about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/openai/resources/embeddings.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/openai/resources/embeddings.py')
-rw-r--r--.venv/lib/python3.12/site-packages/openai/resources/embeddings.py290
1 files changed, 290 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/openai/resources/embeddings.py b/.venv/lib/python3.12/site-packages/openai/resources/embeddings.py
new file mode 100644
index 00000000..a392d5eb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/openai/resources/embeddings.py
@@ -0,0 +1,290 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+import array
+import base64
+from typing import List, Union, Iterable, cast
+from typing_extensions import Literal
+
+import httpx
+
+from .. import _legacy_response
+from ..types import embedding_create_params
+from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
+from .._utils import is_given, maybe_transform
+from .._compat import cached_property
+from .._extras import numpy as np, has_numpy
+from .._resource import SyncAPIResource, AsyncAPIResource
+from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
+from .._base_client import make_request_options
+from ..types.embedding_model import EmbeddingModel
+from ..types.create_embedding_response import CreateEmbeddingResponse
+
+__all__ = ["Embeddings", "AsyncEmbeddings"]
+
+
+class Embeddings(SyncAPIResource):
+    @cached_property
+    def with_raw_response(self) -> EmbeddingsWithRawResponse:
+        """
+        This property can be used as a prefix for any HTTP method call to return
+        the raw response object instead of the parsed content.
+
+        For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
+        """
+        return EmbeddingsWithRawResponse(self)
+
+    @cached_property
+    def with_streaming_response(self) -> EmbeddingsWithStreamingResponse:
+        """
+        An alternative to `.with_raw_response` that doesn't eagerly read the response body.
+
+        For more information, see https://www.github.com/openai/openai-python#with_streaming_response
+        """
+        return EmbeddingsWithStreamingResponse(self)
+
+    def create(
+        self,
+        *,
+        input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]],
+        model: Union[str, EmbeddingModel],
+        dimensions: int | NotGiven = NOT_GIVEN,
+        encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
+        user: str | NotGiven = NOT_GIVEN,
+        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+        # The extra values given here take precedence over values defined on the client or passed to this method.
+        extra_headers: Headers | None = None,
+        extra_query: Query | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> CreateEmbeddingResponse:
+        """
+        Creates an embedding vector representing the input text.
+
+        Args:
+          input: Input text to embed, encoded as a string or array of tokens. To embed multiple
+              inputs in a single request, pass an array of strings or array of token arrays.
+              The input must not exceed the max input tokens for the model (8192 tokens for
+              `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
+              dimensions or less.
+              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
+              for counting tokens. Some models may also impose a limit on total number of
+              tokens summed across inputs.
+
+          model: ID of the model to use. You can use the
+              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
+              see all of your available models, or see our
+              [Model overview](https://platform.openai.com/docs/models) for descriptions of
+              them.
+
+          dimensions: The number of dimensions the resulting output embeddings should have. Only
+              supported in `text-embedding-3` and later models.
+
+          encoding_format: The format to return the embeddings in. Can be either `float` or
+              [`base64`](https://pypi.org/project/pybase64/).
+
+          user: A unique identifier representing your end-user, which can help OpenAI to monitor
+              and detect abuse.
+              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids).
+
+          extra_headers: Send extra headers
+
+          extra_query: Add additional query parameters to the request
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+        """
+        params = {
+            "input": input,
+            "model": model,
+            "user": user,
+            "dimensions": dimensions,
+            "encoding_format": encoding_format,
+        }
+        if not is_given(encoding_format):
+            params["encoding_format"] = "base64"
+
+        def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
+            if is_given(encoding_format):
+                # don't modify the response object if a user explicitly asked for a format
+                return obj
+
+            for embedding in obj.data:
+                data = cast(object, embedding.embedding)
+                if not isinstance(data, str):
+                    continue
+                if not has_numpy():
+                    # use array for base64 optimisation
+                    embedding.embedding = array.array("f", base64.b64decode(data)).tolist()
+                else:
+                    embedding.embedding = np.frombuffer(  # type: ignore[no-untyped-call]
+                        base64.b64decode(data), dtype="float32"
+                    ).tolist()
+
+            return obj
+
+        return self._post(
+            "/embeddings",
+            body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
+            options=make_request_options(
+                extra_headers=extra_headers,
+                extra_query=extra_query,
+                extra_body=extra_body,
+                timeout=timeout,
+                post_parser=parser,
+            ),
+            cast_to=CreateEmbeddingResponse,
+        )
+
+
+class AsyncEmbeddings(AsyncAPIResource):
+    @cached_property
+    def with_raw_response(self) -> AsyncEmbeddingsWithRawResponse:
+        """
+        This property can be used as a prefix for any HTTP method call to return
+        the raw response object instead of the parsed content.
+
+        For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
+        """
+        return AsyncEmbeddingsWithRawResponse(self)
+
+    @cached_property
+    def with_streaming_response(self) -> AsyncEmbeddingsWithStreamingResponse:
+        """
+        An alternative to `.with_raw_response` that doesn't eagerly read the response body.
+
+        For more information, see https://www.github.com/openai/openai-python#with_streaming_response
+        """
+        return AsyncEmbeddingsWithStreamingResponse(self)
+
+    async def create(
+        self,
+        *,
+        input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]],
+        model: Union[str, EmbeddingModel],
+        dimensions: int | NotGiven = NOT_GIVEN,
+        encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
+        user: str | NotGiven = NOT_GIVEN,
+        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+        # The extra values given here take precedence over values defined on the client or passed to this method.
+        extra_headers: Headers | None = None,
+        extra_query: Query | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> CreateEmbeddingResponse:
+        """
+        Creates an embedding vector representing the input text.
+
+        Args:
+          input: Input text to embed, encoded as a string or array of tokens. To embed multiple
+              inputs in a single request, pass an array of strings or array of token arrays.
+              The input must not exceed the max input tokens for the model (8192 tokens for
+              `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
+              dimensions or less.
+              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
+              for counting tokens. Some models may also impose a limit on total number of
+              tokens summed across inputs.
+
+          model: ID of the model to use. You can use the
+              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
+              see all of your available models, or see our
+              [Model overview](https://platform.openai.com/docs/models) for descriptions of
+              them.
+
+          dimensions: The number of dimensions the resulting output embeddings should have. Only
+              supported in `text-embedding-3` and later models.
+
+          encoding_format: The format to return the embeddings in. Can be either `float` or
+              [`base64`](https://pypi.org/project/pybase64/).
+
+          user: A unique identifier representing your end-user, which can help OpenAI to monitor
+              and detect abuse.
+              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids).
+
+          extra_headers: Send extra headers
+
+          extra_query: Add additional query parameters to the request
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+        """
+        params = {
+            "input": input,
+            "model": model,
+            "user": user,
+            "dimensions": dimensions,
+            "encoding_format": encoding_format,
+        }
+        if not is_given(encoding_format):
+            params["encoding_format"] = "base64"
+
+        def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
+            if is_given(encoding_format):
+                # don't modify the response object if a user explicitly asked for a format
+                return obj
+
+            for embedding in obj.data:
+                data = cast(object, embedding.embedding)
+                if not isinstance(data, str):
+                    continue
+                if not has_numpy():
+                    # use array for base64 optimisation
+                    embedding.embedding = array.array("f", base64.b64decode(data)).tolist()
+                else:
+                    embedding.embedding = np.frombuffer(  # type: ignore[no-untyped-call]
+                        base64.b64decode(data), dtype="float32"
+                    ).tolist()
+
+            return obj
+
+        return await self._post(
+            "/embeddings",
+            body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
+            options=make_request_options(
+                extra_headers=extra_headers,
+                extra_query=extra_query,
+                extra_body=extra_body,
+                timeout=timeout,
+                post_parser=parser,
+            ),
+            cast_to=CreateEmbeddingResponse,
+        )
+
+
+class EmbeddingsWithRawResponse:
+    def __init__(self, embeddings: Embeddings) -> None:
+        self._embeddings = embeddings
+
+        self.create = _legacy_response.to_raw_response_wrapper(
+            embeddings.create,
+        )
+
+
+class AsyncEmbeddingsWithRawResponse:
+    def __init__(self, embeddings: AsyncEmbeddings) -> None:
+        self._embeddings = embeddings
+
+        self.create = _legacy_response.async_to_raw_response_wrapper(
+            embeddings.create,
+        )
+
+
+class EmbeddingsWithStreamingResponse:
+    def __init__(self, embeddings: Embeddings) -> None:
+        self._embeddings = embeddings
+
+        self.create = to_streamed_response_wrapper(
+            embeddings.create,
+        )
+
+
+class AsyncEmbeddingsWithStreamingResponse:
+    def __init__(self, embeddings: AsyncEmbeddings) -> None:
+        self._embeddings = embeddings
+
+        self.create = async_to_streamed_response_wrapper(
+            embeddings.create,
+        )