aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/random/tests/test_smoke.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/random/tests/test_smoke.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/random/tests/test_smoke.py818
1 files changed, 818 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_smoke.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_smoke.py
new file mode 100644
index 00000000..9becc434
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_smoke.py
@@ -0,0 +1,818 @@
+import pickle
+from functools import partial
+
+import numpy as np
+import pytest
+from numpy.testing import assert_equal, assert_, assert_array_equal
+from numpy.random import (Generator, MT19937, PCG64, PCG64DXSM, Philox, SFC64)
+
+@pytest.fixture(scope='module',
+ params=(np.bool_, np.int8, np.int16, np.int32, np.int64,
+ np.uint8, np.uint16, np.uint32, np.uint64))
+def dtype(request):
+ return request.param
+
+
+def params_0(f):
+ val = f()
+ assert_(np.isscalar(val))
+ val = f(10)
+ assert_(val.shape == (10,))
+ val = f((10, 10))
+ assert_(val.shape == (10, 10))
+ val = f((10, 10, 10))
+ assert_(val.shape == (10, 10, 10))
+ val = f(size=(5, 5))
+ assert_(val.shape == (5, 5))
+
+
+def params_1(f, bounded=False):
+ a = 5.0
+ b = np.arange(2.0, 12.0)
+ c = np.arange(2.0, 102.0).reshape((10, 10))
+ d = np.arange(2.0, 1002.0).reshape((10, 10, 10))
+ e = np.array([2.0, 3.0])
+ g = np.arange(2.0, 12.0).reshape((1, 10, 1))
+ if bounded:
+ a = 0.5
+ b = b / (1.5 * b.max())
+ c = c / (1.5 * c.max())
+ d = d / (1.5 * d.max())
+ e = e / (1.5 * e.max())
+ g = g / (1.5 * g.max())
+
+ # Scalar
+ f(a)
+ # Scalar - size
+ f(a, size=(10, 10))
+ # 1d
+ f(b)
+ # 2d
+ f(c)
+ # 3d
+ f(d)
+ # 1d size
+ f(b, size=10)
+ # 2d - size - broadcast
+ f(e, size=(10, 2))
+ # 3d - size
+ f(g, size=(10, 10, 10))
+
+
+def comp_state(state1, state2):
+ identical = True
+ if isinstance(state1, dict):
+ for key in state1:
+ identical &= comp_state(state1[key], state2[key])
+ elif type(state1) != type(state2):
+ identical &= type(state1) == type(state2)
+ else:
+ if (isinstance(state1, (list, tuple, np.ndarray)) and isinstance(
+ state2, (list, tuple, np.ndarray))):
+ for s1, s2 in zip(state1, state2):
+ identical &= comp_state(s1, s2)
+ else:
+ identical &= state1 == state2
+ return identical
+
+
+def warmup(rg, n=None):
+ if n is None:
+ n = 11 + np.random.randint(0, 20)
+ rg.standard_normal(n)
+ rg.standard_normal(n)
+ rg.standard_normal(n, dtype=np.float32)
+ rg.standard_normal(n, dtype=np.float32)
+ rg.integers(0, 2 ** 24, n, dtype=np.uint64)
+ rg.integers(0, 2 ** 48, n, dtype=np.uint64)
+ rg.standard_gamma(11.0, n)
+ rg.standard_gamma(11.0, n, dtype=np.float32)
+ rg.random(n, dtype=np.float64)
+ rg.random(n, dtype=np.float32)
+
+
+class RNG:
+ @classmethod
+ def setup_class(cls):
+ # Overridden in test classes. Place holder to silence IDE noise
+ cls.bit_generator = PCG64
+ cls.advance = None
+ cls.seed = [12345]
+ cls.rg = Generator(cls.bit_generator(*cls.seed))
+ cls.initial_state = cls.rg.bit_generator.state
+ cls.seed_vector_bits = 64
+ cls._extra_setup()
+
+ @classmethod
+ def _extra_setup(cls):
+ cls.vec_1d = np.arange(2.0, 102.0)
+ cls.vec_2d = np.arange(2.0, 102.0)[None, :]
+ cls.mat = np.arange(2.0, 102.0, 0.01).reshape((100, 100))
+ cls.seed_error = TypeError
+
+ def _reset_state(self):
+ self.rg.bit_generator.state = self.initial_state
+
+ def test_init(self):
+ rg = Generator(self.bit_generator())
+ state = rg.bit_generator.state
+ rg.standard_normal(1)
+ rg.standard_normal(1)
+ rg.bit_generator.state = state
+ new_state = rg.bit_generator.state
+ assert_(comp_state(state, new_state))
+
+ def test_advance(self):
+ state = self.rg.bit_generator.state
+ if hasattr(self.rg.bit_generator, 'advance'):
+ self.rg.bit_generator.advance(self.advance)
+ assert_(not comp_state(state, self.rg.bit_generator.state))
+ else:
+ bitgen_name = self.rg.bit_generator.__class__.__name__
+ pytest.skip(f'Advance is not supported by {bitgen_name}')
+
+ def test_jump(self):
+ state = self.rg.bit_generator.state
+ if hasattr(self.rg.bit_generator, 'jumped'):
+ bit_gen2 = self.rg.bit_generator.jumped()
+ jumped_state = bit_gen2.state
+ assert_(not comp_state(state, jumped_state))
+ self.rg.random(2 * 3 * 5 * 7 * 11 * 13 * 17)
+ self.rg.bit_generator.state = state
+ bit_gen3 = self.rg.bit_generator.jumped()
+ rejumped_state = bit_gen3.state
+ assert_(comp_state(jumped_state, rejumped_state))
+ else:
+ bitgen_name = self.rg.bit_generator.__class__.__name__
+ if bitgen_name not in ('SFC64',):
+ raise AttributeError(f'no "jumped" in {bitgen_name}')
+ pytest.skip(f'Jump is not supported by {bitgen_name}')
+
+ def test_uniform(self):
+ r = self.rg.uniform(-1.0, 0.0, size=10)
+ assert_(len(r) == 10)
+ assert_((r > -1).all())
+ assert_((r <= 0).all())
+
+ def test_uniform_array(self):
+ r = self.rg.uniform(np.array([-1.0] * 10), 0.0, size=10)
+ assert_(len(r) == 10)
+ assert_((r > -1).all())
+ assert_((r <= 0).all())
+ r = self.rg.uniform(np.array([-1.0] * 10),
+ np.array([0.0] * 10), size=10)
+ assert_(len(r) == 10)
+ assert_((r > -1).all())
+ assert_((r <= 0).all())
+ r = self.rg.uniform(-1.0, np.array([0.0] * 10), size=10)
+ assert_(len(r) == 10)
+ assert_((r > -1).all())
+ assert_((r <= 0).all())
+
+ def test_random(self):
+ assert_(len(self.rg.random(10)) == 10)
+ params_0(self.rg.random)
+
+ def test_standard_normal_zig(self):
+ assert_(len(self.rg.standard_normal(10)) == 10)
+
+ def test_standard_normal(self):
+ assert_(len(self.rg.standard_normal(10)) == 10)
+ params_0(self.rg.standard_normal)
+
+ def test_standard_gamma(self):
+ assert_(len(self.rg.standard_gamma(10, 10)) == 10)
+ assert_(len(self.rg.standard_gamma(np.array([10] * 10), 10)) == 10)
+ params_1(self.rg.standard_gamma)
+
+ def test_standard_exponential(self):
+ assert_(len(self.rg.standard_exponential(10)) == 10)
+ params_0(self.rg.standard_exponential)
+
+ def test_standard_exponential_float(self):
+ randoms = self.rg.standard_exponential(10, dtype='float32')
+ assert_(len(randoms) == 10)
+ assert randoms.dtype == np.float32
+ params_0(partial(self.rg.standard_exponential, dtype='float32'))
+
+ def test_standard_exponential_float_log(self):
+ randoms = self.rg.standard_exponential(10, dtype='float32',
+ method='inv')
+ assert_(len(randoms) == 10)
+ assert randoms.dtype == np.float32
+ params_0(partial(self.rg.standard_exponential, dtype='float32',
+ method='inv'))
+
+ def test_standard_cauchy(self):
+ assert_(len(self.rg.standard_cauchy(10)) == 10)
+ params_0(self.rg.standard_cauchy)
+
+ def test_standard_t(self):
+ assert_(len(self.rg.standard_t(10, 10)) == 10)
+ params_1(self.rg.standard_t)
+
+ def test_binomial(self):
+ assert_(self.rg.binomial(10, .5) >= 0)
+ assert_(self.rg.binomial(1000, .5) >= 0)
+
+ def test_reset_state(self):
+ state = self.rg.bit_generator.state
+ int_1 = self.rg.integers(2**31)
+ self.rg.bit_generator.state = state
+ int_2 = self.rg.integers(2**31)
+ assert_(int_1 == int_2)
+
+ def test_entropy_init(self):
+ rg = Generator(self.bit_generator())
+ rg2 = Generator(self.bit_generator())
+ assert_(not comp_state(rg.bit_generator.state,
+ rg2.bit_generator.state))
+
+ def test_seed(self):
+ rg = Generator(self.bit_generator(*self.seed))
+ rg2 = Generator(self.bit_generator(*self.seed))
+ rg.random()
+ rg2.random()
+ assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
+
+ def test_reset_state_gauss(self):
+ rg = Generator(self.bit_generator(*self.seed))
+ rg.standard_normal()
+ state = rg.bit_generator.state
+ n1 = rg.standard_normal(size=10)
+ rg2 = Generator(self.bit_generator())
+ rg2.bit_generator.state = state
+ n2 = rg2.standard_normal(size=10)
+ assert_array_equal(n1, n2)
+
+ def test_reset_state_uint32(self):
+ rg = Generator(self.bit_generator(*self.seed))
+ rg.integers(0, 2 ** 24, 120, dtype=np.uint32)
+ state = rg.bit_generator.state
+ n1 = rg.integers(0, 2 ** 24, 10, dtype=np.uint32)
+ rg2 = Generator(self.bit_generator())
+ rg2.bit_generator.state = state
+ n2 = rg2.integers(0, 2 ** 24, 10, dtype=np.uint32)
+ assert_array_equal(n1, n2)
+
+ def test_reset_state_float(self):
+ rg = Generator(self.bit_generator(*self.seed))
+ rg.random(dtype='float32')
+ state = rg.bit_generator.state
+ n1 = rg.random(size=10, dtype='float32')
+ rg2 = Generator(self.bit_generator())
+ rg2.bit_generator.state = state
+ n2 = rg2.random(size=10, dtype='float32')
+ assert_((n1 == n2).all())
+
+ def test_shuffle(self):
+ original = np.arange(200, 0, -1)
+ permuted = self.rg.permutation(original)
+ assert_((original != permuted).any())
+
+ def test_permutation(self):
+ original = np.arange(200, 0, -1)
+ permuted = self.rg.permutation(original)
+ assert_((original != permuted).any())
+
+ def test_beta(self):
+ vals = self.rg.beta(2.0, 2.0, 10)
+ assert_(len(vals) == 10)
+ vals = self.rg.beta(np.array([2.0] * 10), 2.0)
+ assert_(len(vals) == 10)
+ vals = self.rg.beta(2.0, np.array([2.0] * 10))
+ assert_(len(vals) == 10)
+ vals = self.rg.beta(np.array([2.0] * 10), np.array([2.0] * 10))
+ assert_(len(vals) == 10)
+ vals = self.rg.beta(np.array([2.0] * 10), np.array([[2.0]] * 10))
+ assert_(vals.shape == (10, 10))
+
+ def test_bytes(self):
+ vals = self.rg.bytes(10)
+ assert_(len(vals) == 10)
+
+ def test_chisquare(self):
+ vals = self.rg.chisquare(2.0, 10)
+ assert_(len(vals) == 10)
+ params_1(self.rg.chisquare)
+
+ def test_exponential(self):
+ vals = self.rg.exponential(2.0, 10)
+ assert_(len(vals) == 10)
+ params_1(self.rg.exponential)
+
+ def test_f(self):
+ vals = self.rg.f(3, 1000, 10)
+ assert_(len(vals) == 10)
+
+ def test_gamma(self):
+ vals = self.rg.gamma(3, 2, 10)
+ assert_(len(vals) == 10)
+
+ def test_geometric(self):
+ vals = self.rg.geometric(0.5, 10)
+ assert_(len(vals) == 10)
+ params_1(self.rg.exponential, bounded=True)
+
+ def test_gumbel(self):
+ vals = self.rg.gumbel(2.0, 2.0, 10)
+ assert_(len(vals) == 10)
+
+ def test_laplace(self):
+ vals = self.rg.laplace(2.0, 2.0, 10)
+ assert_(len(vals) == 10)
+
+ def test_logitic(self):
+ vals = self.rg.logistic(2.0, 2.0, 10)
+ assert_(len(vals) == 10)
+
+ def test_logseries(self):
+ vals = self.rg.logseries(0.5, 10)
+ assert_(len(vals) == 10)
+
+ def test_negative_binomial(self):
+ vals = self.rg.negative_binomial(10, 0.2, 10)
+ assert_(len(vals) == 10)
+
+ def test_noncentral_chisquare(self):
+ vals = self.rg.noncentral_chisquare(10, 2, 10)
+ assert_(len(vals) == 10)
+
+ def test_noncentral_f(self):
+ vals = self.rg.noncentral_f(3, 1000, 2, 10)
+ assert_(len(vals) == 10)
+ vals = self.rg.noncentral_f(np.array([3] * 10), 1000, 2)
+ assert_(len(vals) == 10)
+ vals = self.rg.noncentral_f(3, np.array([1000] * 10), 2)
+ assert_(len(vals) == 10)
+ vals = self.rg.noncentral_f(3, 1000, np.array([2] * 10))
+ assert_(len(vals) == 10)
+
+ def test_normal(self):
+ vals = self.rg.normal(10, 0.2, 10)
+ assert_(len(vals) == 10)
+
+ def test_pareto(self):
+ vals = self.rg.pareto(3.0, 10)
+ assert_(len(vals) == 10)
+
+ def test_poisson(self):
+ vals = self.rg.poisson(10, 10)
+ assert_(len(vals) == 10)
+ vals = self.rg.poisson(np.array([10] * 10))
+ assert_(len(vals) == 10)
+ params_1(self.rg.poisson)
+
+ def test_power(self):
+ vals = self.rg.power(0.2, 10)
+ assert_(len(vals) == 10)
+
+ def test_integers(self):
+ vals = self.rg.integers(10, 20, 10)
+ assert_(len(vals) == 10)
+
+ def test_rayleigh(self):
+ vals = self.rg.rayleigh(0.2, 10)
+ assert_(len(vals) == 10)
+ params_1(self.rg.rayleigh, bounded=True)
+
+ def test_vonmises(self):
+ vals = self.rg.vonmises(10, 0.2, 10)
+ assert_(len(vals) == 10)
+
+ def test_wald(self):
+ vals = self.rg.wald(1.0, 1.0, 10)
+ assert_(len(vals) == 10)
+
+ def test_weibull(self):
+ vals = self.rg.weibull(1.0, 10)
+ assert_(len(vals) == 10)
+
+ def test_zipf(self):
+ vals = self.rg.zipf(10, 10)
+ assert_(len(vals) == 10)
+ vals = self.rg.zipf(self.vec_1d)
+ assert_(len(vals) == 100)
+ vals = self.rg.zipf(self.vec_2d)
+ assert_(vals.shape == (1, 100))
+ vals = self.rg.zipf(self.mat)
+ assert_(vals.shape == (100, 100))
+
+ def test_hypergeometric(self):
+ vals = self.rg.hypergeometric(25, 25, 20)
+ assert_(np.isscalar(vals))
+ vals = self.rg.hypergeometric(np.array([25] * 10), 25, 20)
+ assert_(vals.shape == (10,))
+
+ def test_triangular(self):
+ vals = self.rg.triangular(-5, 0, 5)
+ assert_(np.isscalar(vals))
+ vals = self.rg.triangular(-5, np.array([0] * 10), 5)
+ assert_(vals.shape == (10,))
+
+ def test_multivariate_normal(self):
+ mean = [0, 0]
+ cov = [[1, 0], [0, 100]] # diagonal covariance
+ x = self.rg.multivariate_normal(mean, cov, 5000)
+ assert_(x.shape == (5000, 2))
+ x_zig = self.rg.multivariate_normal(mean, cov, 5000)
+ assert_(x.shape == (5000, 2))
+ x_inv = self.rg.multivariate_normal(mean, cov, 5000)
+ assert_(x.shape == (5000, 2))
+ assert_((x_zig != x_inv).any())
+
+ def test_multinomial(self):
+ vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3])
+ assert_(vals.shape == (2,))
+ vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3], size=10)
+ assert_(vals.shape == (10, 2))
+
+ def test_dirichlet(self):
+ s = self.rg.dirichlet((10, 5, 3), 20)
+ assert_(s.shape == (20, 3))
+
+ def test_pickle(self):
+ pick = pickle.dumps(self.rg)
+ unpick = pickle.loads(pick)
+ assert_((type(self.rg) == type(unpick)))
+ assert_(comp_state(self.rg.bit_generator.state,
+ unpick.bit_generator.state))
+
+ pick = pickle.dumps(self.rg)
+ unpick = pickle.loads(pick)
+ assert_((type(self.rg) == type(unpick)))
+ assert_(comp_state(self.rg.bit_generator.state,
+ unpick.bit_generator.state))
+
+ def test_seed_array(self):
+ if self.seed_vector_bits is None:
+ bitgen_name = self.bit_generator.__name__
+ pytest.skip(f'Vector seeding is not supported by {bitgen_name}')
+
+ if self.seed_vector_bits == 32:
+ dtype = np.uint32
+ else:
+ dtype = np.uint64
+ seed = np.array([1], dtype=dtype)
+ bg = self.bit_generator(seed)
+ state1 = bg.state
+ bg = self.bit_generator(1)
+ state2 = bg.state
+ assert_(comp_state(state1, state2))
+
+ seed = np.arange(4, dtype=dtype)
+ bg = self.bit_generator(seed)
+ state1 = bg.state
+ bg = self.bit_generator(seed[0])
+ state2 = bg.state
+ assert_(not comp_state(state1, state2))
+
+ seed = np.arange(1500, dtype=dtype)
+ bg = self.bit_generator(seed)
+ state1 = bg.state
+ bg = self.bit_generator(seed[0])
+ state2 = bg.state
+ assert_(not comp_state(state1, state2))
+
+ seed = 2 ** np.mod(np.arange(1500, dtype=dtype),
+ self.seed_vector_bits - 1) + 1
+ bg = self.bit_generator(seed)
+ state1 = bg.state
+ bg = self.bit_generator(seed[0])
+ state2 = bg.state
+ assert_(not comp_state(state1, state2))
+
+ def test_uniform_float(self):
+ rg = Generator(self.bit_generator(12345))
+ warmup(rg)
+ state = rg.bit_generator.state
+ r1 = rg.random(11, dtype=np.float32)
+ rg2 = Generator(self.bit_generator())
+ warmup(rg2)
+ rg2.bit_generator.state = state
+ r2 = rg2.random(11, dtype=np.float32)
+ assert_array_equal(r1, r2)
+ assert_equal(r1.dtype, np.float32)
+ assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
+
+ def test_gamma_floats(self):
+ rg = Generator(self.bit_generator())
+ warmup(rg)
+ state = rg.bit_generator.state
+ r1 = rg.standard_gamma(4.0, 11, dtype=np.float32)
+ rg2 = Generator(self.bit_generator())
+ warmup(rg2)
+ rg2.bit_generator.state = state
+ r2 = rg2.standard_gamma(4.0, 11, dtype=np.float32)
+ assert_array_equal(r1, r2)
+ assert_equal(r1.dtype, np.float32)
+ assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
+
+ def test_normal_floats(self):
+ rg = Generator(self.bit_generator())
+ warmup(rg)
+ state = rg.bit_generator.state
+ r1 = rg.standard_normal(11, dtype=np.float32)
+ rg2 = Generator(self.bit_generator())
+ warmup(rg2)
+ rg2.bit_generator.state = state
+ r2 = rg2.standard_normal(11, dtype=np.float32)
+ assert_array_equal(r1, r2)
+ assert_equal(r1.dtype, np.float32)
+ assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
+
+ def test_normal_zig_floats(self):
+ rg = Generator(self.bit_generator())
+ warmup(rg)
+ state = rg.bit_generator.state
+ r1 = rg.standard_normal(11, dtype=np.float32)
+ rg2 = Generator(self.bit_generator())
+ warmup(rg2)
+ rg2.bit_generator.state = state
+ r2 = rg2.standard_normal(11, dtype=np.float32)
+ assert_array_equal(r1, r2)
+ assert_equal(r1.dtype, np.float32)
+ assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
+
+ def test_output_fill(self):
+ rg = self.rg
+ state = rg.bit_generator.state
+ size = (31, 7, 97)
+ existing = np.empty(size)
+ rg.bit_generator.state = state
+ rg.standard_normal(out=existing)
+ rg.bit_generator.state = state
+ direct = rg.standard_normal(size=size)
+ assert_equal(direct, existing)
+
+ sized = np.empty(size)
+ rg.bit_generator.state = state
+ rg.standard_normal(out=sized, size=sized.shape)
+
+ existing = np.empty(size, dtype=np.float32)
+ rg.bit_generator.state = state
+ rg.standard_normal(out=existing, dtype=np.float32)
+ rg.bit_generator.state = state
+ direct = rg.standard_normal(size=size, dtype=np.float32)
+ assert_equal(direct, existing)
+
+ def test_output_filling_uniform(self):
+ rg = self.rg
+ state = rg.bit_generator.state
+ size = (31, 7, 97)
+ existing = np.empty(size)
+ rg.bit_generator.state = state
+ rg.random(out=existing)
+ rg.bit_generator.state = state
+ direct = rg.random(size=size)
+ assert_equal(direct, existing)
+
+ existing = np.empty(size, dtype=np.float32)
+ rg.bit_generator.state = state
+ rg.random(out=existing, dtype=np.float32)
+ rg.bit_generator.state = state
+ direct = rg.random(size=size, dtype=np.float32)
+ assert_equal(direct, existing)
+
+ def test_output_filling_exponential(self):
+ rg = self.rg
+ state = rg.bit_generator.state
+ size = (31, 7, 97)
+ existing = np.empty(size)
+ rg.bit_generator.state = state
+ rg.standard_exponential(out=existing)
+ rg.bit_generator.state = state
+ direct = rg.standard_exponential(size=size)
+ assert_equal(direct, existing)
+
+ existing = np.empty(size, dtype=np.float32)
+ rg.bit_generator.state = state
+ rg.standard_exponential(out=existing, dtype=np.float32)
+ rg.bit_generator.state = state
+ direct = rg.standard_exponential(size=size, dtype=np.float32)
+ assert_equal(direct, existing)
+
+ def test_output_filling_gamma(self):
+ rg = self.rg
+ state = rg.bit_generator.state
+ size = (31, 7, 97)
+ existing = np.zeros(size)
+ rg.bit_generator.state = state
+ rg.standard_gamma(1.0, out=existing)
+ rg.bit_generator.state = state
+ direct = rg.standard_gamma(1.0, size=size)
+ assert_equal(direct, existing)
+
+ existing = np.zeros(size, dtype=np.float32)
+ rg.bit_generator.state = state
+ rg.standard_gamma(1.0, out=existing, dtype=np.float32)
+ rg.bit_generator.state = state
+ direct = rg.standard_gamma(1.0, size=size, dtype=np.float32)
+ assert_equal(direct, existing)
+
+ def test_output_filling_gamma_broadcast(self):
+ rg = self.rg
+ state = rg.bit_generator.state
+ size = (31, 7, 97)
+ mu = np.arange(97.0) + 1.0
+ existing = np.zeros(size)
+ rg.bit_generator.state = state
+ rg.standard_gamma(mu, out=existing)
+ rg.bit_generator.state = state
+ direct = rg.standard_gamma(mu, size=size)
+ assert_equal(direct, existing)
+
+ existing = np.zeros(size, dtype=np.float32)
+ rg.bit_generator.state = state
+ rg.standard_gamma(mu, out=existing, dtype=np.float32)
+ rg.bit_generator.state = state
+ direct = rg.standard_gamma(mu, size=size, dtype=np.float32)
+ assert_equal(direct, existing)
+
+ def test_output_fill_error(self):
+ rg = self.rg
+ size = (31, 7, 97)
+ existing = np.empty(size)
+ with pytest.raises(TypeError):
+ rg.standard_normal(out=existing, dtype=np.float32)
+ with pytest.raises(ValueError):
+ rg.standard_normal(out=existing[::3])
+ existing = np.empty(size, dtype=np.float32)
+ with pytest.raises(TypeError):
+ rg.standard_normal(out=existing, dtype=np.float64)
+
+ existing = np.zeros(size, dtype=np.float32)
+ with pytest.raises(TypeError):
+ rg.standard_gamma(1.0, out=existing, dtype=np.float64)
+ with pytest.raises(ValueError):
+ rg.standard_gamma(1.0, out=existing[::3], dtype=np.float32)
+ existing = np.zeros(size, dtype=np.float64)
+ with pytest.raises(TypeError):
+ rg.standard_gamma(1.0, out=existing, dtype=np.float32)
+ with pytest.raises(ValueError):
+ rg.standard_gamma(1.0, out=existing[::3])
+
+ def test_integers_broadcast(self, dtype):
+ if dtype == np.bool_:
+ upper = 2
+ lower = 0
+ else:
+ info = np.iinfo(dtype)
+ upper = int(info.max) + 1
+ lower = info.min
+ self._reset_state()
+ a = self.rg.integers(lower, [upper] * 10, dtype=dtype)
+ self._reset_state()
+ b = self.rg.integers([lower] * 10, upper, dtype=dtype)
+ assert_equal(a, b)
+ self._reset_state()
+ c = self.rg.integers(lower, upper, size=10, dtype=dtype)
+ assert_equal(a, c)
+ self._reset_state()
+ d = self.rg.integers(np.array(
+ [lower] * 10), np.array([upper], dtype=object), size=10,
+ dtype=dtype)
+ assert_equal(a, d)
+ self._reset_state()
+ e = self.rg.integers(
+ np.array([lower] * 10), np.array([upper] * 10), size=10,
+ dtype=dtype)
+ assert_equal(a, e)
+
+ self._reset_state()
+ a = self.rg.integers(0, upper, size=10, dtype=dtype)
+ self._reset_state()
+ b = self.rg.integers([upper] * 10, dtype=dtype)
+ assert_equal(a, b)
+
+ def test_integers_numpy(self, dtype):
+ high = np.array([1])
+ low = np.array([0])
+
+ out = self.rg.integers(low, high, dtype=dtype)
+ assert out.shape == (1,)
+
+ out = self.rg.integers(low[0], high, dtype=dtype)
+ assert out.shape == (1,)
+
+ out = self.rg.integers(low, high[0], dtype=dtype)
+ assert out.shape == (1,)
+
+ def test_integers_broadcast_errors(self, dtype):
+ if dtype == np.bool_:
+ upper = 2
+ lower = 0
+ else:
+ info = np.iinfo(dtype)
+ upper = int(info.max) + 1
+ lower = info.min
+ with pytest.raises(ValueError):
+ self.rg.integers(lower, [upper + 1] * 10, dtype=dtype)
+ with pytest.raises(ValueError):
+ self.rg.integers(lower - 1, [upper] * 10, dtype=dtype)
+ with pytest.raises(ValueError):
+ self.rg.integers([lower - 1], [upper] * 10, dtype=dtype)
+ with pytest.raises(ValueError):
+ self.rg.integers([0], [0], dtype=dtype)
+
+
+class TestMT19937(RNG):
+ @classmethod
+ def setup_class(cls):
+ cls.bit_generator = MT19937
+ cls.advance = None
+ cls.seed = [2 ** 21 + 2 ** 16 + 2 ** 5 + 1]
+ cls.rg = Generator(cls.bit_generator(*cls.seed))
+ cls.initial_state = cls.rg.bit_generator.state
+ cls.seed_vector_bits = 32
+ cls._extra_setup()
+ cls.seed_error = ValueError
+
+ def test_numpy_state(self):
+ nprg = np.random.RandomState()
+ nprg.standard_normal(99)
+ state = nprg.get_state()
+ self.rg.bit_generator.state = state
+ state2 = self.rg.bit_generator.state
+ assert_((state[1] == state2['state']['key']).all())
+ assert_((state[2] == state2['state']['pos']))
+
+
+class TestPhilox(RNG):
+ @classmethod
+ def setup_class(cls):
+ cls.bit_generator = Philox
+ cls.advance = 2**63 + 2**31 + 2**15 + 1
+ cls.seed = [12345]
+ cls.rg = Generator(cls.bit_generator(*cls.seed))
+ cls.initial_state = cls.rg.bit_generator.state
+ cls.seed_vector_bits = 64
+ cls._extra_setup()
+
+
+class TestSFC64(RNG):
+ @classmethod
+ def setup_class(cls):
+ cls.bit_generator = SFC64
+ cls.advance = None
+ cls.seed = [12345]
+ cls.rg = Generator(cls.bit_generator(*cls.seed))
+ cls.initial_state = cls.rg.bit_generator.state
+ cls.seed_vector_bits = 192
+ cls._extra_setup()
+
+
+class TestPCG64(RNG):
+ @classmethod
+ def setup_class(cls):
+ cls.bit_generator = PCG64
+ cls.advance = 2**63 + 2**31 + 2**15 + 1
+ cls.seed = [12345]
+ cls.rg = Generator(cls.bit_generator(*cls.seed))
+ cls.initial_state = cls.rg.bit_generator.state
+ cls.seed_vector_bits = 64
+ cls._extra_setup()
+
+
+class TestPCG64DXSM(RNG):
+ @classmethod
+ def setup_class(cls):
+ cls.bit_generator = PCG64DXSM
+ cls.advance = 2**63 + 2**31 + 2**15 + 1
+ cls.seed = [12345]
+ cls.rg = Generator(cls.bit_generator(*cls.seed))
+ cls.initial_state = cls.rg.bit_generator.state
+ cls.seed_vector_bits = 64
+ cls._extra_setup()
+
+
+class TestDefaultRNG(RNG):
+ @classmethod
+ def setup_class(cls):
+ # This will duplicate some tests that directly instantiate a fresh
+ # Generator(), but that's okay.
+ cls.bit_generator = PCG64
+ cls.advance = 2**63 + 2**31 + 2**15 + 1
+ cls.seed = [12345]
+ cls.rg = np.random.default_rng(*cls.seed)
+ cls.initial_state = cls.rg.bit_generator.state
+ cls.seed_vector_bits = 64
+ cls._extra_setup()
+
+ def test_default_is_pcg64(self):
+ # In order to change the default BitGenerator, we'll go through
+ # a deprecation cycle to move to a different function.
+ assert_(isinstance(self.rg.bit_generator, PCG64))
+
+ def test_seed(self):
+ np.random.default_rng()
+ np.random.default_rng(None)
+ np.random.default_rng(12345)
+ np.random.default_rng(0)
+ np.random.default_rng(43660444402423911716352051725018508569)
+ np.random.default_rng([43660444402423911716352051725018508569,
+ 279705150948142787361475340226491943209])
+ with pytest.raises(ValueError):
+ np.random.default_rng(-1)
+ with pytest.raises(ValueError):
+ np.random.default_rng([12345, -1])