported for now, because the workarounds for +# Cython and Hypothesis to handle parametrized generic types are incompatible. +# We are rethinking Hypothesis compatibility in Pydantic v2. + +# Emails +try: + import email_validator +except ImportError: # pragma: no cover + pass +else: + + def is_valid_email(s: str) -> bool: + # Hypothesis' st.emails() occasionally generates emails like 0@A0--0.ac + # that are invalid according to email-validator, so we filter those out. + try: + email_validator.validate_email(s, check_deliverability=False) + return True + except email_validator.EmailNotValidError: # pragma: no cover + return False + + # Note that these strategies deliberately stay away from any tricky Unicode + # or other encoding issues; we're just trying to generate *something* valid. + st.register_type_strategy(pydantic.EmailStr, st.emails().filter(is_valid_email)) # type: ignore[arg-type] + st.register_type_strategy( + pydantic.NameEmail, + st.builds( + '{} <{}>'.format, # type: ignore[arg-type] + st.from_regex('[A-Za-z0-9_]+( [A-Za-z0-9_]+){0,5}', fullmatch=True), + st.emails().filter(is_valid_email), + ), + ) + +# PyObject - dotted names, in this case taken from the math module. +st.register_type_strategy( + pydantic.PyObject, # type: ignore[arg-type] + st.sampled_from( + [cast(pydantic.PyObject, f'math.{name}') for name in sorted(vars(math)) if not name.startswith('_')] + ), +) + +# CSS3 Colors; as name, hex, rgb(a) tuples or strings, or hsl strings +_color_regexes = ( + '|'.join( + ( + pydantic.color.r_hex_short, + pydantic.color.r_hex_long, + pydantic.color.r_rgb, + pydantic.color.r_rgba, + pydantic.color.r_hsl, + pydantic.color.r_hsla, + ) + ) + # Use more precise regex patterns to avoid value-out-of-range errors + .replace(pydantic.color._r_sl, r'(?:(\d\d?(?:\.\d+)?|100(?:\.0+)?)%)') + .replace(pydantic.color._r_alpha, r'(?:(0(?:\.\d+)?|1(?:\.0+)?|\.\d+|\d{1,2}%))') + .replace(pydantic.color._r_255, r'(?:((?:\d|\d\d|[01]\d\d|2[0-4]\d|25[0-4])(?:\.\d+)?|255(?:\.0+)?))') +) +st.register_type_strategy( + pydantic.color.Color, + st.one_of( + st.sampled_from(sorted(pydantic.color.COLORS_BY_NAME)), + st.tuples( + st.integers(0, 255), + st.integers(0, 255), + st.integers(0, 255), + st.none() | st.floats(0, 1) | st.floats(0, 100).map('{}%'.format), + ), + st.from_regex(_color_regexes, fullmatch=True), + ), +) + + +# Card numbers, valid according to the Luhn algorithm + + +def add_luhn_digit(card_number: str) -> str: + # See https://en.wikipedia.org/wiki/Luhn_algorithm + for digit in '0123456789': + with contextlib.suppress(Exception): + pydantic.PaymentCardNumber.validate_luhn_check_digit(card_number + digit) + return card_number + digit + raise AssertionError('Unreachable') # pragma: no cover + + +card_patterns = ( + # Note that these patterns omit the Luhn check digit; that's added by the function above + '4[0-9]{14}', # Visa + '5[12345][0-9]{13}', # Mastercard + '3[47][0-9]{12}', # American Express + '[0-26-9][0-9]{10,17}', # other (incomplete to avoid overlap) +) +st.register_type_strategy( + pydantic.PaymentCardNumber, + st.from_regex('|'.join(card_patterns), fullmatch=True).map(add_luhn_digit), # type: ignore[arg-type] +) + +# UUIDs +st.register_type_strategy(pydantic.UUID1, st.uuids(version=1)) +st.register_type_strategy(pydantic.UUID3, st.uuids(version=3)) +st.register_type_strategy(pydantic.UUID4, st.uuids(version=4)) +st.register_type_strategy(pydantic.UUID5, st.uuids(version=5)) + +# Secrets +st.register_type_strategy(pydantic.SecretBytes, st.binary().map(pydantic.SecretBytes)) +st.register_type_strategy(pydantic.SecretStr, st.text().map(pydantic.SecretStr)) + +# IP addresses, networks, and interfaces +st.register_type_strategy(pydantic.IPvAnyAddress, st.ip_addresses()) # type: ignore[arg-type] +st.register_type_strategy( + pydantic.IPvAnyInterface, + st.from_type(ipaddress.IPv4Interface) | st.from_type(ipaddress.IPv6Interface), # type: ignore[arg-type] +) +st.register_type_strategy( + pydantic.IPvAnyNetwork, + st.from_type(ipaddress.IPv4Network) | st.from_type(ipaddress.IPv6Network), # type: ignore[arg-type] +) + +# We hook into the con***() functions and the ConstrainedNumberMeta metaclass, +# so here we only have to register subclasses for other constrained types which +# don't go via those mechanisms. Then there are the registration hooks below. +st.register_type_strategy(pydantic.StrictBool, st.booleans()) +st.register_type_strategy(pydantic.StrictStr, st.text()) + + +# FutureDate, PastDate +st.register_type_strategy(pydantic.FutureDate, st.dates(min_value=datetime.date.today() + datetime.timedelta(days=1))) +st.register_type_strategy(pydantic.PastDate, st.dates(max_value=datetime.date.today() - datetime.timedelta(days=1))) + + +# Constrained-type resolver functions +# +# For these ones, we actually want to inspect the type in order to work out a +# satisfying strategy. First up, the machinery for tracking resolver functions: + +RESOLVERS: Dict[type, Callable[[type], st.SearchStrategy]] = {} # type: ignore[type-arg] + + +@overload +def _registered(typ: Type[pydantic.types.T]) -> Type[pydantic.types.T]: + pass + + +@overload +def _registered(typ: pydantic.types.ConstrainedNumberMeta) -> pydantic.types.ConstrainedNumberMeta: + pass + + +def _registered( + typ: Union[Type[pydantic.types.T], pydantic.types.ConstrainedNumberMeta] +) -> Union[Type[pydantic.types.T], pydantic.types.ConstrainedNumberMeta]: + # This function replaces the version in `pydantic.types`, in order to + # effect the registration of new constrained types so that Hypothesis + # can generate valid examples. + pydantic.types._DEFINED_TYPES.add(typ) + for supertype, resolver in RESOLVERS.items(): + if issubclass(typ, supertype): + st.register_type_strategy(typ, resolver(typ)) # type: ignore + return typ + raise NotImplementedError(f'Unknown type {typ!r} has no resolver to register') # pragma: no cover + + +def resolves( + typ: Union[type, pydantic.types.ConstrainedNumberMeta] +) -> Callable[[Callable[..., st.SearchStrategy]], Callable[..., st.SearchStrategy]]: # type: ignore[type-arg] + def inner(f): # type: ignore + assert f not in RESOLVERS + RESOLVERS[typ] = f + return f + + return inner + + +# Type-to-strategy resolver functions + + +@resolves(pydantic.JsonWrapper) +def resolve_json(cls): # type: ignore[no-untyped-def] + try: + inner = st.none() if cls.inner_type is None else st.from_type(cls.inner_type) + except Exception: # pragma: no cover + finite = st.floats(allow_infinity=False, allow_nan=False) + inner = st.recursive( + base=st.one_of(st.none(), st.booleans(), st.integers(), finite, st.text()), + extend=lambda x: st.lists(x) | st.dictionaries(st.text(), x), # type: ignore + ) + inner_type = getattr(cls, 'inner_type', None) + return st.builds( + cls.inner_type.json if lenient_issubclass(inner_type, pydantic.BaseModel) else json.dumps, + inner, + ensure_ascii=st.booleans(), + indent=st.none() | st.integers(0, 16), + sort_keys=st.booleans(), + ) + + +@resolves(pydantic.ConstrainedBytes) +def resolve_conbytes(cls): # type: ignore[no-untyped-def] # pragma: no cover + min_size = cls.min_length or 0 + max_size = cls.max_length + if not cls.strip_whitespace: + return st.binary(min_size=min_size, max_size=max_size) + # Fun with regex to ensure we neither start nor end with whitespace + repeats = '{{{},{}}}'.format( + min_size - 2 if min_size > 2 else 0, + max_size - 2 if (max_size or 0) > 2 else '', + ) + if min_size >= 2: + pattern = rf'\W.{repeats}\W' + elif min_size == 1: + pattern = rf'\W(.{repeats}\W)?' + else: + assert min_size == 0 + pattern = rf'(\W(.{repeats}\W)?)?' + return st.from_regex(pattern.encode(), fullmatch=True) + + +@resolves(pydantic.ConstrainedDecimal) +def resolve_condecimal(cls): # type: ignore[no-untyped-def] + min_value = cls.ge + max_value = cls.le + if cls.gt is not None: + assert min_value is None, 'Set `gt` or `ge`, but not both' + min_value = cls.gt + if cls.lt is not None: + assert max_value is None, 'Set `lt` or `le`, but not both' + max_value = cls.lt + s = st.decimals(min_value, max_value, allow_nan=False, places=cls.decimal_places) + if cls.lt is not None: + s = s.filter(lambda d: d < cls.lt) + if cls.gt is not None: + s = s.filter(lambda d: cls.gt < d) + return s + + +@resolves(pydantic.ConstrainedFloat) +def resolve_confloat(cls): # type: ignore[no-untyped-def] + min_value = cls.ge + max_value = cls.le + exclude_min = False + exclude_max = False + + if cls.gt is not None: + assert min_value is None, 'Set `gt` or `ge`, but not both' + min_value = cls.gt + exclude_min = True + if cls.lt is not None: + assert max_value is None, 'Set `lt` or `le`, but not both' + max_value = cls.lt + exclude_max = True + + if cls.multiple_of is None: + return st.floats(min_value, max_value, exclude_min=exclude_min, exclude_max=exclude_max, allow_nan=False) + + if min_value is not None: + min_value = math.ceil(min_value / cls.multiple_of) + if exclude_min: + min_value = min_value + 1 + if max_value is not None: + assert max_value >= cls.multiple_of, 'Cannot build model with max value smaller than multiple of' + max_value = math.floor(max_value / cls.multiple_of) + if exclude_max: + max_value = max_value - 1 + + return st.integers(min_value, max_value).map(lambda x: x * cls.multiple_of) + + +@resolves(pydantic.ConstrainedInt) +def resolve_conint(cls): # type: ignore[no-untyped-def] + min_value = cls.ge + max_value = cls.le + if cls.gt is not None: + assert min_value is None, 'Set `gt` or `ge`, but not both' + min_value = cls.gt + 1 + if cls.lt is not None: + assert max_value is None, 'Set `lt` or `le`, but not both' + max_value = cls.lt - 1 + + if cls.multiple_of is None or cls.multiple_of == 1: + return st.integers(min_value, max_value) + + # These adjustments and the .map handle integer-valued multiples, while the + # .filter handles trickier cases as for confloat. + if min_value is not None: + min_value = math.ceil(Fraction(min_value) / Fraction(cls.multiple_of)) + if max_value is not None: + max_value = math.floor(Fraction(max_value) / Fraction(cls.multiple_of)) + return st.integers(min_value, max_value).map(lambda x: x * cls.multiple_of) + + +@resolves(pydantic.ConstrainedDate) +def resolve_condate(cls): # type: ignore[no-untyped-def] + if cls.ge is not None: + assert cls.gt is None, 'Set `gt` or `ge`, but not both' + min_value = cls.ge + elif cls.gt is not None: + min_value = cls.gt + datetime.timedelta(days=1) + else: + min_value = datetime.date.min + if cls.le is not None: + assert cls.lt is None, 'Set `lt` or `le`, but not both' + max_value = cls.le + elif cls.lt is not None: + max_value = cls.lt - datetime.timedelta(days=1) + else: + max_value = datetime.date.max + return st.dates(min_value, max_value) + + +@resolves(pydantic.ConstrainedStr) +def resolve_constr(cls): # type: ignore[no-untyped-def] # pragma: no cover + min_size = cls.min_length or 0 + max_size = cls.max_length + + if cls.regex is None and not cls.strip_whitespace: + return st.text(min_size=min_size, max_size=max_size) + + if cls.regex is not None: + strategy = st.from_regex(cls.regex) + if cls.strip_whitespace: + strategy = strategy.filter(lambda s: s == s.strip()) + elif cls.strip_whitespace: + repeats = '{{{},{}}}'.format( + min_size - 2 if min_size > 2 else 0, + max_size - 2 if (max_size or 0) > 2 else '', + ) + if min_size >= 2: + strategy = st.from_regex(rf'\W.{repeats}\W') + elif min_size == 1: + strategy = st.from_regex(rf'\W(.{repeats}\W)?') + else: + assert min_size == 0 + strategy = st.from_regex(rf'(\W(.{repeats}\W)?)?') + + if min_size == 0 and max_size is None: + return strategy + elif max_size is None: + return strategy.filter(lambda s: min_size <= len(s)) + return strategy.filter(lambda s: min_size <= len(s) <= max_size) + + +# Finally, register all previously-defined types, and patch in our new function +for typ in list(pydantic.types._DEFINED_TYPES): + _registered(typ) +pydantic.types._registered = _registered +st.register_type_strategy(pydantic.Json, resolve_json) |