about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/pydantic/dataclasses.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/dataclasses.py')
-rw-r--r--.venv/lib/python3.12/site-packages/pydantic/dataclasses.py366
1 files changed, 366 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/dataclasses.py b/.venv/lib/python3.12/site-packages/pydantic/dataclasses.py
new file mode 100644
index 00000000..fe7709f8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/pydantic/dataclasses.py
@@ -0,0 +1,366 @@
+"""Provide an enhanced dataclass that performs validation."""
+
+from __future__ import annotations as _annotations
+
+import dataclasses
+import sys
+import types
+from typing import TYPE_CHECKING, Any, Callable, Generic, NoReturn, TypeVar, overload
+from warnings import warn
+
+from typing_extensions import Literal, TypeGuard, dataclass_transform
+
+from ._internal import _config, _decorators, _namespace_utils, _typing_extra
+from ._internal import _dataclasses as _pydantic_dataclasses
+from ._migration import getattr_migration
+from .config import ConfigDict
+from .errors import PydanticUserError
+from .fields import Field, FieldInfo, PrivateAttr
+
+if TYPE_CHECKING:
+    from ._internal._dataclasses import PydanticDataclass
+    from ._internal._namespace_utils import MappingNamespace
+
+__all__ = 'dataclass', 'rebuild_dataclass'
+
+_T = TypeVar('_T')
+
+if sys.version_info >= (3, 10):
+
+    @dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
+    @overload
+    def dataclass(
+        *,
+        init: Literal[False] = False,
+        repr: bool = True,
+        eq: bool = True,
+        order: bool = False,
+        unsafe_hash: bool = False,
+        frozen: bool = False,
+        config: ConfigDict | type[object] | None = None,
+        validate_on_init: bool | None = None,
+        kw_only: bool = ...,
+        slots: bool = ...,
+    ) -> Callable[[type[_T]], type[PydanticDataclass]]:  # type: ignore
+        ...
+
+    @dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
+    @overload
+    def dataclass(
+        _cls: type[_T],  # type: ignore
+        *,
+        init: Literal[False] = False,
+        repr: bool = True,
+        eq: bool = True,
+        order: bool = False,
+        unsafe_hash: bool = False,
+        frozen: bool | None = None,
+        config: ConfigDict | type[object] | None = None,
+        validate_on_init: bool | None = None,
+        kw_only: bool = ...,
+        slots: bool = ...,
+    ) -> type[PydanticDataclass]: ...
+
+else:
+
+    @dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
+    @overload
+    def dataclass(
+        *,
+        init: Literal[False] = False,
+        repr: bool = True,
+        eq: bool = True,
+        order: bool = False,
+        unsafe_hash: bool = False,
+        frozen: bool | None = None,
+        config: ConfigDict | type[object] | None = None,
+        validate_on_init: bool | None = None,
+    ) -> Callable[[type[_T]], type[PydanticDataclass]]:  # type: ignore
+        ...
+
+    @dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
+    @overload
+    def dataclass(
+        _cls: type[_T],  # type: ignore
+        *,
+        init: Literal[False] = False,
+        repr: bool = True,
+        eq: bool = True,
+        order: bool = False,
+        unsafe_hash: bool = False,
+        frozen: bool | None = None,
+        config: ConfigDict | type[object] | None = None,
+        validate_on_init: bool | None = None,
+    ) -> type[PydanticDataclass]: ...
+
+
+@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
+def dataclass(
+    _cls: type[_T] | None = None,
+    *,
+    init: Literal[False] = False,
+    repr: bool = True,
+    eq: bool = True,
+    order: bool = False,
+    unsafe_hash: bool = False,
+    frozen: bool | None = None,
+    config: ConfigDict | type[object] | None = None,
+    validate_on_init: bool | None = None,
+    kw_only: bool = False,
+    slots: bool = False,
+) -> Callable[[type[_T]], type[PydanticDataclass]] | type[PydanticDataclass]:
+    """Usage docs: https://docs.pydantic.dev/2.10/concepts/dataclasses/
+
+    A decorator used to create a Pydantic-enhanced dataclass, similar to the standard Python `dataclass`,
+    but with added validation.
+
+    This function should be used similarly to `dataclasses.dataclass`.
+
+    Args:
+        _cls: The target `dataclass`.
+        init: Included for signature compatibility with `dataclasses.dataclass`, and is passed through to
+            `dataclasses.dataclass` when appropriate. If specified, must be set to `False`, as pydantic inserts its
+            own  `__init__` function.
+        repr: A boolean indicating whether to include the field in the `__repr__` output.
+        eq: Determines if a `__eq__` method should be generated for the class.
+        order: Determines if comparison magic methods should be generated, such as `__lt__`, but not `__eq__`.
+        unsafe_hash: Determines if a `__hash__` method should be included in the class, as in `dataclasses.dataclass`.
+        frozen: Determines if the generated class should be a 'frozen' `dataclass`, which does not allow its
+            attributes to be modified after it has been initialized. If not set, the value from the provided `config` argument will be used (and will default to `False` otherwise).
+        config: The Pydantic config to use for the `dataclass`.
+        validate_on_init: A deprecated parameter included for backwards compatibility; in V2, all Pydantic dataclasses
+            are validated on init.
+        kw_only: Determines if `__init__` method parameters must be specified by keyword only. Defaults to `False`.
+        slots: Determines if the generated class should be a 'slots' `dataclass`, which does not allow the addition of
+            new attributes after instantiation.
+
+    Returns:
+        A decorator that accepts a class as its argument and returns a Pydantic `dataclass`.
+
+    Raises:
+        AssertionError: Raised if `init` is not `False` or `validate_on_init` is `False`.
+    """
+    assert init is False, 'pydantic.dataclasses.dataclass only supports init=False'
+    assert validate_on_init is not False, 'validate_on_init=False is no longer supported'
+
+    if sys.version_info >= (3, 10):
+        kwargs = {'kw_only': kw_only, 'slots': slots}
+    else:
+        kwargs = {}
+
+    def make_pydantic_fields_compatible(cls: type[Any]) -> None:
+        """Make sure that stdlib `dataclasses` understands `Field` kwargs like `kw_only`
+        To do that, we simply change
+          `x: int = pydantic.Field(..., kw_only=True)`
+        into
+          `x: int = dataclasses.field(default=pydantic.Field(..., kw_only=True), kw_only=True)`
+        """
+        for annotation_cls in cls.__mro__:
+            # In Python < 3.9, `__annotations__` might not be present if there are no fields.
+            # we therefore need to use `getattr` to avoid an `AttributeError`.
+            annotations = getattr(annotation_cls, '__annotations__', [])
+            for field_name in annotations:
+                field_value = getattr(cls, field_name, None)
+                # Process only if this is an instance of `FieldInfo`.
+                if not isinstance(field_value, FieldInfo):
+                    continue
+
+                # Initialize arguments for the standard `dataclasses.field`.
+                field_args: dict = {'default': field_value}
+
+                # Handle `kw_only` for Python 3.10+
+                if sys.version_info >= (3, 10) and field_value.kw_only:
+                    field_args['kw_only'] = True
+
+                # Set `repr` attribute if it's explicitly specified to be not `True`.
+                if field_value.repr is not True:
+                    field_args['repr'] = field_value.repr
+
+                setattr(cls, field_name, dataclasses.field(**field_args))
+                # In Python 3.8, dataclasses checks cls.__dict__['__annotations__'] for annotations,
+                # so we must make sure it's initialized before we add to it.
+                if cls.__dict__.get('__annotations__') is None:
+                    cls.__annotations__ = {}
+                cls.__annotations__[field_name] = annotations[field_name]
+
+    def create_dataclass(cls: type[Any]) -> type[PydanticDataclass]:
+        """Create a Pydantic dataclass from a regular dataclass.
+
+        Args:
+            cls: The class to create the Pydantic dataclass from.
+
+        Returns:
+            A Pydantic dataclass.
+        """
+        from ._internal._utils import is_model_class
+
+        if is_model_class(cls):
+            raise PydanticUserError(
+                f'Cannot create a Pydantic dataclass from {cls.__name__} as it is already a Pydantic model',
+                code='dataclass-on-model',
+            )
+
+        original_cls = cls
+
+        # we warn on conflicting config specifications, but only if the class doesn't have a dataclass base
+        # because a dataclass base might provide a __pydantic_config__ attribute that we don't want to warn about
+        has_dataclass_base = any(dataclasses.is_dataclass(base) for base in cls.__bases__)
+        if not has_dataclass_base and config is not None and hasattr(cls, '__pydantic_config__'):
+            warn(
+                f'`config` is set via both the `dataclass` decorator and `__pydantic_config__` for dataclass {cls.__name__}. '
+                f'The `config` specification from `dataclass` decorator will take priority.',
+                category=UserWarning,
+                stacklevel=2,
+            )
+
+        # if config is not explicitly provided, try to read it from the type
+        config_dict = config if config is not None else getattr(cls, '__pydantic_config__', None)
+        config_wrapper = _config.ConfigWrapper(config_dict)
+        decorators = _decorators.DecoratorInfos.build(cls)
+
+        # Keep track of the original __doc__ so that we can restore it after applying the dataclasses decorator
+        # Otherwise, classes with no __doc__ will have their signature added into the JSON schema description,
+        # since dataclasses.dataclass will set this as the __doc__
+        original_doc = cls.__doc__
+
+        if _pydantic_dataclasses.is_builtin_dataclass(cls):
+            # Don't preserve the docstring for vanilla dataclasses, as it may include the signature
+            # This matches v1 behavior, and there was an explicit test for it
+            original_doc = None
+
+            # We don't want to add validation to the existing std lib dataclass, so we will subclass it
+            #   If the class is generic, we need to make sure the subclass also inherits from Generic
+            #   with all the same parameters.
+            bases = (cls,)
+            if issubclass(cls, Generic):
+                generic_base = Generic[cls.__parameters__]  # type: ignore
+                bases = bases + (generic_base,)
+            cls = types.new_class(cls.__name__, bases)
+
+        make_pydantic_fields_compatible(cls)
+
+        # Respect frozen setting from dataclass constructor and fallback to config setting if not provided
+        if frozen is not None:
+            frozen_ = frozen
+            if config_wrapper.frozen:
+                # It's not recommended to define both, as the setting from the dataclass decorator will take priority.
+                warn(
+                    f'`frozen` is set via both the `dataclass` decorator and `config` for dataclass {cls.__name__!r}.'
+                    'This is not recommended. The `frozen` specification on `dataclass` will take priority.',
+                    category=UserWarning,
+                    stacklevel=2,
+                )
+        else:
+            frozen_ = config_wrapper.frozen or False
+
+        cls = dataclasses.dataclass(  # type: ignore[call-overload]
+            cls,
+            # the value of init here doesn't affect anything except that it makes it easier to generate a signature
+            init=True,
+            repr=repr,
+            eq=eq,
+            order=order,
+            unsafe_hash=unsafe_hash,
+            frozen=frozen_,
+            **kwargs,
+        )
+
+        cls.__pydantic_decorators__ = decorators  # type: ignore
+        cls.__doc__ = original_doc
+        cls.__module__ = original_cls.__module__
+        cls.__qualname__ = original_cls.__qualname__
+        cls.__pydantic_complete__ = False  # `complete_dataclass` will set it to `True` if successful.
+        # TODO `parent_namespace` is currently None, but we could do the same thing as Pydantic models:
+        # fetch the parent ns using `parent_frame_namespace` (if the dataclass was defined in a function),
+        # and possibly cache it (see the `__pydantic_parent_namespace__` logic for models).
+        _pydantic_dataclasses.complete_dataclass(cls, config_wrapper, raise_errors=False)
+        return cls
+
+    return create_dataclass if _cls is None else create_dataclass(_cls)
+
+
+__getattr__ = getattr_migration(__name__)
+
+if (3, 8) <= sys.version_info < (3, 11):
+    # Monkeypatch dataclasses.InitVar so that typing doesn't error if it occurs as a type when evaluating type hints
+    # Starting in 3.11, typing.get_type_hints will not raise an error if the retrieved type hints are not callable.
+
+    def _call_initvar(*args: Any, **kwargs: Any) -> NoReturn:
+        """This function does nothing but raise an error that is as similar as possible to what you'd get
+        if you were to try calling `InitVar[int]()` without this monkeypatch. The whole purpose is just
+        to ensure typing._type_check does not error if the type hint evaluates to `InitVar[<parameter>]`.
+        """
+        raise TypeError("'InitVar' object is not callable")
+
+    dataclasses.InitVar.__call__ = _call_initvar
+
+
+def rebuild_dataclass(
+    cls: type[PydanticDataclass],
+    *,
+    force: bool = False,
+    raise_errors: bool = True,
+    _parent_namespace_depth: int = 2,
+    _types_namespace: MappingNamespace | None = None,
+) -> bool | None:
+    """Try to rebuild the pydantic-core schema for the dataclass.
+
+    This may be necessary when one of the annotations is a ForwardRef which could not be resolved during
+    the initial attempt to build the schema, and automatic rebuilding fails.
+
+    This is analogous to `BaseModel.model_rebuild`.
+
+    Args:
+        cls: The class to rebuild the pydantic-core schema for.
+        force: Whether to force the rebuilding of the schema, defaults to `False`.
+        raise_errors: Whether to raise errors, defaults to `True`.
+        _parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
+        _types_namespace: The types namespace, defaults to `None`.
+
+    Returns:
+        Returns `None` if the schema is already "complete" and rebuilding was not required.
+        If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`.
+    """
+    if not force and cls.__pydantic_complete__:
+        return None
+
+    if '__pydantic_core_schema__' in cls.__dict__:
+        delattr(cls, '__pydantic_core_schema__')  # delete cached value to ensure full rebuild happens
+
+    if _types_namespace is not None:
+        rebuild_ns = _types_namespace
+    elif _parent_namespace_depth > 0:
+        rebuild_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth, force=True) or {}
+    else:
+        rebuild_ns = {}
+
+    ns_resolver = _namespace_utils.NsResolver(
+        parent_namespace=rebuild_ns,
+    )
+
+    return _pydantic_dataclasses.complete_dataclass(
+        cls,
+        _config.ConfigWrapper(cls.__pydantic_config__, check=False),
+        raise_errors=raise_errors,
+        ns_resolver=ns_resolver,
+        # We could provide a different config instead (with `'defer_build'` set to `True`)
+        # of this explicit `_force_build` argument, but because config can come from the
+        # decorator parameter or the `__pydantic_config__` attribute, `complete_dataclass`
+        # will overwrite `__pydantic_config__` with the provided config above:
+        _force_build=True,
+    )
+
+
+def is_pydantic_dataclass(class_: type[Any], /) -> TypeGuard[type[PydanticDataclass]]:
+    """Whether a class is a pydantic dataclass.
+
+    Args:
+        class_: The class.
+
+    Returns:
+        `True` if the class is a pydantic dataclass, `False` otherwise.
+    """
+    try:
+        return '__pydantic_validator__' in class_.__dict__ and dataclasses.is_dataclass(class_)
+    except AttributeError:
+        return False