diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/config.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/pydantic/config.py | 1049 |
1 files changed, 1049 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/config.py b/.venv/lib/python3.12/site-packages/pydantic/config.py new file mode 100644 index 00000000..e5e5e7c5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/pydantic/config.py @@ -0,0 +1,1049 @@ +"""Configuration for Pydantic models.""" + +from __future__ import annotations as _annotations + +from re import Pattern +from typing import TYPE_CHECKING, Any, Callable, Dict, List, Type, TypeVar, Union + +from typing_extensions import Literal, TypeAlias, TypedDict + +from ._migration import getattr_migration +from .aliases import AliasGenerator +from .errors import PydanticUserError + +if TYPE_CHECKING: + from ._internal._generate_schema import GenerateSchema as _GenerateSchema + from .fields import ComputedFieldInfo, FieldInfo + +__all__ = ('ConfigDict', 'with_config') + + +JsonValue: TypeAlias = Union[int, float, str, bool, None, List['JsonValue'], 'JsonDict'] +JsonDict: TypeAlias = Dict[str, JsonValue] + +JsonEncoder = Callable[[Any], Any] + +JsonSchemaExtraCallable: TypeAlias = Union[ + Callable[[JsonDict], None], + Callable[[JsonDict, Type[Any]], None], +] + +ExtraValues = Literal['allow', 'ignore', 'forbid'] + + +class ConfigDict(TypedDict, total=False): + """A TypedDict for configuring Pydantic behaviour.""" + + title: str | None + """The title for the generated JSON schema, defaults to the model's name""" + + model_title_generator: Callable[[type], str] | None + """A callable that takes a model class and returns the title for it. Defaults to `None`.""" + + field_title_generator: Callable[[str, FieldInfo | ComputedFieldInfo], str] | None + """A callable that takes a field's name and info and returns title for it. Defaults to `None`.""" + + str_to_lower: bool + """Whether to convert all characters to lowercase for str types. Defaults to `False`.""" + + str_to_upper: bool + """Whether to convert all characters to uppercase for str types. Defaults to `False`.""" + + str_strip_whitespace: bool + """Whether to strip leading and trailing whitespace for str types.""" + + str_min_length: int + """The minimum length for str types. Defaults to `None`.""" + + str_max_length: int | None + """The maximum length for str types. Defaults to `None`.""" + + extra: ExtraValues | None + """ + Whether to ignore, allow, or forbid extra attributes during model initialization. Defaults to `'ignore'`. + + You can configure how pydantic handles the attributes that are not defined in the model: + + * `allow` - Allow any extra attributes. + * `forbid` - Forbid any extra attributes. + * `ignore` - Ignore any extra attributes. + + ```python + from pydantic import BaseModel, ConfigDict + + class User(BaseModel): + model_config = ConfigDict(extra='ignore') # (1)! + + name: str + + user = User(name='John Doe', age=20) # (2)! + print(user) + #> name='John Doe' + ``` + + 1. This is the default behaviour. + 2. The `age` argument is ignored. + + Instead, with `extra='allow'`, the `age` argument is included: + + ```python + from pydantic import BaseModel, ConfigDict + + class User(BaseModel): + model_config = ConfigDict(extra='allow') + + name: str + + user = User(name='John Doe', age=20) # (1)! + print(user) + #> name='John Doe' age=20 + ``` + + 1. The `age` argument is included. + + With `extra='forbid'`, an error is raised: + + ```python + from pydantic import BaseModel, ConfigDict, ValidationError + + class User(BaseModel): + model_config = ConfigDict(extra='forbid') + + name: str + + try: + User(name='John Doe', age=20) + except ValidationError as e: + print(e) + ''' + 1 validation error for User + age + Extra inputs are not permitted [type=extra_forbidden, input_value=20, input_type=int] + ''' + ``` + """ + + frozen: bool + """ + Whether models are faux-immutable, i.e. whether `__setattr__` is allowed, and also generates + a `__hash__()` method for the model. This makes instances of the model potentially hashable if all the + attributes are hashable. Defaults to `False`. + + Note: + On V1, the inverse of this setting was called `allow_mutation`, and was `True` by default. + """ + + populate_by_name: bool + """ + Whether an aliased field may be populated by its name as given by the model + attribute, as well as the alias. Defaults to `False`. + + Note: + The name of this configuration setting was changed in **v2.0** from + `allow_population_by_field_name` to `populate_by_name`. + + ```python + from pydantic import BaseModel, ConfigDict, Field + + class User(BaseModel): + model_config = ConfigDict(populate_by_name=True) + + name: str = Field(alias='full_name') # (1)! + age: int + + user = User(full_name='John Doe', age=20) # (2)! + print(user) + #> name='John Doe' age=20 + user = User(name='John Doe', age=20) # (3)! + print(user) + #> name='John Doe' age=20 + ``` + + 1. The field `'name'` has an alias `'full_name'`. + 2. The model is populated by the alias `'full_name'`. + 3. The model is populated by the field name `'name'`. + """ + + use_enum_values: bool + """ + Whether to populate models with the `value` property of enums, rather than the raw enum. + This may be useful if you want to serialize `model.model_dump()` later. Defaults to `False`. + + !!! note + If you have an `Optional[Enum]` value that you set a default for, you need to use `validate_default=True` + for said Field to ensure that the `use_enum_values` flag takes effect on the default, as extracting an + enum's value occurs during validation, not serialization. + + ```python + from enum import Enum + from typing import Optional + + from pydantic import BaseModel, ConfigDict, Field + + class SomeEnum(Enum): + FOO = 'foo' + BAR = 'bar' + BAZ = 'baz' + + class SomeModel(BaseModel): + model_config = ConfigDict(use_enum_values=True) + + some_enum: SomeEnum + another_enum: Optional[SomeEnum] = Field( + default=SomeEnum.FOO, validate_default=True + ) + + model1 = SomeModel(some_enum=SomeEnum.BAR) + print(model1.model_dump()) + #> {'some_enum': 'bar', 'another_enum': 'foo'} + + model2 = SomeModel(some_enum=SomeEnum.BAR, another_enum=SomeEnum.BAZ) + print(model2.model_dump()) + #> {'some_enum': 'bar', 'another_enum': 'baz'} + ``` + """ + + validate_assignment: bool + """ + Whether to validate the data when the model is changed. Defaults to `False`. + + The default behavior of Pydantic is to validate the data when the model is created. + + In case the user changes the data after the model is created, the model is _not_ revalidated. + + ```python + from pydantic import BaseModel + + class User(BaseModel): + name: str + + user = User(name='John Doe') # (1)! + print(user) + #> name='John Doe' + user.name = 123 # (1)! + print(user) + #> name=123 + ``` + + 1. The validation happens only when the model is created. + 2. The validation does not happen when the data is changed. + + In case you want to revalidate the model when the data is changed, you can use `validate_assignment=True`: + + ```python + from pydantic import BaseModel, ValidationError + + class User(BaseModel, validate_assignment=True): # (1)! + name: str + + user = User(name='John Doe') # (2)! + print(user) + #> name='John Doe' + try: + user.name = 123 # (3)! + except ValidationError as e: + print(e) + ''' + 1 validation error for User + name + Input should be a valid string [type=string_type, input_value=123, input_type=int] + ''' + ``` + + 1. You can either use class keyword arguments, or `model_config` to set `validate_assignment=True`. + 2. The validation happens when the model is created. + 3. The validation _also_ happens when the data is changed. + """ + + arbitrary_types_allowed: bool + """ + Whether arbitrary types are allowed for field types. Defaults to `False`. + + ```python + from pydantic import BaseModel, ConfigDict, ValidationError + + # This is not a pydantic model, it's an arbitrary class + class Pet: + def __init__(self, name: str): + self.name = name + + class Model(BaseModel): + model_config = ConfigDict(arbitrary_types_allowed=True) + + pet: Pet + owner: str + + pet = Pet(name='Hedwig') + # A simple check of instance type is used to validate the data + model = Model(owner='Harry', pet=pet) + print(model) + #> pet=<__main__.Pet object at 0x0123456789ab> owner='Harry' + print(model.pet) + #> <__main__.Pet object at 0x0123456789ab> + print(model.pet.name) + #> Hedwig + print(type(model.pet)) + #> <class '__main__.Pet'> + try: + # If the value is not an instance of the type, it's invalid + Model(owner='Harry', pet='Hedwig') + except ValidationError as e: + print(e) + ''' + 1 validation error for Model + pet + Input should be an instance of Pet [type=is_instance_of, input_value='Hedwig', input_type=str] + ''' + + # Nothing in the instance of the arbitrary type is checked + # Here name probably should have been a str, but it's not validated + pet2 = Pet(name=42) + model2 = Model(owner='Harry', pet=pet2) + print(model2) + #> pet=<__main__.Pet object at 0x0123456789ab> owner='Harry' + print(model2.pet) + #> <__main__.Pet object at 0x0123456789ab> + print(model2.pet.name) + #> 42 + print(type(model2.pet)) + #> <class '__main__.Pet'> + ``` + """ + + from_attributes: bool + """ + Whether to build models and look up discriminators of tagged unions using python object attributes. + """ + + loc_by_alias: bool + """Whether to use the actual key provided in the data (e.g. alias) for error `loc`s rather than the field's name. Defaults to `True`.""" + + alias_generator: Callable[[str], str] | AliasGenerator | None + """ + A callable that takes a field name and returns an alias for it + or an instance of [`AliasGenerator`][pydantic.aliases.AliasGenerator]. Defaults to `None`. + + When using a callable, the alias generator is used for both validation and serialization. + If you want to use different alias generators for validation and serialization, you can use + [`AliasGenerator`][pydantic.aliases.AliasGenerator] instead. + + If data source field names do not match your code style (e. g. CamelCase fields), + you can automatically generate aliases using `alias_generator`. Here's an example with + a basic callable: + + ```python + from pydantic import BaseModel, ConfigDict + from pydantic.alias_generators import to_pascal + + class Voice(BaseModel): + model_config = ConfigDict(alias_generator=to_pascal) + + name: str + language_code: str + + voice = Voice(Name='Filiz', LanguageCode='tr-TR') + print(voice.language_code) + #> tr-TR + print(voice.model_dump(by_alias=True)) + #> {'Name': 'Filiz', 'LanguageCode': 'tr-TR'} + ``` + + If you want to use different alias generators for validation and serialization, you can use + [`AliasGenerator`][pydantic.aliases.AliasGenerator]. + + ```python + from pydantic import AliasGenerator, BaseModel, ConfigDict + from pydantic.alias_generators import to_camel, to_pascal + + class Athlete(BaseModel): + first_name: str + last_name: str + sport: str + + model_config = ConfigDict( + alias_generator=AliasGenerator( + validation_alias=to_camel, + serialization_alias=to_pascal, + ) + ) + + athlete = Athlete(firstName='John', lastName='Doe', sport='track') + print(athlete.model_dump(by_alias=True)) + #> {'FirstName': 'John', 'LastName': 'Doe', 'Sport': 'track'} + ``` + + Note: + Pydantic offers three built-in alias generators: [`to_pascal`][pydantic.alias_generators.to_pascal], + [`to_camel`][pydantic.alias_generators.to_camel], and [`to_snake`][pydantic.alias_generators.to_snake]. + """ + + ignored_types: tuple[type, ...] + """A tuple of types that may occur as values of class attributes without annotations. This is + typically used for custom descriptors (classes that behave like `property`). If an attribute is set on a + class without an annotation and has a type that is not in this tuple (or otherwise recognized by + _pydantic_), an error will be raised. Defaults to `()`. + """ + + allow_inf_nan: bool + """Whether to allow infinity (`+inf` an `-inf`) and NaN values to float and decimal fields. Defaults to `True`.""" + + json_schema_extra: JsonDict | JsonSchemaExtraCallable | None + """A dict or callable to provide extra JSON schema properties. Defaults to `None`.""" + + json_encoders: dict[type[object], JsonEncoder] | None + """ + A `dict` of custom JSON encoders for specific types. Defaults to `None`. + + !!! warning "Deprecated" + This config option is a carryover from v1. + We originally planned to remove it in v2 but didn't have a 1:1 replacement so we are keeping it for now. + It is still deprecated and will likely be removed in the future. + """ + + # new in V2 + strict: bool + """ + _(new in V2)_ If `True`, strict validation is applied to all fields on the model. + + By default, Pydantic attempts to coerce values to the correct type, when possible. + + There are situations in which you may want to disable this behavior, and instead raise an error if a value's type + does not match the field's type annotation. + + To configure strict mode for all fields on a model, you can set `strict=True` on the model. + + ```python + from pydantic import BaseModel, ConfigDict + + class Model(BaseModel): + model_config = ConfigDict(strict=True) + + name: str + age: int + ``` + + See [Strict Mode](../concepts/strict_mode.md) for more details. + + See the [Conversion Table](../concepts/conversion_table.md) for more details on how Pydantic converts data in both + strict and lax modes. + """ + # whether instances of models and dataclasses (including subclass instances) should re-validate, default 'never' + revalidate_instances: Literal['always', 'never', 'subclass-instances'] + """ + When and how to revalidate models and dataclasses during validation. Accepts the string + values of `'never'`, `'always'` and `'subclass-instances'`. Defaults to `'never'`. + + - `'never'` will not revalidate models and dataclasses during validation + - `'always'` will revalidate models and dataclasses during validation + - `'subclass-instances'` will revalidate models and dataclasses during validation if the instance is a + subclass of the model or dataclass + + By default, model and dataclass instances are not revalidated during validation. + + ```python + from typing import List + + from pydantic import BaseModel + + class User(BaseModel, revalidate_instances='never'): # (1)! + hobbies: List[str] + + class SubUser(User): + sins: List[str] + + class Transaction(BaseModel): + user: User + + my_user = User(hobbies=['reading']) + t = Transaction(user=my_user) + print(t) + #> user=User(hobbies=['reading']) + + my_user.hobbies = [1] # (2)! + t = Transaction(user=my_user) # (3)! + print(t) + #> user=User(hobbies=[1]) + + my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying']) + t = Transaction(user=my_sub_user) + print(t) + #> user=SubUser(hobbies=['scuba diving'], sins=['lying']) + ``` + + 1. `revalidate_instances` is set to `'never'` by **default. + 2. The assignment is not validated, unless you set `validate_assignment` to `True` in the model's config. + 3. Since `revalidate_instances` is set to `never`, this is not revalidated. + + If you want to revalidate instances during validation, you can set `revalidate_instances` to `'always'` + in the model's config. + + ```python + from typing import List + + from pydantic import BaseModel, ValidationError + + class User(BaseModel, revalidate_instances='always'): # (1)! + hobbies: List[str] + + class SubUser(User): + sins: List[str] + + class Transaction(BaseModel): + user: User + + my_user = User(hobbies=['reading']) + t = Transaction(user=my_user) + print(t) + #> user=User(hobbies=['reading']) + + my_user.hobbies = [1] + try: + t = Transaction(user=my_user) # (2)! + except ValidationError as e: + print(e) + ''' + 1 validation error for Transaction + user.hobbies.0 + Input should be a valid string [type=string_type, input_value=1, input_type=int] + ''' + + my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying']) + t = Transaction(user=my_sub_user) + print(t) # (3)! + #> user=User(hobbies=['scuba diving']) + ``` + + 1. `revalidate_instances` is set to `'always'`. + 2. The model is revalidated, since `revalidate_instances` is set to `'always'`. + 3. Using `'never'` we would have gotten `user=SubUser(hobbies=['scuba diving'], sins=['lying'])`. + + It's also possible to set `revalidate_instances` to `'subclass-instances'` to only revalidate instances + of subclasses of the model. + + ```python + from typing import List + + from pydantic import BaseModel + + class User(BaseModel, revalidate_instances='subclass-instances'): # (1)! + hobbies: List[str] + + class SubUser(User): + sins: List[str] + + class Transaction(BaseModel): + user: User + + my_user = User(hobbies=['reading']) + t = Transaction(user=my_user) + print(t) + #> user=User(hobbies=['reading']) + + my_user.hobbies = [1] + t = Transaction(user=my_user) # (2)! + print(t) + #> user=User(hobbies=[1]) + + my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying']) + t = Transaction(user=my_sub_user) + print(t) # (3)! + #> user=User(hobbies=['scuba diving']) + ``` + + 1. `revalidate_instances` is set to `'subclass-instances'`. + 2. This is not revalidated, since `my_user` is not a subclass of `User`. + 3. Using `'never'` we would have gotten `user=SubUser(hobbies=['scuba diving'], sins=['lying'])`. + """ + + ser_json_timedelta: Literal['iso8601', 'float'] + """ + The format of JSON serialized timedeltas. Accepts the string values of `'iso8601'` and + `'float'`. Defaults to `'iso8601'`. + + - `'iso8601'` will serialize timedeltas to ISO 8601 durations. + - `'float'` will serialize timedeltas to the total number of seconds. + """ + + ser_json_bytes: Literal['utf8', 'base64', 'hex'] + """ + The encoding of JSON serialized bytes. Defaults to `'utf8'`. + Set equal to `val_json_bytes` to get back an equal value after serialization round trip. + + - `'utf8'` will serialize bytes to UTF-8 strings. + - `'base64'` will serialize bytes to URL safe base64 strings. + - `'hex'` will serialize bytes to hexadecimal strings. + """ + + val_json_bytes: Literal['utf8', 'base64', 'hex'] + """ + The encoding of JSON serialized bytes to decode. Defaults to `'utf8'`. + Set equal to `ser_json_bytes` to get back an equal value after serialization round trip. + + - `'utf8'` will deserialize UTF-8 strings to bytes. + - `'base64'` will deserialize URL safe base64 strings to bytes. + - `'hex'` will deserialize hexadecimal strings to bytes. + """ + + ser_json_inf_nan: Literal['null', 'constants', 'strings'] + """ + The encoding of JSON serialized infinity and NaN float values. Defaults to `'null'`. + + - `'null'` will serialize infinity and NaN values as `null`. + - `'constants'` will serialize infinity and NaN values as `Infinity` and `NaN`. + - `'strings'` will serialize infinity as string `"Infinity"` and NaN as string `"NaN"`. + """ + + # whether to validate default values during validation, default False + validate_default: bool + """Whether to validate default values during validation. Defaults to `False`.""" + + validate_return: bool + """Whether to validate the return value from call validators. Defaults to `False`.""" + + protected_namespaces: tuple[str | Pattern[str], ...] + """ + A `tuple` of strings and/or patterns that prevent models from having fields with names that conflict with them. + For strings, we match on a prefix basis. Ex, if 'dog' is in the protected namespace, 'dog_name' will be protected. + For patterns, we match on the entire field name. Ex, if `re.compile(r'^dog$')` is in the protected namespace, 'dog' will be protected, but 'dog_name' will not be. + Defaults to `('model_validate', 'model_dump',)`. + + The reason we've selected these is to prevent collisions with other validation / dumping formats + in the future - ex, `model_validate_{some_newly_supported_format}`. + + Before v2.10, Pydantic used `('model_',)` as the default value for this setting to + prevent collisions between model attributes and `BaseModel`'s own methods. This was changed + in v2.10 given feedback that this restriction was limiting in AI and data science contexts, + where it is common to have fields with names like `model_id`, `model_input`, `model_output`, etc. + + For more details, see https://github.com/pydantic/pydantic/issues/10315. + + ```python + import warnings + + from pydantic import BaseModel + + warnings.filterwarnings('error') # Raise warnings as errors + + try: + + class Model(BaseModel): + model_dump_something: str + + except UserWarning as e: + print(e) + ''' + Field "model_dump_something" in Model has conflict with protected namespace "model_dump". + + You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ('model_validate',)`. + ''' + ``` + + You can customize this behavior using the `protected_namespaces` setting: + + ```python {test="skip"} + import re + import warnings + + from pydantic import BaseModel, ConfigDict + + with warnings.catch_warnings(record=True) as caught_warnings: + warnings.simplefilter('always') # Catch all warnings + + class Model(BaseModel): + safe_field: str + also_protect_field: str + protect_this: str + + model_config = ConfigDict( + protected_namespaces=( + 'protect_me_', + 'also_protect_', + re.compile('^protect_this$'), + ) + ) + + for warning in caught_warnings: + print(f'{warning.message}') + ''' + Field "also_protect_field" in Model has conflict with protected namespace "also_protect_". + You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ('protect_me_', re.compile('^protect_this$'))`. + + Field "protect_this" in Model has conflict with protected namespace "re.compile('^protect_this$')". + You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ('protect_me_', 'also_protect_')`. + ''' + ``` + + While Pydantic will only emit a warning when an item is in a protected namespace but does not actually have a collision, + an error _is_ raised if there is an actual collision with an existing attribute: + + ```python + from pydantic import BaseModel, ConfigDict + + try: + + class Model(BaseModel): + model_validate: str + + model_config = ConfigDict(protected_namespaces=('model_',)) + + except NameError as e: + print(e) + ''' + Field "model_validate" conflicts with member <bound method BaseModel.model_validate of <class 'pydantic.main.BaseModel'>> of protected namespace "model_". + ''' + ``` + """ + + hide_input_in_errors: bool + """ + Whether to hide inputs when printing errors. Defaults to `False`. + + Pydantic shows the input value and type when it raises `ValidationError` during the validation. + + ```python + from pydantic import BaseModel, ValidationError + + class Model(BaseModel): + a: str + + try: + Model(a=123) + except ValidationError as e: + print(e) + ''' + 1 validation error for Model + a + Input should be a valid string [type=string_type, input_value=123, input_type=int] + ''' + ``` + + You can hide the input value and type by setting the `hide_input_in_errors` config to `True`. + + ```python + from pydantic import BaseModel, ConfigDict, ValidationError + + class Model(BaseModel): + a: str + model_config = ConfigDict(hide_input_in_errors=True) + + try: + Model(a=123) + except ValidationError as e: + print(e) + ''' + 1 validation error for Model + a + Input should be a valid string [type=string_type] + ''' + ``` + """ + + defer_build: bool + """ + Whether to defer model validator and serializer construction until the first model validation. Defaults to False. + + This can be useful to avoid the overhead of building models which are only + used nested within other models, or when you want to manually define type namespace via + [`Model.model_rebuild(_types_namespace=...)`][pydantic.BaseModel.model_rebuild]. + + Since v2.10, this setting also applies to pydantic dataclasses and TypeAdapter instances. + """ + + plugin_settings: dict[str, object] | None + """A `dict` of settings for plugins. Defaults to `None`.""" + + schema_generator: type[_GenerateSchema] | None + """ + !!! warning + `schema_generator` is deprecated in v2.10. + + Prior to v2.10, this setting was advertised as highly subject to change. + It's possible that this interface may once again become public once the internal core schema generation + API is more stable, but that will likely come after significant performance improvements have been made. + """ + + json_schema_serialization_defaults_required: bool + """ + Whether fields with default values should be marked as required in the serialization schema. Defaults to `False`. + + This ensures that the serialization schema will reflect the fact a field with a default will always be present + when serializing the model, even though it is not required for validation. + + However, there are scenarios where this may be undesirable — in particular, if you want to share the schema + between validation and serialization, and don't mind fields with defaults being marked as not required during + serialization. See [#7209](https://github.com/pydantic/pydantic/issues/7209) for more details. + + ```python + from pydantic import BaseModel, ConfigDict + + class Model(BaseModel): + a: str = 'a' + + model_config = ConfigDict(json_schema_serialization_defaults_required=True) + + print(Model.model_json_schema(mode='validation')) + ''' + { + 'properties': {'a': {'default': 'a', 'title': 'A', 'type': 'string'}}, + 'title': 'Model', + 'type': 'object', + } + ''' + print(Model.model_json_schema(mode='serialization')) + ''' + { + 'properties': {'a': {'default': 'a', 'title': 'A', 'type': 'string'}}, + 'required': ['a'], + 'title': 'Model', + 'type': 'object', + } + ''' + ``` + """ + + json_schema_mode_override: Literal['validation', 'serialization', None] + """ + If not `None`, the specified mode will be used to generate the JSON schema regardless of what `mode` was passed to + the function call. Defaults to `None`. + + This provides a way to force the JSON schema generation to reflect a specific mode, e.g., to always use the + validation schema. + + It can be useful when using frameworks (such as FastAPI) that may generate different schemas for validation + and serialization that must both be referenced from the same schema; when this happens, we automatically append + `-Input` to the definition reference for the validation schema and `-Output` to the definition reference for the + serialization schema. By specifying a `json_schema_mode_override` though, this prevents the conflict between + the validation and serialization schemas (since both will use the specified schema), and so prevents the suffixes + from being added to the definition references. + + ```python + from pydantic import BaseModel, ConfigDict, Json + + class Model(BaseModel): + a: Json[int] # requires a string to validate, but will dump an int + + print(Model.model_json_schema(mode='serialization')) + ''' + { + 'properties': {'a': {'title': 'A', 'type': 'integer'}}, + 'required': ['a'], + 'title': 'Model', + 'type': 'object', + } + ''' + + class ForceInputModel(Model): + # the following ensures that even with mode='serialization', we + # will get the schema that would be generated for validation. + model_config = ConfigDict(json_schema_mode_override='validation') + + print(ForceInputModel.model_json_schema(mode='serialization')) + ''' + { + 'properties': { + 'a': { + 'contentMediaType': 'application/json', + 'contentSchema': {'type': 'integer'}, + 'title': 'A', + 'type': 'string', + } + }, + 'required': ['a'], + 'title': 'ForceInputModel', + 'type': 'object', + } + ''' + ``` + """ + + coerce_numbers_to_str: bool + """ + If `True`, enables automatic coercion of any `Number` type to `str` in "lax" (non-strict) mode. Defaults to `False`. + + Pydantic doesn't allow number types (`int`, `float`, `Decimal`) to be coerced as type `str` by default. + + ```python + from decimal import Decimal + + from pydantic import BaseModel, ConfigDict, ValidationError + + class Model(BaseModel): + value: str + + try: + print(Model(value=42)) + except ValidationError as e: + print(e) + ''' + 1 validation error for Model + value + Input should be a valid string [type=string_type, input_value=42, input_type=int] + ''' + + class Model(BaseModel): + model_config = ConfigDict(coerce_numbers_to_str=True) + + value: str + + repr(Model(value=42).value) + #> "42" + repr(Model(value=42.13).value) + #> "42.13" + repr(Model(value=Decimal('42.13')).value) + #> "42.13" + ``` + """ + + regex_engine: Literal['rust-regex', 'python-re'] + """ + The regex engine to be used for pattern validation. + Defaults to `'rust-regex'`. + + - `rust-regex` uses the [`regex`](https://docs.rs/regex) Rust crate, + which is non-backtracking and therefore more DDoS resistant, but does not support all regex features. + - `python-re` use the [`re`](https://docs.python.org/3/library/re.html) module, + which supports all regex features, but may be slower. + + !!! note + If you use a compiled regex pattern, the python-re engine will be used regardless of this setting. + This is so that flags such as `re.IGNORECASE` are respected. + + ```python + from pydantic import BaseModel, ConfigDict, Field, ValidationError + + class Model(BaseModel): + model_config = ConfigDict(regex_engine='python-re') + + value: str = Field(pattern=r'^abc(?=def)') + + print(Model(value='abcdef').value) + #> abcdef + + try: + print(Model(value='abxyzcdef')) + except ValidationError as e: + print(e) + ''' + 1 validation error for Model + value + String should match pattern '^abc(?=def)' [type=string_pattern_mismatch, input_value='abxyzcdef', input_type=str] + ''' + ``` + """ + + validation_error_cause: bool + """ + If `True`, Python exceptions that were part of a validation failure will be shown as an exception group as a cause. Can be useful for debugging. Defaults to `False`. + + Note: + Python 3.10 and older don't support exception groups natively. <=3.10, backport must be installed: `pip install exceptiongroup`. + + Note: + The structure of validation errors are likely to change in future Pydantic versions. Pydantic offers no guarantees about their structure. Should be used for visual traceback debugging only. + """ + + use_attribute_docstrings: bool + ''' + Whether docstrings of attributes (bare string literals immediately following the attribute declaration) + should be used for field descriptions. Defaults to `False`. + + Available in Pydantic v2.7+. + + ```python + from pydantic import BaseModel, ConfigDict, Field + + + class Model(BaseModel): + model_config = ConfigDict(use_attribute_docstrings=True) + + x: str + """ + Example of an attribute docstring + """ + + y: int = Field(description="Description in Field") + """ + Description in Field overrides attribute docstring + """ + + + print(Model.model_fields["x"].description) + # > Example of an attribute docstring + print(Model.model_fields["y"].description) + # > Description in Field + ``` + This requires the source code of the class to be available at runtime. + + !!! warning "Usage with `TypedDict`" + Due to current limitations, attribute docstrings detection may not work as expected when using `TypedDict` + (in particular when multiple `TypedDict` classes have the same name in the same source file). The behavior + can be different depending on the Python version used. + ''' + + cache_strings: bool | Literal['all', 'keys', 'none'] + """ + Whether to cache strings to avoid constructing new Python objects. Defaults to True. + + Enabling this setting should significantly improve validation performance while increasing memory usage slightly. + + - `True` or `'all'` (the default): cache all strings + - `'keys'`: cache only dictionary keys + - `False` or `'none'`: no caching + + !!! note + `True` or `'all'` is required to cache strings during general validation because + validators don't know if they're in a key or a value. + + !!! tip + If repeated strings are rare, it's recommended to use `'keys'` or `'none'` to reduce memory usage, + as the performance difference is minimal if repeated strings are rare. + """ + + +_TypeT = TypeVar('_TypeT', bound=type) + + +def with_config(config: ConfigDict) -> Callable[[_TypeT], _TypeT]: + """Usage docs: https://docs.pydantic.dev/2.10/concepts/config/#configuration-with-dataclass-from-the-standard-library-or-typeddict + + A convenience decorator to set a [Pydantic configuration](config.md) on a `TypedDict` or a `dataclass` from the standard library. + + Although the configuration can be set using the `__pydantic_config__` attribute, it does not play well with type checkers, + especially with `TypedDict`. + + !!! example "Usage" + + ```python + from typing_extensions import TypedDict + + from pydantic import ConfigDict, TypeAdapter, with_config + + @with_config(ConfigDict(str_to_lower=True)) + class Model(TypedDict): + x: str + + ta = TypeAdapter(Model) + + print(ta.validate_python({'x': 'ABC'})) + #> {'x': 'abc'} + ``` + """ + + def inner(class_: _TypeT, /) -> _TypeT: + # Ideally, we would check for `class_` to either be a `TypedDict` or a stdlib dataclass. + # However, the `@with_config` decorator can be applied *after* `@dataclass`. To avoid + # common mistakes, we at least check for `class_` to not be a Pydantic model. + from ._internal._utils import is_model_class + + if is_model_class(class_): + raise PydanticUserError( + f'Cannot use `with_config` on {class_.__name__} as it is a Pydantic model', + code='with-config-on-model', + ) + class_.__pydantic_config__ = config + return class_ + + return inner + + +__getattr__ = getattr_migration(__name__) |