aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arithmetic.py594
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_constructors.py137
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_like.py41
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayprint.py37
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayterator.py27
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/bitwise_ops.py131
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/comparisons.py301
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/dtype.py57
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/einsumfunc.py36
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/flatiter.py16
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/fromnumeric.py260
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/index_tricks.py64
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_utils.py28
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_version.py18
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/literal.py47
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/mod.py149
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/modules.py42
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/multiarray.py76
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_conversion.py94
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py185
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_shape_manipulation.py47
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numeric.py90
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numerictypes.py42
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/random.py1499
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/scalars.py248
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple.py165
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple_py3.py6
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunc_config.py64
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunclike.py46
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufuncs.py17
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/warnings_and_errors.py6
31 files changed, 4570 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arithmetic.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arithmetic.py
new file mode 100644
index 00000000..07a99012
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arithmetic.py
@@ -0,0 +1,594 @@
+from __future__ import annotations
+
+from typing import Any
+import numpy as np
+import pytest
+
+c16 = np.complex128(1)
+f8 = np.float64(1)
+i8 = np.int64(1)
+u8 = np.uint64(1)
+
+c8 = np.complex64(1)
+f4 = np.float32(1)
+i4 = np.int32(1)
+u4 = np.uint32(1)
+
+dt = np.datetime64(1, "D")
+td = np.timedelta64(1, "D")
+
+b_ = np.bool_(1)
+
+b = bool(1)
+c = complex(1)
+f = float(1)
+i = int(1)
+
+
+class Object:
+ def __array__(self) -> np.ndarray[Any, np.dtype[np.object_]]:
+ ret = np.empty((), dtype=object)
+ ret[()] = self
+ return ret
+
+ def __sub__(self, value: Any) -> Object:
+ return self
+
+ def __rsub__(self, value: Any) -> Object:
+ return self
+
+ def __floordiv__(self, value: Any) -> Object:
+ return self
+
+ def __rfloordiv__(self, value: Any) -> Object:
+ return self
+
+ def __mul__(self, value: Any) -> Object:
+ return self
+
+ def __rmul__(self, value: Any) -> Object:
+ return self
+
+ def __pow__(self, value: Any) -> Object:
+ return self
+
+ def __rpow__(self, value: Any) -> Object:
+ return self
+
+
+AR_b: np.ndarray[Any, np.dtype[np.bool_]] = np.array([True])
+AR_u: np.ndarray[Any, np.dtype[np.uint32]] = np.array([1], dtype=np.uint32)
+AR_i: np.ndarray[Any, np.dtype[np.int64]] = np.array([1])
+AR_f: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.0])
+AR_c: np.ndarray[Any, np.dtype[np.complex128]] = np.array([1j])
+AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] = np.array([np.timedelta64(1, "D")])
+AR_M: np.ndarray[Any, np.dtype[np.datetime64]] = np.array([np.datetime64(1, "D")])
+AR_O: np.ndarray[Any, np.dtype[np.object_]] = np.array([Object()])
+
+AR_LIKE_b = [True]
+AR_LIKE_u = [np.uint32(1)]
+AR_LIKE_i = [1]
+AR_LIKE_f = [1.0]
+AR_LIKE_c = [1j]
+AR_LIKE_m = [np.timedelta64(1, "D")]
+AR_LIKE_M = [np.datetime64(1, "D")]
+AR_LIKE_O = [Object()]
+
+# Array subtractions
+
+AR_b - AR_LIKE_u
+AR_b - AR_LIKE_i
+AR_b - AR_LIKE_f
+AR_b - AR_LIKE_c
+AR_b - AR_LIKE_m
+AR_b - AR_LIKE_O
+
+AR_LIKE_u - AR_b
+AR_LIKE_i - AR_b
+AR_LIKE_f - AR_b
+AR_LIKE_c - AR_b
+AR_LIKE_m - AR_b
+AR_LIKE_M - AR_b
+AR_LIKE_O - AR_b
+
+AR_u - AR_LIKE_b
+AR_u - AR_LIKE_u
+AR_u - AR_LIKE_i
+AR_u - AR_LIKE_f
+AR_u - AR_LIKE_c
+AR_u - AR_LIKE_m
+AR_u - AR_LIKE_O
+
+AR_LIKE_b - AR_u
+AR_LIKE_u - AR_u
+AR_LIKE_i - AR_u
+AR_LIKE_f - AR_u
+AR_LIKE_c - AR_u
+AR_LIKE_m - AR_u
+AR_LIKE_M - AR_u
+AR_LIKE_O - AR_u
+
+AR_i - AR_LIKE_b
+AR_i - AR_LIKE_u
+AR_i - AR_LIKE_i
+AR_i - AR_LIKE_f
+AR_i - AR_LIKE_c
+AR_i - AR_LIKE_m
+AR_i - AR_LIKE_O
+
+AR_LIKE_b - AR_i
+AR_LIKE_u - AR_i
+AR_LIKE_i - AR_i
+AR_LIKE_f - AR_i
+AR_LIKE_c - AR_i
+AR_LIKE_m - AR_i
+AR_LIKE_M - AR_i
+AR_LIKE_O - AR_i
+
+AR_f - AR_LIKE_b
+AR_f - AR_LIKE_u
+AR_f - AR_LIKE_i
+AR_f - AR_LIKE_f
+AR_f - AR_LIKE_c
+AR_f - AR_LIKE_O
+
+AR_LIKE_b - AR_f
+AR_LIKE_u - AR_f
+AR_LIKE_i - AR_f
+AR_LIKE_f - AR_f
+AR_LIKE_c - AR_f
+AR_LIKE_O - AR_f
+
+AR_c - AR_LIKE_b
+AR_c - AR_LIKE_u
+AR_c - AR_LIKE_i
+AR_c - AR_LIKE_f
+AR_c - AR_LIKE_c
+AR_c - AR_LIKE_O
+
+AR_LIKE_b - AR_c
+AR_LIKE_u - AR_c
+AR_LIKE_i - AR_c
+AR_LIKE_f - AR_c
+AR_LIKE_c - AR_c
+AR_LIKE_O - AR_c
+
+AR_m - AR_LIKE_b
+AR_m - AR_LIKE_u
+AR_m - AR_LIKE_i
+AR_m - AR_LIKE_m
+
+AR_LIKE_b - AR_m
+AR_LIKE_u - AR_m
+AR_LIKE_i - AR_m
+AR_LIKE_m - AR_m
+AR_LIKE_M - AR_m
+
+AR_M - AR_LIKE_b
+AR_M - AR_LIKE_u
+AR_M - AR_LIKE_i
+AR_M - AR_LIKE_m
+AR_M - AR_LIKE_M
+
+AR_LIKE_M - AR_M
+
+AR_O - AR_LIKE_b
+AR_O - AR_LIKE_u
+AR_O - AR_LIKE_i
+AR_O - AR_LIKE_f
+AR_O - AR_LIKE_c
+AR_O - AR_LIKE_O
+
+AR_LIKE_b - AR_O
+AR_LIKE_u - AR_O
+AR_LIKE_i - AR_O
+AR_LIKE_f - AR_O
+AR_LIKE_c - AR_O
+AR_LIKE_O - AR_O
+
+AR_u += AR_b
+AR_u += AR_u
+AR_u += 1 # Allowed during runtime as long as the object is 0D and >=0
+
+# Array floor division
+
+AR_b // AR_LIKE_b
+AR_b // AR_LIKE_u
+AR_b // AR_LIKE_i
+AR_b // AR_LIKE_f
+AR_b // AR_LIKE_O
+
+AR_LIKE_b // AR_b
+AR_LIKE_u // AR_b
+AR_LIKE_i // AR_b
+AR_LIKE_f // AR_b
+AR_LIKE_O // AR_b
+
+AR_u // AR_LIKE_b
+AR_u // AR_LIKE_u
+AR_u // AR_LIKE_i
+AR_u // AR_LIKE_f
+AR_u // AR_LIKE_O
+
+AR_LIKE_b // AR_u
+AR_LIKE_u // AR_u
+AR_LIKE_i // AR_u
+AR_LIKE_f // AR_u
+AR_LIKE_m // AR_u
+AR_LIKE_O // AR_u
+
+AR_i // AR_LIKE_b
+AR_i // AR_LIKE_u
+AR_i // AR_LIKE_i
+AR_i // AR_LIKE_f
+AR_i // AR_LIKE_O
+
+AR_LIKE_b // AR_i
+AR_LIKE_u // AR_i
+AR_LIKE_i // AR_i
+AR_LIKE_f // AR_i
+AR_LIKE_m // AR_i
+AR_LIKE_O // AR_i
+
+AR_f // AR_LIKE_b
+AR_f // AR_LIKE_u
+AR_f // AR_LIKE_i
+AR_f // AR_LIKE_f
+AR_f // AR_LIKE_O
+
+AR_LIKE_b // AR_f
+AR_LIKE_u // AR_f
+AR_LIKE_i // AR_f
+AR_LIKE_f // AR_f
+AR_LIKE_m // AR_f
+AR_LIKE_O // AR_f
+
+AR_m // AR_LIKE_u
+AR_m // AR_LIKE_i
+AR_m // AR_LIKE_f
+AR_m // AR_LIKE_m
+
+AR_LIKE_m // AR_m
+
+AR_O // AR_LIKE_b
+AR_O // AR_LIKE_u
+AR_O // AR_LIKE_i
+AR_O // AR_LIKE_f
+AR_O // AR_LIKE_O
+
+AR_LIKE_b // AR_O
+AR_LIKE_u // AR_O
+AR_LIKE_i // AR_O
+AR_LIKE_f // AR_O
+AR_LIKE_O // AR_O
+
+# Inplace multiplication
+
+AR_b *= AR_LIKE_b
+
+AR_u *= AR_LIKE_b
+AR_u *= AR_LIKE_u
+
+AR_i *= AR_LIKE_b
+AR_i *= AR_LIKE_u
+AR_i *= AR_LIKE_i
+
+AR_f *= AR_LIKE_b
+AR_f *= AR_LIKE_u
+AR_f *= AR_LIKE_i
+AR_f *= AR_LIKE_f
+
+AR_c *= AR_LIKE_b
+AR_c *= AR_LIKE_u
+AR_c *= AR_LIKE_i
+AR_c *= AR_LIKE_f
+AR_c *= AR_LIKE_c
+
+AR_m *= AR_LIKE_b
+AR_m *= AR_LIKE_u
+AR_m *= AR_LIKE_i
+AR_m *= AR_LIKE_f
+
+AR_O *= AR_LIKE_b
+AR_O *= AR_LIKE_u
+AR_O *= AR_LIKE_i
+AR_O *= AR_LIKE_f
+AR_O *= AR_LIKE_c
+AR_O *= AR_LIKE_O
+
+# Inplace power
+
+AR_u **= AR_LIKE_b
+AR_u **= AR_LIKE_u
+
+AR_i **= AR_LIKE_b
+AR_i **= AR_LIKE_u
+AR_i **= AR_LIKE_i
+
+AR_f **= AR_LIKE_b
+AR_f **= AR_LIKE_u
+AR_f **= AR_LIKE_i
+AR_f **= AR_LIKE_f
+
+AR_c **= AR_LIKE_b
+AR_c **= AR_LIKE_u
+AR_c **= AR_LIKE_i
+AR_c **= AR_LIKE_f
+AR_c **= AR_LIKE_c
+
+AR_O **= AR_LIKE_b
+AR_O **= AR_LIKE_u
+AR_O **= AR_LIKE_i
+AR_O **= AR_LIKE_f
+AR_O **= AR_LIKE_c
+AR_O **= AR_LIKE_O
+
+# unary ops
+
+-c16
+-c8
+-f8
+-f4
+-i8
+-i4
+with pytest.warns(RuntimeWarning):
+ -u8
+ -u4
+-td
+-AR_f
+
++c16
++c8
++f8
++f4
++i8
++i4
++u8
++u4
++td
++AR_f
+
+abs(c16)
+abs(c8)
+abs(f8)
+abs(f4)
+abs(i8)
+abs(i4)
+abs(u8)
+abs(u4)
+abs(td)
+abs(b_)
+abs(AR_f)
+
+# Time structures
+
+dt + td
+dt + i
+dt + i4
+dt + i8
+dt - dt
+dt - i
+dt - i4
+dt - i8
+
+td + td
+td + i
+td + i4
+td + i8
+td - td
+td - i
+td - i4
+td - i8
+td / f
+td / f4
+td / f8
+td / td
+td // td
+td % td
+
+
+# boolean
+
+b_ / b
+b_ / b_
+b_ / i
+b_ / i8
+b_ / i4
+b_ / u8
+b_ / u4
+b_ / f
+b_ / f8
+b_ / f4
+b_ / c
+b_ / c16
+b_ / c8
+
+b / b_
+b_ / b_
+i / b_
+i8 / b_
+i4 / b_
+u8 / b_
+u4 / b_
+f / b_
+f8 / b_
+f4 / b_
+c / b_
+c16 / b_
+c8 / b_
+
+# Complex
+
+c16 + c16
+c16 + f8
+c16 + i8
+c16 + c8
+c16 + f4
+c16 + i4
+c16 + b_
+c16 + b
+c16 + c
+c16 + f
+c16 + i
+c16 + AR_f
+
+c16 + c16
+f8 + c16
+i8 + c16
+c8 + c16
+f4 + c16
+i4 + c16
+b_ + c16
+b + c16
+c + c16
+f + c16
+i + c16
+AR_f + c16
+
+c8 + c16
+c8 + f8
+c8 + i8
+c8 + c8
+c8 + f4
+c8 + i4
+c8 + b_
+c8 + b
+c8 + c
+c8 + f
+c8 + i
+c8 + AR_f
+
+c16 + c8
+f8 + c8
+i8 + c8
+c8 + c8
+f4 + c8
+i4 + c8
+b_ + c8
+b + c8
+c + c8
+f + c8
+i + c8
+AR_f + c8
+
+# Float
+
+f8 + f8
+f8 + i8
+f8 + f4
+f8 + i4
+f8 + b_
+f8 + b
+f8 + c
+f8 + f
+f8 + i
+f8 + AR_f
+
+f8 + f8
+i8 + f8
+f4 + f8
+i4 + f8
+b_ + f8
+b + f8
+c + f8
+f + f8
+i + f8
+AR_f + f8
+
+f4 + f8
+f4 + i8
+f4 + f4
+f4 + i4
+f4 + b_
+f4 + b
+f4 + c
+f4 + f
+f4 + i
+f4 + AR_f
+
+f8 + f4
+i8 + f4
+f4 + f4
+i4 + f4
+b_ + f4
+b + f4
+c + f4
+f + f4
+i + f4
+AR_f + f4
+
+# Int
+
+i8 + i8
+i8 + u8
+i8 + i4
+i8 + u4
+i8 + b_
+i8 + b
+i8 + c
+i8 + f
+i8 + i
+i8 + AR_f
+
+u8 + u8
+u8 + i4
+u8 + u4
+u8 + b_
+u8 + b
+u8 + c
+u8 + f
+u8 + i
+u8 + AR_f
+
+i8 + i8
+u8 + i8
+i4 + i8
+u4 + i8
+b_ + i8
+b + i8
+c + i8
+f + i8
+i + i8
+AR_f + i8
+
+u8 + u8
+i4 + u8
+u4 + u8
+b_ + u8
+b + u8
+c + u8
+f + u8
+i + u8
+AR_f + u8
+
+i4 + i8
+i4 + i4
+i4 + i
+i4 + b_
+i4 + b
+i4 + AR_f
+
+u4 + i8
+u4 + i4
+u4 + u8
+u4 + u4
+u4 + i
+u4 + b_
+u4 + b
+u4 + AR_f
+
+i8 + i4
+i4 + i4
+i + i4
+b_ + i4
+b + i4
+AR_f + i4
+
+i8 + u4
+i4 + u4
+u8 + u4
+u4 + u4
+b_ + u4
+b + u4
+i + u4
+AR_f + u4
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_constructors.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_constructors.py
new file mode 100644
index 00000000..e035a73c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_constructors.py
@@ -0,0 +1,137 @@
+import sys
+from typing import Any
+import numpy as np
+
+
+class Index:
+ def __index__(self) -> int:
+ return 0
+
+
+class SubClass(np.ndarray):
+ pass
+
+
+def func(i: int, j: int, **kwargs: Any) -> SubClass:
+ return B
+
+
+i8 = np.int64(1)
+
+A = np.array([1])
+B = A.view(SubClass).copy()
+B_stack = np.array([[1], [1]]).view(SubClass)
+C = [1]
+
+np.ndarray(Index())
+np.ndarray([Index()])
+
+np.array(1, dtype=float)
+np.array(1, copy=False)
+np.array(1, order='F')
+np.array(1, order=None)
+np.array(1, subok=True)
+np.array(1, ndmin=3)
+np.array(1, str, copy=True, order='C', subok=False, ndmin=2)
+
+np.asarray(A)
+np.asarray(B)
+np.asarray(C)
+
+np.asanyarray(A)
+np.asanyarray(B)
+np.asanyarray(B, dtype=int)
+np.asanyarray(C)
+
+np.ascontiguousarray(A)
+np.ascontiguousarray(B)
+np.ascontiguousarray(C)
+
+np.asfortranarray(A)
+np.asfortranarray(B)
+np.asfortranarray(C)
+
+np.require(A)
+np.require(B)
+np.require(B, dtype=int)
+np.require(B, requirements=None)
+np.require(B, requirements="E")
+np.require(B, requirements=["ENSUREARRAY"])
+np.require(B, requirements={"F", "E"})
+np.require(B, requirements=["C", "OWNDATA"])
+np.require(B, requirements="W")
+np.require(B, requirements="A")
+np.require(C)
+
+np.linspace(0, 2)
+np.linspace(0.5, [0, 1, 2])
+np.linspace([0, 1, 2], 3)
+np.linspace(0j, 2)
+np.linspace(0, 2, num=10)
+np.linspace(0, 2, endpoint=True)
+np.linspace(0, 2, retstep=True)
+np.linspace(0j, 2j, retstep=True)
+np.linspace(0, 2, dtype=bool)
+np.linspace([0, 1], [2, 3], axis=Index())
+
+np.logspace(0, 2, base=2)
+np.logspace(0, 2, base=2)
+np.logspace(0, 2, base=[1j, 2j], num=2)
+
+np.geomspace(1, 2)
+
+np.zeros_like(A)
+np.zeros_like(C)
+np.zeros_like(B)
+np.zeros_like(B, dtype=np.int64)
+
+np.ones_like(A)
+np.ones_like(C)
+np.ones_like(B)
+np.ones_like(B, dtype=np.int64)
+
+np.empty_like(A)
+np.empty_like(C)
+np.empty_like(B)
+np.empty_like(B, dtype=np.int64)
+
+np.full_like(A, i8)
+np.full_like(C, i8)
+np.full_like(B, i8)
+np.full_like(B, i8, dtype=np.int64)
+
+np.ones(1)
+np.ones([1, 1, 1])
+
+np.full(1, i8)
+np.full([1, 1, 1], i8)
+
+np.indices([1, 2, 3])
+np.indices([1, 2, 3], sparse=True)
+
+np.fromfunction(func, (3, 5))
+
+np.identity(10)
+
+np.atleast_1d(C)
+np.atleast_1d(A)
+np.atleast_1d(C, C)
+np.atleast_1d(C, A)
+np.atleast_1d(A, A)
+
+np.atleast_2d(C)
+
+np.atleast_3d(C)
+
+np.vstack([C, C])
+np.vstack([C, A])
+np.vstack([A, A])
+
+np.hstack([C, C])
+
+np.stack([C, C])
+np.stack([C, C], axis=0)
+np.stack([C, C], out=B_stack)
+
+np.block([[C, C], [C, C]])
+np.block(A)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_like.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_like.py
new file mode 100644
index 00000000..da2520e9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_like.py
@@ -0,0 +1,41 @@
+from __future__ import annotations
+
+from typing import Any
+
+import numpy as np
+from numpy._typing import ArrayLike, _SupportsArray
+
+x1: ArrayLike = True
+x2: ArrayLike = 5
+x3: ArrayLike = 1.0
+x4: ArrayLike = 1 + 1j
+x5: ArrayLike = np.int8(1)
+x6: ArrayLike = np.float64(1)
+x7: ArrayLike = np.complex128(1)
+x8: ArrayLike = np.array([1, 2, 3])
+x9: ArrayLike = [1, 2, 3]
+x10: ArrayLike = (1, 2, 3)
+x11: ArrayLike = "foo"
+x12: ArrayLike = memoryview(b'foo')
+
+
+class A:
+ def __array__(self, dtype: None | np.dtype[Any] = None) -> np.ndarray:
+ return np.array([1, 2, 3])
+
+
+x13: ArrayLike = A()
+
+scalar: _SupportsArray = np.int64(1)
+scalar.__array__()
+array: _SupportsArray = np.array(1)
+array.__array__()
+
+a: _SupportsArray = A()
+a.__array__()
+a.__array__()
+
+# Escape hatch for when you mean to make something like an object
+# array.
+object_array_scalar: Any = (i for i in range(10))
+np.array(object_array_scalar)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayprint.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayprint.py
new file mode 100644
index 00000000..6c704c75
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayprint.py
@@ -0,0 +1,37 @@
+import numpy as np
+
+AR = np.arange(10)
+AR.setflags(write=False)
+
+with np.printoptions():
+ np.set_printoptions(
+ precision=1,
+ threshold=2,
+ edgeitems=3,
+ linewidth=4,
+ suppress=False,
+ nanstr="Bob",
+ infstr="Bill",
+ formatter={},
+ sign="+",
+ floatmode="unique",
+ )
+ np.get_printoptions()
+ str(AR)
+
+ np.array2string(
+ AR,
+ max_line_width=5,
+ precision=2,
+ suppress_small=True,
+ separator=";",
+ prefix="test",
+ threshold=5,
+ floatmode="fixed",
+ suffix="?",
+ legacy="1.13",
+ )
+ np.format_float_scientific(1, precision=5)
+ np.format_float_positional(1, trim="k")
+ np.array_repr(AR)
+ np.array_str(AR)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayterator.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayterator.py
new file mode 100644
index 00000000..572be5e2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayterator.py
@@ -0,0 +1,27 @@
+
+from __future__ import annotations
+
+from typing import Any
+import numpy as np
+
+AR_i8: np.ndarray[Any, np.dtype[np.int_]] = np.arange(10)
+ar_iter = np.lib.Arrayterator(AR_i8)
+
+ar_iter.var
+ar_iter.buf_size
+ar_iter.start
+ar_iter.stop
+ar_iter.step
+ar_iter.shape
+ar_iter.flat
+
+ar_iter.__array__()
+
+for i in ar_iter:
+ pass
+
+ar_iter[0]
+ar_iter[...]
+ar_iter[:]
+ar_iter[0, 0, 0]
+ar_iter[..., 0, :]
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/bitwise_ops.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/bitwise_ops.py
new file mode 100644
index 00000000..67449e2c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/bitwise_ops.py
@@ -0,0 +1,131 @@
+import numpy as np
+
+i8 = np.int64(1)
+u8 = np.uint64(1)
+
+i4 = np.int32(1)
+u4 = np.uint32(1)
+
+b_ = np.bool_(1)
+
+b = bool(1)
+i = int(1)
+
+AR = np.array([0, 1, 2], dtype=np.int32)
+AR.setflags(write=False)
+
+
+i8 << i8
+i8 >> i8
+i8 | i8
+i8 ^ i8
+i8 & i8
+
+i8 << AR
+i8 >> AR
+i8 | AR
+i8 ^ AR
+i8 & AR
+
+i4 << i4
+i4 >> i4
+i4 | i4
+i4 ^ i4
+i4 & i4
+
+i8 << i4
+i8 >> i4
+i8 | i4
+i8 ^ i4
+i8 & i4
+
+i8 << i
+i8 >> i
+i8 | i
+i8 ^ i
+i8 & i
+
+i8 << b_
+i8 >> b_
+i8 | b_
+i8 ^ b_
+i8 & b_
+
+i8 << b
+i8 >> b
+i8 | b
+i8 ^ b
+i8 & b
+
+u8 << u8
+u8 >> u8
+u8 | u8
+u8 ^ u8
+u8 & u8
+
+u8 << AR
+u8 >> AR
+u8 | AR
+u8 ^ AR
+u8 & AR
+
+u4 << u4
+u4 >> u4
+u4 | u4
+u4 ^ u4
+u4 & u4
+
+u4 << i4
+u4 >> i4
+u4 | i4
+u4 ^ i4
+u4 & i4
+
+u4 << i
+u4 >> i
+u4 | i
+u4 ^ i
+u4 & i
+
+u8 << b_
+u8 >> b_
+u8 | b_
+u8 ^ b_
+u8 & b_
+
+u8 << b
+u8 >> b
+u8 | b
+u8 ^ b
+u8 & b
+
+b_ << b_
+b_ >> b_
+b_ | b_
+b_ ^ b_
+b_ & b_
+
+b_ << AR
+b_ >> AR
+b_ | AR
+b_ ^ AR
+b_ & AR
+
+b_ << b
+b_ >> b
+b_ | b
+b_ ^ b
+b_ & b
+
+b_ << i
+b_ >> i
+b_ | i
+b_ ^ i
+b_ & i
+
+~i8
+~i4
+~u8
+~u4
+~b_
+~AR
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/comparisons.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/comparisons.py
new file mode 100644
index 00000000..ce41de43
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/comparisons.py
@@ -0,0 +1,301 @@
+from __future__ import annotations
+
+from typing import Any
+import numpy as np
+
+c16 = np.complex128()
+f8 = np.float64()
+i8 = np.int64()
+u8 = np.uint64()
+
+c8 = np.complex64()
+f4 = np.float32()
+i4 = np.int32()
+u4 = np.uint32()
+
+dt = np.datetime64(0, "D")
+td = np.timedelta64(0, "D")
+
+b_ = np.bool_()
+
+b = bool()
+c = complex()
+f = float()
+i = int()
+
+SEQ = (0, 1, 2, 3, 4)
+
+AR_b: np.ndarray[Any, np.dtype[np.bool_]] = np.array([True])
+AR_u: np.ndarray[Any, np.dtype[np.uint32]] = np.array([1], dtype=np.uint32)
+AR_i: np.ndarray[Any, np.dtype[np.int_]] = np.array([1])
+AR_f: np.ndarray[Any, np.dtype[np.float_]] = np.array([1.0])
+AR_c: np.ndarray[Any, np.dtype[np.complex_]] = np.array([1.0j])
+AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] = np.array([np.timedelta64("1")])
+AR_M: np.ndarray[Any, np.dtype[np.datetime64]] = np.array([np.datetime64("1")])
+AR_O: np.ndarray[Any, np.dtype[np.object_]] = np.array([1], dtype=object)
+
+# Arrays
+
+AR_b > AR_b
+AR_b > AR_u
+AR_b > AR_i
+AR_b > AR_f
+AR_b > AR_c
+
+AR_u > AR_b
+AR_u > AR_u
+AR_u > AR_i
+AR_u > AR_f
+AR_u > AR_c
+
+AR_i > AR_b
+AR_i > AR_u
+AR_i > AR_i
+AR_i > AR_f
+AR_i > AR_c
+
+AR_f > AR_b
+AR_f > AR_u
+AR_f > AR_i
+AR_f > AR_f
+AR_f > AR_c
+
+AR_c > AR_b
+AR_c > AR_u
+AR_c > AR_i
+AR_c > AR_f
+AR_c > AR_c
+
+AR_m > AR_b
+AR_m > AR_u
+AR_m > AR_i
+AR_b > AR_m
+AR_u > AR_m
+AR_i > AR_m
+
+AR_M > AR_M
+
+AR_O > AR_O
+1 > AR_O
+AR_O > 1
+
+# Time structures
+
+dt > dt
+
+td > td
+td > i
+td > i4
+td > i8
+td > AR_i
+td > SEQ
+
+# boolean
+
+b_ > b
+b_ > b_
+b_ > i
+b_ > i8
+b_ > i4
+b_ > u8
+b_ > u4
+b_ > f
+b_ > f8
+b_ > f4
+b_ > c
+b_ > c16
+b_ > c8
+b_ > AR_i
+b_ > SEQ
+
+# Complex
+
+c16 > c16
+c16 > f8
+c16 > i8
+c16 > c8
+c16 > f4
+c16 > i4
+c16 > b_
+c16 > b
+c16 > c
+c16 > f
+c16 > i
+c16 > AR_i
+c16 > SEQ
+
+c16 > c16
+f8 > c16
+i8 > c16
+c8 > c16
+f4 > c16
+i4 > c16
+b_ > c16
+b > c16
+c > c16
+f > c16
+i > c16
+AR_i > c16
+SEQ > c16
+
+c8 > c16
+c8 > f8
+c8 > i8
+c8 > c8
+c8 > f4
+c8 > i4
+c8 > b_
+c8 > b
+c8 > c
+c8 > f
+c8 > i
+c8 > AR_i
+c8 > SEQ
+
+c16 > c8
+f8 > c8
+i8 > c8
+c8 > c8
+f4 > c8
+i4 > c8
+b_ > c8
+b > c8
+c > c8
+f > c8
+i > c8
+AR_i > c8
+SEQ > c8
+
+# Float
+
+f8 > f8
+f8 > i8
+f8 > f4
+f8 > i4
+f8 > b_
+f8 > b
+f8 > c
+f8 > f
+f8 > i
+f8 > AR_i
+f8 > SEQ
+
+f8 > f8
+i8 > f8
+f4 > f8
+i4 > f8
+b_ > f8
+b > f8
+c > f8
+f > f8
+i > f8
+AR_i > f8
+SEQ > f8
+
+f4 > f8
+f4 > i8
+f4 > f4
+f4 > i4
+f4 > b_
+f4 > b
+f4 > c
+f4 > f
+f4 > i
+f4 > AR_i
+f4 > SEQ
+
+f8 > f4
+i8 > f4
+f4 > f4
+i4 > f4
+b_ > f4
+b > f4
+c > f4
+f > f4
+i > f4
+AR_i > f4
+SEQ > f4
+
+# Int
+
+i8 > i8
+i8 > u8
+i8 > i4
+i8 > u4
+i8 > b_
+i8 > b
+i8 > c
+i8 > f
+i8 > i
+i8 > AR_i
+i8 > SEQ
+
+u8 > u8
+u8 > i4
+u8 > u4
+u8 > b_
+u8 > b
+u8 > c
+u8 > f
+u8 > i
+u8 > AR_i
+u8 > SEQ
+
+i8 > i8
+u8 > i8
+i4 > i8
+u4 > i8
+b_ > i8
+b > i8
+c > i8
+f > i8
+i > i8
+AR_i > i8
+SEQ > i8
+
+u8 > u8
+i4 > u8
+u4 > u8
+b_ > u8
+b > u8
+c > u8
+f > u8
+i > u8
+AR_i > u8
+SEQ > u8
+
+i4 > i8
+i4 > i4
+i4 > i
+i4 > b_
+i4 > b
+i4 > AR_i
+i4 > SEQ
+
+u4 > i8
+u4 > i4
+u4 > u8
+u4 > u4
+u4 > i
+u4 > b_
+u4 > b
+u4 > AR_i
+u4 > SEQ
+
+i8 > i4
+i4 > i4
+i > i4
+b_ > i4
+b > i4
+AR_i > i4
+SEQ > i4
+
+i8 > u4
+i4 > u4
+u8 > u4
+u4 > u4
+b_ > u4
+b > u4
+i > u4
+AR_i > u4
+SEQ > u4
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/dtype.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/dtype.py
new file mode 100644
index 00000000..6ec44e6b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/dtype.py
@@ -0,0 +1,57 @@
+import numpy as np
+
+dtype_obj = np.dtype(np.str_)
+void_dtype_obj = np.dtype([("f0", np.float64), ("f1", np.float32)])
+
+np.dtype(dtype=np.int64)
+np.dtype(int)
+np.dtype("int")
+np.dtype(None)
+
+np.dtype((int, 2))
+np.dtype((int, (1,)))
+
+np.dtype({"names": ["a", "b"], "formats": [int, float]})
+np.dtype({"names": ["a"], "formats": [int], "titles": [object]})
+np.dtype({"names": ["a"], "formats": [int], "titles": [object()]})
+
+np.dtype([("name", np.str_, 16), ("grades", np.float64, (2,)), ("age", "int32")])
+
+np.dtype(
+ {
+ "names": ["a", "b"],
+ "formats": [int, float],
+ "itemsize": 9,
+ "aligned": False,
+ "titles": ["x", "y"],
+ "offsets": [0, 1],
+ }
+)
+
+np.dtype((np.float_, float))
+
+
+class Test:
+ dtype = np.dtype(float)
+
+
+np.dtype(Test())
+
+# Methods and attributes
+dtype_obj.base
+dtype_obj.subdtype
+dtype_obj.newbyteorder()
+dtype_obj.type
+dtype_obj.name
+dtype_obj.names
+
+dtype_obj * 0
+dtype_obj * 2
+
+0 * dtype_obj
+2 * dtype_obj
+
+void_dtype_obj["f0"]
+void_dtype_obj[0]
+void_dtype_obj[["f0", "f1"]]
+void_dtype_obj[["f0"]]
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/einsumfunc.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/einsumfunc.py
new file mode 100644
index 00000000..429764e6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/einsumfunc.py
@@ -0,0 +1,36 @@
+from __future__ import annotations
+
+from typing import Any
+
+import numpy as np
+
+AR_LIKE_b = [True, True, True]
+AR_LIKE_u = [np.uint32(1), np.uint32(2), np.uint32(3)]
+AR_LIKE_i = [1, 2, 3]
+AR_LIKE_f = [1.0, 2.0, 3.0]
+AR_LIKE_c = [1j, 2j, 3j]
+AR_LIKE_U = ["1", "2", "3"]
+
+OUT_f: np.ndarray[Any, np.dtype[np.float64]] = np.empty(3, dtype=np.float64)
+OUT_c: np.ndarray[Any, np.dtype[np.complex128]] = np.empty(3, dtype=np.complex128)
+
+np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_b)
+np.einsum("i,i->i", AR_LIKE_u, AR_LIKE_u)
+np.einsum("i,i->i", AR_LIKE_i, AR_LIKE_i)
+np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f)
+np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c)
+np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_i)
+np.einsum("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c)
+
+np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, dtype="c16")
+np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe")
+np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, out=OUT_c)
+np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=int, casting="unsafe", out=OUT_f)
+
+np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_b)
+np.einsum_path("i,i->i", AR_LIKE_u, AR_LIKE_u)
+np.einsum_path("i,i->i", AR_LIKE_i, AR_LIKE_i)
+np.einsum_path("i,i->i", AR_LIKE_f, AR_LIKE_f)
+np.einsum_path("i,i->i", AR_LIKE_c, AR_LIKE_c)
+np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_i)
+np.einsum_path("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/flatiter.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/flatiter.py
new file mode 100644
index 00000000..63c839af
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/flatiter.py
@@ -0,0 +1,16 @@
+import numpy as np
+
+a = np.empty((2, 2)).flat
+
+a.base
+a.copy()
+a.coords
+a.index
+iter(a)
+next(a)
+a[0]
+a[[0, 1, 2]]
+a[...]
+a[:]
+a.__array__()
+a.__array__(np.dtype(np.float64))
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/fromnumeric.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/fromnumeric.py
new file mode 100644
index 00000000..9e936e68
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/fromnumeric.py
@@ -0,0 +1,260 @@
+"""Tests for :mod:`numpy.core.fromnumeric`."""
+
+import numpy as np
+
+A = np.array(True, ndmin=2, dtype=bool)
+B = np.array(1.0, ndmin=2, dtype=np.float32)
+A.setflags(write=False)
+B.setflags(write=False)
+
+a = np.bool_(True)
+b = np.float32(1.0)
+c = 1.0
+d = np.array(1.0, dtype=np.float32) # writeable
+
+np.take(a, 0)
+np.take(b, 0)
+np.take(c, 0)
+np.take(A, 0)
+np.take(B, 0)
+np.take(A, [0])
+np.take(B, [0])
+
+np.reshape(a, 1)
+np.reshape(b, 1)
+np.reshape(c, 1)
+np.reshape(A, 1)
+np.reshape(B, 1)
+
+np.choose(a, [True, True])
+np.choose(A, [1.0, 1.0])
+
+np.repeat(a, 1)
+np.repeat(b, 1)
+np.repeat(c, 1)
+np.repeat(A, 1)
+np.repeat(B, 1)
+
+np.swapaxes(A, 0, 0)
+np.swapaxes(B, 0, 0)
+
+np.transpose(a)
+np.transpose(b)
+np.transpose(c)
+np.transpose(A)
+np.transpose(B)
+
+np.partition(a, 0, axis=None)
+np.partition(b, 0, axis=None)
+np.partition(c, 0, axis=None)
+np.partition(A, 0)
+np.partition(B, 0)
+
+np.argpartition(a, 0)
+np.argpartition(b, 0)
+np.argpartition(c, 0)
+np.argpartition(A, 0)
+np.argpartition(B, 0)
+
+np.sort(A, 0)
+np.sort(B, 0)
+
+np.argsort(A, 0)
+np.argsort(B, 0)
+
+np.argmax(A)
+np.argmax(B)
+np.argmax(A, axis=0)
+np.argmax(B, axis=0)
+
+np.argmin(A)
+np.argmin(B)
+np.argmin(A, axis=0)
+np.argmin(B, axis=0)
+
+np.searchsorted(A[0], 0)
+np.searchsorted(B[0], 0)
+np.searchsorted(A[0], [0])
+np.searchsorted(B[0], [0])
+
+np.resize(a, (5, 5))
+np.resize(b, (5, 5))
+np.resize(c, (5, 5))
+np.resize(A, (5, 5))
+np.resize(B, (5, 5))
+
+np.squeeze(a)
+np.squeeze(b)
+np.squeeze(c)
+np.squeeze(A)
+np.squeeze(B)
+
+np.diagonal(A)
+np.diagonal(B)
+
+np.trace(A)
+np.trace(B)
+
+np.ravel(a)
+np.ravel(b)
+np.ravel(c)
+np.ravel(A)
+np.ravel(B)
+
+np.nonzero(A)
+np.nonzero(B)
+
+np.shape(a)
+np.shape(b)
+np.shape(c)
+np.shape(A)
+np.shape(B)
+
+np.compress([True], a)
+np.compress([True], b)
+np.compress([True], c)
+np.compress([True], A)
+np.compress([True], B)
+
+np.clip(a, 0, 1.0)
+np.clip(b, -1, 1)
+np.clip(a, 0, None)
+np.clip(b, None, 1)
+np.clip(c, 0, 1)
+np.clip(A, 0, 1)
+np.clip(B, 0, 1)
+np.clip(B, [0, 1], [1, 2])
+
+np.sum(a)
+np.sum(b)
+np.sum(c)
+np.sum(A)
+np.sum(B)
+np.sum(A, axis=0)
+np.sum(B, axis=0)
+
+np.all(a)
+np.all(b)
+np.all(c)
+np.all(A)
+np.all(B)
+np.all(A, axis=0)
+np.all(B, axis=0)
+np.all(A, keepdims=True)
+np.all(B, keepdims=True)
+
+np.any(a)
+np.any(b)
+np.any(c)
+np.any(A)
+np.any(B)
+np.any(A, axis=0)
+np.any(B, axis=0)
+np.any(A, keepdims=True)
+np.any(B, keepdims=True)
+
+np.cumsum(a)
+np.cumsum(b)
+np.cumsum(c)
+np.cumsum(A)
+np.cumsum(B)
+
+np.ptp(b)
+np.ptp(c)
+np.ptp(B)
+np.ptp(B, axis=0)
+np.ptp(B, keepdims=True)
+
+np.amax(a)
+np.amax(b)
+np.amax(c)
+np.amax(A)
+np.amax(B)
+np.amax(A, axis=0)
+np.amax(B, axis=0)
+np.amax(A, keepdims=True)
+np.amax(B, keepdims=True)
+
+np.amin(a)
+np.amin(b)
+np.amin(c)
+np.amin(A)
+np.amin(B)
+np.amin(A, axis=0)
+np.amin(B, axis=0)
+np.amin(A, keepdims=True)
+np.amin(B, keepdims=True)
+
+np.prod(a)
+np.prod(b)
+np.prod(c)
+np.prod(A)
+np.prod(B)
+np.prod(a, dtype=None)
+np.prod(A, dtype=None)
+np.prod(A, axis=0)
+np.prod(B, axis=0)
+np.prod(A, keepdims=True)
+np.prod(B, keepdims=True)
+np.prod(b, out=d)
+np.prod(B, out=d)
+
+np.cumprod(a)
+np.cumprod(b)
+np.cumprod(c)
+np.cumprod(A)
+np.cumprod(B)
+
+np.ndim(a)
+np.ndim(b)
+np.ndim(c)
+np.ndim(A)
+np.ndim(B)
+
+np.size(a)
+np.size(b)
+np.size(c)
+np.size(A)
+np.size(B)
+
+np.around(a)
+np.around(b)
+np.around(c)
+np.around(A)
+np.around(B)
+
+np.mean(a)
+np.mean(b)
+np.mean(c)
+np.mean(A)
+np.mean(B)
+np.mean(A, axis=0)
+np.mean(B, axis=0)
+np.mean(A, keepdims=True)
+np.mean(B, keepdims=True)
+np.mean(b, out=d)
+np.mean(B, out=d)
+
+np.std(a)
+np.std(b)
+np.std(c)
+np.std(A)
+np.std(B)
+np.std(A, axis=0)
+np.std(B, axis=0)
+np.std(A, keepdims=True)
+np.std(B, keepdims=True)
+np.std(b, out=d)
+np.std(B, out=d)
+
+np.var(a)
+np.var(b)
+np.var(c)
+np.var(A)
+np.var(B)
+np.var(A, axis=0)
+np.var(B, axis=0)
+np.var(A, keepdims=True)
+np.var(B, keepdims=True)
+np.var(b, out=d)
+np.var(B, out=d)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/index_tricks.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/index_tricks.py
new file mode 100644
index 00000000..4c4c1195
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/index_tricks.py
@@ -0,0 +1,64 @@
+from __future__ import annotations
+from typing import Any
+import numpy as np
+
+AR_LIKE_b = [[True, True], [True, True]]
+AR_LIKE_i = [[1, 2], [3, 4]]
+AR_LIKE_f = [[1.0, 2.0], [3.0, 4.0]]
+AR_LIKE_U = [["1", "2"], ["3", "4"]]
+
+AR_i8: np.ndarray[Any, np.dtype[np.int64]] = np.array(AR_LIKE_i, dtype=np.int64)
+
+np.ndenumerate(AR_i8)
+np.ndenumerate(AR_LIKE_f)
+np.ndenumerate(AR_LIKE_U)
+
+np.ndenumerate(AR_i8).iter
+np.ndenumerate(AR_LIKE_f).iter
+np.ndenumerate(AR_LIKE_U).iter
+
+next(np.ndenumerate(AR_i8))
+next(np.ndenumerate(AR_LIKE_f))
+next(np.ndenumerate(AR_LIKE_U))
+
+iter(np.ndenumerate(AR_i8))
+iter(np.ndenumerate(AR_LIKE_f))
+iter(np.ndenumerate(AR_LIKE_U))
+
+iter(np.ndindex(1, 2, 3))
+next(np.ndindex(1, 2, 3))
+
+np.unravel_index([22, 41, 37], (7, 6))
+np.unravel_index([31, 41, 13], (7, 6), order='F')
+np.unravel_index(1621, (6, 7, 8, 9))
+
+np.ravel_multi_index(AR_LIKE_i, (7, 6))
+np.ravel_multi_index(AR_LIKE_i, (7, 6), order='F')
+np.ravel_multi_index(AR_LIKE_i, (4, 6), mode='clip')
+np.ravel_multi_index(AR_LIKE_i, (4, 4), mode=('clip', 'wrap'))
+np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9))
+
+np.mgrid[1:1:2]
+np.mgrid[1:1:2, None:10]
+
+np.ogrid[1:1:2]
+np.ogrid[1:1:2, None:10]
+
+np.index_exp[0:1]
+np.index_exp[0:1, None:3]
+np.index_exp[0, 0:1, ..., [0, 1, 3]]
+
+np.s_[0:1]
+np.s_[0:1, None:3]
+np.s_[0, 0:1, ..., [0, 1, 3]]
+
+np.ix_(AR_LIKE_b[0])
+np.ix_(AR_LIKE_i[0], AR_LIKE_f[0])
+np.ix_(AR_i8[0])
+
+np.fill_diagonal(AR_i8, 5)
+
+np.diag_indices(4)
+np.diag_indices(2, 3)
+
+np.diag_indices_from(AR_i8)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_utils.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_utils.py
new file mode 100644
index 00000000..53a3e174
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_utils.py
@@ -0,0 +1,28 @@
+from __future__ import annotations
+
+from io import StringIO
+
+import numpy as np
+
+FILE = StringIO()
+AR = np.arange(10, dtype=np.float64)
+
+
+def func(a: int) -> bool:
+ return True
+
+
+np.deprecate(func)
+np.deprecate()
+
+np.deprecate_with_doc("test")
+np.deprecate_with_doc(None)
+
+np.byte_bounds(AR)
+np.byte_bounds(np.float64())
+
+np.info(1, output=FILE)
+
+np.source(np.interp, output=FILE)
+
+np.lookfor("binary representation", output=FILE)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_version.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_version.py
new file mode 100644
index 00000000..f3825eca
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_version.py
@@ -0,0 +1,18 @@
+from numpy.lib import NumpyVersion
+
+version = NumpyVersion("1.8.0")
+
+version.vstring
+version.version
+version.major
+version.minor
+version.bugfix
+version.pre_release
+version.is_devversion
+
+version == version
+version != version
+version < "1.8.0"
+version <= version
+version > version
+version >= "1.8.0"
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/literal.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/literal.py
new file mode 100644
index 00000000..d06431ee
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/literal.py
@@ -0,0 +1,47 @@
+from __future__ import annotations
+
+from functools import partial
+from collections.abc import Callable
+
+import pytest # type: ignore
+import numpy as np
+
+AR = np.array(0)
+AR.setflags(write=False)
+
+KACF = frozenset({None, "K", "A", "C", "F"})
+ACF = frozenset({None, "A", "C", "F"})
+CF = frozenset({None, "C", "F"})
+
+order_list: list[tuple[frozenset, Callable]] = [
+ (KACF, partial(np.ndarray, 1)),
+ (KACF, AR.tobytes),
+ (KACF, partial(AR.astype, int)),
+ (KACF, AR.copy),
+ (ACF, partial(AR.reshape, 1)),
+ (KACF, AR.flatten),
+ (KACF, AR.ravel),
+ (KACF, partial(np.array, 1)),
+ (CF, partial(np.zeros, 1)),
+ (CF, partial(np.ones, 1)),
+ (CF, partial(np.empty, 1)),
+ (CF, partial(np.full, 1, 1)),
+ (KACF, partial(np.zeros_like, AR)),
+ (KACF, partial(np.ones_like, AR)),
+ (KACF, partial(np.empty_like, AR)),
+ (KACF, partial(np.full_like, AR, 1)),
+ (KACF, partial(np.add, 1, 1)), # i.e. np.ufunc.__call__
+ (ACF, partial(np.reshape, AR, 1)),
+ (KACF, partial(np.ravel, AR)),
+ (KACF, partial(np.asarray, 1)),
+ (KACF, partial(np.asanyarray, 1)),
+]
+
+for order_set, func in order_list:
+ for order in order_set:
+ func(order=order)
+
+ invalid_orders = KACF - order_set
+ for order in invalid_orders:
+ with pytest.raises(ValueError):
+ func(order=order)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/mod.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/mod.py
new file mode 100644
index 00000000..b5b9afb2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/mod.py
@@ -0,0 +1,149 @@
+import numpy as np
+
+f8 = np.float64(1)
+i8 = np.int64(1)
+u8 = np.uint64(1)
+
+f4 = np.float32(1)
+i4 = np.int32(1)
+u4 = np.uint32(1)
+
+td = np.timedelta64(1, "D")
+b_ = np.bool_(1)
+
+b = bool(1)
+f = float(1)
+i = int(1)
+
+AR = np.array([1], dtype=np.bool_)
+AR.setflags(write=False)
+
+AR2 = np.array([1], dtype=np.timedelta64)
+AR2.setflags(write=False)
+
+# Time structures
+
+td % td
+td % AR2
+AR2 % td
+
+divmod(td, td)
+divmod(td, AR2)
+divmod(AR2, td)
+
+# Bool
+
+b_ % b
+b_ % i
+b_ % f
+b_ % b_
+b_ % i8
+b_ % u8
+b_ % f8
+b_ % AR
+
+divmod(b_, b)
+divmod(b_, i)
+divmod(b_, f)
+divmod(b_, b_)
+divmod(b_, i8)
+divmod(b_, u8)
+divmod(b_, f8)
+divmod(b_, AR)
+
+b % b_
+i % b_
+f % b_
+b_ % b_
+i8 % b_
+u8 % b_
+f8 % b_
+AR % b_
+
+divmod(b, b_)
+divmod(i, b_)
+divmod(f, b_)
+divmod(b_, b_)
+divmod(i8, b_)
+divmod(u8, b_)
+divmod(f8, b_)
+divmod(AR, b_)
+
+# int
+
+i8 % b
+i8 % i
+i8 % f
+i8 % i8
+i8 % f8
+i4 % i8
+i4 % f8
+i4 % i4
+i4 % f4
+i8 % AR
+
+divmod(i8, b)
+divmod(i8, i)
+divmod(i8, f)
+divmod(i8, i8)
+divmod(i8, f8)
+divmod(i8, i4)
+divmod(i8, f4)
+divmod(i4, i4)
+divmod(i4, f4)
+divmod(i8, AR)
+
+b % i8
+i % i8
+f % i8
+i8 % i8
+f8 % i8
+i8 % i4
+f8 % i4
+i4 % i4
+f4 % i4
+AR % i8
+
+divmod(b, i8)
+divmod(i, i8)
+divmod(f, i8)
+divmod(i8, i8)
+divmod(f8, i8)
+divmod(i4, i8)
+divmod(f4, i8)
+divmod(i4, i4)
+divmod(f4, i4)
+divmod(AR, i8)
+
+# float
+
+f8 % b
+f8 % i
+f8 % f
+i8 % f4
+f4 % f4
+f8 % AR
+
+divmod(f8, b)
+divmod(f8, i)
+divmod(f8, f)
+divmod(f8, f8)
+divmod(f8, f4)
+divmod(f4, f4)
+divmod(f8, AR)
+
+b % f8
+i % f8
+f % f8
+f8 % f8
+f8 % f8
+f4 % f4
+AR % f8
+
+divmod(b, f8)
+divmod(i, f8)
+divmod(f, f8)
+divmod(f8, f8)
+divmod(f4, f8)
+divmod(f4, f4)
+divmod(AR, f8)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/modules.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/modules.py
new file mode 100644
index 00000000..f2d779e2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/modules.py
@@ -0,0 +1,42 @@
+import numpy as np
+from numpy import f2py
+
+np.char
+np.ctypeslib
+np.emath
+np.fft
+np.lib
+np.linalg
+np.ma
+np.matrixlib
+np.polynomial
+np.random
+np.rec
+np.testing
+np.version
+
+np.lib.format
+np.lib.mixins
+np.lib.scimath
+np.lib.stride_tricks
+np.ma.extras
+np.polynomial.chebyshev
+np.polynomial.hermite
+np.polynomial.hermite_e
+np.polynomial.laguerre
+np.polynomial.legendre
+np.polynomial.polynomial
+
+np.__path__
+np.__version__
+
+np.__all__
+np.char.__all__
+np.ctypeslib.__all__
+np.emath.__all__
+np.lib.__all__
+np.ma.__all__
+np.random.__all__
+np.rec.__all__
+np.testing.__all__
+f2py.__all__
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/multiarray.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/multiarray.py
new file mode 100644
index 00000000..26cedfd7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/multiarray.py
@@ -0,0 +1,76 @@
+import numpy as np
+import numpy.typing as npt
+
+AR_f8: npt.NDArray[np.float64] = np.array([1.0])
+AR_i4 = np.array([1], dtype=np.int32)
+AR_u1 = np.array([1], dtype=np.uint8)
+
+AR_LIKE_f = [1.5]
+AR_LIKE_i = [1]
+
+b_f8 = np.broadcast(AR_f8)
+b_i4_f8_f8 = np.broadcast(AR_i4, AR_f8, AR_f8)
+
+next(b_f8)
+b_f8.reset()
+b_f8.index
+b_f8.iters
+b_f8.nd
+b_f8.ndim
+b_f8.numiter
+b_f8.shape
+b_f8.size
+
+next(b_i4_f8_f8)
+b_i4_f8_f8.reset()
+b_i4_f8_f8.ndim
+b_i4_f8_f8.index
+b_i4_f8_f8.iters
+b_i4_f8_f8.nd
+b_i4_f8_f8.numiter
+b_i4_f8_f8.shape
+b_i4_f8_f8.size
+
+np.inner(AR_f8, AR_i4)
+
+np.where([True, True, False])
+np.where([True, True, False], 1, 0)
+
+np.lexsort([0, 1, 2])
+
+np.can_cast(np.dtype("i8"), int)
+np.can_cast(AR_f8, "f8")
+np.can_cast(AR_f8, np.complex128, casting="unsafe")
+
+np.min_scalar_type([1])
+np.min_scalar_type(AR_f8)
+
+np.result_type(int, AR_i4)
+np.result_type(AR_f8, AR_u1)
+np.result_type(AR_f8, np.complex128)
+
+np.dot(AR_LIKE_f, AR_i4)
+np.dot(AR_u1, 1)
+np.dot(1.5j, 1)
+np.dot(AR_u1, 1, out=AR_f8)
+
+np.vdot(AR_LIKE_f, AR_i4)
+np.vdot(AR_u1, 1)
+np.vdot(1.5j, 1)
+
+np.bincount(AR_i4)
+
+np.copyto(AR_f8, [1.6])
+
+np.putmask(AR_f8, [True], 1.5)
+
+np.packbits(AR_i4)
+np.packbits(AR_u1)
+
+np.unpackbits(AR_u1)
+
+np.shares_memory(1, 2)
+np.shares_memory(AR_f8, AR_f8, max_work=1)
+
+np.may_share_memory(1, 2)
+np.may_share_memory(AR_f8, AR_f8, max_work=1)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_conversion.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_conversion.py
new file mode 100644
index 00000000..303cf53e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_conversion.py
@@ -0,0 +1,94 @@
+import os
+import tempfile
+
+import numpy as np
+
+nd = np.array([[1, 2], [3, 4]])
+scalar_array = np.array(1)
+
+# item
+scalar_array.item()
+nd.item(1)
+nd.item(0, 1)
+nd.item((0, 1))
+
+# tolist is pretty simple
+
+# itemset
+scalar_array.itemset(3)
+nd.itemset(3, 0)
+nd.itemset((0, 0), 3)
+
+# tobytes
+nd.tobytes()
+nd.tobytes("C")
+nd.tobytes(None)
+
+# tofile
+if os.name != "nt":
+ with tempfile.NamedTemporaryFile(suffix=".txt") as tmp:
+ nd.tofile(tmp.name)
+ nd.tofile(tmp.name, "")
+ nd.tofile(tmp.name, sep="")
+
+ nd.tofile(tmp.name, "", "%s")
+ nd.tofile(tmp.name, format="%s")
+
+ nd.tofile(tmp)
+
+# dump is pretty simple
+# dumps is pretty simple
+
+# astype
+nd.astype("float")
+nd.astype(float)
+
+nd.astype(float, "K")
+nd.astype(float, order="K")
+
+nd.astype(float, "K", "unsafe")
+nd.astype(float, casting="unsafe")
+
+nd.astype(float, "K", "unsafe", True)
+nd.astype(float, subok=True)
+
+nd.astype(float, "K", "unsafe", True, True)
+nd.astype(float, copy=True)
+
+# byteswap
+nd.byteswap()
+nd.byteswap(True)
+
+# copy
+nd.copy()
+nd.copy("C")
+
+# view
+nd.view()
+nd.view(np.int64)
+nd.view(dtype=np.int64)
+nd.view(np.int64, np.matrix)
+nd.view(type=np.matrix)
+
+# getfield
+complex_array = np.array([[1 + 1j, 0], [0, 1 - 1j]], dtype=np.complex128)
+
+complex_array.getfield("float")
+complex_array.getfield(float)
+
+complex_array.getfield("float", 8)
+complex_array.getfield(float, offset=8)
+
+# setflags
+nd.setflags()
+
+nd.setflags(True)
+nd.setflags(write=True)
+
+nd.setflags(True, True)
+nd.setflags(write=True, align=True)
+
+nd.setflags(True, True, False)
+nd.setflags(write=True, align=True, uic=False)
+
+# fill is pretty simple
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py
new file mode 100644
index 00000000..6beacc5d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py
@@ -0,0 +1,185 @@
+"""
+Tests for miscellaneous (non-magic) ``np.ndarray``/``np.generic`` methods.
+
+More extensive tests are performed for the methods'
+function-based counterpart in `../from_numeric.py`.
+
+"""
+
+from __future__ import annotations
+
+import operator
+from typing import cast, Any
+
+import numpy as np
+
+class SubClass(np.ndarray): ...
+
+i4 = np.int32(1)
+A: np.ndarray[Any, np.dtype[np.int32]] = np.array([[1]], dtype=np.int32)
+B0 = np.empty((), dtype=np.int32).view(SubClass)
+B1 = np.empty((1,), dtype=np.int32).view(SubClass)
+B2 = np.empty((1, 1), dtype=np.int32).view(SubClass)
+C: np.ndarray[Any, np.dtype[np.int32]] = np.array([0, 1, 2], dtype=np.int32)
+D = np.ones(3).view(SubClass)
+
+i4.all()
+A.all()
+A.all(axis=0)
+A.all(keepdims=True)
+A.all(out=B0)
+
+i4.any()
+A.any()
+A.any(axis=0)
+A.any(keepdims=True)
+A.any(out=B0)
+
+i4.argmax()
+A.argmax()
+A.argmax(axis=0)
+A.argmax(out=B0)
+
+i4.argmin()
+A.argmin()
+A.argmin(axis=0)
+A.argmin(out=B0)
+
+i4.argsort()
+A.argsort()
+
+i4.choose([()])
+_choices = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype=np.int32)
+C.choose(_choices)
+C.choose(_choices, out=D)
+
+i4.clip(1)
+A.clip(1)
+A.clip(None, 1)
+A.clip(1, out=B2)
+A.clip(None, 1, out=B2)
+
+i4.compress([1])
+A.compress([1])
+A.compress([1], out=B1)
+
+i4.conj()
+A.conj()
+B0.conj()
+
+i4.conjugate()
+A.conjugate()
+B0.conjugate()
+
+i4.cumprod()
+A.cumprod()
+A.cumprod(out=B1)
+
+i4.cumsum()
+A.cumsum()
+A.cumsum(out=B1)
+
+i4.max()
+A.max()
+A.max(axis=0)
+A.max(keepdims=True)
+A.max(out=B0)
+
+i4.mean()
+A.mean()
+A.mean(axis=0)
+A.mean(keepdims=True)
+A.mean(out=B0)
+
+i4.min()
+A.min()
+A.min(axis=0)
+A.min(keepdims=True)
+A.min(out=B0)
+
+i4.newbyteorder()
+A.newbyteorder()
+B0.newbyteorder('|')
+
+i4.prod()
+A.prod()
+A.prod(axis=0)
+A.prod(keepdims=True)
+A.prod(out=B0)
+
+i4.ptp()
+A.ptp()
+A.ptp(axis=0)
+A.ptp(keepdims=True)
+A.astype(int).ptp(out=B0)
+
+i4.round()
+A.round()
+A.round(out=B2)
+
+i4.repeat(1)
+A.repeat(1)
+B0.repeat(1)
+
+i4.std()
+A.std()
+A.std(axis=0)
+A.std(keepdims=True)
+A.std(out=B0.astype(np.float64))
+
+i4.sum()
+A.sum()
+A.sum(axis=0)
+A.sum(keepdims=True)
+A.sum(out=B0)
+
+i4.take(0)
+A.take(0)
+A.take([0])
+A.take(0, out=B0)
+A.take([0], out=B1)
+
+i4.var()
+A.var()
+A.var(axis=0)
+A.var(keepdims=True)
+A.var(out=B0)
+
+A.argpartition([0])
+
+A.diagonal()
+
+A.dot(1)
+A.dot(1, out=B2)
+
+A.nonzero()
+
+C.searchsorted(1)
+
+A.trace()
+A.trace(out=B0)
+
+void = cast(np.void, np.array(1, dtype=[("f", np.float64)]).take(0))
+void.setfield(10, np.float64)
+
+A.item(0)
+C.item(0)
+
+A.ravel()
+C.ravel()
+
+A.flatten()
+C.flatten()
+
+A.reshape(1)
+C.reshape(3)
+
+int(np.array(1.0, dtype=np.float64))
+int(np.array("1", dtype=np.str_))
+
+float(np.array(1.0, dtype=np.float64))
+float(np.array("1", dtype=np.str_))
+
+complex(np.array(1.0, dtype=np.float64))
+
+operator.index(np.array(1, dtype=np.int64))
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_shape_manipulation.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_shape_manipulation.py
new file mode 100644
index 00000000..0ca3dff3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_shape_manipulation.py
@@ -0,0 +1,47 @@
+import numpy as np
+
+nd1 = np.array([[1, 2], [3, 4]])
+
+# reshape
+nd1.reshape(4)
+nd1.reshape(2, 2)
+nd1.reshape((2, 2))
+
+nd1.reshape((2, 2), order="C")
+nd1.reshape(4, order="C")
+
+# resize
+nd1.resize()
+nd1.resize(4)
+nd1.resize(2, 2)
+nd1.resize((2, 2))
+
+nd1.resize((2, 2), refcheck=True)
+nd1.resize(4, refcheck=True)
+
+nd2 = np.array([[1, 2], [3, 4]])
+
+# transpose
+nd2.transpose()
+nd2.transpose(1, 0)
+nd2.transpose((1, 0))
+
+# swapaxes
+nd2.swapaxes(0, 1)
+
+# flatten
+nd2.flatten()
+nd2.flatten("C")
+
+# ravel
+nd2.ravel()
+nd2.ravel("C")
+
+# squeeze
+nd2.squeeze()
+
+nd3 = np.array([[1, 2]])
+nd3.squeeze(0)
+
+nd4 = np.array([[[1, 2]]])
+nd4.squeeze((0, 1))
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numeric.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numeric.py
new file mode 100644
index 00000000..c4a73c1e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numeric.py
@@ -0,0 +1,90 @@
+"""
+Tests for :mod:`numpy.core.numeric`.
+
+Does not include tests which fall under ``array_constructors``.
+
+"""
+
+from __future__ import annotations
+
+import numpy as np
+
+class SubClass(np.ndarray):
+ ...
+
+i8 = np.int64(1)
+
+A = np.arange(27).reshape(3, 3, 3)
+B: list[list[list[int]]] = A.tolist()
+C = np.empty((27, 27)).view(SubClass)
+
+np.count_nonzero(i8)
+np.count_nonzero(A)
+np.count_nonzero(B)
+np.count_nonzero(A, keepdims=True)
+np.count_nonzero(A, axis=0)
+
+np.isfortran(i8)
+np.isfortran(A)
+
+np.argwhere(i8)
+np.argwhere(A)
+
+np.flatnonzero(i8)
+np.flatnonzero(A)
+
+np.correlate(B[0][0], A.ravel(), mode="valid")
+np.correlate(A.ravel(), A.ravel(), mode="same")
+
+np.convolve(B[0][0], A.ravel(), mode="valid")
+np.convolve(A.ravel(), A.ravel(), mode="same")
+
+np.outer(i8, A)
+np.outer(B, A)
+np.outer(A, A)
+np.outer(A, A, out=C)
+
+np.tensordot(B, A)
+np.tensordot(A, A)
+np.tensordot(A, A, axes=0)
+np.tensordot(A, A, axes=(0, 1))
+
+np.isscalar(i8)
+np.isscalar(A)
+np.isscalar(B)
+
+np.roll(A, 1)
+np.roll(A, (1, 2))
+np.roll(B, 1)
+
+np.rollaxis(A, 0, 1)
+
+np.moveaxis(A, 0, 1)
+np.moveaxis(A, (0, 1), (1, 2))
+
+np.cross(B, A)
+np.cross(A, A)
+
+np.indices([0, 1, 2])
+np.indices([0, 1, 2], sparse=False)
+np.indices([0, 1, 2], sparse=True)
+
+np.binary_repr(1)
+
+np.base_repr(1)
+
+np.allclose(i8, A)
+np.allclose(B, A)
+np.allclose(A, A)
+
+np.isclose(i8, A)
+np.isclose(B, A)
+np.isclose(A, A)
+
+np.array_equal(i8, A)
+np.array_equal(B, A)
+np.array_equal(A, A)
+
+np.array_equiv(i8, A)
+np.array_equiv(B, A)
+np.array_equiv(A, A)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numerictypes.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numerictypes.py
new file mode 100644
index 00000000..63b6ad0e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numerictypes.py
@@ -0,0 +1,42 @@
+import numpy as np
+
+np.maximum_sctype("S8")
+np.maximum_sctype(object)
+
+np.issctype(object)
+np.issctype("S8")
+
+np.obj2sctype(list)
+np.obj2sctype(list, default=None)
+np.obj2sctype(list, default=np.bytes_)
+
+np.issubclass_(np.int32, int)
+np.issubclass_(np.float64, float)
+np.issubclass_(np.float64, (int, float))
+
+np.issubsctype("int64", int)
+np.issubsctype(np.array([1]), np.array([1]))
+
+np.issubdtype("S1", np.bytes_)
+np.issubdtype(np.float64, np.float32)
+
+np.sctype2char("S1")
+np.sctype2char(list)
+
+np.cast[int]
+np.cast["i8"]
+np.cast[np.int64]
+
+np.nbytes[int]
+np.nbytes["i8"]
+np.nbytes[np.int64]
+
+np.ScalarType
+np.ScalarType[0]
+np.ScalarType[3]
+np.ScalarType[8]
+np.ScalarType[10]
+
+np.typecodes["Character"]
+np.typecodes["Complex"]
+np.typecodes["All"]
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/random.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/random.py
new file mode 100644
index 00000000..6a4d99f1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/random.py
@@ -0,0 +1,1499 @@
+from __future__ import annotations
+
+from typing import Any
+import numpy as np
+
+SEED_NONE = None
+SEED_INT = 4579435749574957634658964293569
+SEED_ARR: np.ndarray[Any, np.dtype[np.int64]] = np.array([1, 2, 3, 4], dtype=np.int64)
+SEED_ARRLIKE: list[int] = [1, 2, 3, 4]
+SEED_SEED_SEQ: np.random.SeedSequence = np.random.SeedSequence(0)
+SEED_MT19937: np.random.MT19937 = np.random.MT19937(0)
+SEED_PCG64: np.random.PCG64 = np.random.PCG64(0)
+SEED_PHILOX: np.random.Philox = np.random.Philox(0)
+SEED_SFC64: np.random.SFC64 = np.random.SFC64(0)
+
+# default rng
+np.random.default_rng()
+np.random.default_rng(SEED_NONE)
+np.random.default_rng(SEED_INT)
+np.random.default_rng(SEED_ARR)
+np.random.default_rng(SEED_ARRLIKE)
+np.random.default_rng(SEED_SEED_SEQ)
+np.random.default_rng(SEED_MT19937)
+np.random.default_rng(SEED_PCG64)
+np.random.default_rng(SEED_PHILOX)
+np.random.default_rng(SEED_SFC64)
+
+# Seed Sequence
+np.random.SeedSequence(SEED_NONE)
+np.random.SeedSequence(SEED_INT)
+np.random.SeedSequence(SEED_ARR)
+np.random.SeedSequence(SEED_ARRLIKE)
+
+# Bit Generators
+np.random.MT19937(SEED_NONE)
+np.random.MT19937(SEED_INT)
+np.random.MT19937(SEED_ARR)
+np.random.MT19937(SEED_ARRLIKE)
+np.random.MT19937(SEED_SEED_SEQ)
+
+np.random.PCG64(SEED_NONE)
+np.random.PCG64(SEED_INT)
+np.random.PCG64(SEED_ARR)
+np.random.PCG64(SEED_ARRLIKE)
+np.random.PCG64(SEED_SEED_SEQ)
+
+np.random.Philox(SEED_NONE)
+np.random.Philox(SEED_INT)
+np.random.Philox(SEED_ARR)
+np.random.Philox(SEED_ARRLIKE)
+np.random.Philox(SEED_SEED_SEQ)
+
+np.random.SFC64(SEED_NONE)
+np.random.SFC64(SEED_INT)
+np.random.SFC64(SEED_ARR)
+np.random.SFC64(SEED_ARRLIKE)
+np.random.SFC64(SEED_SEED_SEQ)
+
+seed_seq: np.random.bit_generator.SeedSequence = np.random.SeedSequence(SEED_NONE)
+seed_seq.spawn(10)
+seed_seq.generate_state(3)
+seed_seq.generate_state(3, "u4")
+seed_seq.generate_state(3, "uint32")
+seed_seq.generate_state(3, "u8")
+seed_seq.generate_state(3, "uint64")
+seed_seq.generate_state(3, np.uint32)
+seed_seq.generate_state(3, np.uint64)
+
+
+def_gen: np.random.Generator = np.random.default_rng()
+
+D_arr_0p1: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.1])
+D_arr_0p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.5])
+D_arr_0p9: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.9])
+D_arr_1p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.5])
+I_arr_10: np.ndarray[Any, np.dtype[np.int_]] = np.array([10], dtype=np.int_)
+I_arr_20: np.ndarray[Any, np.dtype[np.int_]] = np.array([20], dtype=np.int_)
+D_arr_like_0p1: list[float] = [0.1]
+D_arr_like_0p5: list[float] = [0.5]
+D_arr_like_0p9: list[float] = [0.9]
+D_arr_like_1p5: list[float] = [1.5]
+I_arr_like_10: list[int] = [10]
+I_arr_like_20: list[int] = [20]
+D_2D_like: list[list[float]] = [[1, 2], [2, 3], [3, 4], [4, 5.1]]
+D_2D: np.ndarray[Any, np.dtype[np.float64]] = np.array(D_2D_like)
+
+S_out: np.ndarray[Any, np.dtype[np.float32]] = np.empty(1, dtype=np.float32)
+D_out: np.ndarray[Any, np.dtype[np.float64]] = np.empty(1)
+
+def_gen.standard_normal()
+def_gen.standard_normal(dtype=np.float32)
+def_gen.standard_normal(dtype="float32")
+def_gen.standard_normal(dtype="double")
+def_gen.standard_normal(dtype=np.float64)
+def_gen.standard_normal(size=None)
+def_gen.standard_normal(size=1)
+def_gen.standard_normal(size=1, dtype=np.float32)
+def_gen.standard_normal(size=1, dtype="f4")
+def_gen.standard_normal(size=1, dtype="float32", out=S_out)
+def_gen.standard_normal(dtype=np.float32, out=S_out)
+def_gen.standard_normal(size=1, dtype=np.float64)
+def_gen.standard_normal(size=1, dtype="float64")
+def_gen.standard_normal(size=1, dtype="f8")
+def_gen.standard_normal(out=D_out)
+def_gen.standard_normal(size=1, dtype="float64")
+def_gen.standard_normal(size=1, dtype="float64", out=D_out)
+
+def_gen.random()
+def_gen.random(dtype=np.float32)
+def_gen.random(dtype="float32")
+def_gen.random(dtype="double")
+def_gen.random(dtype=np.float64)
+def_gen.random(size=None)
+def_gen.random(size=1)
+def_gen.random(size=1, dtype=np.float32)
+def_gen.random(size=1, dtype="f4")
+def_gen.random(size=1, dtype="float32", out=S_out)
+def_gen.random(dtype=np.float32, out=S_out)
+def_gen.random(size=1, dtype=np.float64)
+def_gen.random(size=1, dtype="float64")
+def_gen.random(size=1, dtype="f8")
+def_gen.random(out=D_out)
+def_gen.random(size=1, dtype="float64")
+def_gen.random(size=1, dtype="float64", out=D_out)
+
+def_gen.standard_cauchy()
+def_gen.standard_cauchy(size=None)
+def_gen.standard_cauchy(size=1)
+
+def_gen.standard_exponential()
+def_gen.standard_exponential(method="inv")
+def_gen.standard_exponential(dtype=np.float32)
+def_gen.standard_exponential(dtype="float32")
+def_gen.standard_exponential(dtype="double")
+def_gen.standard_exponential(dtype=np.float64)
+def_gen.standard_exponential(size=None)
+def_gen.standard_exponential(size=None, method="inv")
+def_gen.standard_exponential(size=1, method="inv")
+def_gen.standard_exponential(size=1, dtype=np.float32)
+def_gen.standard_exponential(size=1, dtype="f4", method="inv")
+def_gen.standard_exponential(size=1, dtype="float32", out=S_out)
+def_gen.standard_exponential(dtype=np.float32, out=S_out)
+def_gen.standard_exponential(size=1, dtype=np.float64, method="inv")
+def_gen.standard_exponential(size=1, dtype="float64")
+def_gen.standard_exponential(size=1, dtype="f8")
+def_gen.standard_exponential(out=D_out)
+def_gen.standard_exponential(size=1, dtype="float64")
+def_gen.standard_exponential(size=1, dtype="float64", out=D_out)
+
+def_gen.zipf(1.5)
+def_gen.zipf(1.5, size=None)
+def_gen.zipf(1.5, size=1)
+def_gen.zipf(D_arr_1p5)
+def_gen.zipf(D_arr_1p5, size=1)
+def_gen.zipf(D_arr_like_1p5)
+def_gen.zipf(D_arr_like_1p5, size=1)
+
+def_gen.weibull(0.5)
+def_gen.weibull(0.5, size=None)
+def_gen.weibull(0.5, size=1)
+def_gen.weibull(D_arr_0p5)
+def_gen.weibull(D_arr_0p5, size=1)
+def_gen.weibull(D_arr_like_0p5)
+def_gen.weibull(D_arr_like_0p5, size=1)
+
+def_gen.standard_t(0.5)
+def_gen.standard_t(0.5, size=None)
+def_gen.standard_t(0.5, size=1)
+def_gen.standard_t(D_arr_0p5)
+def_gen.standard_t(D_arr_0p5, size=1)
+def_gen.standard_t(D_arr_like_0p5)
+def_gen.standard_t(D_arr_like_0p5, size=1)
+
+def_gen.poisson(0.5)
+def_gen.poisson(0.5, size=None)
+def_gen.poisson(0.5, size=1)
+def_gen.poisson(D_arr_0p5)
+def_gen.poisson(D_arr_0p5, size=1)
+def_gen.poisson(D_arr_like_0p5)
+def_gen.poisson(D_arr_like_0p5, size=1)
+
+def_gen.power(0.5)
+def_gen.power(0.5, size=None)
+def_gen.power(0.5, size=1)
+def_gen.power(D_arr_0p5)
+def_gen.power(D_arr_0p5, size=1)
+def_gen.power(D_arr_like_0p5)
+def_gen.power(D_arr_like_0p5, size=1)
+
+def_gen.pareto(0.5)
+def_gen.pareto(0.5, size=None)
+def_gen.pareto(0.5, size=1)
+def_gen.pareto(D_arr_0p5)
+def_gen.pareto(D_arr_0p5, size=1)
+def_gen.pareto(D_arr_like_0p5)
+def_gen.pareto(D_arr_like_0p5, size=1)
+
+def_gen.chisquare(0.5)
+def_gen.chisquare(0.5, size=None)
+def_gen.chisquare(0.5, size=1)
+def_gen.chisquare(D_arr_0p5)
+def_gen.chisquare(D_arr_0p5, size=1)
+def_gen.chisquare(D_arr_like_0p5)
+def_gen.chisquare(D_arr_like_0p5, size=1)
+
+def_gen.exponential(0.5)
+def_gen.exponential(0.5, size=None)
+def_gen.exponential(0.5, size=1)
+def_gen.exponential(D_arr_0p5)
+def_gen.exponential(D_arr_0p5, size=1)
+def_gen.exponential(D_arr_like_0p5)
+def_gen.exponential(D_arr_like_0p5, size=1)
+
+def_gen.geometric(0.5)
+def_gen.geometric(0.5, size=None)
+def_gen.geometric(0.5, size=1)
+def_gen.geometric(D_arr_0p5)
+def_gen.geometric(D_arr_0p5, size=1)
+def_gen.geometric(D_arr_like_0p5)
+def_gen.geometric(D_arr_like_0p5, size=1)
+
+def_gen.logseries(0.5)
+def_gen.logseries(0.5, size=None)
+def_gen.logseries(0.5, size=1)
+def_gen.logseries(D_arr_0p5)
+def_gen.logseries(D_arr_0p5, size=1)
+def_gen.logseries(D_arr_like_0p5)
+def_gen.logseries(D_arr_like_0p5, size=1)
+
+def_gen.rayleigh(0.5)
+def_gen.rayleigh(0.5, size=None)
+def_gen.rayleigh(0.5, size=1)
+def_gen.rayleigh(D_arr_0p5)
+def_gen.rayleigh(D_arr_0p5, size=1)
+def_gen.rayleigh(D_arr_like_0p5)
+def_gen.rayleigh(D_arr_like_0p5, size=1)
+
+def_gen.standard_gamma(0.5)
+def_gen.standard_gamma(0.5, size=None)
+def_gen.standard_gamma(0.5, dtype="float32")
+def_gen.standard_gamma(0.5, size=None, dtype="float32")
+def_gen.standard_gamma(0.5, size=1)
+def_gen.standard_gamma(D_arr_0p5)
+def_gen.standard_gamma(D_arr_0p5, dtype="f4")
+def_gen.standard_gamma(0.5, size=1, dtype="float32", out=S_out)
+def_gen.standard_gamma(D_arr_0p5, dtype=np.float32, out=S_out)
+def_gen.standard_gamma(D_arr_0p5, size=1)
+def_gen.standard_gamma(D_arr_like_0p5)
+def_gen.standard_gamma(D_arr_like_0p5, size=1)
+def_gen.standard_gamma(0.5, out=D_out)
+def_gen.standard_gamma(D_arr_like_0p5, out=D_out)
+def_gen.standard_gamma(D_arr_like_0p5, size=1)
+def_gen.standard_gamma(D_arr_like_0p5, size=1, out=D_out, dtype=np.float64)
+
+def_gen.vonmises(0.5, 0.5)
+def_gen.vonmises(0.5, 0.5, size=None)
+def_gen.vonmises(0.5, 0.5, size=1)
+def_gen.vonmises(D_arr_0p5, 0.5)
+def_gen.vonmises(0.5, D_arr_0p5)
+def_gen.vonmises(D_arr_0p5, 0.5, size=1)
+def_gen.vonmises(0.5, D_arr_0p5, size=1)
+def_gen.vonmises(D_arr_like_0p5, 0.5)
+def_gen.vonmises(0.5, D_arr_like_0p5)
+def_gen.vonmises(D_arr_0p5, D_arr_0p5)
+def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.vonmises(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.wald(0.5, 0.5)
+def_gen.wald(0.5, 0.5, size=None)
+def_gen.wald(0.5, 0.5, size=1)
+def_gen.wald(D_arr_0p5, 0.5)
+def_gen.wald(0.5, D_arr_0p5)
+def_gen.wald(D_arr_0p5, 0.5, size=1)
+def_gen.wald(0.5, D_arr_0p5, size=1)
+def_gen.wald(D_arr_like_0p5, 0.5)
+def_gen.wald(0.5, D_arr_like_0p5)
+def_gen.wald(D_arr_0p5, D_arr_0p5)
+def_gen.wald(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.wald(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.wald(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.uniform(0.5, 0.5)
+def_gen.uniform(0.5, 0.5, size=None)
+def_gen.uniform(0.5, 0.5, size=1)
+def_gen.uniform(D_arr_0p5, 0.5)
+def_gen.uniform(0.5, D_arr_0p5)
+def_gen.uniform(D_arr_0p5, 0.5, size=1)
+def_gen.uniform(0.5, D_arr_0p5, size=1)
+def_gen.uniform(D_arr_like_0p5, 0.5)
+def_gen.uniform(0.5, D_arr_like_0p5)
+def_gen.uniform(D_arr_0p5, D_arr_0p5)
+def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.uniform(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.beta(0.5, 0.5)
+def_gen.beta(0.5, 0.5, size=None)
+def_gen.beta(0.5, 0.5, size=1)
+def_gen.beta(D_arr_0p5, 0.5)
+def_gen.beta(0.5, D_arr_0p5)
+def_gen.beta(D_arr_0p5, 0.5, size=1)
+def_gen.beta(0.5, D_arr_0p5, size=1)
+def_gen.beta(D_arr_like_0p5, 0.5)
+def_gen.beta(0.5, D_arr_like_0p5)
+def_gen.beta(D_arr_0p5, D_arr_0p5)
+def_gen.beta(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.beta(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.beta(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.f(0.5, 0.5)
+def_gen.f(0.5, 0.5, size=None)
+def_gen.f(0.5, 0.5, size=1)
+def_gen.f(D_arr_0p5, 0.5)
+def_gen.f(0.5, D_arr_0p5)
+def_gen.f(D_arr_0p5, 0.5, size=1)
+def_gen.f(0.5, D_arr_0p5, size=1)
+def_gen.f(D_arr_like_0p5, 0.5)
+def_gen.f(0.5, D_arr_like_0p5)
+def_gen.f(D_arr_0p5, D_arr_0p5)
+def_gen.f(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.f(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.f(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.gamma(0.5, 0.5)
+def_gen.gamma(0.5, 0.5, size=None)
+def_gen.gamma(0.5, 0.5, size=1)
+def_gen.gamma(D_arr_0p5, 0.5)
+def_gen.gamma(0.5, D_arr_0p5)
+def_gen.gamma(D_arr_0p5, 0.5, size=1)
+def_gen.gamma(0.5, D_arr_0p5, size=1)
+def_gen.gamma(D_arr_like_0p5, 0.5)
+def_gen.gamma(0.5, D_arr_like_0p5)
+def_gen.gamma(D_arr_0p5, D_arr_0p5)
+def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.gamma(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.gumbel(0.5, 0.5)
+def_gen.gumbel(0.5, 0.5, size=None)
+def_gen.gumbel(0.5, 0.5, size=1)
+def_gen.gumbel(D_arr_0p5, 0.5)
+def_gen.gumbel(0.5, D_arr_0p5)
+def_gen.gumbel(D_arr_0p5, 0.5, size=1)
+def_gen.gumbel(0.5, D_arr_0p5, size=1)
+def_gen.gumbel(D_arr_like_0p5, 0.5)
+def_gen.gumbel(0.5, D_arr_like_0p5)
+def_gen.gumbel(D_arr_0p5, D_arr_0p5)
+def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.gumbel(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.laplace(0.5, 0.5)
+def_gen.laplace(0.5, 0.5, size=None)
+def_gen.laplace(0.5, 0.5, size=1)
+def_gen.laplace(D_arr_0p5, 0.5)
+def_gen.laplace(0.5, D_arr_0p5)
+def_gen.laplace(D_arr_0p5, 0.5, size=1)
+def_gen.laplace(0.5, D_arr_0p5, size=1)
+def_gen.laplace(D_arr_like_0p5, 0.5)
+def_gen.laplace(0.5, D_arr_like_0p5)
+def_gen.laplace(D_arr_0p5, D_arr_0p5)
+def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.laplace(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.logistic(0.5, 0.5)
+def_gen.logistic(0.5, 0.5, size=None)
+def_gen.logistic(0.5, 0.5, size=1)
+def_gen.logistic(D_arr_0p5, 0.5)
+def_gen.logistic(0.5, D_arr_0p5)
+def_gen.logistic(D_arr_0p5, 0.5, size=1)
+def_gen.logistic(0.5, D_arr_0p5, size=1)
+def_gen.logistic(D_arr_like_0p5, 0.5)
+def_gen.logistic(0.5, D_arr_like_0p5)
+def_gen.logistic(D_arr_0p5, D_arr_0p5)
+def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.logistic(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.lognormal(0.5, 0.5)
+def_gen.lognormal(0.5, 0.5, size=None)
+def_gen.lognormal(0.5, 0.5, size=1)
+def_gen.lognormal(D_arr_0p5, 0.5)
+def_gen.lognormal(0.5, D_arr_0p5)
+def_gen.lognormal(D_arr_0p5, 0.5, size=1)
+def_gen.lognormal(0.5, D_arr_0p5, size=1)
+def_gen.lognormal(D_arr_like_0p5, 0.5)
+def_gen.lognormal(0.5, D_arr_like_0p5)
+def_gen.lognormal(D_arr_0p5, D_arr_0p5)
+def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.lognormal(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.noncentral_chisquare(0.5, 0.5)
+def_gen.noncentral_chisquare(0.5, 0.5, size=None)
+def_gen.noncentral_chisquare(0.5, 0.5, size=1)
+def_gen.noncentral_chisquare(D_arr_0p5, 0.5)
+def_gen.noncentral_chisquare(0.5, D_arr_0p5)
+def_gen.noncentral_chisquare(D_arr_0p5, 0.5, size=1)
+def_gen.noncentral_chisquare(0.5, D_arr_0p5, size=1)
+def_gen.noncentral_chisquare(D_arr_like_0p5, 0.5)
+def_gen.noncentral_chisquare(0.5, D_arr_like_0p5)
+def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5)
+def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.normal(0.5, 0.5)
+def_gen.normal(0.5, 0.5, size=None)
+def_gen.normal(0.5, 0.5, size=1)
+def_gen.normal(D_arr_0p5, 0.5)
+def_gen.normal(0.5, D_arr_0p5)
+def_gen.normal(D_arr_0p5, 0.5, size=1)
+def_gen.normal(0.5, D_arr_0p5, size=1)
+def_gen.normal(D_arr_like_0p5, 0.5)
+def_gen.normal(0.5, D_arr_like_0p5)
+def_gen.normal(D_arr_0p5, D_arr_0p5)
+def_gen.normal(D_arr_like_0p5, D_arr_like_0p5)
+def_gen.normal(D_arr_0p5, D_arr_0p5, size=1)
+def_gen.normal(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+def_gen.triangular(0.1, 0.5, 0.9)
+def_gen.triangular(0.1, 0.5, 0.9, size=None)
+def_gen.triangular(0.1, 0.5, 0.9, size=1)
+def_gen.triangular(D_arr_0p1, 0.5, 0.9)
+def_gen.triangular(0.1, D_arr_0p5, 0.9)
+def_gen.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)
+def_gen.triangular(0.1, D_arr_0p5, 0.9, size=1)
+def_gen.triangular(D_arr_like_0p1, 0.5, D_arr_0p9)
+def_gen.triangular(0.5, D_arr_like_0p5, 0.9)
+def_gen.triangular(D_arr_0p1, D_arr_0p5, 0.9)
+def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9)
+def_gen.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)
+def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)
+
+def_gen.noncentral_f(0.1, 0.5, 0.9)
+def_gen.noncentral_f(0.1, 0.5, 0.9, size=None)
+def_gen.noncentral_f(0.1, 0.5, 0.9, size=1)
+def_gen.noncentral_f(D_arr_0p1, 0.5, 0.9)
+def_gen.noncentral_f(0.1, D_arr_0p5, 0.9)
+def_gen.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)
+def_gen.noncentral_f(0.1, D_arr_0p5, 0.9, size=1)
+def_gen.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9)
+def_gen.noncentral_f(0.5, D_arr_like_0p5, 0.9)
+def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9)
+def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9)
+def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)
+def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)
+
+def_gen.binomial(10, 0.5)
+def_gen.binomial(10, 0.5, size=None)
+def_gen.binomial(10, 0.5, size=1)
+def_gen.binomial(I_arr_10, 0.5)
+def_gen.binomial(10, D_arr_0p5)
+def_gen.binomial(I_arr_10, 0.5, size=1)
+def_gen.binomial(10, D_arr_0p5, size=1)
+def_gen.binomial(I_arr_like_10, 0.5)
+def_gen.binomial(10, D_arr_like_0p5)
+def_gen.binomial(I_arr_10, D_arr_0p5)
+def_gen.binomial(I_arr_like_10, D_arr_like_0p5)
+def_gen.binomial(I_arr_10, D_arr_0p5, size=1)
+def_gen.binomial(I_arr_like_10, D_arr_like_0p5, size=1)
+
+def_gen.negative_binomial(10, 0.5)
+def_gen.negative_binomial(10, 0.5, size=None)
+def_gen.negative_binomial(10, 0.5, size=1)
+def_gen.negative_binomial(I_arr_10, 0.5)
+def_gen.negative_binomial(10, D_arr_0p5)
+def_gen.negative_binomial(I_arr_10, 0.5, size=1)
+def_gen.negative_binomial(10, D_arr_0p5, size=1)
+def_gen.negative_binomial(I_arr_like_10, 0.5)
+def_gen.negative_binomial(10, D_arr_like_0p5)
+def_gen.negative_binomial(I_arr_10, D_arr_0p5)
+def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5)
+def_gen.negative_binomial(I_arr_10, D_arr_0p5, size=1)
+def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1)
+
+def_gen.hypergeometric(20, 20, 10)
+def_gen.hypergeometric(20, 20, 10, size=None)
+def_gen.hypergeometric(20, 20, 10, size=1)
+def_gen.hypergeometric(I_arr_20, 20, 10)
+def_gen.hypergeometric(20, I_arr_20, 10)
+def_gen.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1)
+def_gen.hypergeometric(20, I_arr_20, 10, size=1)
+def_gen.hypergeometric(I_arr_like_20, 20, I_arr_10)
+def_gen.hypergeometric(20, I_arr_like_20, 10)
+def_gen.hypergeometric(I_arr_20, I_arr_20, 10)
+def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, 10)
+def_gen.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1)
+def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1)
+
+I_int64_100: np.ndarray[Any, np.dtype[np.int64]] = np.array([100], dtype=np.int64)
+
+def_gen.integers(0, 100)
+def_gen.integers(100)
+def_gen.integers([100])
+def_gen.integers(0, [100])
+
+I_bool_low: np.ndarray[Any, np.dtype[np.bool_]] = np.array([0], dtype=np.bool_)
+I_bool_low_like: list[int] = [0]
+I_bool_high_open: np.ndarray[Any, np.dtype[np.bool_]] = np.array([1], dtype=np.bool_)
+I_bool_high_closed: np.ndarray[Any, np.dtype[np.bool_]] = np.array([1], dtype=np.bool_)
+
+def_gen.integers(2, dtype=bool)
+def_gen.integers(0, 2, dtype=bool)
+def_gen.integers(1, dtype=bool, endpoint=True)
+def_gen.integers(0, 1, dtype=bool, endpoint=True)
+def_gen.integers(I_bool_low_like, 1, dtype=bool, endpoint=True)
+def_gen.integers(I_bool_high_open, dtype=bool)
+def_gen.integers(I_bool_low, I_bool_high_open, dtype=bool)
+def_gen.integers(0, I_bool_high_open, dtype=bool)
+def_gen.integers(I_bool_high_closed, dtype=bool, endpoint=True)
+def_gen.integers(I_bool_low, I_bool_high_closed, dtype=bool, endpoint=True)
+def_gen.integers(0, I_bool_high_closed, dtype=bool, endpoint=True)
+
+def_gen.integers(2, dtype=np.bool_)
+def_gen.integers(0, 2, dtype=np.bool_)
+def_gen.integers(1, dtype=np.bool_, endpoint=True)
+def_gen.integers(0, 1, dtype=np.bool_, endpoint=True)
+def_gen.integers(I_bool_low_like, 1, dtype=np.bool_, endpoint=True)
+def_gen.integers(I_bool_high_open, dtype=np.bool_)
+def_gen.integers(I_bool_low, I_bool_high_open, dtype=np.bool_)
+def_gen.integers(0, I_bool_high_open, dtype=np.bool_)
+def_gen.integers(I_bool_high_closed, dtype=np.bool_, endpoint=True)
+def_gen.integers(I_bool_low, I_bool_high_closed, dtype=np.bool_, endpoint=True)
+def_gen.integers(0, I_bool_high_closed, dtype=np.bool_, endpoint=True)
+
+I_u1_low: np.ndarray[Any, np.dtype[np.uint8]] = np.array([0], dtype=np.uint8)
+I_u1_low_like: list[int] = [0]
+I_u1_high_open: np.ndarray[Any, np.dtype[np.uint8]] = np.array([255], dtype=np.uint8)
+I_u1_high_closed: np.ndarray[Any, np.dtype[np.uint8]] = np.array([255], dtype=np.uint8)
+
+def_gen.integers(256, dtype="u1")
+def_gen.integers(0, 256, dtype="u1")
+def_gen.integers(255, dtype="u1", endpoint=True)
+def_gen.integers(0, 255, dtype="u1", endpoint=True)
+def_gen.integers(I_u1_low_like, 255, dtype="u1", endpoint=True)
+def_gen.integers(I_u1_high_open, dtype="u1")
+def_gen.integers(I_u1_low, I_u1_high_open, dtype="u1")
+def_gen.integers(0, I_u1_high_open, dtype="u1")
+def_gen.integers(I_u1_high_closed, dtype="u1", endpoint=True)
+def_gen.integers(I_u1_low, I_u1_high_closed, dtype="u1", endpoint=True)
+def_gen.integers(0, I_u1_high_closed, dtype="u1", endpoint=True)
+
+def_gen.integers(256, dtype="uint8")
+def_gen.integers(0, 256, dtype="uint8")
+def_gen.integers(255, dtype="uint8", endpoint=True)
+def_gen.integers(0, 255, dtype="uint8", endpoint=True)
+def_gen.integers(I_u1_low_like, 255, dtype="uint8", endpoint=True)
+def_gen.integers(I_u1_high_open, dtype="uint8")
+def_gen.integers(I_u1_low, I_u1_high_open, dtype="uint8")
+def_gen.integers(0, I_u1_high_open, dtype="uint8")
+def_gen.integers(I_u1_high_closed, dtype="uint8", endpoint=True)
+def_gen.integers(I_u1_low, I_u1_high_closed, dtype="uint8", endpoint=True)
+def_gen.integers(0, I_u1_high_closed, dtype="uint8", endpoint=True)
+
+def_gen.integers(256, dtype=np.uint8)
+def_gen.integers(0, 256, dtype=np.uint8)
+def_gen.integers(255, dtype=np.uint8, endpoint=True)
+def_gen.integers(0, 255, dtype=np.uint8, endpoint=True)
+def_gen.integers(I_u1_low_like, 255, dtype=np.uint8, endpoint=True)
+def_gen.integers(I_u1_high_open, dtype=np.uint8)
+def_gen.integers(I_u1_low, I_u1_high_open, dtype=np.uint8)
+def_gen.integers(0, I_u1_high_open, dtype=np.uint8)
+def_gen.integers(I_u1_high_closed, dtype=np.uint8, endpoint=True)
+def_gen.integers(I_u1_low, I_u1_high_closed, dtype=np.uint8, endpoint=True)
+def_gen.integers(0, I_u1_high_closed, dtype=np.uint8, endpoint=True)
+
+I_u2_low: np.ndarray[Any, np.dtype[np.uint16]] = np.array([0], dtype=np.uint16)
+I_u2_low_like: list[int] = [0]
+I_u2_high_open: np.ndarray[Any, np.dtype[np.uint16]] = np.array([65535], dtype=np.uint16)
+I_u2_high_closed: np.ndarray[Any, np.dtype[np.uint16]] = np.array([65535], dtype=np.uint16)
+
+def_gen.integers(65536, dtype="u2")
+def_gen.integers(0, 65536, dtype="u2")
+def_gen.integers(65535, dtype="u2", endpoint=True)
+def_gen.integers(0, 65535, dtype="u2", endpoint=True)
+def_gen.integers(I_u2_low_like, 65535, dtype="u2", endpoint=True)
+def_gen.integers(I_u2_high_open, dtype="u2")
+def_gen.integers(I_u2_low, I_u2_high_open, dtype="u2")
+def_gen.integers(0, I_u2_high_open, dtype="u2")
+def_gen.integers(I_u2_high_closed, dtype="u2", endpoint=True)
+def_gen.integers(I_u2_low, I_u2_high_closed, dtype="u2", endpoint=True)
+def_gen.integers(0, I_u2_high_closed, dtype="u2", endpoint=True)
+
+def_gen.integers(65536, dtype="uint16")
+def_gen.integers(0, 65536, dtype="uint16")
+def_gen.integers(65535, dtype="uint16", endpoint=True)
+def_gen.integers(0, 65535, dtype="uint16", endpoint=True)
+def_gen.integers(I_u2_low_like, 65535, dtype="uint16", endpoint=True)
+def_gen.integers(I_u2_high_open, dtype="uint16")
+def_gen.integers(I_u2_low, I_u2_high_open, dtype="uint16")
+def_gen.integers(0, I_u2_high_open, dtype="uint16")
+def_gen.integers(I_u2_high_closed, dtype="uint16", endpoint=True)
+def_gen.integers(I_u2_low, I_u2_high_closed, dtype="uint16", endpoint=True)
+def_gen.integers(0, I_u2_high_closed, dtype="uint16", endpoint=True)
+
+def_gen.integers(65536, dtype=np.uint16)
+def_gen.integers(0, 65536, dtype=np.uint16)
+def_gen.integers(65535, dtype=np.uint16, endpoint=True)
+def_gen.integers(0, 65535, dtype=np.uint16, endpoint=True)
+def_gen.integers(I_u2_low_like, 65535, dtype=np.uint16, endpoint=True)
+def_gen.integers(I_u2_high_open, dtype=np.uint16)
+def_gen.integers(I_u2_low, I_u2_high_open, dtype=np.uint16)
+def_gen.integers(0, I_u2_high_open, dtype=np.uint16)
+def_gen.integers(I_u2_high_closed, dtype=np.uint16, endpoint=True)
+def_gen.integers(I_u2_low, I_u2_high_closed, dtype=np.uint16, endpoint=True)
+def_gen.integers(0, I_u2_high_closed, dtype=np.uint16, endpoint=True)
+
+I_u4_low: np.ndarray[Any, np.dtype[np.uint32]] = np.array([0], dtype=np.uint32)
+I_u4_low_like: list[int] = [0]
+I_u4_high_open: np.ndarray[Any, np.dtype[np.uint32]] = np.array([4294967295], dtype=np.uint32)
+I_u4_high_closed: np.ndarray[Any, np.dtype[np.uint32]] = np.array([4294967295], dtype=np.uint32)
+
+def_gen.integers(4294967296, dtype="u4")
+def_gen.integers(0, 4294967296, dtype="u4")
+def_gen.integers(4294967295, dtype="u4", endpoint=True)
+def_gen.integers(0, 4294967295, dtype="u4", endpoint=True)
+def_gen.integers(I_u4_low_like, 4294967295, dtype="u4", endpoint=True)
+def_gen.integers(I_u4_high_open, dtype="u4")
+def_gen.integers(I_u4_low, I_u4_high_open, dtype="u4")
+def_gen.integers(0, I_u4_high_open, dtype="u4")
+def_gen.integers(I_u4_high_closed, dtype="u4", endpoint=True)
+def_gen.integers(I_u4_low, I_u4_high_closed, dtype="u4", endpoint=True)
+def_gen.integers(0, I_u4_high_closed, dtype="u4", endpoint=True)
+
+def_gen.integers(4294967296, dtype="uint32")
+def_gen.integers(0, 4294967296, dtype="uint32")
+def_gen.integers(4294967295, dtype="uint32", endpoint=True)
+def_gen.integers(0, 4294967295, dtype="uint32", endpoint=True)
+def_gen.integers(I_u4_low_like, 4294967295, dtype="uint32", endpoint=True)
+def_gen.integers(I_u4_high_open, dtype="uint32")
+def_gen.integers(I_u4_low, I_u4_high_open, dtype="uint32")
+def_gen.integers(0, I_u4_high_open, dtype="uint32")
+def_gen.integers(I_u4_high_closed, dtype="uint32", endpoint=True)
+def_gen.integers(I_u4_low, I_u4_high_closed, dtype="uint32", endpoint=True)
+def_gen.integers(0, I_u4_high_closed, dtype="uint32", endpoint=True)
+
+def_gen.integers(4294967296, dtype=np.uint32)
+def_gen.integers(0, 4294967296, dtype=np.uint32)
+def_gen.integers(4294967295, dtype=np.uint32, endpoint=True)
+def_gen.integers(0, 4294967295, dtype=np.uint32, endpoint=True)
+def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint32, endpoint=True)
+def_gen.integers(I_u4_high_open, dtype=np.uint32)
+def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint32)
+def_gen.integers(0, I_u4_high_open, dtype=np.uint32)
+def_gen.integers(I_u4_high_closed, dtype=np.uint32, endpoint=True)
+def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint32, endpoint=True)
+def_gen.integers(0, I_u4_high_closed, dtype=np.uint32, endpoint=True)
+
+I_u8_low: np.ndarray[Any, np.dtype[np.uint64]] = np.array([0], dtype=np.uint64)
+I_u8_low_like: list[int] = [0]
+I_u8_high_open: np.ndarray[Any, np.dtype[np.uint64]] = np.array([18446744073709551615], dtype=np.uint64)
+I_u8_high_closed: np.ndarray[Any, np.dtype[np.uint64]] = np.array([18446744073709551615], dtype=np.uint64)
+
+def_gen.integers(18446744073709551616, dtype="u8")
+def_gen.integers(0, 18446744073709551616, dtype="u8")
+def_gen.integers(18446744073709551615, dtype="u8", endpoint=True)
+def_gen.integers(0, 18446744073709551615, dtype="u8", endpoint=True)
+def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="u8", endpoint=True)
+def_gen.integers(I_u8_high_open, dtype="u8")
+def_gen.integers(I_u8_low, I_u8_high_open, dtype="u8")
+def_gen.integers(0, I_u8_high_open, dtype="u8")
+def_gen.integers(I_u8_high_closed, dtype="u8", endpoint=True)
+def_gen.integers(I_u8_low, I_u8_high_closed, dtype="u8", endpoint=True)
+def_gen.integers(0, I_u8_high_closed, dtype="u8", endpoint=True)
+
+def_gen.integers(18446744073709551616, dtype="uint64")
+def_gen.integers(0, 18446744073709551616, dtype="uint64")
+def_gen.integers(18446744073709551615, dtype="uint64", endpoint=True)
+def_gen.integers(0, 18446744073709551615, dtype="uint64", endpoint=True)
+def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="uint64", endpoint=True)
+def_gen.integers(I_u8_high_open, dtype="uint64")
+def_gen.integers(I_u8_low, I_u8_high_open, dtype="uint64")
+def_gen.integers(0, I_u8_high_open, dtype="uint64")
+def_gen.integers(I_u8_high_closed, dtype="uint64", endpoint=True)
+def_gen.integers(I_u8_low, I_u8_high_closed, dtype="uint64", endpoint=True)
+def_gen.integers(0, I_u8_high_closed, dtype="uint64", endpoint=True)
+
+def_gen.integers(18446744073709551616, dtype=np.uint64)
+def_gen.integers(0, 18446744073709551616, dtype=np.uint64)
+def_gen.integers(18446744073709551615, dtype=np.uint64, endpoint=True)
+def_gen.integers(0, 18446744073709551615, dtype=np.uint64, endpoint=True)
+def_gen.integers(I_u8_low_like, 18446744073709551615, dtype=np.uint64, endpoint=True)
+def_gen.integers(I_u8_high_open, dtype=np.uint64)
+def_gen.integers(I_u8_low, I_u8_high_open, dtype=np.uint64)
+def_gen.integers(0, I_u8_high_open, dtype=np.uint64)
+def_gen.integers(I_u8_high_closed, dtype=np.uint64, endpoint=True)
+def_gen.integers(I_u8_low, I_u8_high_closed, dtype=np.uint64, endpoint=True)
+def_gen.integers(0, I_u8_high_closed, dtype=np.uint64, endpoint=True)
+
+I_i1_low: np.ndarray[Any, np.dtype[np.int8]] = np.array([-128], dtype=np.int8)
+I_i1_low_like: list[int] = [-128]
+I_i1_high_open: np.ndarray[Any, np.dtype[np.int8]] = np.array([127], dtype=np.int8)
+I_i1_high_closed: np.ndarray[Any, np.dtype[np.int8]] = np.array([127], dtype=np.int8)
+
+def_gen.integers(128, dtype="i1")
+def_gen.integers(-128, 128, dtype="i1")
+def_gen.integers(127, dtype="i1", endpoint=True)
+def_gen.integers(-128, 127, dtype="i1", endpoint=True)
+def_gen.integers(I_i1_low_like, 127, dtype="i1", endpoint=True)
+def_gen.integers(I_i1_high_open, dtype="i1")
+def_gen.integers(I_i1_low, I_i1_high_open, dtype="i1")
+def_gen.integers(-128, I_i1_high_open, dtype="i1")
+def_gen.integers(I_i1_high_closed, dtype="i1", endpoint=True)
+def_gen.integers(I_i1_low, I_i1_high_closed, dtype="i1", endpoint=True)
+def_gen.integers(-128, I_i1_high_closed, dtype="i1", endpoint=True)
+
+def_gen.integers(128, dtype="int8")
+def_gen.integers(-128, 128, dtype="int8")
+def_gen.integers(127, dtype="int8", endpoint=True)
+def_gen.integers(-128, 127, dtype="int8", endpoint=True)
+def_gen.integers(I_i1_low_like, 127, dtype="int8", endpoint=True)
+def_gen.integers(I_i1_high_open, dtype="int8")
+def_gen.integers(I_i1_low, I_i1_high_open, dtype="int8")
+def_gen.integers(-128, I_i1_high_open, dtype="int8")
+def_gen.integers(I_i1_high_closed, dtype="int8", endpoint=True)
+def_gen.integers(I_i1_low, I_i1_high_closed, dtype="int8", endpoint=True)
+def_gen.integers(-128, I_i1_high_closed, dtype="int8", endpoint=True)
+
+def_gen.integers(128, dtype=np.int8)
+def_gen.integers(-128, 128, dtype=np.int8)
+def_gen.integers(127, dtype=np.int8, endpoint=True)
+def_gen.integers(-128, 127, dtype=np.int8, endpoint=True)
+def_gen.integers(I_i1_low_like, 127, dtype=np.int8, endpoint=True)
+def_gen.integers(I_i1_high_open, dtype=np.int8)
+def_gen.integers(I_i1_low, I_i1_high_open, dtype=np.int8)
+def_gen.integers(-128, I_i1_high_open, dtype=np.int8)
+def_gen.integers(I_i1_high_closed, dtype=np.int8, endpoint=True)
+def_gen.integers(I_i1_low, I_i1_high_closed, dtype=np.int8, endpoint=True)
+def_gen.integers(-128, I_i1_high_closed, dtype=np.int8, endpoint=True)
+
+I_i2_low: np.ndarray[Any, np.dtype[np.int16]] = np.array([-32768], dtype=np.int16)
+I_i2_low_like: list[int] = [-32768]
+I_i2_high_open: np.ndarray[Any, np.dtype[np.int16]] = np.array([32767], dtype=np.int16)
+I_i2_high_closed: np.ndarray[Any, np.dtype[np.int16]] = np.array([32767], dtype=np.int16)
+
+def_gen.integers(32768, dtype="i2")
+def_gen.integers(-32768, 32768, dtype="i2")
+def_gen.integers(32767, dtype="i2", endpoint=True)
+def_gen.integers(-32768, 32767, dtype="i2", endpoint=True)
+def_gen.integers(I_i2_low_like, 32767, dtype="i2", endpoint=True)
+def_gen.integers(I_i2_high_open, dtype="i2")
+def_gen.integers(I_i2_low, I_i2_high_open, dtype="i2")
+def_gen.integers(-32768, I_i2_high_open, dtype="i2")
+def_gen.integers(I_i2_high_closed, dtype="i2", endpoint=True)
+def_gen.integers(I_i2_low, I_i2_high_closed, dtype="i2", endpoint=True)
+def_gen.integers(-32768, I_i2_high_closed, dtype="i2", endpoint=True)
+
+def_gen.integers(32768, dtype="int16")
+def_gen.integers(-32768, 32768, dtype="int16")
+def_gen.integers(32767, dtype="int16", endpoint=True)
+def_gen.integers(-32768, 32767, dtype="int16", endpoint=True)
+def_gen.integers(I_i2_low_like, 32767, dtype="int16", endpoint=True)
+def_gen.integers(I_i2_high_open, dtype="int16")
+def_gen.integers(I_i2_low, I_i2_high_open, dtype="int16")
+def_gen.integers(-32768, I_i2_high_open, dtype="int16")
+def_gen.integers(I_i2_high_closed, dtype="int16", endpoint=True)
+def_gen.integers(I_i2_low, I_i2_high_closed, dtype="int16", endpoint=True)
+def_gen.integers(-32768, I_i2_high_closed, dtype="int16", endpoint=True)
+
+def_gen.integers(32768, dtype=np.int16)
+def_gen.integers(-32768, 32768, dtype=np.int16)
+def_gen.integers(32767, dtype=np.int16, endpoint=True)
+def_gen.integers(-32768, 32767, dtype=np.int16, endpoint=True)
+def_gen.integers(I_i2_low_like, 32767, dtype=np.int16, endpoint=True)
+def_gen.integers(I_i2_high_open, dtype=np.int16)
+def_gen.integers(I_i2_low, I_i2_high_open, dtype=np.int16)
+def_gen.integers(-32768, I_i2_high_open, dtype=np.int16)
+def_gen.integers(I_i2_high_closed, dtype=np.int16, endpoint=True)
+def_gen.integers(I_i2_low, I_i2_high_closed, dtype=np.int16, endpoint=True)
+def_gen.integers(-32768, I_i2_high_closed, dtype=np.int16, endpoint=True)
+
+I_i4_low: np.ndarray[Any, np.dtype[np.int32]] = np.array([-2147483648], dtype=np.int32)
+I_i4_low_like: list[int] = [-2147483648]
+I_i4_high_open: np.ndarray[Any, np.dtype[np.int32]] = np.array([2147483647], dtype=np.int32)
+I_i4_high_closed: np.ndarray[Any, np.dtype[np.int32]] = np.array([2147483647], dtype=np.int32)
+
+def_gen.integers(2147483648, dtype="i4")
+def_gen.integers(-2147483648, 2147483648, dtype="i4")
+def_gen.integers(2147483647, dtype="i4", endpoint=True)
+def_gen.integers(-2147483648, 2147483647, dtype="i4", endpoint=True)
+def_gen.integers(I_i4_low_like, 2147483647, dtype="i4", endpoint=True)
+def_gen.integers(I_i4_high_open, dtype="i4")
+def_gen.integers(I_i4_low, I_i4_high_open, dtype="i4")
+def_gen.integers(-2147483648, I_i4_high_open, dtype="i4")
+def_gen.integers(I_i4_high_closed, dtype="i4", endpoint=True)
+def_gen.integers(I_i4_low, I_i4_high_closed, dtype="i4", endpoint=True)
+def_gen.integers(-2147483648, I_i4_high_closed, dtype="i4", endpoint=True)
+
+def_gen.integers(2147483648, dtype="int32")
+def_gen.integers(-2147483648, 2147483648, dtype="int32")
+def_gen.integers(2147483647, dtype="int32", endpoint=True)
+def_gen.integers(-2147483648, 2147483647, dtype="int32", endpoint=True)
+def_gen.integers(I_i4_low_like, 2147483647, dtype="int32", endpoint=True)
+def_gen.integers(I_i4_high_open, dtype="int32")
+def_gen.integers(I_i4_low, I_i4_high_open, dtype="int32")
+def_gen.integers(-2147483648, I_i4_high_open, dtype="int32")
+def_gen.integers(I_i4_high_closed, dtype="int32", endpoint=True)
+def_gen.integers(I_i4_low, I_i4_high_closed, dtype="int32", endpoint=True)
+def_gen.integers(-2147483648, I_i4_high_closed, dtype="int32", endpoint=True)
+
+def_gen.integers(2147483648, dtype=np.int32)
+def_gen.integers(-2147483648, 2147483648, dtype=np.int32)
+def_gen.integers(2147483647, dtype=np.int32, endpoint=True)
+def_gen.integers(-2147483648, 2147483647, dtype=np.int32, endpoint=True)
+def_gen.integers(I_i4_low_like, 2147483647, dtype=np.int32, endpoint=True)
+def_gen.integers(I_i4_high_open, dtype=np.int32)
+def_gen.integers(I_i4_low, I_i4_high_open, dtype=np.int32)
+def_gen.integers(-2147483648, I_i4_high_open, dtype=np.int32)
+def_gen.integers(I_i4_high_closed, dtype=np.int32, endpoint=True)
+def_gen.integers(I_i4_low, I_i4_high_closed, dtype=np.int32, endpoint=True)
+def_gen.integers(-2147483648, I_i4_high_closed, dtype=np.int32, endpoint=True)
+
+I_i8_low: np.ndarray[Any, np.dtype[np.int64]] = np.array([-9223372036854775808], dtype=np.int64)
+I_i8_low_like: list[int] = [-9223372036854775808]
+I_i8_high_open: np.ndarray[Any, np.dtype[np.int64]] = np.array([9223372036854775807], dtype=np.int64)
+I_i8_high_closed: np.ndarray[Any, np.dtype[np.int64]] = np.array([9223372036854775807], dtype=np.int64)
+
+def_gen.integers(9223372036854775808, dtype="i8")
+def_gen.integers(-9223372036854775808, 9223372036854775808, dtype="i8")
+def_gen.integers(9223372036854775807, dtype="i8", endpoint=True)
+def_gen.integers(-9223372036854775808, 9223372036854775807, dtype="i8", endpoint=True)
+def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="i8", endpoint=True)
+def_gen.integers(I_i8_high_open, dtype="i8")
+def_gen.integers(I_i8_low, I_i8_high_open, dtype="i8")
+def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="i8")
+def_gen.integers(I_i8_high_closed, dtype="i8", endpoint=True)
+def_gen.integers(I_i8_low, I_i8_high_closed, dtype="i8", endpoint=True)
+def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="i8", endpoint=True)
+
+def_gen.integers(9223372036854775808, dtype="int64")
+def_gen.integers(-9223372036854775808, 9223372036854775808, dtype="int64")
+def_gen.integers(9223372036854775807, dtype="int64", endpoint=True)
+def_gen.integers(-9223372036854775808, 9223372036854775807, dtype="int64", endpoint=True)
+def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="int64", endpoint=True)
+def_gen.integers(I_i8_high_open, dtype="int64")
+def_gen.integers(I_i8_low, I_i8_high_open, dtype="int64")
+def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="int64")
+def_gen.integers(I_i8_high_closed, dtype="int64", endpoint=True)
+def_gen.integers(I_i8_low, I_i8_high_closed, dtype="int64", endpoint=True)
+def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="int64", endpoint=True)
+
+def_gen.integers(9223372036854775808, dtype=np.int64)
+def_gen.integers(-9223372036854775808, 9223372036854775808, dtype=np.int64)
+def_gen.integers(9223372036854775807, dtype=np.int64, endpoint=True)
+def_gen.integers(-9223372036854775808, 9223372036854775807, dtype=np.int64, endpoint=True)
+def_gen.integers(I_i8_low_like, 9223372036854775807, dtype=np.int64, endpoint=True)
+def_gen.integers(I_i8_high_open, dtype=np.int64)
+def_gen.integers(I_i8_low, I_i8_high_open, dtype=np.int64)
+def_gen.integers(-9223372036854775808, I_i8_high_open, dtype=np.int64)
+def_gen.integers(I_i8_high_closed, dtype=np.int64, endpoint=True)
+def_gen.integers(I_i8_low, I_i8_high_closed, dtype=np.int64, endpoint=True)
+def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype=np.int64, endpoint=True)
+
+
+def_gen.bit_generator
+
+def_gen.bytes(2)
+
+def_gen.choice(5)
+def_gen.choice(5, 3)
+def_gen.choice(5, 3, replace=True)
+def_gen.choice(5, 3, p=[1 / 5] * 5)
+def_gen.choice(5, 3, p=[1 / 5] * 5, replace=False)
+
+def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"])
+def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3)
+def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4)
+def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True)
+def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4]))
+
+def_gen.dirichlet([0.5, 0.5])
+def_gen.dirichlet(np.array([0.5, 0.5]))
+def_gen.dirichlet(np.array([0.5, 0.5]), size=3)
+
+def_gen.multinomial(20, [1 / 6.0] * 6)
+def_gen.multinomial(20, np.array([0.5, 0.5]))
+def_gen.multinomial(20, [1 / 6.0] * 6, size=2)
+def_gen.multinomial([[10], [20]], [1 / 6.0] * 6, size=(2, 2))
+def_gen.multinomial(np.array([[10], [20]]), np.array([0.5, 0.5]), size=(2, 2))
+
+def_gen.multivariate_hypergeometric([3, 5, 7], 2)
+def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2)
+def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=4)
+def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=(4, 7))
+def_gen.multivariate_hypergeometric([3, 5, 7], 2, method="count")
+def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, method="marginals")
+
+def_gen.multivariate_normal([0.0], [[1.0]])
+def_gen.multivariate_normal([0.0], np.array([[1.0]]))
+def_gen.multivariate_normal(np.array([0.0]), [[1.0]])
+def_gen.multivariate_normal([0.0], np.array([[1.0]]))
+
+def_gen.permutation(10)
+def_gen.permutation([1, 2, 3, 4])
+def_gen.permutation(np.array([1, 2, 3, 4]))
+def_gen.permutation(D_2D, axis=1)
+def_gen.permuted(D_2D)
+def_gen.permuted(D_2D_like)
+def_gen.permuted(D_2D, axis=1)
+def_gen.permuted(D_2D, out=D_2D)
+def_gen.permuted(D_2D_like, out=D_2D)
+def_gen.permuted(D_2D_like, out=D_2D)
+def_gen.permuted(D_2D, axis=1, out=D_2D)
+
+def_gen.shuffle(np.arange(10))
+def_gen.shuffle([1, 2, 3, 4, 5])
+def_gen.shuffle(D_2D, axis=1)
+
+def_gen.__str__()
+def_gen.__repr__()
+def_gen_state: dict[str, Any]
+def_gen_state = def_gen.__getstate__()
+def_gen.__setstate__(def_gen_state)
+
+# RandomState
+random_st: np.random.RandomState = np.random.RandomState()
+
+random_st.standard_normal()
+random_st.standard_normal(size=None)
+random_st.standard_normal(size=1)
+
+random_st.random()
+random_st.random(size=None)
+random_st.random(size=1)
+
+random_st.standard_cauchy()
+random_st.standard_cauchy(size=None)
+random_st.standard_cauchy(size=1)
+
+random_st.standard_exponential()
+random_st.standard_exponential(size=None)
+random_st.standard_exponential(size=1)
+
+random_st.zipf(1.5)
+random_st.zipf(1.5, size=None)
+random_st.zipf(1.5, size=1)
+random_st.zipf(D_arr_1p5)
+random_st.zipf(D_arr_1p5, size=1)
+random_st.zipf(D_arr_like_1p5)
+random_st.zipf(D_arr_like_1p5, size=1)
+
+random_st.weibull(0.5)
+random_st.weibull(0.5, size=None)
+random_st.weibull(0.5, size=1)
+random_st.weibull(D_arr_0p5)
+random_st.weibull(D_arr_0p5, size=1)
+random_st.weibull(D_arr_like_0p5)
+random_st.weibull(D_arr_like_0p5, size=1)
+
+random_st.standard_t(0.5)
+random_st.standard_t(0.5, size=None)
+random_st.standard_t(0.5, size=1)
+random_st.standard_t(D_arr_0p5)
+random_st.standard_t(D_arr_0p5, size=1)
+random_st.standard_t(D_arr_like_0p5)
+random_st.standard_t(D_arr_like_0p5, size=1)
+
+random_st.poisson(0.5)
+random_st.poisson(0.5, size=None)
+random_st.poisson(0.5, size=1)
+random_st.poisson(D_arr_0p5)
+random_st.poisson(D_arr_0p5, size=1)
+random_st.poisson(D_arr_like_0p5)
+random_st.poisson(D_arr_like_0p5, size=1)
+
+random_st.power(0.5)
+random_st.power(0.5, size=None)
+random_st.power(0.5, size=1)
+random_st.power(D_arr_0p5)
+random_st.power(D_arr_0p5, size=1)
+random_st.power(D_arr_like_0p5)
+random_st.power(D_arr_like_0p5, size=1)
+
+random_st.pareto(0.5)
+random_st.pareto(0.5, size=None)
+random_st.pareto(0.5, size=1)
+random_st.pareto(D_arr_0p5)
+random_st.pareto(D_arr_0p5, size=1)
+random_st.pareto(D_arr_like_0p5)
+random_st.pareto(D_arr_like_0p5, size=1)
+
+random_st.chisquare(0.5)
+random_st.chisquare(0.5, size=None)
+random_st.chisquare(0.5, size=1)
+random_st.chisquare(D_arr_0p5)
+random_st.chisquare(D_arr_0p5, size=1)
+random_st.chisquare(D_arr_like_0p5)
+random_st.chisquare(D_arr_like_0p5, size=1)
+
+random_st.exponential(0.5)
+random_st.exponential(0.5, size=None)
+random_st.exponential(0.5, size=1)
+random_st.exponential(D_arr_0p5)
+random_st.exponential(D_arr_0p5, size=1)
+random_st.exponential(D_arr_like_0p5)
+random_st.exponential(D_arr_like_0p5, size=1)
+
+random_st.geometric(0.5)
+random_st.geometric(0.5, size=None)
+random_st.geometric(0.5, size=1)
+random_st.geometric(D_arr_0p5)
+random_st.geometric(D_arr_0p5, size=1)
+random_st.geometric(D_arr_like_0p5)
+random_st.geometric(D_arr_like_0p5, size=1)
+
+random_st.logseries(0.5)
+random_st.logseries(0.5, size=None)
+random_st.logseries(0.5, size=1)
+random_st.logseries(D_arr_0p5)
+random_st.logseries(D_arr_0p5, size=1)
+random_st.logseries(D_arr_like_0p5)
+random_st.logseries(D_arr_like_0p5, size=1)
+
+random_st.rayleigh(0.5)
+random_st.rayleigh(0.5, size=None)
+random_st.rayleigh(0.5, size=1)
+random_st.rayleigh(D_arr_0p5)
+random_st.rayleigh(D_arr_0p5, size=1)
+random_st.rayleigh(D_arr_like_0p5)
+random_st.rayleigh(D_arr_like_0p5, size=1)
+
+random_st.standard_gamma(0.5)
+random_st.standard_gamma(0.5, size=None)
+random_st.standard_gamma(0.5, size=1)
+random_st.standard_gamma(D_arr_0p5)
+random_st.standard_gamma(D_arr_0p5, size=1)
+random_st.standard_gamma(D_arr_like_0p5)
+random_st.standard_gamma(D_arr_like_0p5, size=1)
+random_st.standard_gamma(D_arr_like_0p5, size=1)
+
+random_st.vonmises(0.5, 0.5)
+random_st.vonmises(0.5, 0.5, size=None)
+random_st.vonmises(0.5, 0.5, size=1)
+random_st.vonmises(D_arr_0p5, 0.5)
+random_st.vonmises(0.5, D_arr_0p5)
+random_st.vonmises(D_arr_0p5, 0.5, size=1)
+random_st.vonmises(0.5, D_arr_0p5, size=1)
+random_st.vonmises(D_arr_like_0p5, 0.5)
+random_st.vonmises(0.5, D_arr_like_0p5)
+random_st.vonmises(D_arr_0p5, D_arr_0p5)
+random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5)
+random_st.vonmises(D_arr_0p5, D_arr_0p5, size=1)
+random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.wald(0.5, 0.5)
+random_st.wald(0.5, 0.5, size=None)
+random_st.wald(0.5, 0.5, size=1)
+random_st.wald(D_arr_0p5, 0.5)
+random_st.wald(0.5, D_arr_0p5)
+random_st.wald(D_arr_0p5, 0.5, size=1)
+random_st.wald(0.5, D_arr_0p5, size=1)
+random_st.wald(D_arr_like_0p5, 0.5)
+random_st.wald(0.5, D_arr_like_0p5)
+random_st.wald(D_arr_0p5, D_arr_0p5)
+random_st.wald(D_arr_like_0p5, D_arr_like_0p5)
+random_st.wald(D_arr_0p5, D_arr_0p5, size=1)
+random_st.wald(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.uniform(0.5, 0.5)
+random_st.uniform(0.5, 0.5, size=None)
+random_st.uniform(0.5, 0.5, size=1)
+random_st.uniform(D_arr_0p5, 0.5)
+random_st.uniform(0.5, D_arr_0p5)
+random_st.uniform(D_arr_0p5, 0.5, size=1)
+random_st.uniform(0.5, D_arr_0p5, size=1)
+random_st.uniform(D_arr_like_0p5, 0.5)
+random_st.uniform(0.5, D_arr_like_0p5)
+random_st.uniform(D_arr_0p5, D_arr_0p5)
+random_st.uniform(D_arr_like_0p5, D_arr_like_0p5)
+random_st.uniform(D_arr_0p5, D_arr_0p5, size=1)
+random_st.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.beta(0.5, 0.5)
+random_st.beta(0.5, 0.5, size=None)
+random_st.beta(0.5, 0.5, size=1)
+random_st.beta(D_arr_0p5, 0.5)
+random_st.beta(0.5, D_arr_0p5)
+random_st.beta(D_arr_0p5, 0.5, size=1)
+random_st.beta(0.5, D_arr_0p5, size=1)
+random_st.beta(D_arr_like_0p5, 0.5)
+random_st.beta(0.5, D_arr_like_0p5)
+random_st.beta(D_arr_0p5, D_arr_0p5)
+random_st.beta(D_arr_like_0p5, D_arr_like_0p5)
+random_st.beta(D_arr_0p5, D_arr_0p5, size=1)
+random_st.beta(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.f(0.5, 0.5)
+random_st.f(0.5, 0.5, size=None)
+random_st.f(0.5, 0.5, size=1)
+random_st.f(D_arr_0p5, 0.5)
+random_st.f(0.5, D_arr_0p5)
+random_st.f(D_arr_0p5, 0.5, size=1)
+random_st.f(0.5, D_arr_0p5, size=1)
+random_st.f(D_arr_like_0p5, 0.5)
+random_st.f(0.5, D_arr_like_0p5)
+random_st.f(D_arr_0p5, D_arr_0p5)
+random_st.f(D_arr_like_0p5, D_arr_like_0p5)
+random_st.f(D_arr_0p5, D_arr_0p5, size=1)
+random_st.f(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.gamma(0.5, 0.5)
+random_st.gamma(0.5, 0.5, size=None)
+random_st.gamma(0.5, 0.5, size=1)
+random_st.gamma(D_arr_0p5, 0.5)
+random_st.gamma(0.5, D_arr_0p5)
+random_st.gamma(D_arr_0p5, 0.5, size=1)
+random_st.gamma(0.5, D_arr_0p5, size=1)
+random_st.gamma(D_arr_like_0p5, 0.5)
+random_st.gamma(0.5, D_arr_like_0p5)
+random_st.gamma(D_arr_0p5, D_arr_0p5)
+random_st.gamma(D_arr_like_0p5, D_arr_like_0p5)
+random_st.gamma(D_arr_0p5, D_arr_0p5, size=1)
+random_st.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.gumbel(0.5, 0.5)
+random_st.gumbel(0.5, 0.5, size=None)
+random_st.gumbel(0.5, 0.5, size=1)
+random_st.gumbel(D_arr_0p5, 0.5)
+random_st.gumbel(0.5, D_arr_0p5)
+random_st.gumbel(D_arr_0p5, 0.5, size=1)
+random_st.gumbel(0.5, D_arr_0p5, size=1)
+random_st.gumbel(D_arr_like_0p5, 0.5)
+random_st.gumbel(0.5, D_arr_like_0p5)
+random_st.gumbel(D_arr_0p5, D_arr_0p5)
+random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5)
+random_st.gumbel(D_arr_0p5, D_arr_0p5, size=1)
+random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.laplace(0.5, 0.5)
+random_st.laplace(0.5, 0.5, size=None)
+random_st.laplace(0.5, 0.5, size=1)
+random_st.laplace(D_arr_0p5, 0.5)
+random_st.laplace(0.5, D_arr_0p5)
+random_st.laplace(D_arr_0p5, 0.5, size=1)
+random_st.laplace(0.5, D_arr_0p5, size=1)
+random_st.laplace(D_arr_like_0p5, 0.5)
+random_st.laplace(0.5, D_arr_like_0p5)
+random_st.laplace(D_arr_0p5, D_arr_0p5)
+random_st.laplace(D_arr_like_0p5, D_arr_like_0p5)
+random_st.laplace(D_arr_0p5, D_arr_0p5, size=1)
+random_st.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.logistic(0.5, 0.5)
+random_st.logistic(0.5, 0.5, size=None)
+random_st.logistic(0.5, 0.5, size=1)
+random_st.logistic(D_arr_0p5, 0.5)
+random_st.logistic(0.5, D_arr_0p5)
+random_st.logistic(D_arr_0p5, 0.5, size=1)
+random_st.logistic(0.5, D_arr_0p5, size=1)
+random_st.logistic(D_arr_like_0p5, 0.5)
+random_st.logistic(0.5, D_arr_like_0p5)
+random_st.logistic(D_arr_0p5, D_arr_0p5)
+random_st.logistic(D_arr_like_0p5, D_arr_like_0p5)
+random_st.logistic(D_arr_0p5, D_arr_0p5, size=1)
+random_st.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.lognormal(0.5, 0.5)
+random_st.lognormal(0.5, 0.5, size=None)
+random_st.lognormal(0.5, 0.5, size=1)
+random_st.lognormal(D_arr_0p5, 0.5)
+random_st.lognormal(0.5, D_arr_0p5)
+random_st.lognormal(D_arr_0p5, 0.5, size=1)
+random_st.lognormal(0.5, D_arr_0p5, size=1)
+random_st.lognormal(D_arr_like_0p5, 0.5)
+random_st.lognormal(0.5, D_arr_like_0p5)
+random_st.lognormal(D_arr_0p5, D_arr_0p5)
+random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5)
+random_st.lognormal(D_arr_0p5, D_arr_0p5, size=1)
+random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.noncentral_chisquare(0.5, 0.5)
+random_st.noncentral_chisquare(0.5, 0.5, size=None)
+random_st.noncentral_chisquare(0.5, 0.5, size=1)
+random_st.noncentral_chisquare(D_arr_0p5, 0.5)
+random_st.noncentral_chisquare(0.5, D_arr_0p5)
+random_st.noncentral_chisquare(D_arr_0p5, 0.5, size=1)
+random_st.noncentral_chisquare(0.5, D_arr_0p5, size=1)
+random_st.noncentral_chisquare(D_arr_like_0p5, 0.5)
+random_st.noncentral_chisquare(0.5, D_arr_like_0p5)
+random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5)
+random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5)
+random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1)
+random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.normal(0.5, 0.5)
+random_st.normal(0.5, 0.5, size=None)
+random_st.normal(0.5, 0.5, size=1)
+random_st.normal(D_arr_0p5, 0.5)
+random_st.normal(0.5, D_arr_0p5)
+random_st.normal(D_arr_0p5, 0.5, size=1)
+random_st.normal(0.5, D_arr_0p5, size=1)
+random_st.normal(D_arr_like_0p5, 0.5)
+random_st.normal(0.5, D_arr_like_0p5)
+random_st.normal(D_arr_0p5, D_arr_0p5)
+random_st.normal(D_arr_like_0p5, D_arr_like_0p5)
+random_st.normal(D_arr_0p5, D_arr_0p5, size=1)
+random_st.normal(D_arr_like_0p5, D_arr_like_0p5, size=1)
+
+random_st.triangular(0.1, 0.5, 0.9)
+random_st.triangular(0.1, 0.5, 0.9, size=None)
+random_st.triangular(0.1, 0.5, 0.9, size=1)
+random_st.triangular(D_arr_0p1, 0.5, 0.9)
+random_st.triangular(0.1, D_arr_0p5, 0.9)
+random_st.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)
+random_st.triangular(0.1, D_arr_0p5, 0.9, size=1)
+random_st.triangular(D_arr_like_0p1, 0.5, D_arr_0p9)
+random_st.triangular(0.5, D_arr_like_0p5, 0.9)
+random_st.triangular(D_arr_0p1, D_arr_0p5, 0.9)
+random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9)
+random_st.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)
+random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)
+
+random_st.noncentral_f(0.1, 0.5, 0.9)
+random_st.noncentral_f(0.1, 0.5, 0.9, size=None)
+random_st.noncentral_f(0.1, 0.5, 0.9, size=1)
+random_st.noncentral_f(D_arr_0p1, 0.5, 0.9)
+random_st.noncentral_f(0.1, D_arr_0p5, 0.9)
+random_st.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)
+random_st.noncentral_f(0.1, D_arr_0p5, 0.9, size=1)
+random_st.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9)
+random_st.noncentral_f(0.5, D_arr_like_0p5, 0.9)
+random_st.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9)
+random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9)
+random_st.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)
+random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)
+
+random_st.binomial(10, 0.5)
+random_st.binomial(10, 0.5, size=None)
+random_st.binomial(10, 0.5, size=1)
+random_st.binomial(I_arr_10, 0.5)
+random_st.binomial(10, D_arr_0p5)
+random_st.binomial(I_arr_10, 0.5, size=1)
+random_st.binomial(10, D_arr_0p5, size=1)
+random_st.binomial(I_arr_like_10, 0.5)
+random_st.binomial(10, D_arr_like_0p5)
+random_st.binomial(I_arr_10, D_arr_0p5)
+random_st.binomial(I_arr_like_10, D_arr_like_0p5)
+random_st.binomial(I_arr_10, D_arr_0p5, size=1)
+random_st.binomial(I_arr_like_10, D_arr_like_0p5, size=1)
+
+random_st.negative_binomial(10, 0.5)
+random_st.negative_binomial(10, 0.5, size=None)
+random_st.negative_binomial(10, 0.5, size=1)
+random_st.negative_binomial(I_arr_10, 0.5)
+random_st.negative_binomial(10, D_arr_0p5)
+random_st.negative_binomial(I_arr_10, 0.5, size=1)
+random_st.negative_binomial(10, D_arr_0p5, size=1)
+random_st.negative_binomial(I_arr_like_10, 0.5)
+random_st.negative_binomial(10, D_arr_like_0p5)
+random_st.negative_binomial(I_arr_10, D_arr_0p5)
+random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5)
+random_st.negative_binomial(I_arr_10, D_arr_0p5, size=1)
+random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1)
+
+random_st.hypergeometric(20, 20, 10)
+random_st.hypergeometric(20, 20, 10, size=None)
+random_st.hypergeometric(20, 20, 10, size=1)
+random_st.hypergeometric(I_arr_20, 20, 10)
+random_st.hypergeometric(20, I_arr_20, 10)
+random_st.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1)
+random_st.hypergeometric(20, I_arr_20, 10, size=1)
+random_st.hypergeometric(I_arr_like_20, 20, I_arr_10)
+random_st.hypergeometric(20, I_arr_like_20, 10)
+random_st.hypergeometric(I_arr_20, I_arr_20, 10)
+random_st.hypergeometric(I_arr_like_20, I_arr_like_20, 10)
+random_st.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1)
+random_st.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1)
+
+random_st.randint(0, 100)
+random_st.randint(100)
+random_st.randint([100])
+random_st.randint(0, [100])
+
+random_st.randint(2, dtype=bool)
+random_st.randint(0, 2, dtype=bool)
+random_st.randint(I_bool_high_open, dtype=bool)
+random_st.randint(I_bool_low, I_bool_high_open, dtype=bool)
+random_st.randint(0, I_bool_high_open, dtype=bool)
+
+random_st.randint(2, dtype=np.bool_)
+random_st.randint(0, 2, dtype=np.bool_)
+random_st.randint(I_bool_high_open, dtype=np.bool_)
+random_st.randint(I_bool_low, I_bool_high_open, dtype=np.bool_)
+random_st.randint(0, I_bool_high_open, dtype=np.bool_)
+
+random_st.randint(256, dtype="u1")
+random_st.randint(0, 256, dtype="u1")
+random_st.randint(I_u1_high_open, dtype="u1")
+random_st.randint(I_u1_low, I_u1_high_open, dtype="u1")
+random_st.randint(0, I_u1_high_open, dtype="u1")
+
+random_st.randint(256, dtype="uint8")
+random_st.randint(0, 256, dtype="uint8")
+random_st.randint(I_u1_high_open, dtype="uint8")
+random_st.randint(I_u1_low, I_u1_high_open, dtype="uint8")
+random_st.randint(0, I_u1_high_open, dtype="uint8")
+
+random_st.randint(256, dtype=np.uint8)
+random_st.randint(0, 256, dtype=np.uint8)
+random_st.randint(I_u1_high_open, dtype=np.uint8)
+random_st.randint(I_u1_low, I_u1_high_open, dtype=np.uint8)
+random_st.randint(0, I_u1_high_open, dtype=np.uint8)
+
+random_st.randint(65536, dtype="u2")
+random_st.randint(0, 65536, dtype="u2")
+random_st.randint(I_u2_high_open, dtype="u2")
+random_st.randint(I_u2_low, I_u2_high_open, dtype="u2")
+random_st.randint(0, I_u2_high_open, dtype="u2")
+
+random_st.randint(65536, dtype="uint16")
+random_st.randint(0, 65536, dtype="uint16")
+random_st.randint(I_u2_high_open, dtype="uint16")
+random_st.randint(I_u2_low, I_u2_high_open, dtype="uint16")
+random_st.randint(0, I_u2_high_open, dtype="uint16")
+
+random_st.randint(65536, dtype=np.uint16)
+random_st.randint(0, 65536, dtype=np.uint16)
+random_st.randint(I_u2_high_open, dtype=np.uint16)
+random_st.randint(I_u2_low, I_u2_high_open, dtype=np.uint16)
+random_st.randint(0, I_u2_high_open, dtype=np.uint16)
+
+random_st.randint(4294967296, dtype="u4")
+random_st.randint(0, 4294967296, dtype="u4")
+random_st.randint(I_u4_high_open, dtype="u4")
+random_st.randint(I_u4_low, I_u4_high_open, dtype="u4")
+random_st.randint(0, I_u4_high_open, dtype="u4")
+
+random_st.randint(4294967296, dtype="uint32")
+random_st.randint(0, 4294967296, dtype="uint32")
+random_st.randint(I_u4_high_open, dtype="uint32")
+random_st.randint(I_u4_low, I_u4_high_open, dtype="uint32")
+random_st.randint(0, I_u4_high_open, dtype="uint32")
+
+random_st.randint(4294967296, dtype=np.uint32)
+random_st.randint(0, 4294967296, dtype=np.uint32)
+random_st.randint(I_u4_high_open, dtype=np.uint32)
+random_st.randint(I_u4_low, I_u4_high_open, dtype=np.uint32)
+random_st.randint(0, I_u4_high_open, dtype=np.uint32)
+
+
+random_st.randint(18446744073709551616, dtype="u8")
+random_st.randint(0, 18446744073709551616, dtype="u8")
+random_st.randint(I_u8_high_open, dtype="u8")
+random_st.randint(I_u8_low, I_u8_high_open, dtype="u8")
+random_st.randint(0, I_u8_high_open, dtype="u8")
+
+random_st.randint(18446744073709551616, dtype="uint64")
+random_st.randint(0, 18446744073709551616, dtype="uint64")
+random_st.randint(I_u8_high_open, dtype="uint64")
+random_st.randint(I_u8_low, I_u8_high_open, dtype="uint64")
+random_st.randint(0, I_u8_high_open, dtype="uint64")
+
+random_st.randint(18446744073709551616, dtype=np.uint64)
+random_st.randint(0, 18446744073709551616, dtype=np.uint64)
+random_st.randint(I_u8_high_open, dtype=np.uint64)
+random_st.randint(I_u8_low, I_u8_high_open, dtype=np.uint64)
+random_st.randint(0, I_u8_high_open, dtype=np.uint64)
+
+random_st.randint(128, dtype="i1")
+random_st.randint(-128, 128, dtype="i1")
+random_st.randint(I_i1_high_open, dtype="i1")
+random_st.randint(I_i1_low, I_i1_high_open, dtype="i1")
+random_st.randint(-128, I_i1_high_open, dtype="i1")
+
+random_st.randint(128, dtype="int8")
+random_st.randint(-128, 128, dtype="int8")
+random_st.randint(I_i1_high_open, dtype="int8")
+random_st.randint(I_i1_low, I_i1_high_open, dtype="int8")
+random_st.randint(-128, I_i1_high_open, dtype="int8")
+
+random_st.randint(128, dtype=np.int8)
+random_st.randint(-128, 128, dtype=np.int8)
+random_st.randint(I_i1_high_open, dtype=np.int8)
+random_st.randint(I_i1_low, I_i1_high_open, dtype=np.int8)
+random_st.randint(-128, I_i1_high_open, dtype=np.int8)
+
+random_st.randint(32768, dtype="i2")
+random_st.randint(-32768, 32768, dtype="i2")
+random_st.randint(I_i2_high_open, dtype="i2")
+random_st.randint(I_i2_low, I_i2_high_open, dtype="i2")
+random_st.randint(-32768, I_i2_high_open, dtype="i2")
+random_st.randint(32768, dtype="int16")
+random_st.randint(-32768, 32768, dtype="int16")
+random_st.randint(I_i2_high_open, dtype="int16")
+random_st.randint(I_i2_low, I_i2_high_open, dtype="int16")
+random_st.randint(-32768, I_i2_high_open, dtype="int16")
+random_st.randint(32768, dtype=np.int16)
+random_st.randint(-32768, 32768, dtype=np.int16)
+random_st.randint(I_i2_high_open, dtype=np.int16)
+random_st.randint(I_i2_low, I_i2_high_open, dtype=np.int16)
+random_st.randint(-32768, I_i2_high_open, dtype=np.int16)
+
+random_st.randint(2147483648, dtype="i4")
+random_st.randint(-2147483648, 2147483648, dtype="i4")
+random_st.randint(I_i4_high_open, dtype="i4")
+random_st.randint(I_i4_low, I_i4_high_open, dtype="i4")
+random_st.randint(-2147483648, I_i4_high_open, dtype="i4")
+
+random_st.randint(2147483648, dtype="int32")
+random_st.randint(-2147483648, 2147483648, dtype="int32")
+random_st.randint(I_i4_high_open, dtype="int32")
+random_st.randint(I_i4_low, I_i4_high_open, dtype="int32")
+random_st.randint(-2147483648, I_i4_high_open, dtype="int32")
+
+random_st.randint(2147483648, dtype=np.int32)
+random_st.randint(-2147483648, 2147483648, dtype=np.int32)
+random_st.randint(I_i4_high_open, dtype=np.int32)
+random_st.randint(I_i4_low, I_i4_high_open, dtype=np.int32)
+random_st.randint(-2147483648, I_i4_high_open, dtype=np.int32)
+
+random_st.randint(9223372036854775808, dtype="i8")
+random_st.randint(-9223372036854775808, 9223372036854775808, dtype="i8")
+random_st.randint(I_i8_high_open, dtype="i8")
+random_st.randint(I_i8_low, I_i8_high_open, dtype="i8")
+random_st.randint(-9223372036854775808, I_i8_high_open, dtype="i8")
+
+random_st.randint(9223372036854775808, dtype="int64")
+random_st.randint(-9223372036854775808, 9223372036854775808, dtype="int64")
+random_st.randint(I_i8_high_open, dtype="int64")
+random_st.randint(I_i8_low, I_i8_high_open, dtype="int64")
+random_st.randint(-9223372036854775808, I_i8_high_open, dtype="int64")
+
+random_st.randint(9223372036854775808, dtype=np.int64)
+random_st.randint(-9223372036854775808, 9223372036854775808, dtype=np.int64)
+random_st.randint(I_i8_high_open, dtype=np.int64)
+random_st.randint(I_i8_low, I_i8_high_open, dtype=np.int64)
+random_st.randint(-9223372036854775808, I_i8_high_open, dtype=np.int64)
+
+bg: np.random.BitGenerator = random_st._bit_generator
+
+random_st.bytes(2)
+
+random_st.choice(5)
+random_st.choice(5, 3)
+random_st.choice(5, 3, replace=True)
+random_st.choice(5, 3, p=[1 / 5] * 5)
+random_st.choice(5, 3, p=[1 / 5] * 5, replace=False)
+
+random_st.choice(["pooh", "rabbit", "piglet", "Christopher"])
+random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3)
+random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4)
+random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True)
+random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4]))
+
+random_st.dirichlet([0.5, 0.5])
+random_st.dirichlet(np.array([0.5, 0.5]))
+random_st.dirichlet(np.array([0.5, 0.5]), size=3)
+
+random_st.multinomial(20, [1 / 6.0] * 6)
+random_st.multinomial(20, np.array([0.5, 0.5]))
+random_st.multinomial(20, [1 / 6.0] * 6, size=2)
+
+random_st.multivariate_normal([0.0], [[1.0]])
+random_st.multivariate_normal([0.0], np.array([[1.0]]))
+random_st.multivariate_normal(np.array([0.0]), [[1.0]])
+random_st.multivariate_normal([0.0], np.array([[1.0]]))
+
+random_st.permutation(10)
+random_st.permutation([1, 2, 3, 4])
+random_st.permutation(np.array([1, 2, 3, 4]))
+random_st.permutation(D_2D)
+
+random_st.shuffle(np.arange(10))
+random_st.shuffle([1, 2, 3, 4, 5])
+random_st.shuffle(D_2D)
+
+np.random.RandomState(SEED_PCG64)
+np.random.RandomState(0)
+np.random.RandomState([0, 1, 2])
+random_st.__str__()
+random_st.__repr__()
+random_st_state = random_st.__getstate__()
+random_st.__setstate__(random_st_state)
+random_st.seed()
+random_st.seed(1)
+random_st.seed([0, 1])
+random_st_get_state = random_st.get_state()
+random_st_get_state_legacy = random_st.get_state(legacy=True)
+random_st.set_state(random_st_get_state)
+
+random_st.rand()
+random_st.rand(1)
+random_st.rand(1, 2)
+random_st.randn()
+random_st.randn(1)
+random_st.randn(1, 2)
+random_st.random_sample()
+random_st.random_sample(1)
+random_st.random_sample(size=(1, 2))
+
+random_st.tomaxint()
+random_st.tomaxint(1)
+random_st.tomaxint((1,))
+
+np.random.set_bit_generator(SEED_PCG64)
+np.random.get_bit_generator()
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/scalars.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/scalars.py
new file mode 100644
index 00000000..a5c6f96e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/scalars.py
@@ -0,0 +1,248 @@
+import sys
+import datetime as dt
+
+import pytest
+import numpy as np
+
+b = np.bool_()
+u8 = np.uint64()
+i8 = np.int64()
+f8 = np.float64()
+c16 = np.complex128()
+U = np.str_()
+S = np.bytes_()
+
+
+# Construction
+class D:
+ def __index__(self) -> int:
+ return 0
+
+
+class C:
+ def __complex__(self) -> complex:
+ return 3j
+
+
+class B:
+ def __int__(self) -> int:
+ return 4
+
+
+class A:
+ def __float__(self) -> float:
+ return 4.0
+
+
+np.complex64(3j)
+np.complex64(A())
+np.complex64(C())
+np.complex128(3j)
+np.complex128(C())
+np.complex128(None)
+np.complex64("1.2")
+np.complex128(b"2j")
+
+np.int8(4)
+np.int16(3.4)
+np.int32(4)
+np.int64(-1)
+np.uint8(B())
+np.uint32()
+np.int32("1")
+np.int64(b"2")
+
+np.float16(A())
+np.float32(16)
+np.float64(3.0)
+np.float64(None)
+np.float32("1")
+np.float16(b"2.5")
+
+np.uint64(D())
+np.float32(D())
+np.complex64(D())
+
+np.bytes_(b"hello")
+np.bytes_("hello", 'utf-8')
+np.bytes_("hello", encoding='utf-8')
+np.str_("hello")
+np.str_(b"hello", 'utf-8')
+np.str_(b"hello", encoding='utf-8')
+
+# Array-ish semantics
+np.int8().real
+np.int16().imag
+np.int32().data
+np.int64().flags
+
+np.uint8().itemsize * 2
+np.uint16().ndim + 1
+np.uint32().strides
+np.uint64().shape
+
+# Time structures
+np.datetime64()
+np.datetime64(0, "D")
+np.datetime64(0, b"D")
+np.datetime64(0, ('ms', 3))
+np.datetime64("2019")
+np.datetime64(b"2019")
+np.datetime64("2019", "D")
+np.datetime64(np.datetime64())
+np.datetime64(dt.datetime(2000, 5, 3))
+np.datetime64(dt.date(2000, 5, 3))
+np.datetime64(None)
+np.datetime64(None, "D")
+
+np.timedelta64()
+np.timedelta64(0)
+np.timedelta64(0, "D")
+np.timedelta64(0, ('ms', 3))
+np.timedelta64(0, b"D")
+np.timedelta64("3")
+np.timedelta64(b"5")
+np.timedelta64(np.timedelta64(2))
+np.timedelta64(dt.timedelta(2))
+np.timedelta64(None)
+np.timedelta64(None, "D")
+
+np.void(1)
+np.void(np.int64(1))
+np.void(True)
+np.void(np.bool_(True))
+np.void(b"test")
+np.void(np.bytes_("test"))
+np.void(object(), [("a", "O"), ("b", "O")])
+np.void(object(), dtype=[("a", "O"), ("b", "O")])
+
+# Protocols
+i8 = np.int64()
+u8 = np.uint64()
+f8 = np.float64()
+c16 = np.complex128()
+b_ = np.bool_()
+td = np.timedelta64()
+U = np.str_("1")
+S = np.bytes_("1")
+AR = np.array(1, dtype=np.float64)
+
+int(i8)
+int(u8)
+int(f8)
+int(b_)
+int(td)
+int(U)
+int(S)
+int(AR)
+with pytest.warns(np.ComplexWarning):
+ int(c16)
+
+float(i8)
+float(u8)
+float(f8)
+float(b_)
+float(td)
+float(U)
+float(S)
+float(AR)
+with pytest.warns(np.ComplexWarning):
+ float(c16)
+
+complex(i8)
+complex(u8)
+complex(f8)
+complex(c16)
+complex(b_)
+complex(td)
+complex(U)
+complex(AR)
+
+
+# Misc
+c16.dtype
+c16.real
+c16.imag
+c16.real.real
+c16.real.imag
+c16.ndim
+c16.size
+c16.itemsize
+c16.shape
+c16.strides
+c16.squeeze()
+c16.byteswap()
+c16.transpose()
+
+# Aliases
+np.string_()
+
+np.byte()
+np.short()
+np.intc()
+np.intp()
+np.int_()
+np.longlong()
+
+np.ubyte()
+np.ushort()
+np.uintc()
+np.uintp()
+np.uint()
+np.ulonglong()
+
+np.half()
+np.single()
+np.double()
+np.float_()
+np.longdouble()
+np.longfloat()
+
+np.csingle()
+np.singlecomplex()
+np.cdouble()
+np.complex_()
+np.cfloat()
+np.clongdouble()
+np.clongfloat()
+np.longcomplex()
+
+b.item()
+i8.item()
+u8.item()
+f8.item()
+c16.item()
+U.item()
+S.item()
+
+b.tolist()
+i8.tolist()
+u8.tolist()
+f8.tolist()
+c16.tolist()
+U.tolist()
+S.tolist()
+
+b.ravel()
+i8.ravel()
+u8.ravel()
+f8.ravel()
+c16.ravel()
+U.ravel()
+S.ravel()
+
+b.flatten()
+i8.flatten()
+u8.flatten()
+f8.flatten()
+c16.flatten()
+U.flatten()
+S.flatten()
+
+b.reshape(1)
+i8.reshape(1)
+u8.reshape(1)
+f8.reshape(1)
+c16.reshape(1)
+U.reshape(1)
+S.reshape(1)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple.py
new file mode 100644
index 00000000..80116870
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple.py
@@ -0,0 +1,165 @@
+"""Simple expression that should pass with mypy."""
+import operator
+
+import numpy as np
+from collections.abc import Iterable
+
+# Basic checks
+array = np.array([1, 2])
+
+
+def ndarray_func(x):
+ # type: (np.ndarray) -> np.ndarray
+ return x
+
+
+ndarray_func(np.array([1, 2]))
+array == 1
+array.dtype == float
+
+# Dtype construction
+np.dtype(float)
+np.dtype(np.float64)
+np.dtype(None)
+np.dtype("float64")
+np.dtype(np.dtype(float))
+np.dtype(("U", 10))
+np.dtype((np.int32, (2, 2)))
+# Define the arguments on the previous line to prevent bidirectional
+# type inference in mypy from broadening the types.
+two_tuples_dtype = [("R", "u1"), ("G", "u1"), ("B", "u1")]
+np.dtype(two_tuples_dtype)
+
+three_tuples_dtype = [("R", "u1", 2)]
+np.dtype(three_tuples_dtype)
+
+mixed_tuples_dtype = [("R", "u1"), ("G", np.str_, 1)]
+np.dtype(mixed_tuples_dtype)
+
+shape_tuple_dtype = [("R", "u1", (2, 2))]
+np.dtype(shape_tuple_dtype)
+
+shape_like_dtype = [("R", "u1", (2, 2)), ("G", np.str_, 1)]
+np.dtype(shape_like_dtype)
+
+object_dtype = [("field1", object)]
+np.dtype(object_dtype)
+
+np.dtype((np.int32, (np.int8, 4)))
+
+# Dtype comparison
+np.dtype(float) == float
+np.dtype(float) != np.float64
+np.dtype(float) < None
+np.dtype(float) <= "float64"
+np.dtype(float) > np.dtype(float)
+np.dtype(float) >= np.dtype(("U", 10))
+
+# Iteration and indexing
+def iterable_func(x):
+ # type: (Iterable) -> Iterable
+ return x
+
+
+iterable_func(array)
+[element for element in array]
+iter(array)
+zip(array, array)
+array[1]
+array[:]
+array[...]
+array[:] = 0
+
+array_2d = np.ones((3, 3))
+array_2d[:2, :2]
+array_2d[..., 0]
+array_2d[:2, :2] = 0
+
+# Other special methods
+len(array)
+str(array)
+array_scalar = np.array(1)
+int(array_scalar)
+float(array_scalar)
+# currently does not work due to https://github.com/python/typeshed/issues/1904
+# complex(array_scalar)
+bytes(array_scalar)
+operator.index(array_scalar)
+bool(array_scalar)
+
+# comparisons
+array < 1
+array <= 1
+array == 1
+array != 1
+array > 1
+array >= 1
+1 < array
+1 <= array
+1 == array
+1 != array
+1 > array
+1 >= array
+
+# binary arithmetic
+array + 1
+1 + array
+array += 1
+
+array - 1
+1 - array
+array -= 1
+
+array * 1
+1 * array
+array *= 1
+
+nonzero_array = np.array([1, 2])
+array / 1
+1 / nonzero_array
+float_array = np.array([1.0, 2.0])
+float_array /= 1
+
+array // 1
+1 // nonzero_array
+array //= 1
+
+array % 1
+1 % nonzero_array
+array %= 1
+
+divmod(array, 1)
+divmod(1, nonzero_array)
+
+array ** 1
+1 ** array
+array **= 1
+
+array << 1
+1 << array
+array <<= 1
+
+array >> 1
+1 >> array
+array >>= 1
+
+array & 1
+1 & array
+array &= 1
+
+array ^ 1
+1 ^ array
+array ^= 1
+
+array | 1
+1 | array
+array |= 1
+
+# unary arithmetic
+-array
++array
+abs(array)
+~array
+
+# Other methods
+np.array([1, 2]).transpose()
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple_py3.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple_py3.py
new file mode 100644
index 00000000..c05a1ce6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple_py3.py
@@ -0,0 +1,6 @@
+import numpy as np
+
+array = np.array([1, 2])
+
+# The @ operator is not in python 2
+array @ array
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunc_config.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunc_config.py
new file mode 100644
index 00000000..58dd3e55
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunc_config.py
@@ -0,0 +1,64 @@
+"""Typing tests for `numpy.core._ufunc_config`."""
+
+import numpy as np
+
+
+def func1(a: str, b: int) -> None:
+ return None
+
+
+def func2(a: str, b: int, c: float = 1.0) -> None:
+ return None
+
+
+def func3(a: str, b: int) -> int:
+ return 0
+
+
+class Write1:
+ def write(self, a: str) -> None:
+ return None
+
+
+class Write2:
+ def write(self, a: str, b: int = 1) -> None:
+ return None
+
+
+class Write3:
+ def write(self, a: str) -> int:
+ return 0
+
+
+_err_default = np.geterr()
+_bufsize_default = np.getbufsize()
+_errcall_default = np.geterrcall()
+
+try:
+ np.seterr(all=None)
+ np.seterr(divide="ignore")
+ np.seterr(over="warn")
+ np.seterr(under="call")
+ np.seterr(invalid="raise")
+ np.geterr()
+
+ np.setbufsize(4096)
+ np.getbufsize()
+
+ np.seterrcall(func1)
+ np.seterrcall(func2)
+ np.seterrcall(func3)
+ np.seterrcall(Write1())
+ np.seterrcall(Write2())
+ np.seterrcall(Write3())
+ np.geterrcall()
+
+ with np.errstate(call=func1, all="call"):
+ pass
+ with np.errstate(call=Write1(), divide="log", over="log"):
+ pass
+
+finally:
+ np.seterr(**_err_default)
+ np.setbufsize(_bufsize_default)
+ np.seterrcall(_errcall_default)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunclike.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunclike.py
new file mode 100644
index 00000000..7eac89e8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunclike.py
@@ -0,0 +1,46 @@
+from __future__ import annotations
+from typing import Any
+import numpy as np
+
+
+class Object:
+ def __ceil__(self) -> Object:
+ return self
+
+ def __floor__(self) -> Object:
+ return self
+
+ def __ge__(self, value: object) -> bool:
+ return True
+
+ def __array__(self) -> np.ndarray[Any, np.dtype[np.object_]]:
+ ret = np.empty((), dtype=object)
+ ret[()] = self
+ return ret
+
+
+AR_LIKE_b = [True, True, False]
+AR_LIKE_u = [np.uint32(1), np.uint32(2), np.uint32(3)]
+AR_LIKE_i = [1, 2, 3]
+AR_LIKE_f = [1.0, 2.0, 3.0]
+AR_LIKE_O = [Object(), Object(), Object()]
+AR_U: np.ndarray[Any, np.dtype[np.str_]] = np.zeros(3, dtype="U5")
+
+np.fix(AR_LIKE_b)
+np.fix(AR_LIKE_u)
+np.fix(AR_LIKE_i)
+np.fix(AR_LIKE_f)
+np.fix(AR_LIKE_O)
+np.fix(AR_LIKE_f, out=AR_U)
+
+np.isposinf(AR_LIKE_b)
+np.isposinf(AR_LIKE_u)
+np.isposinf(AR_LIKE_i)
+np.isposinf(AR_LIKE_f)
+np.isposinf(AR_LIKE_f, out=AR_U)
+
+np.isneginf(AR_LIKE_b)
+np.isneginf(AR_LIKE_u)
+np.isneginf(AR_LIKE_i)
+np.isneginf(AR_LIKE_f)
+np.isneginf(AR_LIKE_f, out=AR_U)
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufuncs.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufuncs.py
new file mode 100644
index 00000000..3cc31ae5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufuncs.py
@@ -0,0 +1,17 @@
+import numpy as np
+
+np.sin(1)
+np.sin([1, 2, 3])
+np.sin(1, out=np.empty(1))
+np.matmul(np.ones((2, 2, 2)), np.ones((2, 2, 2)), axes=[(0, 1), (0, 1), (0, 1)])
+np.sin(1, signature="D->D")
+np.sin(1, extobj=[16, 1, lambda: None])
+# NOTE: `np.generic` subclasses are not guaranteed to support addition;
+# re-enable this we can infer the exact return type of `np.sin(...)`.
+#
+# np.sin(1) + np.sin(1)
+np.sin.types[0]
+np.sin.__name__
+np.sin.__doc__
+
+np.abs(np.array([1]))
diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/warnings_and_errors.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/warnings_and_errors.py
new file mode 100644
index 00000000..a556bf6b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/warnings_and_errors.py
@@ -0,0 +1,6 @@
+import numpy as np
+
+np.AxisError("test")
+np.AxisError(1, ndim=2)
+np.AxisError(1, ndim=2, msg_prefix="error")
+np.AxisError(1, ndim=2, msg_prefix=None)