aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/random/tests/test_random.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/random/tests/test_random.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/random/tests/test_random.py1750
1 files changed, 1750 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_random.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_random.py
new file mode 100644
index 00000000..3d081fe1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_random.py
@@ -0,0 +1,1750 @@
+import warnings
+
+import pytest
+
+import numpy as np
+from numpy.testing import (
+ assert_, assert_raises, assert_equal, assert_warns,
+ assert_no_warnings, assert_array_equal, assert_array_almost_equal,
+ suppress_warnings, IS_WASM
+ )
+from numpy import random
+import sys
+
+
+class TestSeed:
+ def test_scalar(self):
+ s = np.random.RandomState(0)
+ assert_equal(s.randint(1000), 684)
+ s = np.random.RandomState(4294967295)
+ assert_equal(s.randint(1000), 419)
+
+ def test_array(self):
+ s = np.random.RandomState(range(10))
+ assert_equal(s.randint(1000), 468)
+ s = np.random.RandomState(np.arange(10))
+ assert_equal(s.randint(1000), 468)
+ s = np.random.RandomState([0])
+ assert_equal(s.randint(1000), 973)
+ s = np.random.RandomState([4294967295])
+ assert_equal(s.randint(1000), 265)
+
+ def test_invalid_scalar(self):
+ # seed must be an unsigned 32 bit integer
+ assert_raises(TypeError, np.random.RandomState, -0.5)
+ assert_raises(ValueError, np.random.RandomState, -1)
+
+ def test_invalid_array(self):
+ # seed must be an unsigned 32 bit integer
+ assert_raises(TypeError, np.random.RandomState, [-0.5])
+ assert_raises(ValueError, np.random.RandomState, [-1])
+ assert_raises(ValueError, np.random.RandomState, [4294967296])
+ assert_raises(ValueError, np.random.RandomState, [1, 2, 4294967296])
+ assert_raises(ValueError, np.random.RandomState, [1, -2, 4294967296])
+
+ def test_invalid_array_shape(self):
+ # gh-9832
+ assert_raises(ValueError, np.random.RandomState,
+ np.array([], dtype=np.int64))
+ assert_raises(ValueError, np.random.RandomState, [[1, 2, 3]])
+ assert_raises(ValueError, np.random.RandomState, [[1, 2, 3],
+ [4, 5, 6]])
+
+
+class TestBinomial:
+ def test_n_zero(self):
+ # Tests the corner case of n == 0 for the binomial distribution.
+ # binomial(0, p) should be zero for any p in [0, 1].
+ # This test addresses issue #3480.
+ zeros = np.zeros(2, dtype='int')
+ for p in [0, .5, 1]:
+ assert_(random.binomial(0, p) == 0)
+ assert_array_equal(random.binomial(zeros, p), zeros)
+
+ def test_p_is_nan(self):
+ # Issue #4571.
+ assert_raises(ValueError, random.binomial, 1, np.nan)
+
+
+class TestMultinomial:
+ def test_basic(self):
+ random.multinomial(100, [0.2, 0.8])
+
+ def test_zero_probability(self):
+ random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
+
+ def test_int_negative_interval(self):
+ assert_(-5 <= random.randint(-5, -1) < -1)
+ x = random.randint(-5, -1, 5)
+ assert_(np.all(-5 <= x))
+ assert_(np.all(x < -1))
+
+ def test_size(self):
+ # gh-3173
+ p = [0.5, 0.5]
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
+ assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
+ assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
+ assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape,
+ (2, 2, 2))
+
+ assert_raises(TypeError, np.random.multinomial, 1, p,
+ float(1))
+
+ def test_multidimensional_pvals(self):
+ assert_raises(ValueError, np.random.multinomial, 10, [[0, 1]])
+ assert_raises(ValueError, np.random.multinomial, 10, [[0], [1]])
+ assert_raises(ValueError, np.random.multinomial, 10, [[[0], [1]], [[1], [0]]])
+ assert_raises(ValueError, np.random.multinomial, 10, np.array([[0, 1], [1, 0]]))
+
+
+class TestSetState:
+ def setup_method(self):
+ self.seed = 1234567890
+ self.prng = random.RandomState(self.seed)
+ self.state = self.prng.get_state()
+
+ def test_basic(self):
+ old = self.prng.tomaxint(16)
+ self.prng.set_state(self.state)
+ new = self.prng.tomaxint(16)
+ assert_(np.all(old == new))
+
+ def test_gaussian_reset(self):
+ # Make sure the cached every-other-Gaussian is reset.
+ old = self.prng.standard_normal(size=3)
+ self.prng.set_state(self.state)
+ new = self.prng.standard_normal(size=3)
+ assert_(np.all(old == new))
+
+ def test_gaussian_reset_in_media_res(self):
+ # When the state is saved with a cached Gaussian, make sure the
+ # cached Gaussian is restored.
+
+ self.prng.standard_normal()
+ state = self.prng.get_state()
+ old = self.prng.standard_normal(size=3)
+ self.prng.set_state(state)
+ new = self.prng.standard_normal(size=3)
+ assert_(np.all(old == new))
+
+ def test_backwards_compatibility(self):
+ # Make sure we can accept old state tuples that do not have the
+ # cached Gaussian value.
+ old_state = self.state[:-2]
+ x1 = self.prng.standard_normal(size=16)
+ self.prng.set_state(old_state)
+ x2 = self.prng.standard_normal(size=16)
+ self.prng.set_state(self.state)
+ x3 = self.prng.standard_normal(size=16)
+ assert_(np.all(x1 == x2))
+ assert_(np.all(x1 == x3))
+
+ def test_negative_binomial(self):
+ # Ensure that the negative binomial results take floating point
+ # arguments without truncation.
+ self.prng.negative_binomial(0.5, 0.5)
+
+ def test_set_invalid_state(self):
+ # gh-25402
+ with pytest.raises(IndexError):
+ self.prng.set_state(())
+
+
+class TestRandint:
+
+ rfunc = np.random.randint
+
+ # valid integer/boolean types
+ itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16,
+ np.int32, np.uint32, np.int64, np.uint64]
+
+ def test_unsupported_type(self):
+ assert_raises(TypeError, self.rfunc, 1, dtype=float)
+
+ def test_bounds_checking(self):
+ for dt in self.itype:
+ lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
+ ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
+ assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt)
+ assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt)
+ assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt)
+ assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt)
+
+ def test_rng_zero_and_extremes(self):
+ for dt in self.itype:
+ lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
+ ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
+
+ tgt = ubnd - 1
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
+
+ tgt = lbnd
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
+
+ tgt = (lbnd + ubnd)//2
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
+
+ def test_full_range(self):
+ # Test for ticket #1690
+
+ for dt in self.itype:
+ lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
+ ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
+
+ try:
+ self.rfunc(lbnd, ubnd, dtype=dt)
+ except Exception as e:
+ raise AssertionError("No error should have been raised, "
+ "but one was with the following "
+ "message:\n\n%s" % str(e))
+
+ def test_in_bounds_fuzz(self):
+ # Don't use fixed seed
+ np.random.seed()
+
+ for dt in self.itype[1:]:
+ for ubnd in [4, 8, 16]:
+ vals = self.rfunc(2, ubnd, size=2**16, dtype=dt)
+ assert_(vals.max() < ubnd)
+ assert_(vals.min() >= 2)
+
+ vals = self.rfunc(0, 2, size=2**16, dtype=np.bool_)
+
+ assert_(vals.max() < 2)
+ assert_(vals.min() >= 0)
+
+ def test_repeatability(self):
+ import hashlib
+ # We use a sha256 hash of generated sequences of 1000 samples
+ # in the range [0, 6) for all but bool, where the range
+ # is [0, 2). Hashes are for little endian numbers.
+ tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71',
+ 'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4',
+ 'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f',
+ 'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e',
+ 'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404',
+ 'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4',
+ 'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f',
+ 'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e',
+ 'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'}
+
+ for dt in self.itype[1:]:
+ np.random.seed(1234)
+
+ # view as little endian for hash
+ if sys.byteorder == 'little':
+ val = self.rfunc(0, 6, size=1000, dtype=dt)
+ else:
+ val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap()
+
+ res = hashlib.sha256(val.view(np.int8)).hexdigest()
+ assert_(tgt[np.dtype(dt).name] == res)
+
+ # bools do not depend on endianness
+ np.random.seed(1234)
+ val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8)
+ res = hashlib.sha256(val).hexdigest()
+ assert_(tgt[np.dtype(bool).name] == res)
+
+ def test_int64_uint64_corner_case(self):
+ # When stored in Numpy arrays, `lbnd` is casted
+ # as np.int64, and `ubnd` is casted as np.uint64.
+ # Checking whether `lbnd` >= `ubnd` used to be
+ # done solely via direct comparison, which is incorrect
+ # because when Numpy tries to compare both numbers,
+ # it casts both to np.float64 because there is
+ # no integer superset of np.int64 and np.uint64. However,
+ # `ubnd` is too large to be represented in np.float64,
+ # causing it be round down to np.iinfo(np.int64).max,
+ # leading to a ValueError because `lbnd` now equals
+ # the new `ubnd`.
+
+ dt = np.int64
+ tgt = np.iinfo(np.int64).max
+ lbnd = np.int64(np.iinfo(np.int64).max)
+ ubnd = np.uint64(np.iinfo(np.int64).max + 1)
+
+ # None of these function calls should
+ # generate a ValueError now.
+ actual = np.random.randint(lbnd, ubnd, dtype=dt)
+ assert_equal(actual, tgt)
+
+ def test_respect_dtype_singleton(self):
+ # See gh-7203
+ for dt in self.itype:
+ lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
+ ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
+
+ sample = self.rfunc(lbnd, ubnd, dtype=dt)
+ assert_equal(sample.dtype, np.dtype(dt))
+
+ for dt in (bool, int):
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
+
+ # gh-7284: Ensure that we get Python data types
+ sample = self.rfunc(lbnd, ubnd, dtype=dt)
+ assert_(not hasattr(sample, 'dtype'))
+ assert_equal(type(sample), dt)
+
+
+class TestRandomDist:
+ # Make sure the random distribution returns the correct value for a
+ # given seed
+
+ def setup_method(self):
+ self.seed = 1234567890
+
+ def test_rand(self):
+ np.random.seed(self.seed)
+ actual = np.random.rand(3, 2)
+ desired = np.array([[0.61879477158567997, 0.59162362775974664],
+ [0.88868358904449662, 0.89165480011560816],
+ [0.4575674820298663, 0.7781880808593471]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_randn(self):
+ np.random.seed(self.seed)
+ actual = np.random.randn(3, 2)
+ desired = np.array([[1.34016345771863121, 1.73759122771936081],
+ [1.498988344300628, -0.2286433324536169],
+ [2.031033998682787, 2.17032494605655257]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_randint(self):
+ np.random.seed(self.seed)
+ actual = np.random.randint(-99, 99, size=(3, 2))
+ desired = np.array([[31, 3],
+ [-52, 41],
+ [-48, -66]])
+ assert_array_equal(actual, desired)
+
+ def test_random_integers(self):
+ np.random.seed(self.seed)
+ with suppress_warnings() as sup:
+ w = sup.record(DeprecationWarning)
+ actual = np.random.random_integers(-99, 99, size=(3, 2))
+ assert_(len(w) == 1)
+ desired = np.array([[31, 3],
+ [-52, 41],
+ [-48, -66]])
+ assert_array_equal(actual, desired)
+
+ def test_random_integers_max_int(self):
+ # Tests whether random_integers can generate the
+ # maximum allowed Python int that can be converted
+ # into a C long. Previous implementations of this
+ # method have thrown an OverflowError when attempting
+ # to generate this integer.
+ with suppress_warnings() as sup:
+ w = sup.record(DeprecationWarning)
+ actual = np.random.random_integers(np.iinfo('l').max,
+ np.iinfo('l').max)
+ assert_(len(w) == 1)
+
+ desired = np.iinfo('l').max
+ assert_equal(actual, desired)
+
+ def test_random_integers_deprecated(self):
+ with warnings.catch_warnings():
+ warnings.simplefilter("error", DeprecationWarning)
+
+ # DeprecationWarning raised with high == None
+ assert_raises(DeprecationWarning,
+ np.random.random_integers,
+ np.iinfo('l').max)
+
+ # DeprecationWarning raised with high != None
+ assert_raises(DeprecationWarning,
+ np.random.random_integers,
+ np.iinfo('l').max, np.iinfo('l').max)
+
+ def test_random(self):
+ np.random.seed(self.seed)
+ actual = np.random.random((3, 2))
+ desired = np.array([[0.61879477158567997, 0.59162362775974664],
+ [0.88868358904449662, 0.89165480011560816],
+ [0.4575674820298663, 0.7781880808593471]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_choice_uniform_replace(self):
+ np.random.seed(self.seed)
+ actual = np.random.choice(4, 4)
+ desired = np.array([2, 3, 2, 3])
+ assert_array_equal(actual, desired)
+
+ def test_choice_nonuniform_replace(self):
+ np.random.seed(self.seed)
+ actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
+ desired = np.array([1, 1, 2, 2])
+ assert_array_equal(actual, desired)
+
+ def test_choice_uniform_noreplace(self):
+ np.random.seed(self.seed)
+ actual = np.random.choice(4, 3, replace=False)
+ desired = np.array([0, 1, 3])
+ assert_array_equal(actual, desired)
+
+ def test_choice_nonuniform_noreplace(self):
+ np.random.seed(self.seed)
+ actual = np.random.choice(4, 3, replace=False,
+ p=[0.1, 0.3, 0.5, 0.1])
+ desired = np.array([2, 3, 1])
+ assert_array_equal(actual, desired)
+
+ def test_choice_noninteger(self):
+ np.random.seed(self.seed)
+ actual = np.random.choice(['a', 'b', 'c', 'd'], 4)
+ desired = np.array(['c', 'd', 'c', 'd'])
+ assert_array_equal(actual, desired)
+
+ def test_choice_exceptions(self):
+ sample = np.random.choice
+ assert_raises(ValueError, sample, -1, 3)
+ assert_raises(ValueError, sample, 3., 3)
+ assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
+ assert_raises(ValueError, sample, [], 3)
+ assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
+ p=[[0.25, 0.25], [0.25, 0.25]])
+ assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
+ assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
+ assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
+ assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
+ # gh-13087
+ assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
+ assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
+ assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
+ assert_raises(ValueError, sample, [1, 2, 3], 2,
+ replace=False, p=[1, 0, 0])
+
+ def test_choice_return_shape(self):
+ p = [0.1, 0.9]
+ # Check scalar
+ assert_(np.isscalar(np.random.choice(2, replace=True)))
+ assert_(np.isscalar(np.random.choice(2, replace=False)))
+ assert_(np.isscalar(np.random.choice(2, replace=True, p=p)))
+ assert_(np.isscalar(np.random.choice(2, replace=False, p=p)))
+ assert_(np.isscalar(np.random.choice([1, 2], replace=True)))
+ assert_(np.random.choice([None], replace=True) is None)
+ a = np.array([1, 2])
+ arr = np.empty(1, dtype=object)
+ arr[0] = a
+ assert_(np.random.choice(arr, replace=True) is a)
+
+ # Check 0-d array
+ s = tuple()
+ assert_(not np.isscalar(np.random.choice(2, s, replace=True)))
+ assert_(not np.isscalar(np.random.choice(2, s, replace=False)))
+ assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p)))
+ assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p)))
+ assert_(not np.isscalar(np.random.choice([1, 2], s, replace=True)))
+ assert_(np.random.choice([None], s, replace=True).ndim == 0)
+ a = np.array([1, 2])
+ arr = np.empty(1, dtype=object)
+ arr[0] = a
+ assert_(np.random.choice(arr, s, replace=True).item() is a)
+
+ # Check multi dimensional array
+ s = (2, 3)
+ p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
+ assert_equal(np.random.choice(6, s, replace=True).shape, s)
+ assert_equal(np.random.choice(6, s, replace=False).shape, s)
+ assert_equal(np.random.choice(6, s, replace=True, p=p).shape, s)
+ assert_equal(np.random.choice(6, s, replace=False, p=p).shape, s)
+ assert_equal(np.random.choice(np.arange(6), s, replace=True).shape, s)
+
+ # Check zero-size
+ assert_equal(np.random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
+ assert_equal(np.random.randint(0, -10, size=0).shape, (0,))
+ assert_equal(np.random.randint(10, 10, size=0).shape, (0,))
+ assert_equal(np.random.choice(0, size=0).shape, (0,))
+ assert_equal(np.random.choice([], size=(0,)).shape, (0,))
+ assert_equal(np.random.choice(['a', 'b'], size=(3, 0, 4)).shape,
+ (3, 0, 4))
+ assert_raises(ValueError, np.random.choice, [], 10)
+
+ def test_choice_nan_probabilities(self):
+ a = np.array([42, 1, 2])
+ p = [None, None, None]
+ assert_raises(ValueError, np.random.choice, a, p=p)
+
+ def test_bytes(self):
+ np.random.seed(self.seed)
+ actual = np.random.bytes(10)
+ desired = b'\x82Ui\x9e\xff\x97+Wf\xa5'
+ assert_equal(actual, desired)
+
+ def test_shuffle(self):
+ # Test lists, arrays (of various dtypes), and multidimensional versions
+ # of both, c-contiguous or not:
+ for conv in [lambda x: np.array([]),
+ lambda x: x,
+ lambda x: np.asarray(x).astype(np.int8),
+ lambda x: np.asarray(x).astype(np.float32),
+ lambda x: np.asarray(x).astype(np.complex64),
+ lambda x: np.asarray(x).astype(object),
+ lambda x: [(i, i) for i in x],
+ lambda x: np.asarray([[i, i] for i in x]),
+ lambda x: np.vstack([x, x]).T,
+ # gh-11442
+ lambda x: (np.asarray([(i, i) for i in x],
+ [("a", int), ("b", int)])
+ .view(np.recarray)),
+ # gh-4270
+ lambda x: np.asarray([(i, i) for i in x],
+ [("a", object), ("b", np.int32)])]:
+ np.random.seed(self.seed)
+ alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
+ np.random.shuffle(alist)
+ actual = alist
+ desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
+ assert_array_equal(actual, desired)
+
+ def test_shuffle_masked(self):
+ # gh-3263
+ a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
+ b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
+ a_orig = a.copy()
+ b_orig = b.copy()
+ for i in range(50):
+ np.random.shuffle(a)
+ assert_equal(
+ sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
+ np.random.shuffle(b)
+ assert_equal(
+ sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
+
+ @pytest.mark.parametrize("random",
+ [np.random, np.random.RandomState(), np.random.default_rng()])
+ def test_shuffle_untyped_warning(self, random):
+ # Create a dict works like a sequence but isn't one
+ values = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6}
+ with pytest.warns(UserWarning,
+ match="you are shuffling a 'dict' object") as rec:
+ random.shuffle(values)
+ assert "test_random" in rec[0].filename
+
+ @pytest.mark.parametrize("random",
+ [np.random, np.random.RandomState(), np.random.default_rng()])
+ @pytest.mark.parametrize("use_array_like", [True, False])
+ def test_shuffle_no_object_unpacking(self, random, use_array_like):
+ class MyArr(np.ndarray):
+ pass
+
+ items = [
+ None, np.array([3]), np.float64(3), np.array(10), np.float64(7)
+ ]
+ arr = np.array(items, dtype=object)
+ item_ids = {id(i) for i in items}
+ if use_array_like:
+ arr = arr.view(MyArr)
+
+ # The array was created fine, and did not modify any objects:
+ assert all(id(i) in item_ids for i in arr)
+
+ if use_array_like and not isinstance(random, np.random.Generator):
+ # The old API gives incorrect results, but warns about it.
+ with pytest.warns(UserWarning,
+ match="Shuffling a one dimensional array.*"):
+ random.shuffle(arr)
+ else:
+ random.shuffle(arr)
+ assert all(id(i) in item_ids for i in arr)
+
+ def test_shuffle_memoryview(self):
+ # gh-18273
+ # allow graceful handling of memoryviews
+ # (treat the same as arrays)
+ np.random.seed(self.seed)
+ a = np.arange(5).data
+ np.random.shuffle(a)
+ assert_equal(np.asarray(a), [0, 1, 4, 3, 2])
+ rng = np.random.RandomState(self.seed)
+ rng.shuffle(a)
+ assert_equal(np.asarray(a), [0, 1, 2, 3, 4])
+ rng = np.random.default_rng(self.seed)
+ rng.shuffle(a)
+ assert_equal(np.asarray(a), [4, 1, 0, 3, 2])
+
+ def test_shuffle_not_writeable(self):
+ a = np.zeros(3)
+ a.flags.writeable = False
+ with pytest.raises(ValueError, match='read-only'):
+ np.random.shuffle(a)
+
+ def test_beta(self):
+ np.random.seed(self.seed)
+ actual = np.random.beta(.1, .9, size=(3, 2))
+ desired = np.array(
+ [[1.45341850513746058e-02, 5.31297615662868145e-04],
+ [1.85366619058432324e-06, 4.19214516800110563e-03],
+ [1.58405155108498093e-04, 1.26252891949397652e-04]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_binomial(self):
+ np.random.seed(self.seed)
+ actual = np.random.binomial(100, .456, size=(3, 2))
+ desired = np.array([[37, 43],
+ [42, 48],
+ [46, 45]])
+ assert_array_equal(actual, desired)
+
+ def test_chisquare(self):
+ np.random.seed(self.seed)
+ actual = np.random.chisquare(50, size=(3, 2))
+ desired = np.array([[63.87858175501090585, 68.68407748911370447],
+ [65.77116116901505904, 47.09686762438974483],
+ [72.3828403199695174, 74.18408615260374006]])
+ assert_array_almost_equal(actual, desired, decimal=13)
+
+ def test_dirichlet(self):
+ np.random.seed(self.seed)
+ alpha = np.array([51.72840233779265162, 39.74494232180943953])
+ actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
+ desired = np.array([[[0.54539444573611562, 0.45460555426388438],
+ [0.62345816822039413, 0.37654183177960598]],
+ [[0.55206000085785778, 0.44793999914214233],
+ [0.58964023305154301, 0.41035976694845688]],
+ [[0.59266909280647828, 0.40733090719352177],
+ [0.56974431743975207, 0.43025568256024799]]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_dirichlet_size(self):
+ # gh-3173
+ p = np.array([51.72840233779265162, 39.74494232180943953])
+ assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
+ assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
+ assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
+ assert_equal(np.random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
+ assert_equal(np.random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
+ assert_equal(np.random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
+
+ assert_raises(TypeError, np.random.dirichlet, p, float(1))
+
+ def test_dirichlet_bad_alpha(self):
+ # gh-2089
+ alpha = np.array([5.4e-01, -1.0e-16])
+ assert_raises(ValueError, np.random.mtrand.dirichlet, alpha)
+
+ # gh-15876
+ assert_raises(ValueError, random.dirichlet, [[5, 1]])
+ assert_raises(ValueError, random.dirichlet, [[5], [1]])
+ assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]])
+ assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]]))
+
+ def test_exponential(self):
+ np.random.seed(self.seed)
+ actual = np.random.exponential(1.1234, size=(3, 2))
+ desired = np.array([[1.08342649775011624, 1.00607889924557314],
+ [2.46628830085216721, 2.49668106809923884],
+ [0.68717433461363442, 1.69175666993575979]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_exponential_0(self):
+ assert_equal(np.random.exponential(scale=0), 0)
+ assert_raises(ValueError, np.random.exponential, scale=-0.)
+
+ def test_f(self):
+ np.random.seed(self.seed)
+ actual = np.random.f(12, 77, size=(3, 2))
+ desired = np.array([[1.21975394418575878, 1.75135759791559775],
+ [1.44803115017146489, 1.22108959480396262],
+ [1.02176975757740629, 1.34431827623300415]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_gamma(self):
+ np.random.seed(self.seed)
+ actual = np.random.gamma(5, 3, size=(3, 2))
+ desired = np.array([[24.60509188649287182, 28.54993563207210627],
+ [26.13476110204064184, 12.56988482927716078],
+ [31.71863275789960568, 33.30143302795922011]])
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_gamma_0(self):
+ assert_equal(np.random.gamma(shape=0, scale=0), 0)
+ assert_raises(ValueError, np.random.gamma, shape=-0., scale=-0.)
+
+ def test_geometric(self):
+ np.random.seed(self.seed)
+ actual = np.random.geometric(.123456789, size=(3, 2))
+ desired = np.array([[8, 7],
+ [17, 17],
+ [5, 12]])
+ assert_array_equal(actual, desired)
+
+ def test_gumbel(self):
+ np.random.seed(self.seed)
+ actual = np.random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
+ desired = np.array([[0.19591898743416816, 0.34405539668096674],
+ [-1.4492522252274278, -1.47374816298446865],
+ [1.10651090478803416, -0.69535848626236174]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_gumbel_0(self):
+ assert_equal(np.random.gumbel(scale=0), 0)
+ assert_raises(ValueError, np.random.gumbel, scale=-0.)
+
+ def test_hypergeometric(self):
+ np.random.seed(self.seed)
+ actual = np.random.hypergeometric(10, 5, 14, size=(3, 2))
+ desired = np.array([[10, 10],
+ [10, 10],
+ [9, 9]])
+ assert_array_equal(actual, desired)
+
+ # Test nbad = 0
+ actual = np.random.hypergeometric(5, 0, 3, size=4)
+ desired = np.array([3, 3, 3, 3])
+ assert_array_equal(actual, desired)
+
+ actual = np.random.hypergeometric(15, 0, 12, size=4)
+ desired = np.array([12, 12, 12, 12])
+ assert_array_equal(actual, desired)
+
+ # Test ngood = 0
+ actual = np.random.hypergeometric(0, 5, 3, size=4)
+ desired = np.array([0, 0, 0, 0])
+ assert_array_equal(actual, desired)
+
+ actual = np.random.hypergeometric(0, 15, 12, size=4)
+ desired = np.array([0, 0, 0, 0])
+ assert_array_equal(actual, desired)
+
+ def test_laplace(self):
+ np.random.seed(self.seed)
+ actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
+ desired = np.array([[0.66599721112760157, 0.52829452552221945],
+ [3.12791959514407125, 3.18202813572992005],
+ [-0.05391065675859356, 1.74901336242837324]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_laplace_0(self):
+ assert_equal(np.random.laplace(scale=0), 0)
+ assert_raises(ValueError, np.random.laplace, scale=-0.)
+
+ def test_logistic(self):
+ np.random.seed(self.seed)
+ actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
+ desired = np.array([[1.09232835305011444, 0.8648196662399954],
+ [4.27818590694950185, 4.33897006346929714],
+ [-0.21682183359214885, 2.63373365386060332]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_lognormal(self):
+ np.random.seed(self.seed)
+ actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
+ desired = np.array([[16.50698631688883822, 36.54846706092654784],
+ [22.67886599981281748, 0.71617561058995771],
+ [65.72798501792723869, 86.84341601437161273]])
+ assert_array_almost_equal(actual, desired, decimal=13)
+
+ def test_lognormal_0(self):
+ assert_equal(np.random.lognormal(sigma=0), 1)
+ assert_raises(ValueError, np.random.lognormal, sigma=-0.)
+
+ def test_logseries(self):
+ np.random.seed(self.seed)
+ actual = np.random.logseries(p=.923456789, size=(3, 2))
+ desired = np.array([[2, 2],
+ [6, 17],
+ [3, 6]])
+ assert_array_equal(actual, desired)
+
+ def test_multinomial(self):
+ np.random.seed(self.seed)
+ actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))
+ desired = np.array([[[4, 3, 5, 4, 2, 2],
+ [5, 2, 8, 2, 2, 1]],
+ [[3, 4, 3, 6, 0, 4],
+ [2, 1, 4, 3, 6, 4]],
+ [[4, 4, 2, 5, 2, 3],
+ [4, 3, 4, 2, 3, 4]]])
+ assert_array_equal(actual, desired)
+
+ def test_multivariate_normal(self):
+ np.random.seed(self.seed)
+ mean = (.123456789, 10)
+ cov = [[1, 0], [0, 1]]
+ size = (3, 2)
+ actual = np.random.multivariate_normal(mean, cov, size)
+ desired = np.array([[[1.463620246718631, 11.73759122771936],
+ [1.622445133300628, 9.771356667546383]],
+ [[2.154490787682787, 12.170324946056553],
+ [1.719909438201865, 9.230548443648306]],
+ [[0.689515026297799, 9.880729819607714],
+ [-0.023054015651998, 9.201096623542879]]])
+
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ # Check for default size, was raising deprecation warning
+ actual = np.random.multivariate_normal(mean, cov)
+ desired = np.array([0.895289569463708, 9.17180864067987])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ # Check that non positive-semidefinite covariance warns with
+ # RuntimeWarning
+ mean = [0, 0]
+ cov = [[1, 2], [2, 1]]
+ assert_warns(RuntimeWarning, np.random.multivariate_normal, mean, cov)
+
+ # and that it doesn't warn with RuntimeWarning check_valid='ignore'
+ assert_no_warnings(np.random.multivariate_normal, mean, cov,
+ check_valid='ignore')
+
+ # and that it raises with RuntimeWarning check_valid='raises'
+ assert_raises(ValueError, np.random.multivariate_normal, mean, cov,
+ check_valid='raise')
+
+ cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
+ with suppress_warnings() as sup:
+ np.random.multivariate_normal(mean, cov)
+ w = sup.record(RuntimeWarning)
+ assert len(w) == 0
+
+ def test_negative_binomial(self):
+ np.random.seed(self.seed)
+ actual = np.random.negative_binomial(n=100, p=.12345, size=(3, 2))
+ desired = np.array([[848, 841],
+ [892, 611],
+ [779, 647]])
+ assert_array_equal(actual, desired)
+
+ def test_noncentral_chisquare(self):
+ np.random.seed(self.seed)
+ actual = np.random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
+ desired = np.array([[23.91905354498517511, 13.35324692733826346],
+ [31.22452661329736401, 16.60047399466177254],
+ [5.03461598262724586, 17.94973089023519464]])
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ actual = np.random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
+ desired = np.array([[1.47145377828516666, 0.15052899268012659],
+ [0.00943803056963588, 1.02647251615666169],
+ [0.332334982684171, 0.15451287602753125]])
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ np.random.seed(self.seed)
+ actual = np.random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
+ desired = np.array([[9.597154162763948, 11.725484450296079],
+ [10.413711048138335, 3.694475922923986],
+ [13.484222138963087, 14.377255424602957]])
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_noncentral_f(self):
+ np.random.seed(self.seed)
+ actual = np.random.noncentral_f(dfnum=5, dfden=2, nonc=1,
+ size=(3, 2))
+ desired = np.array([[1.40598099674926669, 0.34207973179285761],
+ [3.57715069265772545, 7.92632662577829805],
+ [0.43741599463544162, 1.1774208752428319]])
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_normal(self):
+ np.random.seed(self.seed)
+ actual = np.random.normal(loc=.123456789, scale=2.0, size=(3, 2))
+ desired = np.array([[2.80378370443726244, 3.59863924443872163],
+ [3.121433477601256, -0.33382987590723379],
+ [4.18552478636557357, 4.46410668111310471]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_normal_0(self):
+ assert_equal(np.random.normal(scale=0), 0)
+ assert_raises(ValueError, np.random.normal, scale=-0.)
+
+ def test_pareto(self):
+ np.random.seed(self.seed)
+ actual = np.random.pareto(a=.123456789, size=(3, 2))
+ desired = np.array(
+ [[2.46852460439034849e+03, 1.41286880810518346e+03],
+ [5.28287797029485181e+07, 6.57720981047328785e+07],
+ [1.40840323350391515e+02, 1.98390255135251704e+05]])
+ # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
+ # matrix differs by 24 nulps. Discussion:
+ # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
+ # Consensus is that this is probably some gcc quirk that affects
+ # rounding but not in any important way, so we just use a looser
+ # tolerance on this test:
+ np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
+
+ def test_poisson(self):
+ np.random.seed(self.seed)
+ actual = np.random.poisson(lam=.123456789, size=(3, 2))
+ desired = np.array([[0, 0],
+ [1, 0],
+ [0, 0]])
+ assert_array_equal(actual, desired)
+
+ def test_poisson_exceptions(self):
+ lambig = np.iinfo('l').max
+ lamneg = -1
+ assert_raises(ValueError, np.random.poisson, lamneg)
+ assert_raises(ValueError, np.random.poisson, [lamneg]*10)
+ assert_raises(ValueError, np.random.poisson, lambig)
+ assert_raises(ValueError, np.random.poisson, [lambig]*10)
+
+ def test_power(self):
+ np.random.seed(self.seed)
+ actual = np.random.power(a=.123456789, size=(3, 2))
+ desired = np.array([[0.02048932883240791, 0.01424192241128213],
+ [0.38446073748535298, 0.39499689943484395],
+ [0.00177699707563439, 0.13115505880863756]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_rayleigh(self):
+ np.random.seed(self.seed)
+ actual = np.random.rayleigh(scale=10, size=(3, 2))
+ desired = np.array([[13.8882496494248393, 13.383318339044731],
+ [20.95413364294492098, 21.08285015800712614],
+ [11.06066537006854311, 17.35468505778271009]])
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_rayleigh_0(self):
+ assert_equal(np.random.rayleigh(scale=0), 0)
+ assert_raises(ValueError, np.random.rayleigh, scale=-0.)
+
+ def test_standard_cauchy(self):
+ np.random.seed(self.seed)
+ actual = np.random.standard_cauchy(size=(3, 2))
+ desired = np.array([[0.77127660196445336, -6.55601161955910605],
+ [0.93582023391158309, -2.07479293013759447],
+ [-4.74601644297011926, 0.18338989290760804]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_standard_exponential(self):
+ np.random.seed(self.seed)
+ actual = np.random.standard_exponential(size=(3, 2))
+ desired = np.array([[0.96441739162374596, 0.89556604882105506],
+ [2.1953785836319808, 2.22243285392490542],
+ [0.6116915921431676, 1.50592546727413201]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_standard_gamma(self):
+ np.random.seed(self.seed)
+ actual = np.random.standard_gamma(shape=3, size=(3, 2))
+ desired = np.array([[5.50841531318455058, 6.62953470301903103],
+ [5.93988484943779227, 2.31044849402133989],
+ [7.54838614231317084, 8.012756093271868]])
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_standard_gamma_0(self):
+ assert_equal(np.random.standard_gamma(shape=0), 0)
+ assert_raises(ValueError, np.random.standard_gamma, shape=-0.)
+
+ def test_standard_normal(self):
+ np.random.seed(self.seed)
+ actual = np.random.standard_normal(size=(3, 2))
+ desired = np.array([[1.34016345771863121, 1.73759122771936081],
+ [1.498988344300628, -0.2286433324536169],
+ [2.031033998682787, 2.17032494605655257]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_standard_t(self):
+ np.random.seed(self.seed)
+ actual = np.random.standard_t(df=10, size=(3, 2))
+ desired = np.array([[0.97140611862659965, -0.08830486548450577],
+ [1.36311143689505321, -0.55317463909867071],
+ [-0.18473749069684214, 0.61181537341755321]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_triangular(self):
+ np.random.seed(self.seed)
+ actual = np.random.triangular(left=5.12, mode=10.23, right=20.34,
+ size=(3, 2))
+ desired = np.array([[12.68117178949215784, 12.4129206149193152],
+ [16.20131377335158263, 16.25692138747600524],
+ [11.20400690911820263, 14.4978144835829923]])
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_uniform(self):
+ np.random.seed(self.seed)
+ actual = np.random.uniform(low=1.23, high=10.54, size=(3, 2))
+ desired = np.array([[6.99097932346268003, 6.73801597444323974],
+ [9.50364421400426274, 9.53130618907631089],
+ [5.48995325769805476, 8.47493103280052118]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_uniform_range_bounds(self):
+ fmin = np.finfo('float').min
+ fmax = np.finfo('float').max
+
+ func = np.random.uniform
+ assert_raises(OverflowError, func, -np.inf, 0)
+ assert_raises(OverflowError, func, 0, np.inf)
+ assert_raises(OverflowError, func, fmin, fmax)
+ assert_raises(OverflowError, func, [-np.inf], [0])
+ assert_raises(OverflowError, func, [0], [np.inf])
+
+ # (fmax / 1e17) - fmin is within range, so this should not throw
+ # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
+ # DBL_MAX by increasing fmin a bit
+ np.random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
+
+ def test_scalar_exception_propagation(self):
+ # Tests that exceptions are correctly propagated in distributions
+ # when called with objects that throw exceptions when converted to
+ # scalars.
+ #
+ # Regression test for gh: 8865
+
+ class ThrowingFloat(np.ndarray):
+ def __float__(self):
+ raise TypeError
+
+ throwing_float = np.array(1.0).view(ThrowingFloat)
+ assert_raises(TypeError, np.random.uniform, throwing_float,
+ throwing_float)
+
+ class ThrowingInteger(np.ndarray):
+ def __int__(self):
+ raise TypeError
+
+ __index__ = __int__
+
+ throwing_int = np.array(1).view(ThrowingInteger)
+ assert_raises(TypeError, np.random.hypergeometric, throwing_int, 1, 1)
+
+ def test_vonmises(self):
+ np.random.seed(self.seed)
+ actual = np.random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
+ desired = np.array([[2.28567572673902042, 2.89163838442285037],
+ [0.38198375564286025, 2.57638023113890746],
+ [1.19153771588353052, 1.83509849681825354]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_vonmises_small(self):
+ # check infinite loop, gh-4720
+ np.random.seed(self.seed)
+ r = np.random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
+ np.testing.assert_(np.isfinite(r).all())
+
+ def test_wald(self):
+ np.random.seed(self.seed)
+ actual = np.random.wald(mean=1.23, scale=1.54, size=(3, 2))
+ desired = np.array([[3.82935265715889983, 5.13125249184285526],
+ [0.35045403618358717, 1.50832396872003538],
+ [0.24124319895843183, 0.22031101461955038]])
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_weibull(self):
+ np.random.seed(self.seed)
+ actual = np.random.weibull(a=1.23, size=(3, 2))
+ desired = np.array([[0.97097342648766727, 0.91422896443565516],
+ [1.89517770034962929, 1.91414357960479564],
+ [0.67057783752390987, 1.39494046635066793]])
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_weibull_0(self):
+ np.random.seed(self.seed)
+ assert_equal(np.random.weibull(a=0, size=12), np.zeros(12))
+ assert_raises(ValueError, np.random.weibull, a=-0.)
+
+ def test_zipf(self):
+ np.random.seed(self.seed)
+ actual = np.random.zipf(a=1.23, size=(3, 2))
+ desired = np.array([[66, 29],
+ [1, 1],
+ [3, 13]])
+ assert_array_equal(actual, desired)
+
+
+class TestBroadcast:
+ # tests that functions that broadcast behave
+ # correctly when presented with non-scalar arguments
+ def setup_method(self):
+ self.seed = 123456789
+
+ def setSeed(self):
+ np.random.seed(self.seed)
+
+ # TODO: Include test for randint once it can broadcast
+ # Can steal the test written in PR #6938
+
+ def test_uniform(self):
+ low = [0]
+ high = [1]
+ uniform = np.random.uniform
+ desired = np.array([0.53283302478975902,
+ 0.53413660089041659,
+ 0.50955303552646702])
+
+ self.setSeed()
+ actual = uniform(low * 3, high)
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ self.setSeed()
+ actual = uniform(low, high * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_normal(self):
+ loc = [0]
+ scale = [1]
+ bad_scale = [-1]
+ normal = np.random.normal
+ desired = np.array([2.2129019979039612,
+ 2.1283977976520019,
+ 1.8417114045748335])
+
+ self.setSeed()
+ actual = normal(loc * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, normal, loc * 3, bad_scale)
+
+ self.setSeed()
+ actual = normal(loc, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, normal, loc, bad_scale * 3)
+
+ def test_beta(self):
+ a = [1]
+ b = [2]
+ bad_a = [-1]
+ bad_b = [-2]
+ beta = np.random.beta
+ desired = np.array([0.19843558305989056,
+ 0.075230336409423643,
+ 0.24976865978980844])
+
+ self.setSeed()
+ actual = beta(a * 3, b)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, beta, bad_a * 3, b)
+ assert_raises(ValueError, beta, a * 3, bad_b)
+
+ self.setSeed()
+ actual = beta(a, b * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, beta, bad_a, b * 3)
+ assert_raises(ValueError, beta, a, bad_b * 3)
+
+ def test_exponential(self):
+ scale = [1]
+ bad_scale = [-1]
+ exponential = np.random.exponential
+ desired = np.array([0.76106853658845242,
+ 0.76386282278691653,
+ 0.71243813125891797])
+
+ self.setSeed()
+ actual = exponential(scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, exponential, bad_scale * 3)
+
+ def test_standard_gamma(self):
+ shape = [1]
+ bad_shape = [-1]
+ std_gamma = np.random.standard_gamma
+ desired = np.array([0.76106853658845242,
+ 0.76386282278691653,
+ 0.71243813125891797])
+
+ self.setSeed()
+ actual = std_gamma(shape * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, std_gamma, bad_shape * 3)
+
+ def test_gamma(self):
+ shape = [1]
+ scale = [2]
+ bad_shape = [-1]
+ bad_scale = [-2]
+ gamma = np.random.gamma
+ desired = np.array([1.5221370731769048,
+ 1.5277256455738331,
+ 1.4248762625178359])
+
+ self.setSeed()
+ actual = gamma(shape * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, gamma, bad_shape * 3, scale)
+ assert_raises(ValueError, gamma, shape * 3, bad_scale)
+
+ self.setSeed()
+ actual = gamma(shape, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, gamma, bad_shape, scale * 3)
+ assert_raises(ValueError, gamma, shape, bad_scale * 3)
+
+ def test_f(self):
+ dfnum = [1]
+ dfden = [2]
+ bad_dfnum = [-1]
+ bad_dfden = [-2]
+ f = np.random.f
+ desired = np.array([0.80038951638264799,
+ 0.86768719635363512,
+ 2.7251095168386801])
+
+ self.setSeed()
+ actual = f(dfnum * 3, dfden)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, f, bad_dfnum * 3, dfden)
+ assert_raises(ValueError, f, dfnum * 3, bad_dfden)
+
+ self.setSeed()
+ actual = f(dfnum, dfden * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, f, bad_dfnum, dfden * 3)
+ assert_raises(ValueError, f, dfnum, bad_dfden * 3)
+
+ def test_noncentral_f(self):
+ dfnum = [2]
+ dfden = [3]
+ nonc = [4]
+ bad_dfnum = [0]
+ bad_dfden = [-1]
+ bad_nonc = [-2]
+ nonc_f = np.random.noncentral_f
+ desired = np.array([9.1393943263705211,
+ 13.025456344595602,
+ 8.8018098359100545])
+
+ self.setSeed()
+ actual = nonc_f(dfnum * 3, dfden, nonc)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
+ assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
+ assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
+
+ self.setSeed()
+ actual = nonc_f(dfnum, dfden * 3, nonc)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
+ assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
+ assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
+
+ self.setSeed()
+ actual = nonc_f(dfnum, dfden, nonc * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
+ assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
+ assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
+
+ def test_noncentral_f_small_df(self):
+ self.setSeed()
+ desired = np.array([6.869638627492048, 0.785880199263955])
+ actual = np.random.noncentral_f(0.9, 0.9, 2, size=2)
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_chisquare(self):
+ df = [1]
+ bad_df = [-1]
+ chisquare = np.random.chisquare
+ desired = np.array([0.57022801133088286,
+ 0.51947702108840776,
+ 0.1320969254923558])
+
+ self.setSeed()
+ actual = chisquare(df * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, chisquare, bad_df * 3)
+
+ def test_noncentral_chisquare(self):
+ df = [1]
+ nonc = [2]
+ bad_df = [-1]
+ bad_nonc = [-2]
+ nonc_chi = np.random.noncentral_chisquare
+ desired = np.array([9.0015599467913763,
+ 4.5804135049718742,
+ 6.0872302432834564])
+
+ self.setSeed()
+ actual = nonc_chi(df * 3, nonc)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
+ assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
+
+ self.setSeed()
+ actual = nonc_chi(df, nonc * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
+ assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
+
+ def test_standard_t(self):
+ df = [1]
+ bad_df = [-1]
+ t = np.random.standard_t
+ desired = np.array([3.0702872575217643,
+ 5.8560725167361607,
+ 1.0274791436474273])
+
+ self.setSeed()
+ actual = t(df * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, t, bad_df * 3)
+
+ def test_vonmises(self):
+ mu = [2]
+ kappa = [1]
+ bad_kappa = [-1]
+ vonmises = np.random.vonmises
+ desired = np.array([2.9883443664201312,
+ -2.7064099483995943,
+ -1.8672476700665914])
+
+ self.setSeed()
+ actual = vonmises(mu * 3, kappa)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, vonmises, mu * 3, bad_kappa)
+
+ self.setSeed()
+ actual = vonmises(mu, kappa * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, vonmises, mu, bad_kappa * 3)
+
+ def test_pareto(self):
+ a = [1]
+ bad_a = [-1]
+ pareto = np.random.pareto
+ desired = np.array([1.1405622680198362,
+ 1.1465519762044529,
+ 1.0389564467453547])
+
+ self.setSeed()
+ actual = pareto(a * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, pareto, bad_a * 3)
+
+ def test_weibull(self):
+ a = [1]
+ bad_a = [-1]
+ weibull = np.random.weibull
+ desired = np.array([0.76106853658845242,
+ 0.76386282278691653,
+ 0.71243813125891797])
+
+ self.setSeed()
+ actual = weibull(a * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, weibull, bad_a * 3)
+
+ def test_power(self):
+ a = [1]
+ bad_a = [-1]
+ power = np.random.power
+ desired = np.array([0.53283302478975902,
+ 0.53413660089041659,
+ 0.50955303552646702])
+
+ self.setSeed()
+ actual = power(a * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, power, bad_a * 3)
+
+ def test_laplace(self):
+ loc = [0]
+ scale = [1]
+ bad_scale = [-1]
+ laplace = np.random.laplace
+ desired = np.array([0.067921356028507157,
+ 0.070715642226971326,
+ 0.019290950698972624])
+
+ self.setSeed()
+ actual = laplace(loc * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, laplace, loc * 3, bad_scale)
+
+ self.setSeed()
+ actual = laplace(loc, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, laplace, loc, bad_scale * 3)
+
+ def test_gumbel(self):
+ loc = [0]
+ scale = [1]
+ bad_scale = [-1]
+ gumbel = np.random.gumbel
+ desired = np.array([0.2730318639556768,
+ 0.26936705726291116,
+ 0.33906220393037939])
+
+ self.setSeed()
+ actual = gumbel(loc * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, gumbel, loc * 3, bad_scale)
+
+ self.setSeed()
+ actual = gumbel(loc, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, gumbel, loc, bad_scale * 3)
+
+ def test_logistic(self):
+ loc = [0]
+ scale = [1]
+ bad_scale = [-1]
+ logistic = np.random.logistic
+ desired = np.array([0.13152135837586171,
+ 0.13675915696285773,
+ 0.038216792802833396])
+
+ self.setSeed()
+ actual = logistic(loc * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, logistic, loc * 3, bad_scale)
+
+ self.setSeed()
+ actual = logistic(loc, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, logistic, loc, bad_scale * 3)
+
+ def test_lognormal(self):
+ mean = [0]
+ sigma = [1]
+ bad_sigma = [-1]
+ lognormal = np.random.lognormal
+ desired = np.array([9.1422086044848427,
+ 8.4013952870126261,
+ 6.3073234116578671])
+
+ self.setSeed()
+ actual = lognormal(mean * 3, sigma)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
+
+ self.setSeed()
+ actual = lognormal(mean, sigma * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, lognormal, mean, bad_sigma * 3)
+
+ def test_rayleigh(self):
+ scale = [1]
+ bad_scale = [-1]
+ rayleigh = np.random.rayleigh
+ desired = np.array([1.2337491937897689,
+ 1.2360119924878694,
+ 1.1936818095781789])
+
+ self.setSeed()
+ actual = rayleigh(scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, rayleigh, bad_scale * 3)
+
+ def test_wald(self):
+ mean = [0.5]
+ scale = [1]
+ bad_mean = [0]
+ bad_scale = [-2]
+ wald = np.random.wald
+ desired = np.array([0.11873681120271318,
+ 0.12450084820795027,
+ 0.9096122728408238])
+
+ self.setSeed()
+ actual = wald(mean * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, wald, bad_mean * 3, scale)
+ assert_raises(ValueError, wald, mean * 3, bad_scale)
+
+ self.setSeed()
+ actual = wald(mean, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, wald, bad_mean, scale * 3)
+ assert_raises(ValueError, wald, mean, bad_scale * 3)
+ assert_raises(ValueError, wald, 0.0, 1)
+ assert_raises(ValueError, wald, 0.5, 0.0)
+
+ def test_triangular(self):
+ left = [1]
+ right = [3]
+ mode = [2]
+ bad_left_one = [3]
+ bad_mode_one = [4]
+ bad_left_two, bad_mode_two = right * 2
+ triangular = np.random.triangular
+ desired = np.array([2.03339048710429,
+ 2.0347400359389356,
+ 2.0095991069536208])
+
+ self.setSeed()
+ actual = triangular(left * 3, mode, right)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
+ assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
+ assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two,
+ right)
+
+ self.setSeed()
+ actual = triangular(left, mode * 3, right)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
+ assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
+ assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3,
+ right)
+
+ self.setSeed()
+ actual = triangular(left, mode, right * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
+ assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
+ assert_raises(ValueError, triangular, bad_left_two, bad_mode_two,
+ right * 3)
+
+ def test_binomial(self):
+ n = [1]
+ p = [0.5]
+ bad_n = [-1]
+ bad_p_one = [-1]
+ bad_p_two = [1.5]
+ binom = np.random.binomial
+ desired = np.array([1, 1, 1])
+
+ self.setSeed()
+ actual = binom(n * 3, p)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, binom, bad_n * 3, p)
+ assert_raises(ValueError, binom, n * 3, bad_p_one)
+ assert_raises(ValueError, binom, n * 3, bad_p_two)
+
+ self.setSeed()
+ actual = binom(n, p * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, binom, bad_n, p * 3)
+ assert_raises(ValueError, binom, n, bad_p_one * 3)
+ assert_raises(ValueError, binom, n, bad_p_two * 3)
+
+ def test_negative_binomial(self):
+ n = [1]
+ p = [0.5]
+ bad_n = [-1]
+ bad_p_one = [-1]
+ bad_p_two = [1.5]
+ neg_binom = np.random.negative_binomial
+ desired = np.array([1, 0, 1])
+
+ self.setSeed()
+ actual = neg_binom(n * 3, p)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, neg_binom, bad_n * 3, p)
+ assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
+ assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
+
+ self.setSeed()
+ actual = neg_binom(n, p * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, neg_binom, bad_n, p * 3)
+ assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
+ assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
+
+ def test_poisson(self):
+ max_lam = np.random.RandomState()._poisson_lam_max
+
+ lam = [1]
+ bad_lam_one = [-1]
+ bad_lam_two = [max_lam * 2]
+ poisson = np.random.poisson
+ desired = np.array([1, 1, 0])
+
+ self.setSeed()
+ actual = poisson(lam * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, poisson, bad_lam_one * 3)
+ assert_raises(ValueError, poisson, bad_lam_two * 3)
+
+ def test_zipf(self):
+ a = [2]
+ bad_a = [0]
+ zipf = np.random.zipf
+ desired = np.array([2, 2, 1])
+
+ self.setSeed()
+ actual = zipf(a * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, zipf, bad_a * 3)
+ with np.errstate(invalid='ignore'):
+ assert_raises(ValueError, zipf, np.nan)
+ assert_raises(ValueError, zipf, [0, 0, np.nan])
+
+ def test_geometric(self):
+ p = [0.5]
+ bad_p_one = [-1]
+ bad_p_two = [1.5]
+ geom = np.random.geometric
+ desired = np.array([2, 2, 2])
+
+ self.setSeed()
+ actual = geom(p * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, geom, bad_p_one * 3)
+ assert_raises(ValueError, geom, bad_p_two * 3)
+
+ def test_hypergeometric(self):
+ ngood = [1]
+ nbad = [2]
+ nsample = [2]
+ bad_ngood = [-1]
+ bad_nbad = [-2]
+ bad_nsample_one = [0]
+ bad_nsample_two = [4]
+ hypergeom = np.random.hypergeometric
+ desired = np.array([1, 1, 1])
+
+ self.setSeed()
+ actual = hypergeom(ngood * 3, nbad, nsample)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample)
+ assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample)
+ assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one)
+ assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two)
+
+ self.setSeed()
+ actual = hypergeom(ngood, nbad * 3, nsample)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample)
+ assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample)
+ assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one)
+ assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two)
+
+ self.setSeed()
+ actual = hypergeom(ngood, nbad, nsample * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
+ assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
+ assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
+ assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
+
+ def test_logseries(self):
+ p = [0.5]
+ bad_p_one = [2]
+ bad_p_two = [-1]
+ logseries = np.random.logseries
+ desired = np.array([1, 1, 1])
+
+ self.setSeed()
+ actual = logseries(p * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, logseries, bad_p_one * 3)
+ assert_raises(ValueError, logseries, bad_p_two * 3)
+
+
+@pytest.mark.skipif(IS_WASM, reason="can't start thread")
+class TestThread:
+ # make sure each state produces the same sequence even in threads
+ def setup_method(self):
+ self.seeds = range(4)
+
+ def check_function(self, function, sz):
+ from threading import Thread
+
+ out1 = np.empty((len(self.seeds),) + sz)
+ out2 = np.empty((len(self.seeds),) + sz)
+
+ # threaded generation
+ t = [Thread(target=function, args=(np.random.RandomState(s), o))
+ for s, o in zip(self.seeds, out1)]
+ [x.start() for x in t]
+ [x.join() for x in t]
+
+ # the same serial
+ for s, o in zip(self.seeds, out2):
+ function(np.random.RandomState(s), o)
+
+ # these platforms change x87 fpu precision mode in threads
+ if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
+ assert_array_almost_equal(out1, out2)
+ else:
+ assert_array_equal(out1, out2)
+
+ def test_normal(self):
+ def gen_random(state, out):
+ out[...] = state.normal(size=10000)
+ self.check_function(gen_random, sz=(10000,))
+
+ def test_exp(self):
+ def gen_random(state, out):
+ out[...] = state.exponential(scale=np.ones((100, 1000)))
+ self.check_function(gen_random, sz=(100, 1000))
+
+ def test_multinomial(self):
+ def gen_random(state, out):
+ out[...] = state.multinomial(10, [1/6.]*6, size=10000)
+ self.check_function(gen_random, sz=(10000, 6))
+
+
+# See Issue #4263
+class TestSingleEltArrayInput:
+ def setup_method(self):
+ self.argOne = np.array([2])
+ self.argTwo = np.array([3])
+ self.argThree = np.array([4])
+ self.tgtShape = (1,)
+
+ def test_one_arg_funcs(self):
+ funcs = (np.random.exponential, np.random.standard_gamma,
+ np.random.chisquare, np.random.standard_t,
+ np.random.pareto, np.random.weibull,
+ np.random.power, np.random.rayleigh,
+ np.random.poisson, np.random.zipf,
+ np.random.geometric, np.random.logseries)
+
+ probfuncs = (np.random.geometric, np.random.logseries)
+
+ for func in funcs:
+ if func in probfuncs: # p < 1.0
+ out = func(np.array([0.5]))
+
+ else:
+ out = func(self.argOne)
+
+ assert_equal(out.shape, self.tgtShape)
+
+ def test_two_arg_funcs(self):
+ funcs = (np.random.uniform, np.random.normal,
+ np.random.beta, np.random.gamma,
+ np.random.f, np.random.noncentral_chisquare,
+ np.random.vonmises, np.random.laplace,
+ np.random.gumbel, np.random.logistic,
+ np.random.lognormal, np.random.wald,
+ np.random.binomial, np.random.negative_binomial)
+
+ probfuncs = (np.random.binomial, np.random.negative_binomial)
+
+ for func in funcs:
+ if func in probfuncs: # p <= 1
+ argTwo = np.array([0.5])
+
+ else:
+ argTwo = self.argTwo
+
+ out = func(self.argOne, argTwo)
+ assert_equal(out.shape, self.tgtShape)
+
+ out = func(self.argOne[0], argTwo)
+ assert_equal(out.shape, self.tgtShape)
+
+ out = func(self.argOne, argTwo[0])
+ assert_equal(out.shape, self.tgtShape)
+
+ def test_randint(self):
+ itype = [bool, np.int8, np.uint8, np.int16, np.uint16,
+ np.int32, np.uint32, np.int64, np.uint64]
+ func = np.random.randint
+ high = np.array([1])
+ low = np.array([0])
+
+ for dt in itype:
+ out = func(low, high, dtype=dt)
+ assert_equal(out.shape, self.tgtShape)
+
+ out = func(low[0], high, dtype=dt)
+ assert_equal(out.shape, self.tgtShape)
+
+ out = func(low, high[0], dtype=dt)
+ assert_equal(out.shape, self.tgtShape)
+
+ def test_three_arg_funcs(self):
+ funcs = [np.random.noncentral_f, np.random.triangular,
+ np.random.hypergeometric]
+
+ for func in funcs:
+ out = func(self.argOne, self.argTwo, self.argThree)
+ assert_equal(out.shape, self.tgtShape)
+
+ out = func(self.argOne[0], self.argTwo, self.argThree)
+ assert_equal(out.shape, self.tgtShape)
+
+ out = func(self.argOne, self.argTwo[0], self.argThree)
+ assert_equal(out.shape, self.tgtShape)