diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937.py | 2746 |
1 files changed, 2746 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937.py new file mode 100644 index 00000000..e744f5ba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937.py @@ -0,0 +1,2746 @@ +import sys +import hashlib + +import pytest + +import numpy as np +from numpy.linalg import LinAlgError +from numpy.testing import ( + assert_, assert_raises, assert_equal, assert_allclose, + assert_warns, assert_no_warnings, assert_array_equal, + assert_array_almost_equal, suppress_warnings, IS_WASM) + +from numpy.random import Generator, MT19937, SeedSequence, RandomState + +random = Generator(MT19937()) + +JUMP_TEST_DATA = [ + { + "seed": 0, + "steps": 10, + "initial": {"key_sha256": "bb1636883c2707b51c5b7fc26c6927af4430f2e0785a8c7bc886337f919f9edf", "pos": 9}, + "jumped": {"key_sha256": "ff682ac12bb140f2d72fba8d3506cf4e46817a0db27aae1683867629031d8d55", "pos": 598}, + }, + { + "seed":384908324, + "steps":312, + "initial": {"key_sha256": "16b791a1e04886ccbbb4d448d6ff791267dc458ae599475d08d5cced29d11614", "pos": 311}, + "jumped": {"key_sha256": "a0110a2cf23b56be0feaed8f787a7fc84bef0cb5623003d75b26bdfa1c18002c", "pos": 276}, + }, + { + "seed": [839438204, 980239840, 859048019, 821], + "steps": 511, + "initial": {"key_sha256": "d306cf01314d51bd37892d874308200951a35265ede54d200f1e065004c3e9ea", "pos": 510}, + "jumped": {"key_sha256": "0e00ab449f01a5195a83b4aee0dfbc2ce8d46466a640b92e33977d2e42f777f8", "pos": 475}, + }, +] + + +@pytest.fixture(scope='module', params=[True, False]) +def endpoint(request): + return request.param + + +class TestSeed: + def test_scalar(self): + s = Generator(MT19937(0)) + assert_equal(s.integers(1000), 479) + s = Generator(MT19937(4294967295)) + assert_equal(s.integers(1000), 324) + + def test_array(self): + s = Generator(MT19937(range(10))) + assert_equal(s.integers(1000), 465) + s = Generator(MT19937(np.arange(10))) + assert_equal(s.integers(1000), 465) + s = Generator(MT19937([0])) + assert_equal(s.integers(1000), 479) + s = Generator(MT19937([4294967295])) + assert_equal(s.integers(1000), 324) + + def test_seedsequence(self): + s = MT19937(SeedSequence(0)) + assert_equal(s.random_raw(1), 2058676884) + + def test_invalid_scalar(self): + # seed must be an unsigned 32 bit integer + assert_raises(TypeError, MT19937, -0.5) + assert_raises(ValueError, MT19937, -1) + + def test_invalid_array(self): + # seed must be an unsigned integer + assert_raises(TypeError, MT19937, [-0.5]) + assert_raises(ValueError, MT19937, [-1]) + assert_raises(ValueError, MT19937, [1, -2, 4294967296]) + + def test_noninstantized_bitgen(self): + assert_raises(ValueError, Generator, MT19937) + + +class TestBinomial: + def test_n_zero(self): + # Tests the corner case of n == 0 for the binomial distribution. + # binomial(0, p) should be zero for any p in [0, 1]. + # This test addresses issue #3480. + zeros = np.zeros(2, dtype='int') + for p in [0, .5, 1]: + assert_(random.binomial(0, p) == 0) + assert_array_equal(random.binomial(zeros, p), zeros) + + def test_p_is_nan(self): + # Issue #4571. + assert_raises(ValueError, random.binomial, 1, np.nan) + + +class TestMultinomial: + def test_basic(self): + random.multinomial(100, [0.2, 0.8]) + + def test_zero_probability(self): + random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0]) + + def test_int_negative_interval(self): + assert_(-5 <= random.integers(-5, -1) < -1) + x = random.integers(-5, -1, 5) + assert_(np.all(-5 <= x)) + assert_(np.all(x < -1)) + + def test_size(self): + # gh-3173 + p = [0.5, 0.5] + assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) + assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) + assert_equal(random.multinomial(1, p, np.array((2, 2))).shape, + (2, 2, 2)) + + assert_raises(TypeError, random.multinomial, 1, p, + float(1)) + + def test_invalid_prob(self): + assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2]) + assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9]) + + def test_invalid_n(self): + assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2]) + assert_raises(ValueError, random.multinomial, [-1] * 10, [0.8, 0.2]) + + def test_p_non_contiguous(self): + p = np.arange(15.) + p /= np.sum(p[1::3]) + pvals = p[1::3] + random = Generator(MT19937(1432985819)) + non_contig = random.multinomial(100, pvals=pvals) + random = Generator(MT19937(1432985819)) + contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals)) + assert_array_equal(non_contig, contig) + + def test_multinomial_pvals_float32(self): + x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, + 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32) + pvals = x / x.sum() + random = Generator(MT19937(1432985819)) + match = r"[\w\s]*pvals array is cast to 64-bit floating" + with pytest.raises(ValueError, match=match): + random.multinomial(1, pvals) + + +class TestMultivariateHypergeometric: + + def setup_method(self): + self.seed = 8675309 + + def test_argument_validation(self): + # Error cases... + + # `colors` must be a 1-d sequence + assert_raises(ValueError, random.multivariate_hypergeometric, + 10, 4) + + # Negative nsample + assert_raises(ValueError, random.multivariate_hypergeometric, + [2, 3, 4], -1) + + # Negative color + assert_raises(ValueError, random.multivariate_hypergeometric, + [-1, 2, 3], 2) + + # nsample exceeds sum(colors) + assert_raises(ValueError, random.multivariate_hypergeometric, + [2, 3, 4], 10) + + # nsample exceeds sum(colors) (edge case of empty colors) + assert_raises(ValueError, random.multivariate_hypergeometric, + [], 1) + + # Validation errors associated with very large values in colors. + assert_raises(ValueError, random.multivariate_hypergeometric, + [999999999, 101], 5, 1, 'marginals') + + int64_info = np.iinfo(np.int64) + max_int64 = int64_info.max + max_int64_index = max_int64 // int64_info.dtype.itemsize + assert_raises(ValueError, random.multivariate_hypergeometric, + [max_int64_index - 100, 101], 5, 1, 'count') + + @pytest.mark.parametrize('method', ['count', 'marginals']) + def test_edge_cases(self, method): + # Set the seed, but in fact, all the results in this test are + # deterministic, so we don't really need this. + random = Generator(MT19937(self.seed)) + + x = random.multivariate_hypergeometric([0, 0, 0], 0, method=method) + assert_array_equal(x, [0, 0, 0]) + + x = random.multivariate_hypergeometric([], 0, method=method) + assert_array_equal(x, []) + + x = random.multivariate_hypergeometric([], 0, size=1, method=method) + assert_array_equal(x, np.empty((1, 0), dtype=np.int64)) + + x = random.multivariate_hypergeometric([1, 2, 3], 0, method=method) + assert_array_equal(x, [0, 0, 0]) + + x = random.multivariate_hypergeometric([9, 0, 0], 3, method=method) + assert_array_equal(x, [3, 0, 0]) + + colors = [1, 1, 0, 1, 1] + x = random.multivariate_hypergeometric(colors, sum(colors), + method=method) + assert_array_equal(x, colors) + + x = random.multivariate_hypergeometric([3, 4, 5], 12, size=3, + method=method) + assert_array_equal(x, [[3, 4, 5]]*3) + + # Cases for nsample: + # nsample < 10 + # 10 <= nsample < colors.sum()/2 + # colors.sum()/2 < nsample < colors.sum() - 10 + # colors.sum() - 10 < nsample < colors.sum() + @pytest.mark.parametrize('nsample', [8, 25, 45, 55]) + @pytest.mark.parametrize('method', ['count', 'marginals']) + @pytest.mark.parametrize('size', [5, (2, 3), 150000]) + def test_typical_cases(self, nsample, method, size): + random = Generator(MT19937(self.seed)) + + colors = np.array([10, 5, 20, 25]) + sample = random.multivariate_hypergeometric(colors, nsample, size, + method=method) + if isinstance(size, int): + expected_shape = (size,) + colors.shape + else: + expected_shape = size + colors.shape + assert_equal(sample.shape, expected_shape) + assert_((sample >= 0).all()) + assert_((sample <= colors).all()) + assert_array_equal(sample.sum(axis=-1), + np.full(size, fill_value=nsample, dtype=int)) + if isinstance(size, int) and size >= 100000: + # This sample is large enough to compare its mean to + # the expected values. + assert_allclose(sample.mean(axis=0), + nsample * colors / colors.sum(), + rtol=1e-3, atol=0.005) + + def test_repeatability1(self): + random = Generator(MT19937(self.seed)) + sample = random.multivariate_hypergeometric([3, 4, 5], 5, size=5, + method='count') + expected = np.array([[2, 1, 2], + [2, 1, 2], + [1, 1, 3], + [2, 0, 3], + [2, 1, 2]]) + assert_array_equal(sample, expected) + + def test_repeatability2(self): + random = Generator(MT19937(self.seed)) + sample = random.multivariate_hypergeometric([20, 30, 50], 50, + size=5, + method='marginals') + expected = np.array([[ 9, 17, 24], + [ 7, 13, 30], + [ 9, 15, 26], + [ 9, 17, 24], + [12, 14, 24]]) + assert_array_equal(sample, expected) + + def test_repeatability3(self): + random = Generator(MT19937(self.seed)) + sample = random.multivariate_hypergeometric([20, 30, 50], 12, + size=5, + method='marginals') + expected = np.array([[2, 3, 7], + [5, 3, 4], + [2, 5, 5], + [5, 3, 4], + [1, 5, 6]]) + assert_array_equal(sample, expected) + + +class TestSetState: + def setup_method(self): + self.seed = 1234567890 + self.rg = Generator(MT19937(self.seed)) + self.bit_generator = self.rg.bit_generator + self.state = self.bit_generator.state + self.legacy_state = (self.state['bit_generator'], + self.state['state']['key'], + self.state['state']['pos']) + + def test_gaussian_reset(self): + # Make sure the cached every-other-Gaussian is reset. + old = self.rg.standard_normal(size=3) + self.bit_generator.state = self.state + new = self.rg.standard_normal(size=3) + assert_(np.all(old == new)) + + def test_gaussian_reset_in_media_res(self): + # When the state is saved with a cached Gaussian, make sure the + # cached Gaussian is restored. + + self.rg.standard_normal() + state = self.bit_generator.state + old = self.rg.standard_normal(size=3) + self.bit_generator.state = state + new = self.rg.standard_normal(size=3) + assert_(np.all(old == new)) + + def test_negative_binomial(self): + # Ensure that the negative binomial results take floating point + # arguments without truncation. + self.rg.negative_binomial(0.5, 0.5) + + +class TestIntegers: + rfunc = random.integers + + # valid integer/boolean types + itype = [bool, np.int8, np.uint8, np.int16, np.uint16, + np.int32, np.uint32, np.int64, np.uint64] + + def test_unsupported_type(self, endpoint): + assert_raises(TypeError, self.rfunc, 1, endpoint=endpoint, dtype=float) + + def test_bounds_checking(self, endpoint): + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, ubnd, lbnd, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, 1, 0, endpoint=endpoint, + dtype=dt) + + assert_raises(ValueError, self.rfunc, [lbnd - 1], ubnd, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [lbnd], [ubnd + 1], + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [ubnd], [lbnd], + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, 1, [0], + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [ubnd+1], [ubnd], + endpoint=endpoint, dtype=dt) + + def test_bounds_checking_array(self, endpoint): + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + (not endpoint) + + assert_raises(ValueError, self.rfunc, [lbnd - 1] * 2, [ubnd] * 2, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [lbnd] * 2, + [ubnd + 1] * 2, endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, ubnd, [lbnd] * 2, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [1] * 2, 0, + endpoint=endpoint, dtype=dt) + + def test_rng_zero_and_extremes(self, endpoint): + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + is_open = not endpoint + + tgt = ubnd - 1 + assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, + endpoint=endpoint, dtype=dt), tgt) + assert_equal(self.rfunc([tgt], tgt + is_open, size=1000, + endpoint=endpoint, dtype=dt), tgt) + + tgt = lbnd + assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, + endpoint=endpoint, dtype=dt), tgt) + assert_equal(self.rfunc(tgt, [tgt + is_open], size=1000, + endpoint=endpoint, dtype=dt), tgt) + + tgt = (lbnd + ubnd) // 2 + assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, + endpoint=endpoint, dtype=dt), tgt) + assert_equal(self.rfunc([tgt], [tgt + is_open], + size=1000, endpoint=endpoint, dtype=dt), + tgt) + + def test_rng_zero_and_extremes_array(self, endpoint): + size = 1000 + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + tgt = ubnd - 1 + assert_equal(self.rfunc([tgt], [tgt + 1], + size=size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) + + tgt = lbnd + assert_equal(self.rfunc([tgt], [tgt + 1], + size=size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) + + tgt = (lbnd + ubnd) // 2 + assert_equal(self.rfunc([tgt], [tgt + 1], + size=size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) + + def test_full_range(self, endpoint): + # Test for ticket #1690 + + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + try: + self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) + except Exception as e: + raise AssertionError("No error should have been raised, " + "but one was with the following " + "message:\n\n%s" % str(e)) + + def test_full_range_array(self, endpoint): + # Test for ticket #1690 + + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + try: + self.rfunc([lbnd] * 2, [ubnd], endpoint=endpoint, dtype=dt) + except Exception as e: + raise AssertionError("No error should have been raised, " + "but one was with the following " + "message:\n\n%s" % str(e)) + + def test_in_bounds_fuzz(self, endpoint): + # Don't use fixed seed + random = Generator(MT19937()) + + for dt in self.itype[1:]: + for ubnd in [4, 8, 16]: + vals = self.rfunc(2, ubnd - endpoint, size=2 ** 16, + endpoint=endpoint, dtype=dt) + assert_(vals.max() < ubnd) + assert_(vals.min() >= 2) + + vals = self.rfunc(0, 2 - endpoint, size=2 ** 16, endpoint=endpoint, + dtype=bool) + assert_(vals.max() < 2) + assert_(vals.min() >= 0) + + def test_scalar_array_equiv(self, endpoint): + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + size = 1000 + random = Generator(MT19937(1234)) + scalar = random.integers(lbnd, ubnd, size=size, endpoint=endpoint, + dtype=dt) + + random = Generator(MT19937(1234)) + scalar_array = random.integers([lbnd], [ubnd], size=size, + endpoint=endpoint, dtype=dt) + + random = Generator(MT19937(1234)) + array = random.integers([lbnd] * size, [ubnd] * + size, size=size, endpoint=endpoint, dtype=dt) + assert_array_equal(scalar, scalar_array) + assert_array_equal(scalar, array) + + def test_repeatability(self, endpoint): + # We use a sha256 hash of generated sequences of 1000 samples + # in the range [0, 6) for all but bool, where the range + # is [0, 2). Hashes are for little endian numbers. + tgt = {'bool': '053594a9b82d656f967c54869bc6970aa0358cf94ad469c81478459c6a90eee3', + 'int16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4', + 'int32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b', + 'int64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1', + 'int8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1', + 'uint16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4', + 'uint32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b', + 'uint64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1', + 'uint8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1'} + + for dt in self.itype[1:]: + random = Generator(MT19937(1234)) + + # view as little endian for hash + if sys.byteorder == 'little': + val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint, + dtype=dt) + else: + val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint, + dtype=dt).byteswap() + + res = hashlib.sha256(val).hexdigest() + assert_(tgt[np.dtype(dt).name] == res) + + # bools do not depend on endianness + random = Generator(MT19937(1234)) + val = random.integers(0, 2 - endpoint, size=1000, endpoint=endpoint, + dtype=bool).view(np.int8) + res = hashlib.sha256(val).hexdigest() + assert_(tgt[np.dtype(bool).name] == res) + + def test_repeatability_broadcasting(self, endpoint): + for dt in self.itype: + lbnd = 0 if dt in (bool, np.bool_) else np.iinfo(dt).min + ubnd = 2 if dt in (bool, np.bool_) else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + # view as little endian for hash + random = Generator(MT19937(1234)) + val = random.integers(lbnd, ubnd, size=1000, endpoint=endpoint, + dtype=dt) + + random = Generator(MT19937(1234)) + val_bc = random.integers([lbnd] * 1000, ubnd, endpoint=endpoint, + dtype=dt) + + assert_array_equal(val, val_bc) + + random = Generator(MT19937(1234)) + val_bc = random.integers([lbnd] * 1000, [ubnd] * 1000, + endpoint=endpoint, dtype=dt) + + assert_array_equal(val, val_bc) + + @pytest.mark.parametrize( + 'bound, expected', + [(2**32 - 1, np.array([517043486, 1364798665, 1733884389, 1353720612, + 3769704066, 1170797179, 4108474671])), + (2**32, np.array([517043487, 1364798666, 1733884390, 1353720613, + 3769704067, 1170797180, 4108474672])), + (2**32 + 1, np.array([517043487, 1733884390, 3769704068, 4108474673, + 1831631863, 1215661561, 3869512430]))] + ) + def test_repeatability_32bit_boundary(self, bound, expected): + for size in [None, len(expected)]: + random = Generator(MT19937(1234)) + x = random.integers(bound, size=size) + assert_equal(x, expected if size is not None else expected[0]) + + def test_repeatability_32bit_boundary_broadcasting(self): + desired = np.array([[[1622936284, 3620788691, 1659384060], + [1417365545, 760222891, 1909653332], + [3788118662, 660249498, 4092002593]], + [[3625610153, 2979601262, 3844162757], + [ 685800658, 120261497, 2694012896], + [1207779440, 1586594375, 3854335050]], + [[3004074748, 2310761796, 3012642217], + [2067714190, 2786677879, 1363865881], + [ 791663441, 1867303284, 2169727960]], + [[1939603804, 1250951100, 298950036], + [1040128489, 3791912209, 3317053765], + [3155528714, 61360675, 2305155588]], + [[ 817688762, 1335621943, 3288952434], + [1770890872, 1102951817, 1957607470], + [3099996017, 798043451, 48334215]]]) + for size in [None, (5, 3, 3)]: + random = Generator(MT19937(12345)) + x = random.integers([[-1], [0], [1]], + [2**32 - 1, 2**32, 2**32 + 1], + size=size) + assert_array_equal(x, desired if size is not None else desired[0]) + + def test_int64_uint64_broadcast_exceptions(self, endpoint): + configs = {np.uint64: ((0, 2**65), (-1, 2**62), (10, 9), (0, 0)), + np.int64: ((0, 2**64), (-(2**64), 2**62), (10, 9), (0, 0), + (-2**63-1, -2**63-1))} + for dtype in configs: + for config in configs[dtype]: + low, high = config + high = high - endpoint + low_a = np.array([[low]*10]) + high_a = np.array([high] * 10) + assert_raises(ValueError, random.integers, low, high, + endpoint=endpoint, dtype=dtype) + assert_raises(ValueError, random.integers, low_a, high, + endpoint=endpoint, dtype=dtype) + assert_raises(ValueError, random.integers, low, high_a, + endpoint=endpoint, dtype=dtype) + assert_raises(ValueError, random.integers, low_a, high_a, + endpoint=endpoint, dtype=dtype) + + low_o = np.array([[low]*10], dtype=object) + high_o = np.array([high] * 10, dtype=object) + assert_raises(ValueError, random.integers, low_o, high, + endpoint=endpoint, dtype=dtype) + assert_raises(ValueError, random.integers, low, high_o, + endpoint=endpoint, dtype=dtype) + assert_raises(ValueError, random.integers, low_o, high_o, + endpoint=endpoint, dtype=dtype) + + def test_int64_uint64_corner_case(self, endpoint): + # When stored in Numpy arrays, `lbnd` is casted + # as np.int64, and `ubnd` is casted as np.uint64. + # Checking whether `lbnd` >= `ubnd` used to be + # done solely via direct comparison, which is incorrect + # because when Numpy tries to compare both numbers, + # it casts both to np.float64 because there is + # no integer superset of np.int64 and np.uint64. However, + # `ubnd` is too large to be represented in np.float64, + # causing it be round down to np.iinfo(np.int64).max, + # leading to a ValueError because `lbnd` now equals + # the new `ubnd`. + + dt = np.int64 + tgt = np.iinfo(np.int64).max + lbnd = np.int64(np.iinfo(np.int64).max) + ubnd = np.uint64(np.iinfo(np.int64).max + 1 - endpoint) + + # None of these function calls should + # generate a ValueError now. + actual = random.integers(lbnd, ubnd, endpoint=endpoint, dtype=dt) + assert_equal(actual, tgt) + + def test_respect_dtype_singleton(self, endpoint): + # See gh-7203 + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + dt = np.bool_ if dt is bool else dt + + sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) + assert_equal(sample.dtype, dt) + + for dt in (bool, int): + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + # gh-7284: Ensure that we get Python data types + sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) + assert not hasattr(sample, 'dtype') + assert_equal(type(sample), dt) + + def test_respect_dtype_array(self, endpoint): + # See gh-7203 + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + dt = np.bool_ if dt is bool else dt + + sample = self.rfunc([lbnd], [ubnd], endpoint=endpoint, dtype=dt) + assert_equal(sample.dtype, dt) + sample = self.rfunc([lbnd] * 2, [ubnd] * 2, endpoint=endpoint, + dtype=dt) + assert_equal(sample.dtype, dt) + + def test_zero_size(self, endpoint): + # See gh-7203 + for dt in self.itype: + sample = self.rfunc(0, 0, (3, 0, 4), endpoint=endpoint, dtype=dt) + assert sample.shape == (3, 0, 4) + assert sample.dtype == dt + assert self.rfunc(0, -10, 0, endpoint=endpoint, + dtype=dt).shape == (0,) + assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, + (3, 0, 4)) + assert_equal(random.integers(0, -10, size=0).shape, (0,)) + assert_equal(random.integers(10, 10, size=0).shape, (0,)) + + def test_error_byteorder(self): + other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4' + with pytest.raises(ValueError): + random.integers(0, 200, size=10, dtype=other_byteord_dt) + + # chi2max is the maximum acceptable chi-squared value. + @pytest.mark.slow + @pytest.mark.parametrize('sample_size,high,dtype,chi2max', + [(5000000, 5, np.int8, 125.0), # p-value ~4.6e-25 + (5000000, 7, np.uint8, 150.0), # p-value ~7.7e-30 + (10000000, 2500, np.int16, 3300.0), # p-value ~3.0e-25 + (50000000, 5000, np.uint16, 6500.0), # p-value ~3.5e-25 + ]) + def test_integers_small_dtype_chisquared(self, sample_size, high, + dtype, chi2max): + # Regression test for gh-14774. + samples = random.integers(high, size=sample_size, dtype=dtype) + + values, counts = np.unique(samples, return_counts=True) + expected = sample_size / high + chi2 = ((counts - expected)**2 / expected).sum() + assert chi2 < chi2max + + +class TestRandomDist: + # Make sure the random distribution returns the correct value for a + # given seed + + def setup_method(self): + self.seed = 1234567890 + + def test_integers(self): + random = Generator(MT19937(self.seed)) + actual = random.integers(-99, 99, size=(3, 2)) + desired = np.array([[-80, -56], [41, 37], [-83, -16]]) + assert_array_equal(actual, desired) + + def test_integers_masked(self): + # Test masked rejection sampling algorithm to generate array of + # uint32 in an interval. + random = Generator(MT19937(self.seed)) + actual = random.integers(0, 99, size=(3, 2), dtype=np.uint32) + desired = np.array([[9, 21], [70, 68], [8, 41]], dtype=np.uint32) + assert_array_equal(actual, desired) + + def test_integers_closed(self): + random = Generator(MT19937(self.seed)) + actual = random.integers(-99, 99, size=(3, 2), endpoint=True) + desired = np.array([[-80, -56], [ 41, 38], [-83, -15]]) + assert_array_equal(actual, desired) + + def test_integers_max_int(self): + # Tests whether integers with closed=True can generate the + # maximum allowed Python int that can be converted + # into a C long. Previous implementations of this + # method have thrown an OverflowError when attempting + # to generate this integer. + actual = random.integers(np.iinfo('l').max, np.iinfo('l').max, + endpoint=True) + + desired = np.iinfo('l').max + assert_equal(actual, desired) + + def test_random(self): + random = Generator(MT19937(self.seed)) + actual = random.random((3, 2)) + desired = np.array([[0.096999199829214, 0.707517457682192], + [0.084364834598269, 0.767731206553125], + [0.665069021359413, 0.715487190596693]]) + assert_array_almost_equal(actual, desired, decimal=15) + + random = Generator(MT19937(self.seed)) + actual = random.random() + assert_array_almost_equal(actual, desired[0, 0], decimal=15) + + def test_random_float(self): + random = Generator(MT19937(self.seed)) + actual = random.random((3, 2)) + desired = np.array([[0.0969992 , 0.70751746], + [0.08436483, 0.76773121], + [0.66506902, 0.71548719]]) + assert_array_almost_equal(actual, desired, decimal=7) + + def test_random_float_scalar(self): + random = Generator(MT19937(self.seed)) + actual = random.random(dtype=np.float32) + desired = 0.0969992 + assert_array_almost_equal(actual, desired, decimal=7) + + @pytest.mark.parametrize('dtype, uint_view_type', + [(np.float32, np.uint32), + (np.float64, np.uint64)]) + def test_random_distribution_of_lsb(self, dtype, uint_view_type): + random = Generator(MT19937(self.seed)) + sample = random.random(100000, dtype=dtype) + num_ones_in_lsb = np.count_nonzero(sample.view(uint_view_type) & 1) + # The probability of a 1 in the least significant bit is 0.25. + # With a sample size of 100000, the probability that num_ones_in_lsb + # is outside the following range is less than 5e-11. + assert 24100 < num_ones_in_lsb < 25900 + + def test_random_unsupported_type(self): + assert_raises(TypeError, random.random, dtype='int32') + + def test_choice_uniform_replace(self): + random = Generator(MT19937(self.seed)) + actual = random.choice(4, 4) + desired = np.array([0, 0, 2, 2], dtype=np.int64) + assert_array_equal(actual, desired) + + def test_choice_nonuniform_replace(self): + random = Generator(MT19937(self.seed)) + actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1]) + desired = np.array([0, 1, 0, 1], dtype=np.int64) + assert_array_equal(actual, desired) + + def test_choice_uniform_noreplace(self): + random = Generator(MT19937(self.seed)) + actual = random.choice(4, 3, replace=False) + desired = np.array([2, 0, 3], dtype=np.int64) + assert_array_equal(actual, desired) + actual = random.choice(4, 4, replace=False, shuffle=False) + desired = np.arange(4, dtype=np.int64) + assert_array_equal(actual, desired) + + def test_choice_nonuniform_noreplace(self): + random = Generator(MT19937(self.seed)) + actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1]) + desired = np.array([0, 2, 3], dtype=np.int64) + assert_array_equal(actual, desired) + + def test_choice_noninteger(self): + random = Generator(MT19937(self.seed)) + actual = random.choice(['a', 'b', 'c', 'd'], 4) + desired = np.array(['a', 'a', 'c', 'c']) + assert_array_equal(actual, desired) + + def test_choice_multidimensional_default_axis(self): + random = Generator(MT19937(self.seed)) + actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 3) + desired = np.array([[0, 1], [0, 1], [4, 5]]) + assert_array_equal(actual, desired) + + def test_choice_multidimensional_custom_axis(self): + random = Generator(MT19937(self.seed)) + actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 1, axis=1) + desired = np.array([[0], [2], [4], [6]]) + assert_array_equal(actual, desired) + + def test_choice_exceptions(self): + sample = random.choice + assert_raises(ValueError, sample, -1, 3) + assert_raises(ValueError, sample, 3., 3) + assert_raises(ValueError, sample, [], 3) + assert_raises(ValueError, sample, [1, 2, 3, 4], 3, + p=[[0.25, 0.25], [0.25, 0.25]]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2]) + assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4]) + assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False) + # gh-13087 + assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False) + assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False) + assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False) + assert_raises(ValueError, sample, [1, 2, 3], 2, + replace=False, p=[1, 0, 0]) + + def test_choice_return_shape(self): + p = [0.1, 0.9] + # Check scalar + assert_(np.isscalar(random.choice(2, replace=True))) + assert_(np.isscalar(random.choice(2, replace=False))) + assert_(np.isscalar(random.choice(2, replace=True, p=p))) + assert_(np.isscalar(random.choice(2, replace=False, p=p))) + assert_(np.isscalar(random.choice([1, 2], replace=True))) + assert_(random.choice([None], replace=True) is None) + a = np.array([1, 2]) + arr = np.empty(1, dtype=object) + arr[0] = a + assert_(random.choice(arr, replace=True) is a) + + # Check 0-d array + s = tuple() + assert_(not np.isscalar(random.choice(2, s, replace=True))) + assert_(not np.isscalar(random.choice(2, s, replace=False))) + assert_(not np.isscalar(random.choice(2, s, replace=True, p=p))) + assert_(not np.isscalar(random.choice(2, s, replace=False, p=p))) + assert_(not np.isscalar(random.choice([1, 2], s, replace=True))) + assert_(random.choice([None], s, replace=True).ndim == 0) + a = np.array([1, 2]) + arr = np.empty(1, dtype=object) + arr[0] = a + assert_(random.choice(arr, s, replace=True).item() is a) + + # Check multi dimensional array + s = (2, 3) + p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2] + assert_equal(random.choice(6, s, replace=True).shape, s) + assert_equal(random.choice(6, s, replace=False).shape, s) + assert_equal(random.choice(6, s, replace=True, p=p).shape, s) + assert_equal(random.choice(6, s, replace=False, p=p).shape, s) + assert_equal(random.choice(np.arange(6), s, replace=True).shape, s) + + # Check zero-size + assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, (3, 0, 4)) + assert_equal(random.integers(0, -10, size=0).shape, (0,)) + assert_equal(random.integers(10, 10, size=0).shape, (0,)) + assert_equal(random.choice(0, size=0).shape, (0,)) + assert_equal(random.choice([], size=(0,)).shape, (0,)) + assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape, + (3, 0, 4)) + assert_raises(ValueError, random.choice, [], 10) + + def test_choice_nan_probabilities(self): + a = np.array([42, 1, 2]) + p = [None, None, None] + assert_raises(ValueError, random.choice, a, p=p) + + def test_choice_p_non_contiguous(self): + p = np.ones(10) / 5 + p[1::2] = 3.0 + random = Generator(MT19937(self.seed)) + non_contig = random.choice(5, 3, p=p[::2]) + random = Generator(MT19937(self.seed)) + contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2])) + assert_array_equal(non_contig, contig) + + def test_choice_return_type(self): + # gh 9867 + p = np.ones(4) / 4. + actual = random.choice(4, 2) + assert actual.dtype == np.int64 + actual = random.choice(4, 2, replace=False) + assert actual.dtype == np.int64 + actual = random.choice(4, 2, p=p) + assert actual.dtype == np.int64 + actual = random.choice(4, 2, p=p, replace=False) + assert actual.dtype == np.int64 + + def test_choice_large_sample(self): + choice_hash = '4266599d12bfcfb815213303432341c06b4349f5455890446578877bb322e222' + random = Generator(MT19937(self.seed)) + actual = random.choice(10000, 5000, replace=False) + if sys.byteorder != 'little': + actual = actual.byteswap() + res = hashlib.sha256(actual.view(np.int8)).hexdigest() + assert_(choice_hash == res) + + def test_bytes(self): + random = Generator(MT19937(self.seed)) + actual = random.bytes(10) + desired = b'\x86\xf0\xd4\x18\xe1\x81\t8%\xdd' + assert_equal(actual, desired) + + def test_shuffle(self): + # Test lists, arrays (of various dtypes), and multidimensional versions + # of both, c-contiguous or not: + for conv in [lambda x: np.array([]), + lambda x: x, + lambda x: np.asarray(x).astype(np.int8), + lambda x: np.asarray(x).astype(np.float32), + lambda x: np.asarray(x).astype(np.complex64), + lambda x: np.asarray(x).astype(object), + lambda x: [(i, i) for i in x], + lambda x: np.asarray([[i, i] for i in x]), + lambda x: np.vstack([x, x]).T, + # gh-11442 + lambda x: (np.asarray([(i, i) for i in x], + [("a", int), ("b", int)]) + .view(np.recarray)), + # gh-4270 + lambda x: np.asarray([(i, i) for i in x], + [("a", object, (1,)), + ("b", np.int32, (1,))])]: + random = Generator(MT19937(self.seed)) + alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) + random.shuffle(alist) + actual = alist + desired = conv([4, 1, 9, 8, 0, 5, 3, 6, 2, 7]) + assert_array_equal(actual, desired) + + def test_shuffle_custom_axis(self): + random = Generator(MT19937(self.seed)) + actual = np.arange(16).reshape((4, 4)) + random.shuffle(actual, axis=1) + desired = np.array([[ 0, 3, 1, 2], + [ 4, 7, 5, 6], + [ 8, 11, 9, 10], + [12, 15, 13, 14]]) + assert_array_equal(actual, desired) + random = Generator(MT19937(self.seed)) + actual = np.arange(16).reshape((4, 4)) + random.shuffle(actual, axis=-1) + assert_array_equal(actual, desired) + + def test_shuffle_custom_axis_empty(self): + random = Generator(MT19937(self.seed)) + desired = np.array([]).reshape((0, 6)) + for axis in (0, 1): + actual = np.array([]).reshape((0, 6)) + random.shuffle(actual, axis=axis) + assert_array_equal(actual, desired) + + def test_shuffle_axis_nonsquare(self): + y1 = np.arange(20).reshape(2, 10) + y2 = y1.copy() + random = Generator(MT19937(self.seed)) + random.shuffle(y1, axis=1) + random = Generator(MT19937(self.seed)) + random.shuffle(y2.T) + assert_array_equal(y1, y2) + + def test_shuffle_masked(self): + # gh-3263 + a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1) + b = np.ma.masked_values(np.arange(20) % 3 - 1, -1) + a_orig = a.copy() + b_orig = b.copy() + for i in range(50): + random.shuffle(a) + assert_equal( + sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask])) + random.shuffle(b) + assert_equal( + sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask])) + + def test_shuffle_exceptions(self): + random = Generator(MT19937(self.seed)) + arr = np.arange(10) + assert_raises(np.AxisError, random.shuffle, arr, 1) + arr = np.arange(9).reshape((3, 3)) + assert_raises(np.AxisError, random.shuffle, arr, 3) + assert_raises(TypeError, random.shuffle, arr, slice(1, 2, None)) + arr = [[1, 2, 3], [4, 5, 6]] + assert_raises(NotImplementedError, random.shuffle, arr, 1) + + arr = np.array(3) + assert_raises(TypeError, random.shuffle, arr) + arr = np.ones((3, 2)) + assert_raises(np.AxisError, random.shuffle, arr, 2) + + def test_shuffle_not_writeable(self): + random = Generator(MT19937(self.seed)) + a = np.zeros(5) + a.flags.writeable = False + with pytest.raises(ValueError, match='read-only'): + random.shuffle(a) + + def test_permutation(self): + random = Generator(MT19937(self.seed)) + alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0] + actual = random.permutation(alist) + desired = [4, 1, 9, 8, 0, 5, 3, 6, 2, 7] + assert_array_equal(actual, desired) + + random = Generator(MT19937(self.seed)) + arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T + actual = random.permutation(arr_2d) + assert_array_equal(actual, np.atleast_2d(desired).T) + + bad_x_str = "abcd" + assert_raises(np.AxisError, random.permutation, bad_x_str) + + bad_x_float = 1.2 + assert_raises(np.AxisError, random.permutation, bad_x_float) + + random = Generator(MT19937(self.seed)) + integer_val = 10 + desired = [3, 0, 8, 7, 9, 4, 2, 5, 1, 6] + + actual = random.permutation(integer_val) + assert_array_equal(actual, desired) + + def test_permutation_custom_axis(self): + a = np.arange(16).reshape((4, 4)) + desired = np.array([[ 0, 3, 1, 2], + [ 4, 7, 5, 6], + [ 8, 11, 9, 10], + [12, 15, 13, 14]]) + random = Generator(MT19937(self.seed)) + actual = random.permutation(a, axis=1) + assert_array_equal(actual, desired) + random = Generator(MT19937(self.seed)) + actual = random.permutation(a, axis=-1) + assert_array_equal(actual, desired) + + def test_permutation_exceptions(self): + random = Generator(MT19937(self.seed)) + arr = np.arange(10) + assert_raises(np.AxisError, random.permutation, arr, 1) + arr = np.arange(9).reshape((3, 3)) + assert_raises(np.AxisError, random.permutation, arr, 3) + assert_raises(TypeError, random.permutation, arr, slice(1, 2, None)) + + @pytest.mark.parametrize("dtype", [int, object]) + @pytest.mark.parametrize("axis, expected", + [(None, np.array([[3, 7, 0, 9, 10, 11], + [8, 4, 2, 5, 1, 6]])), + (0, np.array([[6, 1, 2, 9, 10, 11], + [0, 7, 8, 3, 4, 5]])), + (1, np.array([[ 5, 3, 4, 0, 2, 1], + [11, 9, 10, 6, 8, 7]]))]) + def test_permuted(self, dtype, axis, expected): + random = Generator(MT19937(self.seed)) + x = np.arange(12).reshape(2, 6).astype(dtype) + random.permuted(x, axis=axis, out=x) + assert_array_equal(x, expected) + + random = Generator(MT19937(self.seed)) + x = np.arange(12).reshape(2, 6).astype(dtype) + y = random.permuted(x, axis=axis) + assert y.dtype == dtype + assert_array_equal(y, expected) + + def test_permuted_with_strides(self): + random = Generator(MT19937(self.seed)) + x0 = np.arange(22).reshape(2, 11) + x1 = x0.copy() + x = x0[:, ::3] + y = random.permuted(x, axis=1, out=x) + expected = np.array([[0, 9, 3, 6], + [14, 20, 11, 17]]) + assert_array_equal(y, expected) + x1[:, ::3] = expected + # Verify that the original x0 was modified in-place as expected. + assert_array_equal(x1, x0) + + def test_permuted_empty(self): + y = random.permuted([]) + assert_array_equal(y, []) + + @pytest.mark.parametrize('outshape', [(2, 3), 5]) + def test_permuted_out_with_wrong_shape(self, outshape): + a = np.array([1, 2, 3]) + out = np.zeros(outshape, dtype=a.dtype) + with pytest.raises(ValueError, match='same shape'): + random.permuted(a, out=out) + + def test_permuted_out_with_wrong_type(self): + out = np.zeros((3, 5), dtype=np.int32) + x = np.ones((3, 5)) + with pytest.raises(TypeError, match='Cannot cast'): + random.permuted(x, axis=1, out=out) + + def test_permuted_not_writeable(self): + x = np.zeros((2, 5)) + x.flags.writeable = False + with pytest.raises(ValueError, match='read-only'): + random.permuted(x, axis=1, out=x) + + def test_beta(self): + random = Generator(MT19937(self.seed)) + actual = random.beta(.1, .9, size=(3, 2)) + desired = np.array( + [[1.083029353267698e-10, 2.449965303168024e-11], + [2.397085162969853e-02, 3.590779671820755e-08], + [2.830254190078299e-04, 1.744709918330393e-01]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_binomial(self): + random = Generator(MT19937(self.seed)) + actual = random.binomial(100.123, .456, size=(3, 2)) + desired = np.array([[42, 41], + [42, 48], + [44, 50]]) + assert_array_equal(actual, desired) + + random = Generator(MT19937(self.seed)) + actual = random.binomial(100.123, .456) + desired = 42 + assert_array_equal(actual, desired) + + def test_chisquare(self): + random = Generator(MT19937(self.seed)) + actual = random.chisquare(50, size=(3, 2)) + desired = np.array([[32.9850547060149, 39.0219480493301], + [56.2006134779419, 57.3474165711485], + [55.4243733880198, 55.4209797925213]]) + assert_array_almost_equal(actual, desired, decimal=13) + + def test_dirichlet(self): + random = Generator(MT19937(self.seed)) + alpha = np.array([51.72840233779265162, 39.74494232180943953]) + actual = random.dirichlet(alpha, size=(3, 2)) + desired = np.array([[[0.5439892869558927, 0.45601071304410745], + [0.5588917345860708, 0.4411082654139292 ]], + [[0.5632074165063435, 0.43679258349365657], + [0.54862581112627, 0.45137418887373015]], + [[0.49961831357047226, 0.5003816864295278 ], + [0.52374806183482, 0.47625193816517997]]]) + assert_array_almost_equal(actual, desired, decimal=15) + bad_alpha = np.array([5.4e-01, -1.0e-16]) + assert_raises(ValueError, random.dirichlet, bad_alpha) + + random = Generator(MT19937(self.seed)) + alpha = np.array([51.72840233779265162, 39.74494232180943953]) + actual = random.dirichlet(alpha) + assert_array_almost_equal(actual, desired[0, 0], decimal=15) + + def test_dirichlet_size(self): + # gh-3173 + p = np.array([51.72840233779265162, 39.74494232180943953]) + assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2)) + assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2)) + assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2)) + + assert_raises(TypeError, random.dirichlet, p, float(1)) + + def test_dirichlet_bad_alpha(self): + # gh-2089 + alpha = np.array([5.4e-01, -1.0e-16]) + assert_raises(ValueError, random.dirichlet, alpha) + + # gh-15876 + assert_raises(ValueError, random.dirichlet, [[5, 1]]) + assert_raises(ValueError, random.dirichlet, [[5], [1]]) + assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]]) + assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]])) + + def test_dirichlet_alpha_non_contiguous(self): + a = np.array([51.72840233779265162, -1.0, 39.74494232180943953]) + alpha = a[::2] + random = Generator(MT19937(self.seed)) + non_contig = random.dirichlet(alpha, size=(3, 2)) + random = Generator(MT19937(self.seed)) + contig = random.dirichlet(np.ascontiguousarray(alpha), + size=(3, 2)) + assert_array_almost_equal(non_contig, contig) + + def test_dirichlet_small_alpha(self): + eps = 1.0e-9 # 1.0e-10 -> runtime x 10; 1e-11 -> runtime x 200, etc. + alpha = eps * np.array([1., 1.0e-3]) + random = Generator(MT19937(self.seed)) + actual = random.dirichlet(alpha, size=(3, 2)) + expected = np.array([ + [[1., 0.], + [1., 0.]], + [[1., 0.], + [1., 0.]], + [[1., 0.], + [1., 0.]] + ]) + assert_array_almost_equal(actual, expected, decimal=15) + + @pytest.mark.slow + def test_dirichlet_moderately_small_alpha(self): + # Use alpha.max() < 0.1 to trigger stick breaking code path + alpha = np.array([0.02, 0.04, 0.03]) + exact_mean = alpha / alpha.sum() + random = Generator(MT19937(self.seed)) + sample = random.dirichlet(alpha, size=20000000) + sample_mean = sample.mean(axis=0) + assert_allclose(sample_mean, exact_mean, rtol=1e-3) + + # This set of parameters includes inputs with alpha.max() >= 0.1 and + # alpha.max() < 0.1 to exercise both generation methods within the + # dirichlet code. + @pytest.mark.parametrize( + 'alpha', + [[5, 9, 0, 8], + [0.5, 0, 0, 0], + [1, 5, 0, 0, 1.5, 0, 0, 0], + [0.01, 0.03, 0, 0.005], + [1e-5, 0, 0, 0], + [0.002, 0.015, 0, 0, 0.04, 0, 0, 0], + [0.0], + [0, 0, 0]], + ) + def test_dirichlet_multiple_zeros_in_alpha(self, alpha): + alpha = np.array(alpha) + y = random.dirichlet(alpha) + assert_equal(y[alpha == 0], 0.0) + + def test_exponential(self): + random = Generator(MT19937(self.seed)) + actual = random.exponential(1.1234, size=(3, 2)) + desired = np.array([[0.098845481066258, 1.560752510746964], + [0.075730916041636, 1.769098974710777], + [1.488602544592235, 2.49684815275751 ]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_exponential_0(self): + assert_equal(random.exponential(scale=0), 0) + assert_raises(ValueError, random.exponential, scale=-0.) + + def test_f(self): + random = Generator(MT19937(self.seed)) + actual = random.f(12, 77, size=(3, 2)) + desired = np.array([[0.461720027077085, 1.100441958872451], + [1.100337455217484, 0.91421736740018 ], + [0.500811891303113, 0.826802454552058]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_gamma(self): + random = Generator(MT19937(self.seed)) + actual = random.gamma(5, 3, size=(3, 2)) + desired = np.array([[ 5.03850858902096, 7.9228656732049 ], + [18.73983605132985, 19.57961681699238], + [18.17897755150825, 18.17653912505234]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_gamma_0(self): + assert_equal(random.gamma(shape=0, scale=0), 0) + assert_raises(ValueError, random.gamma, shape=-0., scale=-0.) + + def test_geometric(self): + random = Generator(MT19937(self.seed)) + actual = random.geometric(.123456789, size=(3, 2)) + desired = np.array([[1, 11], + [1, 12], + [11, 17]]) + assert_array_equal(actual, desired) + + def test_geometric_exceptions(self): + assert_raises(ValueError, random.geometric, 1.1) + assert_raises(ValueError, random.geometric, [1.1] * 10) + assert_raises(ValueError, random.geometric, -0.1) + assert_raises(ValueError, random.geometric, [-0.1] * 10) + with np.errstate(invalid='ignore'): + assert_raises(ValueError, random.geometric, np.nan) + assert_raises(ValueError, random.geometric, [np.nan] * 10) + + def test_gumbel(self): + random = Generator(MT19937(self.seed)) + actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[ 4.688397515056245, -0.289514845417841], + [ 4.981176042584683, -0.633224272589149], + [-0.055915275687488, -0.333962478257953]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_gumbel_0(self): + assert_equal(random.gumbel(scale=0), 0) + assert_raises(ValueError, random.gumbel, scale=-0.) + + def test_hypergeometric(self): + random = Generator(MT19937(self.seed)) + actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2)) + desired = np.array([[ 9, 9], + [ 9, 9], + [10, 9]]) + assert_array_equal(actual, desired) + + # Test nbad = 0 + actual = random.hypergeometric(5, 0, 3, size=4) + desired = np.array([3, 3, 3, 3]) + assert_array_equal(actual, desired) + + actual = random.hypergeometric(15, 0, 12, size=4) + desired = np.array([12, 12, 12, 12]) + assert_array_equal(actual, desired) + + # Test ngood = 0 + actual = random.hypergeometric(0, 5, 3, size=4) + desired = np.array([0, 0, 0, 0]) + assert_array_equal(actual, desired) + + actual = random.hypergeometric(0, 15, 12, size=4) + desired = np.array([0, 0, 0, 0]) + assert_array_equal(actual, desired) + + def test_laplace(self): + random = Generator(MT19937(self.seed)) + actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[-3.156353949272393, 1.195863024830054], + [-3.435458081645966, 1.656882398925444], + [ 0.924824032467446, 1.251116432209336]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_laplace_0(self): + assert_equal(random.laplace(scale=0), 0) + assert_raises(ValueError, random.laplace, scale=-0.) + + def test_logistic(self): + random = Generator(MT19937(self.seed)) + actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[-4.338584631510999, 1.890171436749954], + [-4.64547787337966 , 2.514545562919217], + [ 1.495389489198666, 1.967827627577474]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_lognormal(self): + random = Generator(MT19937(self.seed)) + actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2)) + desired = np.array([[ 0.0268252166335, 13.9534486483053], + [ 0.1204014788936, 2.2422077497792], + [ 4.2484199496128, 12.0093343977523]]) + assert_array_almost_equal(actual, desired, decimal=13) + + def test_lognormal_0(self): + assert_equal(random.lognormal(sigma=0), 1) + assert_raises(ValueError, random.lognormal, sigma=-0.) + + def test_logseries(self): + random = Generator(MT19937(self.seed)) + actual = random.logseries(p=.923456789, size=(3, 2)) + desired = np.array([[14, 17], + [3, 18], + [5, 1]]) + assert_array_equal(actual, desired) + + def test_logseries_zero(self): + random = Generator(MT19937(self.seed)) + assert random.logseries(0) == 1 + + @pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.]) + def test_logseries_exceptions(self, value): + random = Generator(MT19937(self.seed)) + with np.errstate(invalid="ignore"): + with pytest.raises(ValueError): + random.logseries(value) + with pytest.raises(ValueError): + # contiguous path: + random.logseries(np.array([value] * 10)) + with pytest.raises(ValueError): + # non-contiguous path: + random.logseries(np.array([value] * 10)[::2]) + + def test_multinomial(self): + random = Generator(MT19937(self.seed)) + actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2)) + desired = np.array([[[1, 5, 1, 6, 4, 3], + [4, 2, 6, 2, 4, 2]], + [[5, 3, 2, 6, 3, 1], + [4, 4, 0, 2, 3, 7]], + [[6, 3, 1, 5, 3, 2], + [5, 5, 3, 1, 2, 4]]]) + assert_array_equal(actual, desired) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"]) + def test_multivariate_normal(self, method): + random = Generator(MT19937(self.seed)) + mean = (.123456789, 10) + cov = [[1, 0], [0, 1]] + size = (3, 2) + actual = random.multivariate_normal(mean, cov, size, method=method) + desired = np.array([[[-1.747478062846581, 11.25613495182354 ], + [-0.9967333370066214, 10.342002097029821 ]], + [[ 0.7850019631242964, 11.181113712443013 ], + [ 0.8901349653255224, 8.873825399642492 ]], + [[ 0.7130260107430003, 9.551628690083056 ], + [ 0.7127098726541128, 11.991709234143173 ]]]) + + assert_array_almost_equal(actual, desired, decimal=15) + + # Check for default size, was raising deprecation warning + actual = random.multivariate_normal(mean, cov, method=method) + desired = np.array([0.233278563284287, 9.424140804347195]) + assert_array_almost_equal(actual, desired, decimal=15) + # Check that non symmetric covariance input raises exception when + # check_valid='raises' if using default svd method. + mean = [0, 0] + cov = [[1, 2], [1, 2]] + assert_raises(ValueError, random.multivariate_normal, mean, cov, + check_valid='raise') + + # Check that non positive-semidefinite covariance warns with + # RuntimeWarning + cov = [[1, 2], [2, 1]] + assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov) + assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov, + method='eigh') + assert_raises(LinAlgError, random.multivariate_normal, mean, cov, + method='cholesky') + + # and that it doesn't warn with RuntimeWarning check_valid='ignore' + assert_no_warnings(random.multivariate_normal, mean, cov, + check_valid='ignore') + + # and that it raises with RuntimeWarning check_valid='raises' + assert_raises(ValueError, random.multivariate_normal, mean, cov, + check_valid='raise') + assert_raises(ValueError, random.multivariate_normal, mean, cov, + check_valid='raise', method='eigh') + + # check degenerate samples from singular covariance matrix + cov = [[1, 1], [1, 1]] + if method in ('svd', 'eigh'): + samples = random.multivariate_normal(mean, cov, size=(3, 2), + method=method) + assert_array_almost_equal(samples[..., 0], samples[..., 1], + decimal=6) + else: + assert_raises(LinAlgError, random.multivariate_normal, mean, cov, + method='cholesky') + + cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32) + with suppress_warnings() as sup: + random.multivariate_normal(mean, cov, method=method) + w = sup.record(RuntimeWarning) + assert len(w) == 0 + + mu = np.zeros(2) + cov = np.eye(2) + assert_raises(ValueError, random.multivariate_normal, mean, cov, + check_valid='other') + assert_raises(ValueError, random.multivariate_normal, + np.zeros((2, 1, 1)), cov) + assert_raises(ValueError, random.multivariate_normal, + mu, np.empty((3, 2))) + assert_raises(ValueError, random.multivariate_normal, + mu, np.eye(3)) + + @pytest.mark.parametrize('mean, cov', [([0], [[1+1j]]), ([0j], [[1]])]) + def test_multivariate_normal_disallow_complex(self, mean, cov): + random = Generator(MT19937(self.seed)) + with pytest.raises(TypeError, match="must not be complex"): + random.multivariate_normal(mean, cov) + + @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"]) + def test_multivariate_normal_basic_stats(self, method): + random = Generator(MT19937(self.seed)) + n_s = 1000 + mean = np.array([1, 2]) + cov = np.array([[2, 1], [1, 2]]) + s = random.multivariate_normal(mean, cov, size=(n_s,), method=method) + s_center = s - mean + cov_emp = (s_center.T @ s_center) / (n_s - 1) + # these are pretty loose and are only designed to detect major errors + assert np.all(np.abs(s_center.mean(-2)) < 0.1) + assert np.all(np.abs(cov_emp - cov) < 0.2) + + def test_negative_binomial(self): + random = Generator(MT19937(self.seed)) + actual = random.negative_binomial(n=100, p=.12345, size=(3, 2)) + desired = np.array([[543, 727], + [775, 760], + [600, 674]]) + assert_array_equal(actual, desired) + + def test_negative_binomial_exceptions(self): + with np.errstate(invalid='ignore'): + assert_raises(ValueError, random.negative_binomial, 100, np.nan) + assert_raises(ValueError, random.negative_binomial, 100, + [np.nan] * 10) + + def test_negative_binomial_p0_exception(self): + # Verify that p=0 raises an exception. + with assert_raises(ValueError): + x = random.negative_binomial(1, 0) + + def test_negative_binomial_invalid_p_n_combination(self): + # Verify that values of p and n that would result in an overflow + # or infinite loop raise an exception. + with np.errstate(invalid='ignore'): + assert_raises(ValueError, random.negative_binomial, 2**62, 0.1) + assert_raises(ValueError, random.negative_binomial, [2**62], [0.1]) + + def test_noncentral_chisquare(self): + random = Generator(MT19937(self.seed)) + actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2)) + desired = np.array([[ 1.70561552362133, 15.97378184942111], + [13.71483425173724, 20.17859633310629], + [11.3615477156643 , 3.67891108738029]]) + assert_array_almost_equal(actual, desired, decimal=14) + + actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2)) + desired = np.array([[9.41427665607629e-04, 1.70473157518850e-04], + [1.14554372041263e+00, 1.38187755933435e-03], + [1.90659181905387e+00, 1.21772577941822e+00]]) + assert_array_almost_equal(actual, desired, decimal=14) + + random = Generator(MT19937(self.seed)) + actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2)) + desired = np.array([[0.82947954590419, 1.80139670767078], + [6.58720057417794, 7.00491463609814], + [6.31101879073157, 6.30982307753005]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_noncentral_f(self): + random = Generator(MT19937(self.seed)) + actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1, + size=(3, 2)) + desired = np.array([[0.060310671139 , 0.23866058175939], + [0.86860246709073, 0.2668510459738 ], + [0.23375780078364, 1.88922102885943]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_noncentral_f_nan(self): + random = Generator(MT19937(self.seed)) + actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan) + assert np.isnan(actual) + + def test_normal(self): + random = Generator(MT19937(self.seed)) + actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[-3.618412914693162, 2.635726692647081], + [-2.116923463013243, 0.807460983059643], + [ 1.446547137248593, 2.485684213886024]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_normal_0(self): + assert_equal(random.normal(scale=0), 0) + assert_raises(ValueError, random.normal, scale=-0.) + + def test_pareto(self): + random = Generator(MT19937(self.seed)) + actual = random.pareto(a=.123456789, size=(3, 2)) + desired = np.array([[1.0394926776069018e+00, 7.7142534343505773e+04], + [7.2640150889064703e-01, 3.4650454783825594e+05], + [4.5852344481994740e+04, 6.5851383009539105e+07]]) + # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this + # matrix differs by 24 nulps. Discussion: + # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html + # Consensus is that this is probably some gcc quirk that affects + # rounding but not in any important way, so we just use a looser + # tolerance on this test: + np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30) + + def test_poisson(self): + random = Generator(MT19937(self.seed)) + actual = random.poisson(lam=.123456789, size=(3, 2)) + desired = np.array([[0, 0], + [0, 0], + [0, 0]]) + assert_array_equal(actual, desired) + + def test_poisson_exceptions(self): + lambig = np.iinfo('int64').max + lamneg = -1 + assert_raises(ValueError, random.poisson, lamneg) + assert_raises(ValueError, random.poisson, [lamneg] * 10) + assert_raises(ValueError, random.poisson, lambig) + assert_raises(ValueError, random.poisson, [lambig] * 10) + with np.errstate(invalid='ignore'): + assert_raises(ValueError, random.poisson, np.nan) + assert_raises(ValueError, random.poisson, [np.nan] * 10) + + def test_power(self): + random = Generator(MT19937(self.seed)) + actual = random.power(a=.123456789, size=(3, 2)) + desired = np.array([[1.977857368842754e-09, 9.806792196620341e-02], + [2.482442984543471e-10, 1.527108843266079e-01], + [8.188283434244285e-02, 3.950547209346948e-01]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_rayleigh(self): + random = Generator(MT19937(self.seed)) + actual = random.rayleigh(scale=10, size=(3, 2)) + desired = np.array([[4.19494429102666, 16.66920198906598], + [3.67184544902662, 17.74695521962917], + [16.27935397855501, 21.08355560691792]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_rayleigh_0(self): + assert_equal(random.rayleigh(scale=0), 0) + assert_raises(ValueError, random.rayleigh, scale=-0.) + + def test_standard_cauchy(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_cauchy(size=(3, 2)) + desired = np.array([[-1.489437778266206, -3.275389641569784], + [ 0.560102864910406, -0.680780916282552], + [-1.314912905226277, 0.295852965660225]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_exponential(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_exponential(size=(3, 2), method='inv') + desired = np.array([[0.102031839440643, 1.229350298474972], + [0.088137284693098, 1.459859985522667], + [1.093830802293668, 1.256977002164613]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_expoential_type_error(self): + assert_raises(TypeError, random.standard_exponential, dtype=np.int32) + + def test_standard_gamma(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_gamma(shape=3, size=(3, 2)) + desired = np.array([[0.62970724056362, 1.22379851271008], + [3.899412530884 , 4.12479964250139], + [3.74994102464584, 3.74929307690815]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_standard_gammma_scalar_float(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_gamma(3, dtype=np.float32) + desired = 2.9242148399353027 + assert_array_almost_equal(actual, desired, decimal=6) + + def test_standard_gamma_float(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_gamma(shape=3, size=(3, 2)) + desired = np.array([[0.62971, 1.2238 ], + [3.89941, 4.1248 ], + [3.74994, 3.74929]]) + assert_array_almost_equal(actual, desired, decimal=5) + + def test_standard_gammma_float_out(self): + actual = np.zeros((3, 2), dtype=np.float32) + random = Generator(MT19937(self.seed)) + random.standard_gamma(10.0, out=actual, dtype=np.float32) + desired = np.array([[10.14987, 7.87012], + [ 9.46284, 12.56832], + [13.82495, 7.81533]], dtype=np.float32) + assert_array_almost_equal(actual, desired, decimal=5) + + random = Generator(MT19937(self.seed)) + random.standard_gamma(10.0, out=actual, size=(3, 2), dtype=np.float32) + assert_array_almost_equal(actual, desired, decimal=5) + + def test_standard_gamma_unknown_type(self): + assert_raises(TypeError, random.standard_gamma, 1., + dtype='int32') + + def test_out_size_mismatch(self): + out = np.zeros(10) + assert_raises(ValueError, random.standard_gamma, 10.0, size=20, + out=out) + assert_raises(ValueError, random.standard_gamma, 10.0, size=(10, 1), + out=out) + + def test_standard_gamma_0(self): + assert_equal(random.standard_gamma(shape=0), 0) + assert_raises(ValueError, random.standard_gamma, shape=-0.) + + def test_standard_normal(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_normal(size=(3, 2)) + desired = np.array([[-1.870934851846581, 1.25613495182354 ], + [-1.120190126006621, 0.342002097029821], + [ 0.661545174124296, 1.181113712443012]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_normal_unsupported_type(self): + assert_raises(TypeError, random.standard_normal, dtype=np.int32) + + def test_standard_t(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_t(df=10, size=(3, 2)) + desired = np.array([[-1.484666193042647, 0.30597891831161 ], + [ 1.056684299648085, -0.407312602088507], + [ 0.130704414281157, -2.038053410490321]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_triangular(self): + random = Generator(MT19937(self.seed)) + actual = random.triangular(left=5.12, mode=10.23, right=20.34, + size=(3, 2)) + desired = np.array([[ 7.86664070590917, 13.6313848513185 ], + [ 7.68152445215983, 14.36169131136546], + [13.16105603911429, 13.72341621856971]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_uniform(self): + random = Generator(MT19937(self.seed)) + actual = random.uniform(low=1.23, high=10.54, size=(3, 2)) + desired = np.array([[2.13306255040998 , 7.816987531021207], + [2.015436610109887, 8.377577533009589], + [7.421792588856135, 7.891185744455209]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_uniform_range_bounds(self): + fmin = np.finfo('float').min + fmax = np.finfo('float').max + + func = random.uniform + assert_raises(OverflowError, func, -np.inf, 0) + assert_raises(OverflowError, func, 0, np.inf) + assert_raises(OverflowError, func, fmin, fmax) + assert_raises(OverflowError, func, [-np.inf], [0]) + assert_raises(OverflowError, func, [0], [np.inf]) + + # (fmax / 1e17) - fmin is within range, so this should not throw + # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX > + # DBL_MAX by increasing fmin a bit + random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17) + + def test_uniform_zero_range(self): + func = random.uniform + result = func(1.5, 1.5) + assert_allclose(result, 1.5) + result = func([0.0, np.pi], [0.0, np.pi]) + assert_allclose(result, [0.0, np.pi]) + result = func([[2145.12], [2145.12]], [2145.12, 2145.12]) + assert_allclose(result, 2145.12 + np.zeros((2, 2))) + + def test_uniform_neg_range(self): + func = random.uniform + assert_raises(ValueError, func, 2, 1) + assert_raises(ValueError, func, [1, 2], [1, 1]) + assert_raises(ValueError, func, [[0, 1],[2, 3]], 2) + + def test_scalar_exception_propagation(self): + # Tests that exceptions are correctly propagated in distributions + # when called with objects that throw exceptions when converted to + # scalars. + # + # Regression test for gh: 8865 + + class ThrowingFloat(np.ndarray): + def __float__(self): + raise TypeError + + throwing_float = np.array(1.0).view(ThrowingFloat) + assert_raises(TypeError, random.uniform, throwing_float, + throwing_float) + + class ThrowingInteger(np.ndarray): + def __int__(self): + raise TypeError + + throwing_int = np.array(1).view(ThrowingInteger) + assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1) + + def test_vonmises(self): + random = Generator(MT19937(self.seed)) + actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2)) + desired = np.array([[ 1.107972248690106, 2.841536476232361], + [ 1.832602376042457, 1.945511926976032], + [-0.260147475776542, 2.058047492231698]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_vonmises_small(self): + # check infinite loop, gh-4720 + random = Generator(MT19937(self.seed)) + r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6) + assert_(np.isfinite(r).all()) + + def test_vonmises_nan(self): + random = Generator(MT19937(self.seed)) + r = random.vonmises(mu=0., kappa=np.nan) + assert_(np.isnan(r)) + + @pytest.mark.parametrize("kappa", [1e4, 1e15]) + def test_vonmises_large_kappa(self, kappa): + random = Generator(MT19937(self.seed)) + rs = RandomState(random.bit_generator) + state = random.bit_generator.state + + random_state_vals = rs.vonmises(0, kappa, size=10) + random.bit_generator.state = state + gen_vals = random.vonmises(0, kappa, size=10) + if kappa < 1e6: + assert_allclose(random_state_vals, gen_vals) + else: + assert np.all(random_state_vals != gen_vals) + + @pytest.mark.parametrize("mu", [-7., -np.pi, -3.1, np.pi, 3.2]) + @pytest.mark.parametrize("kappa", [1e-9, 1e-6, 1, 1e3, 1e15]) + def test_vonmises_large_kappa_range(self, mu, kappa): + random = Generator(MT19937(self.seed)) + r = random.vonmises(mu, kappa, 50) + assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) + + def test_wald(self): + random = Generator(MT19937(self.seed)) + actual = random.wald(mean=1.23, scale=1.54, size=(3, 2)) + desired = np.array([[0.26871721804551, 3.2233942732115 ], + [2.20328374987066, 2.40958405189353], + [2.07093587449261, 0.73073890064369]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_weibull(self): + random = Generator(MT19937(self.seed)) + actual = random.weibull(a=1.23, size=(3, 2)) + desired = np.array([[0.138613914769468, 1.306463419753191], + [0.111623365934763, 1.446570494646721], + [1.257145775276011, 1.914247725027957]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_weibull_0(self): + random = Generator(MT19937(self.seed)) + assert_equal(random.weibull(a=0, size=12), np.zeros(12)) + assert_raises(ValueError, random.weibull, a=-0.) + + def test_zipf(self): + random = Generator(MT19937(self.seed)) + actual = random.zipf(a=1.23, size=(3, 2)) + desired = np.array([[ 1, 1], + [ 10, 867], + [354, 2]]) + assert_array_equal(actual, desired) + + +class TestBroadcast: + # tests that functions that broadcast behave + # correctly when presented with non-scalar arguments + def setup_method(self): + self.seed = 123456789 + + def test_uniform(self): + random = Generator(MT19937(self.seed)) + low = [0] + high = [1] + uniform = random.uniform + desired = np.array([0.16693771389729, 0.19635129550675, 0.75563050964095]) + + random = Generator(MT19937(self.seed)) + actual = random.uniform(low * 3, high) + assert_array_almost_equal(actual, desired, decimal=14) + + random = Generator(MT19937(self.seed)) + actual = random.uniform(low, high * 3) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_normal(self): + loc = [0] + scale = [1] + bad_scale = [-1] + random = Generator(MT19937(self.seed)) + desired = np.array([-0.38736406738527, 0.79594375042255, 0.0197076236097]) + + random = Generator(MT19937(self.seed)) + actual = random.normal(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.normal, loc * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + normal = random.normal + actual = normal(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, normal, loc, bad_scale * 3) + + def test_beta(self): + a = [1] + b = [2] + bad_a = [-1] + bad_b = [-2] + desired = np.array([0.18719338682602, 0.73234824491364, 0.17928615186455]) + + random = Generator(MT19937(self.seed)) + beta = random.beta + actual = beta(a * 3, b) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, beta, bad_a * 3, b) + assert_raises(ValueError, beta, a * 3, bad_b) + + random = Generator(MT19937(self.seed)) + actual = random.beta(a, b * 3) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_exponential(self): + scale = [1] + bad_scale = [-1] + desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) + + random = Generator(MT19937(self.seed)) + actual = random.exponential(scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.exponential, bad_scale * 3) + + def test_standard_gamma(self): + shape = [1] + bad_shape = [-1] + desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) + + random = Generator(MT19937(self.seed)) + std_gamma = random.standard_gamma + actual = std_gamma(shape * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, std_gamma, bad_shape * 3) + + def test_gamma(self): + shape = [1] + scale = [2] + bad_shape = [-1] + bad_scale = [-2] + desired = np.array([1.34491986425611, 0.42760990636187, 1.4355697857258]) + + random = Generator(MT19937(self.seed)) + gamma = random.gamma + actual = gamma(shape * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gamma, bad_shape * 3, scale) + assert_raises(ValueError, gamma, shape * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + gamma = random.gamma + actual = gamma(shape, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gamma, bad_shape, scale * 3) + assert_raises(ValueError, gamma, shape, bad_scale * 3) + + def test_f(self): + dfnum = [1] + dfden = [2] + bad_dfnum = [-1] + bad_dfden = [-2] + desired = np.array([0.07765056244107, 7.72951397913186, 0.05786093891763]) + + random = Generator(MT19937(self.seed)) + f = random.f + actual = f(dfnum * 3, dfden) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, f, bad_dfnum * 3, dfden) + assert_raises(ValueError, f, dfnum * 3, bad_dfden) + + random = Generator(MT19937(self.seed)) + f = random.f + actual = f(dfnum, dfden * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, f, bad_dfnum, dfden * 3) + assert_raises(ValueError, f, dfnum, bad_dfden * 3) + + def test_noncentral_f(self): + dfnum = [2] + dfden = [3] + nonc = [4] + bad_dfnum = [0] + bad_dfden = [-1] + bad_nonc = [-2] + desired = np.array([2.02434240411421, 12.91838601070124, 1.24395160354629]) + + random = Generator(MT19937(self.seed)) + nonc_f = random.noncentral_f + actual = nonc_f(dfnum * 3, dfden, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3))) + + assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc) + assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc) + assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc) + + random = Generator(MT19937(self.seed)) + nonc_f = random.noncentral_f + actual = nonc_f(dfnum, dfden * 3, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc) + assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc) + assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc) + + random = Generator(MT19937(self.seed)) + nonc_f = random.noncentral_f + actual = nonc_f(dfnum, dfden, nonc * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3) + assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3) + assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3) + + def test_noncentral_f_small_df(self): + random = Generator(MT19937(self.seed)) + desired = np.array([0.04714867120827, 0.1239390327694]) + actual = random.noncentral_f(0.9, 0.9, 2, size=2) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_chisquare(self): + df = [1] + bad_df = [-1] + desired = np.array([0.05573640064251, 1.47220224353539, 2.9469379318589]) + + random = Generator(MT19937(self.seed)) + actual = random.chisquare(df * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.chisquare, bad_df * 3) + + def test_noncentral_chisquare(self): + df = [1] + nonc = [2] + bad_df = [-1] + bad_nonc = [-2] + desired = np.array([0.07710766249436, 5.27829115110304, 0.630732147399]) + + random = Generator(MT19937(self.seed)) + nonc_chi = random.noncentral_chisquare + actual = nonc_chi(df * 3, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_chi, bad_df * 3, nonc) + assert_raises(ValueError, nonc_chi, df * 3, bad_nonc) + + random = Generator(MT19937(self.seed)) + nonc_chi = random.noncentral_chisquare + actual = nonc_chi(df, nonc * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_chi, bad_df, nonc * 3) + assert_raises(ValueError, nonc_chi, df, bad_nonc * 3) + + def test_standard_t(self): + df = [1] + bad_df = [-1] + desired = np.array([-1.39498829447098, -1.23058658835223, 0.17207021065983]) + + random = Generator(MT19937(self.seed)) + actual = random.standard_t(df * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.standard_t, bad_df * 3) + + def test_vonmises(self): + mu = [2] + kappa = [1] + bad_kappa = [-1] + desired = np.array([2.25935584988528, 2.23326261461399, -2.84152146503326]) + + random = Generator(MT19937(self.seed)) + actual = random.vonmises(mu * 3, kappa) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.vonmises, mu * 3, bad_kappa) + + random = Generator(MT19937(self.seed)) + actual = random.vonmises(mu, kappa * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.vonmises, mu, bad_kappa * 3) + + def test_pareto(self): + a = [1] + bad_a = [-1] + desired = np.array([0.95905052946317, 0.2383810889437 , 1.04988745750013]) + + random = Generator(MT19937(self.seed)) + actual = random.pareto(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.pareto, bad_a * 3) + + def test_weibull(self): + a = [1] + bad_a = [-1] + desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) + + random = Generator(MT19937(self.seed)) + actual = random.weibull(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.weibull, bad_a * 3) + + def test_power(self): + a = [1] + bad_a = [-1] + desired = np.array([0.48954864361052, 0.19249412888486, 0.51216834058807]) + + random = Generator(MT19937(self.seed)) + actual = random.power(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.power, bad_a * 3) + + def test_laplace(self): + loc = [0] + scale = [1] + bad_scale = [-1] + desired = np.array([-1.09698732625119, -0.93470271947368, 0.71592671378202]) + + random = Generator(MT19937(self.seed)) + laplace = random.laplace + actual = laplace(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, laplace, loc * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + laplace = random.laplace + actual = laplace(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, laplace, loc, bad_scale * 3) + + def test_gumbel(self): + loc = [0] + scale = [1] + bad_scale = [-1] + desired = np.array([1.70020068231762, 1.52054354273631, -0.34293267607081]) + + random = Generator(MT19937(self.seed)) + gumbel = random.gumbel + actual = gumbel(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gumbel, loc * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + gumbel = random.gumbel + actual = gumbel(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gumbel, loc, bad_scale * 3) + + def test_logistic(self): + loc = [0] + scale = [1] + bad_scale = [-1] + desired = np.array([-1.607487640433, -1.40925686003678, 1.12887112820397]) + + random = Generator(MT19937(self.seed)) + actual = random.logistic(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.logistic, loc * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + actual = random.logistic(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.logistic, loc, bad_scale * 3) + assert_equal(random.logistic(1.0, 0.0), 1.0) + + def test_lognormal(self): + mean = [0] + sigma = [1] + bad_sigma = [-1] + desired = np.array([0.67884390500697, 2.21653186290321, 1.01990310084276]) + + random = Generator(MT19937(self.seed)) + lognormal = random.lognormal + actual = lognormal(mean * 3, sigma) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, lognormal, mean * 3, bad_sigma) + + random = Generator(MT19937(self.seed)) + actual = random.lognormal(mean, sigma * 3) + assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3) + + def test_rayleigh(self): + scale = [1] + bad_scale = [-1] + desired = np.array( + [1.1597068009872629, + 0.6539188836253857, + 1.1981526554349398] + ) + + random = Generator(MT19937(self.seed)) + actual = random.rayleigh(scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.rayleigh, bad_scale * 3) + + def test_wald(self): + mean = [0.5] + scale = [1] + bad_mean = [0] + bad_scale = [-2] + desired = np.array([0.38052407392905, 0.50701641508592, 0.484935249864]) + + random = Generator(MT19937(self.seed)) + actual = random.wald(mean * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.wald, bad_mean * 3, scale) + assert_raises(ValueError, random.wald, mean * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + actual = random.wald(mean, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.wald, bad_mean, scale * 3) + assert_raises(ValueError, random.wald, mean, bad_scale * 3) + + def test_triangular(self): + left = [1] + right = [3] + mode = [2] + bad_left_one = [3] + bad_mode_one = [4] + bad_left_two, bad_mode_two = right * 2 + desired = np.array([1.57781954604754, 1.62665986867957, 2.30090130831326]) + + random = Generator(MT19937(self.seed)) + triangular = random.triangular + actual = triangular(left * 3, mode, right) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one * 3, mode, right) + assert_raises(ValueError, triangular, left * 3, bad_mode_one, right) + assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, + right) + + random = Generator(MT19937(self.seed)) + triangular = random.triangular + actual = triangular(left, mode * 3, right) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one, mode * 3, right) + assert_raises(ValueError, triangular, left, bad_mode_one * 3, right) + assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, + right) + + random = Generator(MT19937(self.seed)) + triangular = random.triangular + actual = triangular(left, mode, right * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one, mode, right * 3) + assert_raises(ValueError, triangular, left, bad_mode_one, right * 3) + assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, + right * 3) + + assert_raises(ValueError, triangular, 10., 0., 20.) + assert_raises(ValueError, triangular, 10., 25., 20.) + assert_raises(ValueError, triangular, 10., 10., 10.) + + def test_binomial(self): + n = [1] + p = [0.5] + bad_n = [-1] + bad_p_one = [-1] + bad_p_two = [1.5] + desired = np.array([0, 0, 1]) + + random = Generator(MT19937(self.seed)) + binom = random.binomial + actual = binom(n * 3, p) + assert_array_equal(actual, desired) + assert_raises(ValueError, binom, bad_n * 3, p) + assert_raises(ValueError, binom, n * 3, bad_p_one) + assert_raises(ValueError, binom, n * 3, bad_p_two) + + random = Generator(MT19937(self.seed)) + actual = random.binomial(n, p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, binom, bad_n, p * 3) + assert_raises(ValueError, binom, n, bad_p_one * 3) + assert_raises(ValueError, binom, n, bad_p_two * 3) + + def test_negative_binomial(self): + n = [1] + p = [0.5] + bad_n = [-1] + bad_p_one = [-1] + bad_p_two = [1.5] + desired = np.array([0, 2, 1], dtype=np.int64) + + random = Generator(MT19937(self.seed)) + neg_binom = random.negative_binomial + actual = neg_binom(n * 3, p) + assert_array_equal(actual, desired) + assert_raises(ValueError, neg_binom, bad_n * 3, p) + assert_raises(ValueError, neg_binom, n * 3, bad_p_one) + assert_raises(ValueError, neg_binom, n * 3, bad_p_two) + + random = Generator(MT19937(self.seed)) + neg_binom = random.negative_binomial + actual = neg_binom(n, p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, neg_binom, bad_n, p * 3) + assert_raises(ValueError, neg_binom, n, bad_p_one * 3) + assert_raises(ValueError, neg_binom, n, bad_p_two * 3) + + def test_poisson(self): + + lam = [1] + bad_lam_one = [-1] + desired = np.array([0, 0, 3]) + + random = Generator(MT19937(self.seed)) + max_lam = random._poisson_lam_max + bad_lam_two = [max_lam * 2] + poisson = random.poisson + actual = poisson(lam * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, poisson, bad_lam_one * 3) + assert_raises(ValueError, poisson, bad_lam_two * 3) + + def test_zipf(self): + a = [2] + bad_a = [0] + desired = np.array([1, 8, 1]) + + random = Generator(MT19937(self.seed)) + zipf = random.zipf + actual = zipf(a * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, zipf, bad_a * 3) + with np.errstate(invalid='ignore'): + assert_raises(ValueError, zipf, np.nan) + assert_raises(ValueError, zipf, [0, 0, np.nan]) + + def test_geometric(self): + p = [0.5] + bad_p_one = [-1] + bad_p_two = [1.5] + desired = np.array([1, 1, 3]) + + random = Generator(MT19937(self.seed)) + geometric = random.geometric + actual = geometric(p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, geometric, bad_p_one * 3) + assert_raises(ValueError, geometric, bad_p_two * 3) + + def test_hypergeometric(self): + ngood = [1] + nbad = [2] + nsample = [2] + bad_ngood = [-1] + bad_nbad = [-2] + bad_nsample_one = [-1] + bad_nsample_two = [4] + desired = np.array([0, 0, 1]) + + random = Generator(MT19937(self.seed)) + actual = random.hypergeometric(ngood * 3, nbad, nsample) + assert_array_equal(actual, desired) + assert_raises(ValueError, random.hypergeometric, bad_ngood * 3, nbad, nsample) + assert_raises(ValueError, random.hypergeometric, ngood * 3, bad_nbad, nsample) + assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_one) + assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_two) + + random = Generator(MT19937(self.seed)) + actual = random.hypergeometric(ngood, nbad * 3, nsample) + assert_array_equal(actual, desired) + assert_raises(ValueError, random.hypergeometric, bad_ngood, nbad * 3, nsample) + assert_raises(ValueError, random.hypergeometric, ngood, bad_nbad * 3, nsample) + assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_one) + assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_two) + + random = Generator(MT19937(self.seed)) + hypergeom = random.hypergeometric + actual = hypergeom(ngood, nbad, nsample * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3) + assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3) + assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3) + assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3) + + assert_raises(ValueError, hypergeom, -1, 10, 20) + assert_raises(ValueError, hypergeom, 10, -1, 20) + assert_raises(ValueError, hypergeom, 10, 10, -1) + assert_raises(ValueError, hypergeom, 10, 10, 25) + + # ValueError for arguments that are too big. + assert_raises(ValueError, hypergeom, 2**30, 10, 20) + assert_raises(ValueError, hypergeom, 999, 2**31, 50) + assert_raises(ValueError, hypergeom, 999, [2**29, 2**30], 1000) + + def test_logseries(self): + p = [0.5] + bad_p_one = [2] + bad_p_two = [-1] + desired = np.array([1, 1, 1]) + + random = Generator(MT19937(self.seed)) + logseries = random.logseries + actual = logseries(p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, logseries, bad_p_one * 3) + assert_raises(ValueError, logseries, bad_p_two * 3) + + def test_multinomial(self): + random = Generator(MT19937(self.seed)) + actual = random.multinomial([5, 20], [1 / 6.] * 6, size=(3, 2)) + desired = np.array([[[0, 0, 2, 1, 2, 0], + [2, 3, 6, 4, 2, 3]], + [[1, 0, 1, 0, 2, 1], + [7, 2, 2, 1, 4, 4]], + [[0, 2, 0, 1, 2, 0], + [3, 2, 3, 3, 4, 5]]], dtype=np.int64) + assert_array_equal(actual, desired) + + random = Generator(MT19937(self.seed)) + actual = random.multinomial([5, 20], [1 / 6.] * 6) + desired = np.array([[0, 0, 2, 1, 2, 0], + [2, 3, 6, 4, 2, 3]], dtype=np.int64) + assert_array_equal(actual, desired) + + random = Generator(MT19937(self.seed)) + actual = random.multinomial([5, 20], [[1 / 6.] * 6] * 2) + desired = np.array([[0, 0, 2, 1, 2, 0], + [2, 3, 6, 4, 2, 3]], dtype=np.int64) + assert_array_equal(actual, desired) + + random = Generator(MT19937(self.seed)) + actual = random.multinomial([[5], [20]], [[1 / 6.] * 6] * 2) + desired = np.array([[[0, 0, 2, 1, 2, 0], + [0, 0, 2, 1, 1, 1]], + [[4, 2, 3, 3, 5, 3], + [7, 2, 2, 1, 4, 4]]], dtype=np.int64) + assert_array_equal(actual, desired) + + @pytest.mark.parametrize("n", [10, + np.array([10, 10]), + np.array([[[10]], [[10]]]) + ] + ) + def test_multinomial_pval_broadcast(self, n): + random = Generator(MT19937(self.seed)) + pvals = np.array([1 / 4] * 4) + actual = random.multinomial(n, pvals) + n_shape = tuple() if isinstance(n, int) else n.shape + expected_shape = n_shape + (4,) + assert actual.shape == expected_shape + pvals = np.vstack([pvals, pvals]) + actual = random.multinomial(n, pvals) + expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1]) + (4,) + assert actual.shape == expected_shape + + pvals = np.vstack([[pvals], [pvals]]) + actual = random.multinomial(n, pvals) + expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1]) + assert actual.shape == expected_shape + (4,) + actual = random.multinomial(n, pvals, size=(3, 2) + expected_shape) + assert actual.shape == (3, 2) + expected_shape + (4,) + + with pytest.raises(ValueError): + # Ensure that size is not broadcast + actual = random.multinomial(n, pvals, size=(1,) * 6) + + def test_invalid_pvals_broadcast(self): + random = Generator(MT19937(self.seed)) + pvals = [[1 / 6] * 6, [1 / 4] * 6] + assert_raises(ValueError, random.multinomial, 1, pvals) + assert_raises(ValueError, random.multinomial, 6, 0.5) + + def test_empty_outputs(self): + random = Generator(MT19937(self.seed)) + actual = random.multinomial(np.empty((10, 0, 6), "i8"), [1 / 6] * 6) + assert actual.shape == (10, 0, 6, 6) + actual = random.multinomial(12, np.empty((10, 0, 10))) + assert actual.shape == (10, 0, 10) + actual = random.multinomial(np.empty((3, 0, 7), "i8"), + np.empty((3, 0, 7, 4))) + assert actual.shape == (3, 0, 7, 4) + + +@pytest.mark.skipif(IS_WASM, reason="can't start thread") +class TestThread: + # make sure each state produces the same sequence even in threads + def setup_method(self): + self.seeds = range(4) + + def check_function(self, function, sz): + from threading import Thread + + out1 = np.empty((len(self.seeds),) + sz) + out2 = np.empty((len(self.seeds),) + sz) + + # threaded generation + t = [Thread(target=function, args=(Generator(MT19937(s)), o)) + for s, o in zip(self.seeds, out1)] + [x.start() for x in t] + [x.join() for x in t] + + # the same serial + for s, o in zip(self.seeds, out2): + function(Generator(MT19937(s)), o) + + # these platforms change x87 fpu precision mode in threads + if np.intp().dtype.itemsize == 4 and sys.platform == "win32": + assert_array_almost_equal(out1, out2) + else: + assert_array_equal(out1, out2) + + def test_normal(self): + def gen_random(state, out): + out[...] = state.normal(size=10000) + + self.check_function(gen_random, sz=(10000,)) + + def test_exp(self): + def gen_random(state, out): + out[...] = state.exponential(scale=np.ones((100, 1000))) + + self.check_function(gen_random, sz=(100, 1000)) + + def test_multinomial(self): + def gen_random(state, out): + out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000) + + self.check_function(gen_random, sz=(10000, 6)) + + +# See Issue #4263 +class TestSingleEltArrayInput: + def setup_method(self): + self.argOne = np.array([2]) + self.argTwo = np.array([3]) + self.argThree = np.array([4]) + self.tgtShape = (1,) + + def test_one_arg_funcs(self): + funcs = (random.exponential, random.standard_gamma, + random.chisquare, random.standard_t, + random.pareto, random.weibull, + random.power, random.rayleigh, + random.poisson, random.zipf, + random.geometric, random.logseries) + + probfuncs = (random.geometric, random.logseries) + + for func in funcs: + if func in probfuncs: # p < 1.0 + out = func(np.array([0.5])) + + else: + out = func(self.argOne) + + assert_equal(out.shape, self.tgtShape) + + def test_two_arg_funcs(self): + funcs = (random.uniform, random.normal, + random.beta, random.gamma, + random.f, random.noncentral_chisquare, + random.vonmises, random.laplace, + random.gumbel, random.logistic, + random.lognormal, random.wald, + random.binomial, random.negative_binomial) + + probfuncs = (random.binomial, random.negative_binomial) + + for func in funcs: + if func in probfuncs: # p <= 1 + argTwo = np.array([0.5]) + + else: + argTwo = self.argTwo + + out = func(self.argOne, argTwo) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne[0], argTwo) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne, argTwo[0]) + assert_equal(out.shape, self.tgtShape) + + def test_integers(self, endpoint): + itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16, + np.int32, np.uint32, np.int64, np.uint64] + func = random.integers + high = np.array([1]) + low = np.array([0]) + + for dt in itype: + out = func(low, high, endpoint=endpoint, dtype=dt) + assert_equal(out.shape, self.tgtShape) + + out = func(low[0], high, endpoint=endpoint, dtype=dt) + assert_equal(out.shape, self.tgtShape) + + out = func(low, high[0], endpoint=endpoint, dtype=dt) + assert_equal(out.shape, self.tgtShape) + + def test_three_arg_funcs(self): + funcs = [random.noncentral_f, random.triangular, + random.hypergeometric] + + for func in funcs: + out = func(self.argOne, self.argTwo, self.argThree) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne[0], self.argTwo, self.argThree) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne, self.argTwo[0], self.argThree) + assert_equal(out.shape, self.tgtShape) + + +@pytest.mark.parametrize("config", JUMP_TEST_DATA) +def test_jumped(config): + # Each config contains the initial seed, a number of raw steps + # the sha256 hashes of the initial and the final states' keys and + # the position of the initial and the final state. + # These were produced using the original C implementation. + seed = config["seed"] + steps = config["steps"] + + mt19937 = MT19937(seed) + # Burn step + mt19937.random_raw(steps) + key = mt19937.state["state"]["key"] + if sys.byteorder == 'big': + key = key.byteswap() + sha256 = hashlib.sha256(key) + assert mt19937.state["state"]["pos"] == config["initial"]["pos"] + assert sha256.hexdigest() == config["initial"]["key_sha256"] + + jumped = mt19937.jumped() + key = jumped.state["state"]["key"] + if sys.byteorder == 'big': + key = key.byteswap() + sha256 = hashlib.sha256(key) + assert jumped.state["state"]["pos"] == config["jumped"]["pos"] + assert sha256.hexdigest() == config["jumped"]["key_sha256"] + + +def test_broadcast_size_error(): + mu = np.ones(3) + sigma = np.ones((4, 3)) + size = (10, 4, 2) + assert random.normal(mu, sigma, size=(5, 4, 3)).shape == (5, 4, 3) + with pytest.raises(ValueError): + random.normal(mu, sigma, size=size) + with pytest.raises(ValueError): + random.normal(mu, sigma, size=(1, 3)) + with pytest.raises(ValueError): + random.normal(mu, sigma, size=(4, 1, 1)) + # 1 arg + shape = np.ones((4, 3)) + with pytest.raises(ValueError): + random.standard_gamma(shape, size=size) + with pytest.raises(ValueError): + random.standard_gamma(shape, size=(3,)) + with pytest.raises(ValueError): + random.standard_gamma(shape, size=3) + # Check out + out = np.empty(size) + with pytest.raises(ValueError): + random.standard_gamma(shape, out=out) + + # 2 arg + with pytest.raises(ValueError): + random.binomial(1, [0.3, 0.7], size=(2, 1)) + with pytest.raises(ValueError): + random.binomial([1, 2], 0.3, size=(2, 1)) + with pytest.raises(ValueError): + random.binomial([1, 2], [0.3, 0.7], size=(2, 1)) + with pytest.raises(ValueError): + random.multinomial([2, 2], [.3, .7], size=(2, 1)) + + # 3 arg + a = random.chisquare(5, size=3) + b = random.chisquare(5, size=(4, 3)) + c = random.chisquare(5, size=(5, 4, 3)) + assert random.noncentral_f(a, b, c).shape == (5, 4, 3) + with pytest.raises(ValueError, match=r"Output size \(6, 5, 1, 1\) is"): + random.noncentral_f(a, b, c, size=(6, 5, 1, 1)) + + +def test_broadcast_size_scalar(): + mu = np.ones(3) + sigma = np.ones(3) + random.normal(mu, sigma, size=3) + with pytest.raises(ValueError): + random.normal(mu, sigma, size=2) + + +def test_ragged_shuffle(): + # GH 18142 + seq = [[], [], 1] + gen = Generator(MT19937(0)) + assert_no_warnings(gen.shuffle, seq) + assert seq == [1, [], []] + + +@pytest.mark.parametrize("high", [-2, [-2]]) +@pytest.mark.parametrize("endpoint", [True, False]) +def test_single_arg_integer_exception(high, endpoint): + # GH 14333 + gen = Generator(MT19937(0)) + msg = 'high < 0' if endpoint else 'high <= 0' + with pytest.raises(ValueError, match=msg): + gen.integers(high, endpoint=endpoint) + msg = 'low > high' if endpoint else 'low >= high' + with pytest.raises(ValueError, match=msg): + gen.integers(-1, high, endpoint=endpoint) + with pytest.raises(ValueError, match=msg): + gen.integers([-1], high, endpoint=endpoint) + + +@pytest.mark.parametrize("dtype", ["f4", "f8"]) +def test_c_contig_req_out(dtype): + # GH 18704 + out = np.empty((2, 3), order="F", dtype=dtype) + shape = [1, 2, 3] + with pytest.raises(ValueError, match="Supplied output array"): + random.standard_gamma(shape, out=out, dtype=dtype) + with pytest.raises(ValueError, match="Supplied output array"): + random.standard_gamma(shape, out=out, size=out.shape, dtype=dtype) + + +@pytest.mark.parametrize("dtype", ["f4", "f8"]) +@pytest.mark.parametrize("order", ["F", "C"]) +@pytest.mark.parametrize("dist", [random.standard_normal, random.random]) +def test_contig_req_out(dist, order, dtype): + # GH 18704 + out = np.empty((2, 3), dtype=dtype, order=order) + variates = dist(out=out, dtype=dtype) + assert variates is out + variates = dist(out=out, dtype=dtype, size=out.shape) + assert variates is out + + +def test_generator_ctor_old_style_pickle(): + rg = np.random.Generator(np.random.PCG64DXSM(0)) + rg.standard_normal(1) + # Directly call reduce which is used in pickling + ctor, args, state_a = rg.__reduce__() + # Simulate unpickling an old pickle that only has the name + assert args[:1] == ("PCG64DXSM",) + b = ctor(*args[:1]) + b.bit_generator.state = state_a + state_b = b.bit_generator.state + assert state_a == state_b |