diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/main.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/pydantic/main.py | 1688 |
1 files changed, 1688 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/main.py b/.venv/lib/python3.12/site-packages/pydantic/main.py new file mode 100644 index 00000000..b1be872e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/pydantic/main.py @@ -0,0 +1,1688 @@ +"""Logic for creating models.""" + +from __future__ import annotations as _annotations + +import operator +import sys +import types +import typing +import warnings +from copy import copy, deepcopy +from functools import cached_property +from typing import ( + TYPE_CHECKING, + Any, + Callable, + ClassVar, + Dict, + Generator, + Literal, + Mapping, + Set, + Tuple, + TypeVar, + Union, + cast, + overload, +) + +import pydantic_core +import typing_extensions +from pydantic_core import PydanticUndefined +from typing_extensions import Self, TypeAlias, Unpack + +from ._internal import ( + _config, + _decorators, + _fields, + _forward_ref, + _generics, + _import_utils, + _mock_val_ser, + _model_construction, + _namespace_utils, + _repr, + _typing_extra, + _utils, +) +from ._migration import getattr_migration +from .aliases import AliasChoices, AliasPath +from .annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler +from .config import ConfigDict +from .errors import PydanticUndefinedAnnotation, PydanticUserError +from .json_schema import DEFAULT_REF_TEMPLATE, GenerateJsonSchema, JsonSchemaMode, JsonSchemaValue, model_json_schema +from .plugin._schema_validator import PluggableSchemaValidator +from .warnings import PydanticDeprecatedSince20 + +if TYPE_CHECKING: + from inspect import Signature + from pathlib import Path + + from pydantic_core import CoreSchema, SchemaSerializer, SchemaValidator + + from ._internal._namespace_utils import MappingNamespace + from ._internal._utils import AbstractSetIntStr, MappingIntStrAny + from .deprecated.parse import Protocol as DeprecatedParseProtocol + from .fields import ComputedFieldInfo, FieldInfo, ModelPrivateAttr +else: + # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 + # and https://youtrack.jetbrains.com/issue/PY-51428 + DeprecationWarning = PydanticDeprecatedSince20 + +__all__ = 'BaseModel', 'create_model' + +# Keep these type aliases available at runtime: +TupleGenerator: TypeAlias = Generator[Tuple[str, Any], None, None] +# NOTE: In reality, `bool` should be replaced by `Literal[True]` but mypy fails to correctly apply bidirectional +# type inference (e.g. when using `{'a': {'b': True}}`): +# NOTE: Keep this type alias in sync with the stub definition in `pydantic-core`: +IncEx: TypeAlias = Union[Set[int], Set[str], Mapping[int, Union['IncEx', bool]], Mapping[str, Union['IncEx', bool]]] + +_object_setattr = _model_construction.object_setattr + + +class BaseModel(metaclass=_model_construction.ModelMetaclass): + """Usage docs: https://docs.pydantic.dev/2.10/concepts/models/ + + A base class for creating Pydantic models. + + Attributes: + __class_vars__: The names of the class variables defined on the model. + __private_attributes__: Metadata about the private attributes of the model. + __signature__: The synthesized `__init__` [`Signature`][inspect.Signature] of the model. + + __pydantic_complete__: Whether model building is completed, or if there are still undefined fields. + __pydantic_core_schema__: The core schema of the model. + __pydantic_custom_init__: Whether the model has a custom `__init__` function. + __pydantic_decorators__: Metadata containing the decorators defined on the model. + This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1. + __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to + __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these. + __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models. + __pydantic_post_init__: The name of the post-init method for the model, if defined. + __pydantic_root_model__: Whether the model is a [`RootModel`][pydantic.root_model.RootModel]. + __pydantic_serializer__: The `pydantic-core` `SchemaSerializer` used to dump instances of the model. + __pydantic_validator__: The `pydantic-core` `SchemaValidator` used to validate instances of the model. + + __pydantic_fields__: A dictionary of field names and their corresponding [`FieldInfo`][pydantic.fields.FieldInfo] objects. + __pydantic_computed_fields__: A dictionary of computed field names and their corresponding [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects. + + __pydantic_extra__: A dictionary containing extra values, if [`extra`][pydantic.config.ConfigDict.extra] + is set to `'allow'`. + __pydantic_fields_set__: The names of fields explicitly set during instantiation. + __pydantic_private__: Values of private attributes set on the model instance. + """ + + # Note: Many of the below class vars are defined in the metaclass, but we define them here for type checking purposes. + + model_config: ClassVar[ConfigDict] = ConfigDict() + """ + Configuration for the model, should be a dictionary conforming to [`ConfigDict`][pydantic.config.ConfigDict]. + """ + + # Because `dict` is in the local namespace of the `BaseModel` class, we use `Dict` for annotations. + # TODO v3 fallback to `dict` when the deprecated `dict` method gets removed. + __class_vars__: ClassVar[set[str]] + """The names of the class variables defined on the model.""" + + __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] # noqa: UP006 + """Metadata about the private attributes of the model.""" + + __signature__: ClassVar[Signature] + """The synthesized `__init__` [`Signature`][inspect.Signature] of the model.""" + + __pydantic_complete__: ClassVar[bool] = False + """Whether model building is completed, or if there are still undefined fields.""" + + __pydantic_core_schema__: ClassVar[CoreSchema] + """The core schema of the model.""" + + __pydantic_custom_init__: ClassVar[bool] + """Whether the model has a custom `__init__` method.""" + + # Must be set for `GenerateSchema.model_schema` to work for a plain `BaseModel` annotation. + __pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = _decorators.DecoratorInfos() + """Metadata containing the decorators defined on the model. + This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1.""" + + __pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] + """Metadata for generic models; contains data used for a similar purpose to + __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.""" + + __pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None # noqa: UP006 + """Parent namespace of the model, used for automatic rebuilding of models.""" + + __pydantic_post_init__: ClassVar[None | Literal['model_post_init']] + """The name of the post-init method for the model, if defined.""" + + __pydantic_root_model__: ClassVar[bool] = False + """Whether the model is a [`RootModel`][pydantic.root_model.RootModel].""" + + __pydantic_serializer__: ClassVar[SchemaSerializer] + """The `pydantic-core` `SchemaSerializer` used to dump instances of the model.""" + + __pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] + """The `pydantic-core` `SchemaValidator` used to validate instances of the model.""" + + __pydantic_fields__: ClassVar[Dict[str, FieldInfo]] # noqa: UP006 + """A dictionary of field names and their corresponding [`FieldInfo`][pydantic.fields.FieldInfo] objects. + This replaces `Model.__fields__` from Pydantic V1. + """ + + __pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] # noqa: UP006 + """A dictionary of computed field names and their corresponding [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects.""" + + __pydantic_extra__: dict[str, Any] | None = _model_construction.NoInitField(init=False) + """A dictionary containing extra values, if [`extra`][pydantic.config.ConfigDict.extra] is set to `'allow'`.""" + + __pydantic_fields_set__: set[str] = _model_construction.NoInitField(init=False) + """The names of fields explicitly set during instantiation.""" + + __pydantic_private__: dict[str, Any] | None = _model_construction.NoInitField(init=False) + """Values of private attributes set on the model instance.""" + + if not TYPE_CHECKING: + # Prevent `BaseModel` from being instantiated directly + # (defined in an `if not TYPE_CHECKING` block for clarity and to avoid type checking errors): + __pydantic_core_schema__ = _mock_val_ser.MockCoreSchema( + 'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly', + code='base-model-instantiated', + ) + __pydantic_validator__ = _mock_val_ser.MockValSer( + 'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly', + val_or_ser='validator', + code='base-model-instantiated', + ) + __pydantic_serializer__ = _mock_val_ser.MockValSer( + 'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly', + val_or_ser='serializer', + code='base-model-instantiated', + ) + + __slots__ = '__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__' + + def __init__(self, /, **data: Any) -> None: + """Create a new model by parsing and validating input data from keyword arguments. + + Raises [`ValidationError`][pydantic_core.ValidationError] if the input data cannot be + validated to form a valid model. + + `self` is explicitly positional-only to allow `self` as a field name. + """ + # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks + __tracebackhide__ = True + validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self) + if self is not validated_self: + warnings.warn( + 'A custom validator is returning a value other than `self`.\n' + "Returning anything other than `self` from a top level model validator isn't supported when validating via `__init__`.\n" + 'See the `model_validator` docs (https://docs.pydantic.dev/latest/concepts/validators/#model-validators) for more details.', + stacklevel=2, + ) + + # The following line sets a flag that we use to determine when `__init__` gets overridden by the user + __init__.__pydantic_base_init__ = True # pyright: ignore[reportFunctionMemberAccess] + + if TYPE_CHECKING: + model_fields: ClassVar[dict[str, FieldInfo]] + model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] + else: + # TODO: V3 - remove `model_fields` and `model_computed_fields` properties from the `BaseModel` class - they should only + # be accessible on the model class, not on instances. We have these purely for backwards compatibility with Pydantic <v2.10. + # This is similar to the fact that we have __fields__ defined here (on `BaseModel`) and on `ModelMetaClass`. + # Another problem here is that there's no great way to have class properties :( + @property + def model_fields(self) -> dict[str, FieldInfo]: + """Get metadata about the fields defined on the model. + + Deprecation warning: you should be getting this information from the model class, not from an instance. + In V3, this property will be removed from the `BaseModel` class. + + Returns: + A mapping of field names to [`FieldInfo`][pydantic.fields.FieldInfo] objects. + """ + # Must be set for `GenerateSchema.model_schema` to work for a plain `BaseModel` annotation, hence the default here. + return getattr(self, '__pydantic_fields__', {}) + + @property + def model_computed_fields(self) -> dict[str, ComputedFieldInfo]: + """Get metadata about the computed fields defined on the model. + + Deprecation warning: you should be getting this information from the model class, not from an instance. + In V3, this property will be removed from the `BaseModel` class. + + Returns: + A mapping of computed field names to [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects. + """ + # Must be set for `GenerateSchema.model_schema` to work for a plain `BaseModel` annotation, hence the default here. + return getattr(self, '__pydantic_computed_fields__', {}) + + @property + def model_extra(self) -> dict[str, Any] | None: + """Get extra fields set during validation. + + Returns: + A dictionary of extra fields, or `None` if `config.extra` is not set to `"allow"`. + """ + return self.__pydantic_extra__ + + @property + def model_fields_set(self) -> set[str]: + """Returns the set of fields that have been explicitly set on this model instance. + + Returns: + A set of strings representing the fields that have been set, + i.e. that were not filled from defaults. + """ + return self.__pydantic_fields_set__ + + @classmethod + def model_construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self: # noqa: C901 + """Creates a new instance of the `Model` class with validated data. + + Creates a new model setting `__dict__` and `__pydantic_fields_set__` from trusted or pre-validated data. + Default values are respected, but no other validation is performed. + + !!! note + `model_construct()` generally respects the `model_config.extra` setting on the provided model. + That is, if `model_config.extra == 'allow'`, then all extra passed values are added to the model instance's `__dict__` + and `__pydantic_extra__` fields. If `model_config.extra == 'ignore'` (the default), then all extra passed values are ignored. + Because no validation is performed with a call to `model_construct()`, having `model_config.extra == 'forbid'` does not result in + an error if extra values are passed, but they will be ignored. + + Args: + _fields_set: A set of field names that were originally explicitly set during instantiation. If provided, + this is directly used for the [`model_fields_set`][pydantic.BaseModel.model_fields_set] attribute. + Otherwise, the field names from the `values` argument will be used. + values: Trusted or pre-validated data dictionary. + + Returns: + A new instance of the `Model` class with validated data. + """ + m = cls.__new__(cls) + fields_values: dict[str, Any] = {} + fields_set = set() + + for name, field in cls.__pydantic_fields__.items(): + if field.alias is not None and field.alias in values: + fields_values[name] = values.pop(field.alias) + fields_set.add(name) + + if (name not in fields_set) and (field.validation_alias is not None): + validation_aliases: list[str | AliasPath] = ( + field.validation_alias.choices + if isinstance(field.validation_alias, AliasChoices) + else [field.validation_alias] + ) + + for alias in validation_aliases: + if isinstance(alias, str) and alias in values: + fields_values[name] = values.pop(alias) + fields_set.add(name) + break + elif isinstance(alias, AliasPath): + value = alias.search_dict_for_path(values) + if value is not PydanticUndefined: + fields_values[name] = value + fields_set.add(name) + break + + if name not in fields_set: + if name in values: + fields_values[name] = values.pop(name) + fields_set.add(name) + elif not field.is_required(): + fields_values[name] = field.get_default(call_default_factory=True, validated_data=fields_values) + if _fields_set is None: + _fields_set = fields_set + + _extra: dict[str, Any] | None = values if cls.model_config.get('extra') == 'allow' else None + _object_setattr(m, '__dict__', fields_values) + _object_setattr(m, '__pydantic_fields_set__', _fields_set) + if not cls.__pydantic_root_model__: + _object_setattr(m, '__pydantic_extra__', _extra) + + if cls.__pydantic_post_init__: + m.model_post_init(None) + # update private attributes with values set + if hasattr(m, '__pydantic_private__') and m.__pydantic_private__ is not None: + for k, v in values.items(): + if k in m.__private_attributes__: + m.__pydantic_private__[k] = v + + elif not cls.__pydantic_root_model__: + # Note: if there are any private attributes, cls.__pydantic_post_init__ would exist + # Since it doesn't, that means that `__pydantic_private__` should be set to None + _object_setattr(m, '__pydantic_private__', None) + + return m + + def model_copy(self, *, update: Mapping[str, Any] | None = None, deep: bool = False) -> Self: + """Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy + + Returns a copy of the model. + + Args: + update: Values to change/add in the new model. Note: the data is not validated + before creating the new model. You should trust this data. + deep: Set to `True` to make a deep copy of the model. + + Returns: + New model instance. + """ + copied = self.__deepcopy__() if deep else self.__copy__() + if update: + if self.model_config.get('extra') == 'allow': + for k, v in update.items(): + if k in self.__pydantic_fields__: + copied.__dict__[k] = v + else: + if copied.__pydantic_extra__ is None: + copied.__pydantic_extra__ = {} + copied.__pydantic_extra__[k] = v + else: + copied.__dict__.update(update) + copied.__pydantic_fields_set__.update(update.keys()) + return copied + + def model_dump( + self, + *, + mode: Literal['json', 'python'] | str = 'python', + include: IncEx | None = None, + exclude: IncEx | None = None, + context: Any | None = None, + by_alias: bool = False, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + round_trip: bool = False, + warnings: bool | Literal['none', 'warn', 'error'] = True, + serialize_as_any: bool = False, + ) -> dict[str, Any]: + """Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump + + Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. + + Args: + mode: The mode in which `to_python` should run. + If mode is 'json', the output will only contain JSON serializable types. + If mode is 'python', the output may contain non-JSON-serializable Python objects. + include: A set of fields to include in the output. + exclude: A set of fields to exclude from the output. + context: Additional context to pass to the serializer. + by_alias: Whether to use the field's alias in the dictionary key if defined. + exclude_unset: Whether to exclude fields that have not been explicitly set. + exclude_defaults: Whether to exclude fields that are set to their default value. + exclude_none: Whether to exclude fields that have a value of `None`. + round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. + warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, + "error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError]. + serialize_as_any: Whether to serialize fields with duck-typing serialization behavior. + + Returns: + A dictionary representation of the model. + """ + return self.__pydantic_serializer__.to_python( + self, + mode=mode, + by_alias=by_alias, + include=include, + exclude=exclude, + context=context, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + round_trip=round_trip, + warnings=warnings, + serialize_as_any=serialize_as_any, + ) + + def model_dump_json( + self, + *, + indent: int | None = None, + include: IncEx | None = None, + exclude: IncEx | None = None, + context: Any | None = None, + by_alias: bool = False, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + round_trip: bool = False, + warnings: bool | Literal['none', 'warn', 'error'] = True, + serialize_as_any: bool = False, + ) -> str: + """Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json + + Generates a JSON representation of the model using Pydantic's `to_json` method. + + Args: + indent: Indentation to use in the JSON output. If None is passed, the output will be compact. + include: Field(s) to include in the JSON output. + exclude: Field(s) to exclude from the JSON output. + context: Additional context to pass to the serializer. + by_alias: Whether to serialize using field aliases. + exclude_unset: Whether to exclude fields that have not been explicitly set. + exclude_defaults: Whether to exclude fields that are set to their default value. + exclude_none: Whether to exclude fields that have a value of `None`. + round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. + warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, + "error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError]. + serialize_as_any: Whether to serialize fields with duck-typing serialization behavior. + + Returns: + A JSON string representation of the model. + """ + return self.__pydantic_serializer__.to_json( + self, + indent=indent, + include=include, + exclude=exclude, + context=context, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + round_trip=round_trip, + warnings=warnings, + serialize_as_any=serialize_as_any, + ).decode() + + @classmethod + def model_json_schema( + cls, + by_alias: bool = True, + ref_template: str = DEFAULT_REF_TEMPLATE, + schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema, + mode: JsonSchemaMode = 'validation', + ) -> dict[str, Any]: + """Generates a JSON schema for a model class. + + Args: + by_alias: Whether to use attribute aliases or not. + ref_template: The reference template. + schema_generator: To override the logic used to generate the JSON schema, as a subclass of + `GenerateJsonSchema` with your desired modifications + mode: The mode in which to generate the schema. + + Returns: + The JSON schema for the given model class. + """ + return model_json_schema( + cls, by_alias=by_alias, ref_template=ref_template, schema_generator=schema_generator, mode=mode + ) + + @classmethod + def model_parametrized_name(cls, params: tuple[type[Any], ...]) -> str: + """Compute the class name for parametrizations of generic classes. + + This method can be overridden to achieve a custom naming scheme for generic BaseModels. + + Args: + params: Tuple of types of the class. Given a generic class + `Model` with 2 type variables and a concrete model `Model[str, int]`, + the value `(str, int)` would be passed to `params`. + + Returns: + String representing the new class where `params` are passed to `cls` as type variables. + + Raises: + TypeError: Raised when trying to generate concrete names for non-generic models. + """ + if not issubclass(cls, typing.Generic): + raise TypeError('Concrete names should only be generated for generic models.') + + # Any strings received should represent forward references, so we handle them specially below. + # If we eventually move toward wrapping them in a ForwardRef in __class_getitem__ in the future, + # we may be able to remove this special case. + param_names = [param if isinstance(param, str) else _repr.display_as_type(param) for param in params] + params_component = ', '.join(param_names) + return f'{cls.__name__}[{params_component}]' + + def model_post_init(self, __context: Any) -> None: + """Override this method to perform additional initialization after `__init__` and `model_construct`. + This is useful if you want to do some validation that requires the entire model to be initialized. + """ + pass + + @classmethod + def model_rebuild( + cls, + *, + force: bool = False, + raise_errors: bool = True, + _parent_namespace_depth: int = 2, + _types_namespace: MappingNamespace | None = None, + ) -> bool | None: + """Try to rebuild the pydantic-core schema for the model. + + This may be necessary when one of the annotations is a ForwardRef which could not be resolved during + the initial attempt to build the schema, and automatic rebuilding fails. + + Args: + force: Whether to force the rebuilding of the model schema, defaults to `False`. + raise_errors: Whether to raise errors, defaults to `True`. + _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. + _types_namespace: The types namespace, defaults to `None`. + + Returns: + Returns `None` if the schema is already "complete" and rebuilding was not required. + If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`. + """ + if not force and cls.__pydantic_complete__: + return None + + if '__pydantic_core_schema__' in cls.__dict__: + delattr(cls, '__pydantic_core_schema__') # delete cached value to ensure full rebuild happens + + if _types_namespace is not None: + rebuild_ns = _types_namespace + elif _parent_namespace_depth > 0: + rebuild_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth, force=True) or {} + else: + rebuild_ns = {} + + parent_ns = _model_construction.unpack_lenient_weakvaluedict(cls.__pydantic_parent_namespace__) or {} + + ns_resolver = _namespace_utils.NsResolver( + parent_namespace={**rebuild_ns, **parent_ns}, + ) + + # manually override defer_build so complete_model_class doesn't skip building the model again + config = {**cls.model_config, 'defer_build': False} + return _model_construction.complete_model_class( + cls, + cls.__name__, + _config.ConfigWrapper(config, check=False), + raise_errors=raise_errors, + ns_resolver=ns_resolver, + ) + + @classmethod + def model_validate( + cls, + obj: Any, + *, + strict: bool | None = None, + from_attributes: bool | None = None, + context: Any | None = None, + ) -> Self: + """Validate a pydantic model instance. + + Args: + obj: The object to validate. + strict: Whether to enforce types strictly. + from_attributes: Whether to extract data from object attributes. + context: Additional context to pass to the validator. + + Raises: + ValidationError: If the object could not be validated. + + Returns: + The validated model instance. + """ + # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks + __tracebackhide__ = True + return cls.__pydantic_validator__.validate_python( + obj, strict=strict, from_attributes=from_attributes, context=context + ) + + @classmethod + def model_validate_json( + cls, + json_data: str | bytes | bytearray, + *, + strict: bool | None = None, + context: Any | None = None, + ) -> Self: + """Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing + + Validate the given JSON data against the Pydantic model. + + Args: + json_data: The JSON data to validate. + strict: Whether to enforce types strictly. + context: Extra variables to pass to the validator. + + Returns: + The validated Pydantic model. + + Raises: + ValidationError: If `json_data` is not a JSON string or the object could not be validated. + """ + # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks + __tracebackhide__ = True + return cls.__pydantic_validator__.validate_json(json_data, strict=strict, context=context) + + @classmethod + def model_validate_strings( + cls, + obj: Any, + *, + strict: bool | None = None, + context: Any | None = None, + ) -> Self: + """Validate the given object with string data against the Pydantic model. + + Args: + obj: The object containing string data to validate. + strict: Whether to enforce types strictly. + context: Extra variables to pass to the validator. + + Returns: + The validated Pydantic model. + """ + # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks + __tracebackhide__ = True + return cls.__pydantic_validator__.validate_strings(obj, strict=strict, context=context) + + @classmethod + def __get_pydantic_core_schema__(cls, source: type[BaseModel], handler: GetCoreSchemaHandler, /) -> CoreSchema: + """Hook into generating the model's CoreSchema. + + Args: + source: The class we are generating a schema for. + This will generally be the same as the `cls` argument if this is a classmethod. + handler: A callable that calls into Pydantic's internal CoreSchema generation logic. + + Returns: + A `pydantic-core` `CoreSchema`. + """ + # Only use the cached value from this _exact_ class; we don't want one from a parent class + # This is why we check `cls.__dict__` and don't use `cls.__pydantic_core_schema__` or similar. + schema = cls.__dict__.get('__pydantic_core_schema__') + if schema is not None and not isinstance(schema, _mock_val_ser.MockCoreSchema): + # Due to the way generic classes are built, it's possible that an invalid schema may be temporarily + # set on generic classes. I think we could resolve this to ensure that we get proper schema caching + # for generics, but for simplicity for now, we just always rebuild if the class has a generic origin. + if not cls.__pydantic_generic_metadata__['origin']: + return cls.__pydantic_core_schema__ + + return handler(source) + + @classmethod + def __get_pydantic_json_schema__( + cls, + core_schema: CoreSchema, + handler: GetJsonSchemaHandler, + /, + ) -> JsonSchemaValue: + """Hook into generating the model's JSON schema. + + Args: + core_schema: A `pydantic-core` CoreSchema. + You can ignore this argument and call the handler with a new CoreSchema, + wrap this CoreSchema (`{'type': 'nullable', 'schema': current_schema}`), + or just call the handler with the original schema. + handler: Call into Pydantic's internal JSON schema generation. + This will raise a `pydantic.errors.PydanticInvalidForJsonSchema` if JSON schema + generation fails. + Since this gets called by `BaseModel.model_json_schema` you can override the + `schema_generator` argument to that function to change JSON schema generation globally + for a type. + + Returns: + A JSON schema, as a Python object. + """ + return handler(core_schema) + + @classmethod + def __pydantic_init_subclass__(cls, **kwargs: Any) -> None: + """This is intended to behave just like `__init_subclass__`, but is called by `ModelMetaclass` + only after the class is actually fully initialized. In particular, attributes like `model_fields` will + be present when this is called. + + This is necessary because `__init_subclass__` will always be called by `type.__new__`, + and it would require a prohibitively large refactor to the `ModelMetaclass` to ensure that + `type.__new__` was called in such a manner that the class would already be sufficiently initialized. + + This will receive the same `kwargs` that would be passed to the standard `__init_subclass__`, namely, + any kwargs passed to the class definition that aren't used internally by pydantic. + + Args: + **kwargs: Any keyword arguments passed to the class definition that aren't used internally + by pydantic. + """ + pass + + def __class_getitem__( + cls, typevar_values: type[Any] | tuple[type[Any], ...] + ) -> type[BaseModel] | _forward_ref.PydanticRecursiveRef: + cached = _generics.get_cached_generic_type_early(cls, typevar_values) + if cached is not None: + return cached + + if cls is BaseModel: + raise TypeError('Type parameters should be placed on typing.Generic, not BaseModel') + if not hasattr(cls, '__parameters__'): + raise TypeError(f'{cls} cannot be parametrized because it does not inherit from typing.Generic') + if not cls.__pydantic_generic_metadata__['parameters'] and typing.Generic not in cls.__bases__: + raise TypeError(f'{cls} is not a generic class') + + if not isinstance(typevar_values, tuple): + typevar_values = (typevar_values,) + _generics.check_parameters_count(cls, typevar_values) + + # Build map from generic typevars to passed params + typevars_map: dict[TypeVar, type[Any]] = dict( + zip(cls.__pydantic_generic_metadata__['parameters'], typevar_values) + ) + + if _utils.all_identical(typevars_map.keys(), typevars_map.values()) and typevars_map: + submodel = cls # if arguments are equal to parameters it's the same object + _generics.set_cached_generic_type(cls, typevar_values, submodel) + else: + parent_args = cls.__pydantic_generic_metadata__['args'] + if not parent_args: + args = typevar_values + else: + args = tuple(_generics.replace_types(arg, typevars_map) for arg in parent_args) + + origin = cls.__pydantic_generic_metadata__['origin'] or cls + model_name = origin.model_parametrized_name(args) + params = tuple( + {param: None for param in _generics.iter_contained_typevars(typevars_map.values())} + ) # use dict as ordered set + + with _generics.generic_recursion_self_type(origin, args) as maybe_self_type: + cached = _generics.get_cached_generic_type_late(cls, typevar_values, origin, args) + if cached is not None: + return cached + + if maybe_self_type is not None: + return maybe_self_type + + # Attempt to rebuild the origin in case new types have been defined + try: + # depth 2 gets you above this __class_getitem__ call. + # Note that we explicitly provide the parent ns, otherwise + # `model_rebuild` will use the parent ns no matter if it is the ns of a module. + # We don't want this here, as this has unexpected effects when a model + # is being parametrized during a forward annotation evaluation. + parent_ns = _typing_extra.parent_frame_namespace(parent_depth=2) or {} + origin.model_rebuild(_types_namespace=parent_ns) + except PydanticUndefinedAnnotation: + # It's okay if it fails, it just means there are still undefined types + # that could be evaluated later. + pass + + submodel = _generics.create_generic_submodel(model_name, origin, args, params) + + # Update cache + _generics.set_cached_generic_type(cls, typevar_values, submodel, origin, args) + + return submodel + + def __copy__(self) -> Self: + """Returns a shallow copy of the model.""" + cls = type(self) + m = cls.__new__(cls) + _object_setattr(m, '__dict__', copy(self.__dict__)) + _object_setattr(m, '__pydantic_extra__', copy(self.__pydantic_extra__)) + _object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__)) + + if not hasattr(self, '__pydantic_private__') or self.__pydantic_private__ is None: + _object_setattr(m, '__pydantic_private__', None) + else: + _object_setattr( + m, + '__pydantic_private__', + {k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}, + ) + + return m + + def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self: + """Returns a deep copy of the model.""" + cls = type(self) + m = cls.__new__(cls) + _object_setattr(m, '__dict__', deepcopy(self.__dict__, memo=memo)) + _object_setattr(m, '__pydantic_extra__', deepcopy(self.__pydantic_extra__, memo=memo)) + # This next line doesn't need a deepcopy because __pydantic_fields_set__ is a set[str], + # and attempting a deepcopy would be marginally slower. + _object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__)) + + if not hasattr(self, '__pydantic_private__') or self.__pydantic_private__ is None: + _object_setattr(m, '__pydantic_private__', None) + else: + _object_setattr( + m, + '__pydantic_private__', + deepcopy({k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}, memo=memo), + ) + + return m + + if not TYPE_CHECKING: + # We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access + # The same goes for __setattr__ and __delattr__, see: https://github.com/pydantic/pydantic/issues/8643 + + def __getattr__(self, item: str) -> Any: + private_attributes = object.__getattribute__(self, '__private_attributes__') + if item in private_attributes: + attribute = private_attributes[item] + if hasattr(attribute, '__get__'): + return attribute.__get__(self, type(self)) # type: ignore + + try: + # Note: self.__pydantic_private__ cannot be None if self.__private_attributes__ has items + return self.__pydantic_private__[item] # type: ignore + except KeyError as exc: + raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc + else: + # `__pydantic_extra__` can fail to be set if the model is not yet fully initialized. + # See `BaseModel.__repr_args__` for more details + try: + pydantic_extra = object.__getattribute__(self, '__pydantic_extra__') + except AttributeError: + pydantic_extra = None + + if pydantic_extra: + try: + return pydantic_extra[item] + except KeyError as exc: + raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc + else: + if hasattr(self.__class__, item): + return super().__getattribute__(item) # Raises AttributeError if appropriate + else: + # this is the current error + raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') + + def __setattr__(self, name: str, value: Any) -> None: + if name in self.__class_vars__: + raise AttributeError( + f'{name!r} is a ClassVar of `{self.__class__.__name__}` and cannot be set on an instance. ' + f'If you want to set a value on the class, use `{self.__class__.__name__}.{name} = value`.' + ) + elif not _fields.is_valid_field_name(name): + if self.__pydantic_private__ is None or name not in self.__private_attributes__: + _object_setattr(self, name, value) + else: + attribute = self.__private_attributes__[name] + if hasattr(attribute, '__set__'): + attribute.__set__(self, value) # type: ignore + else: + self.__pydantic_private__[name] = value + return + + self._check_frozen(name, value) + + attr = getattr(self.__class__, name, None) + # NOTE: We currently special case properties and `cached_property`, but we might need + # to generalize this to all data/non-data descriptors at some point. For non-data descriptors + # (such as `cached_property`), it isn't obvious though. `cached_property` caches the value + # to the instance's `__dict__`, but other non-data descriptors might do things differently. + if isinstance(attr, property): + attr.__set__(self, value) + elif isinstance(attr, cached_property): + self.__dict__[name] = value + elif self.model_config.get('validate_assignment', None): + self.__pydantic_validator__.validate_assignment(self, name, value) + elif self.model_config.get('extra') != 'allow' and name not in self.__pydantic_fields__: + # TODO - matching error + raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"') + elif self.model_config.get('extra') == 'allow' and name not in self.__pydantic_fields__: + if self.model_extra and name in self.model_extra: + self.__pydantic_extra__[name] = value # type: ignore + else: + try: + getattr(self, name) + except AttributeError: + # attribute does not already exist on instance, so put it in extra + self.__pydantic_extra__[name] = value # type: ignore + else: + # attribute _does_ already exist on instance, and was not in extra, so update it + _object_setattr(self, name, value) + else: + self.__dict__[name] = value + self.__pydantic_fields_set__.add(name) + + def __delattr__(self, item: str) -> Any: + if item in self.__private_attributes__: + attribute = self.__private_attributes__[item] + if hasattr(attribute, '__delete__'): + attribute.__delete__(self) # type: ignore + return + + try: + # Note: self.__pydantic_private__ cannot be None if self.__private_attributes__ has items + del self.__pydantic_private__[item] # type: ignore + return + except KeyError as exc: + raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc + + self._check_frozen(item, None) + + if item in self.__pydantic_fields__: + object.__delattr__(self, item) + elif self.__pydantic_extra__ is not None and item in self.__pydantic_extra__: + del self.__pydantic_extra__[item] + else: + try: + object.__delattr__(self, item) + except AttributeError: + raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') + + # Because we make use of `@dataclass_transform()`, `__replace__` is already synthesized by + # type checkers, so we define the implementation in this `if not TYPE_CHECKING:` block: + def __replace__(self, **changes: Any) -> Self: + return self.model_copy(update=changes) + + def _check_frozen(self, name: str, value: Any) -> None: + if self.model_config.get('frozen', None): + typ = 'frozen_instance' + elif getattr(self.__pydantic_fields__.get(name), 'frozen', False): + typ = 'frozen_field' + else: + return + error: pydantic_core.InitErrorDetails = { + 'type': typ, + 'loc': (name,), + 'input': value, + } + raise pydantic_core.ValidationError.from_exception_data(self.__class__.__name__, [error]) + + def __getstate__(self) -> dict[Any, Any]: + private = self.__pydantic_private__ + if private: + private = {k: v for k, v in private.items() if v is not PydanticUndefined} + return { + '__dict__': self.__dict__, + '__pydantic_extra__': self.__pydantic_extra__, + '__pydantic_fields_set__': self.__pydantic_fields_set__, + '__pydantic_private__': private, + } + + def __setstate__(self, state: dict[Any, Any]) -> None: + _object_setattr(self, '__pydantic_fields_set__', state.get('__pydantic_fields_set__', {})) + _object_setattr(self, '__pydantic_extra__', state.get('__pydantic_extra__', {})) + _object_setattr(self, '__pydantic_private__', state.get('__pydantic_private__', {})) + _object_setattr(self, '__dict__', state.get('__dict__', {})) + + if not TYPE_CHECKING: + + def __eq__(self, other: Any) -> bool: + if isinstance(other, BaseModel): + # When comparing instances of generic types for equality, as long as all field values are equal, + # only require their generic origin types to be equal, rather than exact type equality. + # This prevents headaches like MyGeneric(x=1) != MyGeneric[Any](x=1). + self_type = self.__pydantic_generic_metadata__['origin'] or self.__class__ + other_type = other.__pydantic_generic_metadata__['origin'] or other.__class__ + + # Perform common checks first + if not ( + self_type == other_type + and getattr(self, '__pydantic_private__', None) == getattr(other, '__pydantic_private__', None) + and self.__pydantic_extra__ == other.__pydantic_extra__ + ): + return False + + # We only want to compare pydantic fields but ignoring fields is costly. + # We'll perform a fast check first, and fallback only when needed + # See GH-7444 and GH-7825 for rationale and a performance benchmark + + # First, do the fast (and sometimes faulty) __dict__ comparison + if self.__dict__ == other.__dict__: + # If the check above passes, then pydantic fields are equal, we can return early + return True + + # We don't want to trigger unnecessary costly filtering of __dict__ on all unequal objects, so we return + # early if there are no keys to ignore (we would just return False later on anyway) + model_fields = type(self).__pydantic_fields__.keys() + if self.__dict__.keys() <= model_fields and other.__dict__.keys() <= model_fields: + return False + + # If we reach here, there are non-pydantic-fields keys, mapped to unequal values, that we need to ignore + # Resort to costly filtering of the __dict__ objects + # We use operator.itemgetter because it is much faster than dict comprehensions + # NOTE: Contrary to standard python class and instances, when the Model class has a default value for an + # attribute and the model instance doesn't have a corresponding attribute, accessing the missing attribute + # raises an error in BaseModel.__getattr__ instead of returning the class attribute + # So we can use operator.itemgetter() instead of operator.attrgetter() + getter = operator.itemgetter(*model_fields) if model_fields else lambda _: _utils._SENTINEL + try: + return getter(self.__dict__) == getter(other.__dict__) + except KeyError: + # In rare cases (such as when using the deprecated BaseModel.copy() method), + # the __dict__ may not contain all model fields, which is how we can get here. + # getter(self.__dict__) is much faster than any 'safe' method that accounts + # for missing keys, and wrapping it in a `try` doesn't slow things down much + # in the common case. + self_fields_proxy = _utils.SafeGetItemProxy(self.__dict__) + other_fields_proxy = _utils.SafeGetItemProxy(other.__dict__) + return getter(self_fields_proxy) == getter(other_fields_proxy) + + # other instance is not a BaseModel + else: + return NotImplemented # delegate to the other item in the comparison + + if TYPE_CHECKING: + # We put `__init_subclass__` in a TYPE_CHECKING block because, even though we want the type-checking benefits + # described in the signature of `__init_subclass__` below, we don't want to modify the default behavior of + # subclass initialization. + + def __init_subclass__(cls, **kwargs: Unpack[ConfigDict]): + """This signature is included purely to help type-checkers check arguments to class declaration, which + provides a way to conveniently set model_config key/value pairs. + + ```python + from pydantic import BaseModel + + class MyModel(BaseModel, extra='allow'): ... + ``` + + However, this may be deceiving, since the _actual_ calls to `__init_subclass__` will not receive any + of the config arguments, and will only receive any keyword arguments passed during class initialization + that are _not_ expected keys in ConfigDict. (This is due to the way `ModelMetaclass.__new__` works.) + + Args: + **kwargs: Keyword arguments passed to the class definition, which set model_config + + Note: + You may want to override `__pydantic_init_subclass__` instead, which behaves similarly but is called + *after* the class is fully initialized. + """ + + def __iter__(self) -> TupleGenerator: + """So `dict(model)` works.""" + yield from [(k, v) for (k, v) in self.__dict__.items() if not k.startswith('_')] + extra = self.__pydantic_extra__ + if extra: + yield from extra.items() + + def __repr__(self) -> str: + return f'{self.__repr_name__()}({self.__repr_str__(", ")})' + + def __repr_args__(self) -> _repr.ReprArgs: + for k, v in self.__dict__.items(): + field = self.__pydantic_fields__.get(k) + if field and field.repr: + if v is not self: + yield k, v + else: + yield k, self.__repr_recursion__(v) + # `__pydantic_extra__` can fail to be set if the model is not yet fully initialized. + # This can happen if a `ValidationError` is raised during initialization and the instance's + # repr is generated as part of the exception handling. Therefore, we use `getattr` here + # with a fallback, even though the type hints indicate the attribute will always be present. + try: + pydantic_extra = object.__getattribute__(self, '__pydantic_extra__') + except AttributeError: + pydantic_extra = None + + if pydantic_extra is not None: + yield from ((k, v) for k, v in pydantic_extra.items()) + yield from ((k, getattr(self, k)) for k, v in self.__pydantic_computed_fields__.items() if v.repr) + + # take logic from `_repr.Representation` without the side effects of inheritance, see #5740 + __repr_name__ = _repr.Representation.__repr_name__ + __repr_recursion__ = _repr.Representation.__repr_recursion__ + __repr_str__ = _repr.Representation.__repr_str__ + __pretty__ = _repr.Representation.__pretty__ + __rich_repr__ = _repr.Representation.__rich_repr__ + + def __str__(self) -> str: + return self.__repr_str__(' ') + + # ##### Deprecated methods from v1 ##### + @property + @typing_extensions.deprecated( + 'The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None + ) + def __fields__(self) -> dict[str, FieldInfo]: + warnings.warn( + 'The `__fields__` attribute is deprecated, use `model_fields` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + return self.model_fields + + @property + @typing_extensions.deprecated( + 'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.', + category=None, + ) + def __fields_set__(self) -> set[str]: + warnings.warn( + 'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + return self.__pydantic_fields_set__ + + @typing_extensions.deprecated('The `dict` method is deprecated; use `model_dump` instead.', category=None) + def dict( # noqa: D102 + self, + *, + include: IncEx | None = None, + exclude: IncEx | None = None, + by_alias: bool = False, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + ) -> Dict[str, Any]: # noqa UP006 + warnings.warn( + 'The `dict` method is deprecated; use `model_dump` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + return self.model_dump( + include=include, + exclude=exclude, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + + @typing_extensions.deprecated('The `json` method is deprecated; use `model_dump_json` instead.', category=None) + def json( # noqa: D102 + self, + *, + include: IncEx | None = None, + exclude: IncEx | None = None, + by_alias: bool = False, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + encoder: Callable[[Any], Any] | None = PydanticUndefined, # type: ignore[assignment] + models_as_dict: bool = PydanticUndefined, # type: ignore[assignment] + **dumps_kwargs: Any, + ) -> str: + warnings.warn( + 'The `json` method is deprecated; use `model_dump_json` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + if encoder is not PydanticUndefined: + raise TypeError('The `encoder` argument is no longer supported; use field serializers instead.') + if models_as_dict is not PydanticUndefined: + raise TypeError('The `models_as_dict` argument is no longer supported; use a model serializer instead.') + if dumps_kwargs: + raise TypeError('`dumps_kwargs` keyword arguments are no longer supported.') + return self.model_dump_json( + include=include, + exclude=exclude, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + + @classmethod + @typing_extensions.deprecated('The `parse_obj` method is deprecated; use `model_validate` instead.', category=None) + def parse_obj(cls, obj: Any) -> Self: # noqa: D102 + warnings.warn( + 'The `parse_obj` method is deprecated; use `model_validate` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + return cls.model_validate(obj) + + @classmethod + @typing_extensions.deprecated( + 'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, ' + 'otherwise load the data then use `model_validate` instead.', + category=None, + ) + def parse_raw( # noqa: D102 + cls, + b: str | bytes, + *, + content_type: str | None = None, + encoding: str = 'utf8', + proto: DeprecatedParseProtocol | None = None, + allow_pickle: bool = False, + ) -> Self: # pragma: no cover + warnings.warn( + 'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, ' + 'otherwise load the data then use `model_validate` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + from .deprecated import parse + + try: + obj = parse.load_str_bytes( + b, + proto=proto, + content_type=content_type, + encoding=encoding, + allow_pickle=allow_pickle, + ) + except (ValueError, TypeError) as exc: + import json + + # try to match V1 + if isinstance(exc, UnicodeDecodeError): + type_str = 'value_error.unicodedecode' + elif isinstance(exc, json.JSONDecodeError): + type_str = 'value_error.jsondecode' + elif isinstance(exc, ValueError): + type_str = 'value_error' + else: + type_str = 'type_error' + + # ctx is missing here, but since we've added `input` to the error, we're not pretending it's the same + error: pydantic_core.InitErrorDetails = { + # The type: ignore on the next line is to ignore the requirement of LiteralString + 'type': pydantic_core.PydanticCustomError(type_str, str(exc)), # type: ignore + 'loc': ('__root__',), + 'input': b, + } + raise pydantic_core.ValidationError.from_exception_data(cls.__name__, [error]) + return cls.model_validate(obj) + + @classmethod + @typing_extensions.deprecated( + 'The `parse_file` method is deprecated; load the data from file, then if your data is JSON ' + 'use `model_validate_json`, otherwise `model_validate` instead.', + category=None, + ) + def parse_file( # noqa: D102 + cls, + path: str | Path, + *, + content_type: str | None = None, + encoding: str = 'utf8', + proto: DeprecatedParseProtocol | None = None, + allow_pickle: bool = False, + ) -> Self: + warnings.warn( + 'The `parse_file` method is deprecated; load the data from file, then if your data is JSON ' + 'use `model_validate_json`, otherwise `model_validate` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + from .deprecated import parse + + obj = parse.load_file( + path, + proto=proto, + content_type=content_type, + encoding=encoding, + allow_pickle=allow_pickle, + ) + return cls.parse_obj(obj) + + @classmethod + @typing_extensions.deprecated( + 'The `from_orm` method is deprecated; set ' + "`model_config['from_attributes']=True` and use `model_validate` instead.", + category=None, + ) + def from_orm(cls, obj: Any) -> Self: # noqa: D102 + warnings.warn( + 'The `from_orm` method is deprecated; set ' + "`model_config['from_attributes']=True` and use `model_validate` instead.", + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + if not cls.model_config.get('from_attributes', None): + raise PydanticUserError( + 'You must set the config attribute `from_attributes=True` to use from_orm', code=None + ) + return cls.model_validate(obj) + + @classmethod + @typing_extensions.deprecated('The `construct` method is deprecated; use `model_construct` instead.', category=None) + def construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self: # noqa: D102 + warnings.warn( + 'The `construct` method is deprecated; use `model_construct` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + return cls.model_construct(_fields_set=_fields_set, **values) + + @typing_extensions.deprecated( + 'The `copy` method is deprecated; use `model_copy` instead. ' + 'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.', + category=None, + ) + def copy( + self, + *, + include: AbstractSetIntStr | MappingIntStrAny | None = None, + exclude: AbstractSetIntStr | MappingIntStrAny | None = None, + update: Dict[str, Any] | None = None, # noqa UP006 + deep: bool = False, + ) -> Self: # pragma: no cover + """Returns a copy of the model. + + !!! warning "Deprecated" + This method is now deprecated; use `model_copy` instead. + + If you need `include` or `exclude`, use: + + ```python {test="skip" lint="skip"} + data = self.model_dump(include=include, exclude=exclude, round_trip=True) + data = {**data, **(update or {})} + copied = self.model_validate(data) + ``` + + Args: + include: Optional set or mapping specifying which fields to include in the copied model. + exclude: Optional set or mapping specifying which fields to exclude in the copied model. + update: Optional dictionary of field-value pairs to override field values in the copied model. + deep: If True, the values of fields that are Pydantic models will be deep-copied. + + Returns: + A copy of the model with included, excluded and updated fields as specified. + """ + warnings.warn( + 'The `copy` method is deprecated; use `model_copy` instead. ' + 'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + from .deprecated import copy_internals + + values = dict( + copy_internals._iter( + self, to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False + ), + **(update or {}), + ) + if self.__pydantic_private__ is None: + private = None + else: + private = {k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined} + + if self.__pydantic_extra__ is None: + extra: dict[str, Any] | None = None + else: + extra = self.__pydantic_extra__.copy() + for k in list(self.__pydantic_extra__): + if k not in values: # k was in the exclude + extra.pop(k) + for k in list(values): + if k in self.__pydantic_extra__: # k must have come from extra + extra[k] = values.pop(k) + + # new `__pydantic_fields_set__` can have unset optional fields with a set value in `update` kwarg + if update: + fields_set = self.__pydantic_fields_set__ | update.keys() + else: + fields_set = set(self.__pydantic_fields_set__) + + # removing excluded fields from `__pydantic_fields_set__` + if exclude: + fields_set -= set(exclude) + + return copy_internals._copy_and_set_values(self, values, fields_set, extra, private, deep=deep) + + @classmethod + @typing_extensions.deprecated('The `schema` method is deprecated; use `model_json_schema` instead.', category=None) + def schema( # noqa: D102 + cls, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE + ) -> Dict[str, Any]: # noqa UP006 + warnings.warn( + 'The `schema` method is deprecated; use `model_json_schema` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + return cls.model_json_schema(by_alias=by_alias, ref_template=ref_template) + + @classmethod + @typing_extensions.deprecated( + 'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.', + category=None, + ) + def schema_json( # noqa: D102 + cls, *, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any + ) -> str: # pragma: no cover + warnings.warn( + 'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + import json + + from .deprecated.json import pydantic_encoder + + return json.dumps( + cls.model_json_schema(by_alias=by_alias, ref_template=ref_template), + default=pydantic_encoder, + **dumps_kwargs, + ) + + @classmethod + @typing_extensions.deprecated('The `validate` method is deprecated; use `model_validate` instead.', category=None) + def validate(cls, value: Any) -> Self: # noqa: D102 + warnings.warn( + 'The `validate` method is deprecated; use `model_validate` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + return cls.model_validate(value) + + @classmethod + @typing_extensions.deprecated( + 'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.', + category=None, + ) + def update_forward_refs(cls, **localns: Any) -> None: # noqa: D102 + warnings.warn( + 'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + if localns: # pragma: no cover + raise TypeError('`localns` arguments are not longer accepted.') + cls.model_rebuild(force=True) + + @typing_extensions.deprecated( + 'The private method `_iter` will be removed and should no longer be used.', category=None + ) + def _iter(self, *args: Any, **kwargs: Any) -> Any: + warnings.warn( + 'The private method `_iter` will be removed and should no longer be used.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + from .deprecated import copy_internals + + return copy_internals._iter(self, *args, **kwargs) + + @typing_extensions.deprecated( + 'The private method `_copy_and_set_values` will be removed and should no longer be used.', + category=None, + ) + def _copy_and_set_values(self, *args: Any, **kwargs: Any) -> Any: + warnings.warn( + 'The private method `_copy_and_set_values` will be removed and should no longer be used.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + from .deprecated import copy_internals + + return copy_internals._copy_and_set_values(self, *args, **kwargs) + + @classmethod + @typing_extensions.deprecated( + 'The private method `_get_value` will be removed and should no longer be used.', + category=None, + ) + def _get_value(cls, *args: Any, **kwargs: Any) -> Any: + warnings.warn( + 'The private method `_get_value` will be removed and should no longer be used.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + from .deprecated import copy_internals + + return copy_internals._get_value(cls, *args, **kwargs) + + @typing_extensions.deprecated( + 'The private method `_calculate_keys` will be removed and should no longer be used.', + category=None, + ) + def _calculate_keys(self, *args: Any, **kwargs: Any) -> Any: + warnings.warn( + 'The private method `_calculate_keys` will be removed and should no longer be used.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + from .deprecated import copy_internals + + return copy_internals._calculate_keys(self, *args, **kwargs) + + +ModelT = TypeVar('ModelT', bound=BaseModel) + + +@overload +def create_model( + model_name: str, + /, + *, + __config__: ConfigDict | None = None, + __doc__: str | None = None, + __base__: None = None, + __module__: str = __name__, + __validators__: dict[str, Callable[..., Any]] | None = None, + __cls_kwargs__: dict[str, Any] | None = None, + **field_definitions: Any, +) -> type[BaseModel]: ... + + +@overload +def create_model( + model_name: str, + /, + *, + __config__: ConfigDict | None = None, + __doc__: str | None = None, + __base__: type[ModelT] | tuple[type[ModelT], ...], + __module__: str = __name__, + __validators__: dict[str, Callable[..., Any]] | None = None, + __cls_kwargs__: dict[str, Any] | None = None, + **field_definitions: Any, +) -> type[ModelT]: ... + + +def create_model( # noqa: C901 + model_name: str, + /, + *, + __config__: ConfigDict | None = None, + __doc__: str | None = None, + __base__: type[ModelT] | tuple[type[ModelT], ...] | None = None, + __module__: str | None = None, + __validators__: dict[str, Callable[..., Any]] | None = None, + __cls_kwargs__: dict[str, Any] | None = None, + __slots__: tuple[str, ...] | None = None, + **field_definitions: Any, +) -> type[ModelT]: + """Usage docs: https://docs.pydantic.dev/2.10/concepts/models/#dynamic-model-creation + + Dynamically creates and returns a new Pydantic model, in other words, `create_model` dynamically creates a + subclass of [`BaseModel`][pydantic.BaseModel]. + + Args: + model_name: The name of the newly created model. + __config__: The configuration of the new model. + __doc__: The docstring of the new model. + __base__: The base class or classes for the new model. + __module__: The name of the module that the model belongs to; + if `None`, the value is taken from `sys._getframe(1)` + __validators__: A dictionary of methods that validate fields. The keys are the names of the validation methods to + be added to the model, and the values are the validation methods themselves. You can read more about functional + validators [here](https://docs.pydantic.dev/2.9/concepts/validators/#field-validators). + __cls_kwargs__: A dictionary of keyword arguments for class creation, such as `metaclass`. + __slots__: Deprecated. Should not be passed to `create_model`. + **field_definitions: Attributes of the new model. They should be passed in the format: + `<name>=(<type>, <default value>)`, `<name>=(<type>, <FieldInfo>)`, or `typing.Annotated[<type>, <FieldInfo>]`. + Any additional metadata in `typing.Annotated[<type>, <FieldInfo>, ...]` will be ignored. + Note, `FieldInfo` instances should be created via `pydantic.Field(...)`. + Initializing `FieldInfo` instances directly is not supported. + + Returns: + The new [model][pydantic.BaseModel]. + + Raises: + PydanticUserError: If `__base__` and `__config__` are both passed. + """ + if __slots__ is not None: + # __slots__ will be ignored from here on + warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning) + + if __base__ is not None: + if __config__ is not None: + raise PydanticUserError( + 'to avoid confusion `__config__` and `__base__` cannot be used together', + code='create-model-config-base', + ) + if not isinstance(__base__, tuple): + __base__ = (__base__,) + else: + __base__ = (cast('type[ModelT]', BaseModel),) + + __cls_kwargs__ = __cls_kwargs__ or {} + + fields = {} + annotations = {} + + for f_name, f_def in field_definitions.items(): + if not _fields.is_valid_field_name(f_name): + warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning) + if isinstance(f_def, tuple): + f_def = cast('tuple[str, Any]', f_def) + try: + f_annotation, f_value = f_def + except ValueError as e: + raise PydanticUserError( + 'Field definitions should be a `(<type>, <default>)`.', + code='create-model-field-definitions', + ) from e + + elif _typing_extra.is_annotated(f_def): + (f_annotation, f_value, *_) = typing_extensions.get_args( + f_def + ) # first two input are expected from Annotated, refer to https://docs.python.org/3/library/typing.html#typing.Annotated + FieldInfo = _import_utils.import_cached_field_info() + + if not isinstance(f_value, FieldInfo): + raise PydanticUserError( + 'Field definitions should be a Annotated[<type>, <FieldInfo>]', + code='create-model-field-definitions', + ) + + else: + f_annotation, f_value = None, f_def + + if f_annotation: + annotations[f_name] = f_annotation + fields[f_name] = f_value + + if __module__ is None: + f = sys._getframe(1) + __module__ = f.f_globals['__name__'] + + namespace: dict[str, Any] = {'__annotations__': annotations, '__module__': __module__} + if __doc__: + namespace.update({'__doc__': __doc__}) + if __validators__: + namespace.update(__validators__) + namespace.update(fields) + if __config__: + namespace['model_config'] = _config.ConfigWrapper(__config__).config_dict + resolved_bases = types.resolve_bases(__base__) + meta, ns, kwds = types.prepare_class(model_name, resolved_bases, kwds=__cls_kwargs__) + if resolved_bases is not __base__: + ns['__orig_bases__'] = __base__ + namespace.update(ns) + + return meta( + model_name, + resolved_bases, + namespace, + __pydantic_reset_parent_namespace__=False, + _create_model_module=__module__, + **kwds, + ) + + +__getattr__ = getattr_migration(__name__) |