aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py165
1 files changed, 165 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py
new file mode 100644
index 00000000..f16af2b2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py
@@ -0,0 +1,165 @@
+from numpy.testing import (assert_, assert_array_equal)
+import numpy as np
+import pytest
+from numpy.random import Generator, MT19937
+
+
+class TestRegression:
+
+ def setup_method(self):
+ self.mt19937 = Generator(MT19937(121263137472525314065))
+
+ def test_vonmises_range(self):
+ # Make sure generated random variables are in [-pi, pi].
+ # Regression test for ticket #986.
+ for mu in np.linspace(-7., 7., 5):
+ r = self.mt19937.vonmises(mu, 1, 50)
+ assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
+
+ def test_hypergeometric_range(self):
+ # Test for ticket #921
+ assert_(np.all(self.mt19937.hypergeometric(3, 18, 11, size=10) < 4))
+ assert_(np.all(self.mt19937.hypergeometric(18, 3, 11, size=10) > 0))
+
+ # Test for ticket #5623
+ args = (2**20 - 2, 2**20 - 2, 2**20 - 2) # Check for 32-bit systems
+ assert_(self.mt19937.hypergeometric(*args) > 0)
+
+ def test_logseries_convergence(self):
+ # Test for ticket #923
+ N = 1000
+ rvsn = self.mt19937.logseries(0.8, size=N)
+ # these two frequency counts should be close to theoretical
+ # numbers with this large sample
+ # theoretical large N result is 0.49706795
+ freq = np.sum(rvsn == 1) / N
+ msg = f'Frequency was {freq:f}, should be > 0.45'
+ assert_(freq > 0.45, msg)
+ # theoretical large N result is 0.19882718
+ freq = np.sum(rvsn == 2) / N
+ msg = f'Frequency was {freq:f}, should be < 0.23'
+ assert_(freq < 0.23, msg)
+
+ def test_shuffle_mixed_dimension(self):
+ # Test for trac ticket #2074
+ for t in [[1, 2, 3, None],
+ [(1, 1), (2, 2), (3, 3), None],
+ [1, (2, 2), (3, 3), None],
+ [(1, 1), 2, 3, None]]:
+ mt19937 = Generator(MT19937(12345))
+ shuffled = np.array(t, dtype=object)
+ mt19937.shuffle(shuffled)
+ expected = np.array([t[2], t[0], t[3], t[1]], dtype=object)
+ assert_array_equal(np.array(shuffled, dtype=object), expected)
+
+ def test_call_within_randomstate(self):
+ # Check that custom BitGenerator does not call into global state
+ res = np.array([1, 8, 0, 1, 5, 3, 3, 8, 1, 4])
+ for i in range(3):
+ mt19937 = Generator(MT19937(i))
+ m = Generator(MT19937(4321))
+ # If m.state is not honored, the result will change
+ assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
+
+ def test_multivariate_normal_size_types(self):
+ # Test for multivariate_normal issue with 'size' argument.
+ # Check that the multivariate_normal size argument can be a
+ # numpy integer.
+ self.mt19937.multivariate_normal([0], [[0]], size=1)
+ self.mt19937.multivariate_normal([0], [[0]], size=np.int_(1))
+ self.mt19937.multivariate_normal([0], [[0]], size=np.int64(1))
+
+ def test_beta_small_parameters(self):
+ # Test that beta with small a and b parameters does not produce
+ # NaNs due to roundoff errors causing 0 / 0, gh-5851
+ x = self.mt19937.beta(0.0001, 0.0001, size=100)
+ assert_(not np.any(np.isnan(x)), 'Nans in mt19937.beta')
+
+ def test_beta_very_small_parameters(self):
+ # gh-24203: beta would hang with very small parameters.
+ self.mt19937.beta(1e-49, 1e-40)
+
+ def test_beta_ridiculously_small_parameters(self):
+ # gh-24266: beta would generate nan when the parameters
+ # were subnormal or a small multiple of the smallest normal.
+ tiny = np.finfo(1.0).tiny
+ x = self.mt19937.beta(tiny/32, tiny/40, size=50)
+ assert not np.any(np.isnan(x))
+
+ def test_choice_sum_of_probs_tolerance(self):
+ # The sum of probs should be 1.0 with some tolerance.
+ # For low precision dtypes the tolerance was too tight.
+ # See numpy github issue 6123.
+ a = [1, 2, 3]
+ counts = [4, 4, 2]
+ for dt in np.float16, np.float32, np.float64:
+ probs = np.array(counts, dtype=dt) / sum(counts)
+ c = self.mt19937.choice(a, p=probs)
+ assert_(c in a)
+ with pytest.raises(ValueError):
+ self.mt19937.choice(a, p=probs*0.9)
+
+ def test_shuffle_of_array_of_different_length_strings(self):
+ # Test that permuting an array of different length strings
+ # will not cause a segfault on garbage collection
+ # Tests gh-7710
+
+ a = np.array(['a', 'a' * 1000])
+
+ for _ in range(100):
+ self.mt19937.shuffle(a)
+
+ # Force Garbage Collection - should not segfault.
+ import gc
+ gc.collect()
+
+ def test_shuffle_of_array_of_objects(self):
+ # Test that permuting an array of objects will not cause
+ # a segfault on garbage collection.
+ # See gh-7719
+ a = np.array([np.arange(1), np.arange(4)], dtype=object)
+
+ for _ in range(1000):
+ self.mt19937.shuffle(a)
+
+ # Force Garbage Collection - should not segfault.
+ import gc
+ gc.collect()
+
+ def test_permutation_subclass(self):
+
+ class N(np.ndarray):
+ pass
+
+ mt19937 = Generator(MT19937(1))
+ orig = np.arange(3).view(N)
+ perm = mt19937.permutation(orig)
+ assert_array_equal(perm, np.array([2, 0, 1]))
+ assert_array_equal(orig, np.arange(3).view(N))
+
+ class M:
+ a = np.arange(5)
+
+ def __array__(self):
+ return self.a
+
+ mt19937 = Generator(MT19937(1))
+ m = M()
+ perm = mt19937.permutation(m)
+ assert_array_equal(perm, np.array([4, 1, 3, 0, 2]))
+ assert_array_equal(m.__array__(), np.arange(5))
+
+ def test_gamma_0(self):
+ assert self.mt19937.standard_gamma(0.0) == 0.0
+ assert_array_equal(self.mt19937.standard_gamma([0.0]), 0.0)
+
+ actual = self.mt19937.standard_gamma([0.0], dtype='float')
+ expected = np.array([0.], dtype=np.float32)
+ assert_array_equal(actual, expected)
+
+ def test_geometric_tiny_prob(self):
+ # Regression test for gh-17007.
+ # When p = 1e-30, the probability that a sample will exceed 2**63-1
+ # is 0.9999999999907766, so we expect the result to be all 2**63-1.
+ assert_array_equal(self.mt19937.geometric(p=1e-30, size=3),
+ np.iinfo(np.int64).max)