diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py | 165 |
1 files changed, 165 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py new file mode 100644 index 00000000..f16af2b2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py @@ -0,0 +1,165 @@ +from numpy.testing import (assert_, assert_array_equal) +import numpy as np +import pytest +from numpy.random import Generator, MT19937 + + +class TestRegression: + + def setup_method(self): + self.mt19937 = Generator(MT19937(121263137472525314065)) + + def test_vonmises_range(self): + # Make sure generated random variables are in [-pi, pi]. + # Regression test for ticket #986. + for mu in np.linspace(-7., 7., 5): + r = self.mt19937.vonmises(mu, 1, 50) + assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) + + def test_hypergeometric_range(self): + # Test for ticket #921 + assert_(np.all(self.mt19937.hypergeometric(3, 18, 11, size=10) < 4)) + assert_(np.all(self.mt19937.hypergeometric(18, 3, 11, size=10) > 0)) + + # Test for ticket #5623 + args = (2**20 - 2, 2**20 - 2, 2**20 - 2) # Check for 32-bit systems + assert_(self.mt19937.hypergeometric(*args) > 0) + + def test_logseries_convergence(self): + # Test for ticket #923 + N = 1000 + rvsn = self.mt19937.logseries(0.8, size=N) + # these two frequency counts should be close to theoretical + # numbers with this large sample + # theoretical large N result is 0.49706795 + freq = np.sum(rvsn == 1) / N + msg = f'Frequency was {freq:f}, should be > 0.45' + assert_(freq > 0.45, msg) + # theoretical large N result is 0.19882718 + freq = np.sum(rvsn == 2) / N + msg = f'Frequency was {freq:f}, should be < 0.23' + assert_(freq < 0.23, msg) + + def test_shuffle_mixed_dimension(self): + # Test for trac ticket #2074 + for t in [[1, 2, 3, None], + [(1, 1), (2, 2), (3, 3), None], + [1, (2, 2), (3, 3), None], + [(1, 1), 2, 3, None]]: + mt19937 = Generator(MT19937(12345)) + shuffled = np.array(t, dtype=object) + mt19937.shuffle(shuffled) + expected = np.array([t[2], t[0], t[3], t[1]], dtype=object) + assert_array_equal(np.array(shuffled, dtype=object), expected) + + def test_call_within_randomstate(self): + # Check that custom BitGenerator does not call into global state + res = np.array([1, 8, 0, 1, 5, 3, 3, 8, 1, 4]) + for i in range(3): + mt19937 = Generator(MT19937(i)) + m = Generator(MT19937(4321)) + # If m.state is not honored, the result will change + assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res) + + def test_multivariate_normal_size_types(self): + # Test for multivariate_normal issue with 'size' argument. + # Check that the multivariate_normal size argument can be a + # numpy integer. + self.mt19937.multivariate_normal([0], [[0]], size=1) + self.mt19937.multivariate_normal([0], [[0]], size=np.int_(1)) + self.mt19937.multivariate_normal([0], [[0]], size=np.int64(1)) + + def test_beta_small_parameters(self): + # Test that beta with small a and b parameters does not produce + # NaNs due to roundoff errors causing 0 / 0, gh-5851 + x = self.mt19937.beta(0.0001, 0.0001, size=100) + assert_(not np.any(np.isnan(x)), 'Nans in mt19937.beta') + + def test_beta_very_small_parameters(self): + # gh-24203: beta would hang with very small parameters. + self.mt19937.beta(1e-49, 1e-40) + + def test_beta_ridiculously_small_parameters(self): + # gh-24266: beta would generate nan when the parameters + # were subnormal or a small multiple of the smallest normal. + tiny = np.finfo(1.0).tiny + x = self.mt19937.beta(tiny/32, tiny/40, size=50) + assert not np.any(np.isnan(x)) + + def test_choice_sum_of_probs_tolerance(self): + # The sum of probs should be 1.0 with some tolerance. + # For low precision dtypes the tolerance was too tight. + # See numpy github issue 6123. + a = [1, 2, 3] + counts = [4, 4, 2] + for dt in np.float16, np.float32, np.float64: + probs = np.array(counts, dtype=dt) / sum(counts) + c = self.mt19937.choice(a, p=probs) + assert_(c in a) + with pytest.raises(ValueError): + self.mt19937.choice(a, p=probs*0.9) + + def test_shuffle_of_array_of_different_length_strings(self): + # Test that permuting an array of different length strings + # will not cause a segfault on garbage collection + # Tests gh-7710 + + a = np.array(['a', 'a' * 1000]) + + for _ in range(100): + self.mt19937.shuffle(a) + + # Force Garbage Collection - should not segfault. + import gc + gc.collect() + + def test_shuffle_of_array_of_objects(self): + # Test that permuting an array of objects will not cause + # a segfault on garbage collection. + # See gh-7719 + a = np.array([np.arange(1), np.arange(4)], dtype=object) + + for _ in range(1000): + self.mt19937.shuffle(a) + + # Force Garbage Collection - should not segfault. + import gc + gc.collect() + + def test_permutation_subclass(self): + + class N(np.ndarray): + pass + + mt19937 = Generator(MT19937(1)) + orig = np.arange(3).view(N) + perm = mt19937.permutation(orig) + assert_array_equal(perm, np.array([2, 0, 1])) + assert_array_equal(orig, np.arange(3).view(N)) + + class M: + a = np.arange(5) + + def __array__(self): + return self.a + + mt19937 = Generator(MT19937(1)) + m = M() + perm = mt19937.permutation(m) + assert_array_equal(perm, np.array([4, 1, 3, 0, 2])) + assert_array_equal(m.__array__(), np.arange(5)) + + def test_gamma_0(self): + assert self.mt19937.standard_gamma(0.0) == 0.0 + assert_array_equal(self.mt19937.standard_gamma([0.0]), 0.0) + + actual = self.mt19937.standard_gamma([0.0], dtype='float') + expected = np.array([0.], dtype=np.float32) + assert_array_equal(actual, expected) + + def test_geometric_tiny_prob(self): + # Regression test for gh-17007. + # When p = 1e-30, the probability that a sample will exceed 2**63-1 + # is 0.9999999999907766, so we expect the result to be all 2**63-1. + assert_array_equal(self.mt19937.geometric(p=1e-30, size=3), + np.iinfo(np.int64).max) |