aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.py1664
1 files changed, 1664 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.py
new file mode 100644
index 00000000..8e9c19d9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.py
@@ -0,0 +1,1664 @@
+"""
+==================================================
+Legendre Series (:mod:`numpy.polynomial.legendre`)
+==================================================
+
+This module provides a number of objects (mostly functions) useful for
+dealing with Legendre series, including a `Legendre` class that
+encapsulates the usual arithmetic operations. (General information
+on how this module represents and works with such polynomials is in the
+docstring for its "parent" sub-package, `numpy.polynomial`).
+
+Classes
+-------
+.. autosummary::
+ :toctree: generated/
+
+ Legendre
+
+Constants
+---------
+
+.. autosummary::
+ :toctree: generated/
+
+ legdomain
+ legzero
+ legone
+ legx
+
+Arithmetic
+----------
+
+.. autosummary::
+ :toctree: generated/
+
+ legadd
+ legsub
+ legmulx
+ legmul
+ legdiv
+ legpow
+ legval
+ legval2d
+ legval3d
+ leggrid2d
+ leggrid3d
+
+Calculus
+--------
+
+.. autosummary::
+ :toctree: generated/
+
+ legder
+ legint
+
+Misc Functions
+--------------
+
+.. autosummary::
+ :toctree: generated/
+
+ legfromroots
+ legroots
+ legvander
+ legvander2d
+ legvander3d
+ leggauss
+ legweight
+ legcompanion
+ legfit
+ legtrim
+ legline
+ leg2poly
+ poly2leg
+
+See also
+--------
+numpy.polynomial
+
+"""
+import numpy as np
+import numpy.linalg as la
+from numpy.core.multiarray import normalize_axis_index
+
+from . import polyutils as pu
+from ._polybase import ABCPolyBase
+
+__all__ = [
+ 'legzero', 'legone', 'legx', 'legdomain', 'legline', 'legadd',
+ 'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow', 'legval', 'legder',
+ 'legint', 'leg2poly', 'poly2leg', 'legfromroots', 'legvander',
+ 'legfit', 'legtrim', 'legroots', 'Legendre', 'legval2d', 'legval3d',
+ 'leggrid2d', 'leggrid3d', 'legvander2d', 'legvander3d', 'legcompanion',
+ 'leggauss', 'legweight']
+
+legtrim = pu.trimcoef
+
+
+def poly2leg(pol):
+ """
+ Convert a polynomial to a Legendre series.
+
+ Convert an array representing the coefficients of a polynomial (relative
+ to the "standard" basis) ordered from lowest degree to highest, to an
+ array of the coefficients of the equivalent Legendre series, ordered
+ from lowest to highest degree.
+
+ Parameters
+ ----------
+ pol : array_like
+ 1-D array containing the polynomial coefficients
+
+ Returns
+ -------
+ c : ndarray
+ 1-D array containing the coefficients of the equivalent Legendre
+ series.
+
+ See Also
+ --------
+ leg2poly
+
+ Notes
+ -----
+ The easy way to do conversions between polynomial basis sets
+ is to use the convert method of a class instance.
+
+ Examples
+ --------
+ >>> from numpy import polynomial as P
+ >>> p = P.Polynomial(np.arange(4))
+ >>> p
+ Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
+ >>> c = P.Legendre(P.legendre.poly2leg(p.coef))
+ >>> c
+ Legendre([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1]) # may vary
+
+ """
+ [pol] = pu.as_series([pol])
+ deg = len(pol) - 1
+ res = 0
+ for i in range(deg, -1, -1):
+ res = legadd(legmulx(res), pol[i])
+ return res
+
+
+def leg2poly(c):
+ """
+ Convert a Legendre series to a polynomial.
+
+ Convert an array representing the coefficients of a Legendre series,
+ ordered from lowest degree to highest, to an array of the coefficients
+ of the equivalent polynomial (relative to the "standard" basis) ordered
+ from lowest to highest degree.
+
+ Parameters
+ ----------
+ c : array_like
+ 1-D array containing the Legendre series coefficients, ordered
+ from lowest order term to highest.
+
+ Returns
+ -------
+ pol : ndarray
+ 1-D array containing the coefficients of the equivalent polynomial
+ (relative to the "standard" basis) ordered from lowest order term
+ to highest.
+
+ See Also
+ --------
+ poly2leg
+
+ Notes
+ -----
+ The easy way to do conversions between polynomial basis sets
+ is to use the convert method of a class instance.
+
+ Examples
+ --------
+ >>> from numpy import polynomial as P
+ >>> c = P.Legendre(range(4))
+ >>> c
+ Legendre([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
+ >>> p = c.convert(kind=P.Polynomial)
+ >>> p
+ Polynomial([-1. , -3.5, 3. , 7.5], domain=[-1., 1.], window=[-1., 1.])
+ >>> P.legendre.leg2poly(range(4))
+ array([-1. , -3.5, 3. , 7.5])
+
+
+ """
+ from .polynomial import polyadd, polysub, polymulx
+
+ [c] = pu.as_series([c])
+ n = len(c)
+ if n < 3:
+ return c
+ else:
+ c0 = c[-2]
+ c1 = c[-1]
+ # i is the current degree of c1
+ for i in range(n - 1, 1, -1):
+ tmp = c0
+ c0 = polysub(c[i - 2], (c1*(i - 1))/i)
+ c1 = polyadd(tmp, (polymulx(c1)*(2*i - 1))/i)
+ return polyadd(c0, polymulx(c1))
+
+#
+# These are constant arrays are of integer type so as to be compatible
+# with the widest range of other types, such as Decimal.
+#
+
+# Legendre
+legdomain = np.array([-1, 1])
+
+# Legendre coefficients representing zero.
+legzero = np.array([0])
+
+# Legendre coefficients representing one.
+legone = np.array([1])
+
+# Legendre coefficients representing the identity x.
+legx = np.array([0, 1])
+
+
+def legline(off, scl):
+ """
+ Legendre series whose graph is a straight line.
+
+
+
+ Parameters
+ ----------
+ off, scl : scalars
+ The specified line is given by ``off + scl*x``.
+
+ Returns
+ -------
+ y : ndarray
+ This module's representation of the Legendre series for
+ ``off + scl*x``.
+
+ See Also
+ --------
+ numpy.polynomial.polynomial.polyline
+ numpy.polynomial.chebyshev.chebline
+ numpy.polynomial.laguerre.lagline
+ numpy.polynomial.hermite.hermline
+ numpy.polynomial.hermite_e.hermeline
+
+ Examples
+ --------
+ >>> import numpy.polynomial.legendre as L
+ >>> L.legline(3,2)
+ array([3, 2])
+ >>> L.legval(-3, L.legline(3,2)) # should be -3
+ -3.0
+
+ """
+ if scl != 0:
+ return np.array([off, scl])
+ else:
+ return np.array([off])
+
+
+def legfromroots(roots):
+ """
+ Generate a Legendre series with given roots.
+
+ The function returns the coefficients of the polynomial
+
+ .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
+
+ in Legendre form, where the `r_n` are the roots specified in `roots`.
+ If a zero has multiplicity n, then it must appear in `roots` n times.
+ For instance, if 2 is a root of multiplicity three and 3 is a root of
+ multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
+ roots can appear in any order.
+
+ If the returned coefficients are `c`, then
+
+ .. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x)
+
+ The coefficient of the last term is not generally 1 for monic
+ polynomials in Legendre form.
+
+ Parameters
+ ----------
+ roots : array_like
+ Sequence containing the roots.
+
+ Returns
+ -------
+ out : ndarray
+ 1-D array of coefficients. If all roots are real then `out` is a
+ real array, if some of the roots are complex, then `out` is complex
+ even if all the coefficients in the result are real (see Examples
+ below).
+
+ See Also
+ --------
+ numpy.polynomial.polynomial.polyfromroots
+ numpy.polynomial.chebyshev.chebfromroots
+ numpy.polynomial.laguerre.lagfromroots
+ numpy.polynomial.hermite.hermfromroots
+ numpy.polynomial.hermite_e.hermefromroots
+
+ Examples
+ --------
+ >>> import numpy.polynomial.legendre as L
+ >>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis
+ array([ 0. , -0.4, 0. , 0.4])
+ >>> j = complex(0,1)
+ >>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis
+ array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j]) # may vary
+
+ """
+ return pu._fromroots(legline, legmul, roots)
+
+
+def legadd(c1, c2):
+ """
+ Add one Legendre series to another.
+
+ Returns the sum of two Legendre series `c1` + `c2`. The arguments
+ are sequences of coefficients ordered from lowest order term to
+ highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
+
+ Parameters
+ ----------
+ c1, c2 : array_like
+ 1-D arrays of Legendre series coefficients ordered from low to
+ high.
+
+ Returns
+ -------
+ out : ndarray
+ Array representing the Legendre series of their sum.
+
+ See Also
+ --------
+ legsub, legmulx, legmul, legdiv, legpow
+
+ Notes
+ -----
+ Unlike multiplication, division, etc., the sum of two Legendre series
+ is a Legendre series (without having to "reproject" the result onto
+ the basis set) so addition, just like that of "standard" polynomials,
+ is simply "component-wise."
+
+ Examples
+ --------
+ >>> from numpy.polynomial import legendre as L
+ >>> c1 = (1,2,3)
+ >>> c2 = (3,2,1)
+ >>> L.legadd(c1,c2)
+ array([4., 4., 4.])
+
+ """
+ return pu._add(c1, c2)
+
+
+def legsub(c1, c2):
+ """
+ Subtract one Legendre series from another.
+
+ Returns the difference of two Legendre series `c1` - `c2`. The
+ sequences of coefficients are from lowest order term to highest, i.e.,
+ [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
+
+ Parameters
+ ----------
+ c1, c2 : array_like
+ 1-D arrays of Legendre series coefficients ordered from low to
+ high.
+
+ Returns
+ -------
+ out : ndarray
+ Of Legendre series coefficients representing their difference.
+
+ See Also
+ --------
+ legadd, legmulx, legmul, legdiv, legpow
+
+ Notes
+ -----
+ Unlike multiplication, division, etc., the difference of two Legendre
+ series is a Legendre series (without having to "reproject" the result
+ onto the basis set) so subtraction, just like that of "standard"
+ polynomials, is simply "component-wise."
+
+ Examples
+ --------
+ >>> from numpy.polynomial import legendre as L
+ >>> c1 = (1,2,3)
+ >>> c2 = (3,2,1)
+ >>> L.legsub(c1,c2)
+ array([-2., 0., 2.])
+ >>> L.legsub(c2,c1) # -C.legsub(c1,c2)
+ array([ 2., 0., -2.])
+
+ """
+ return pu._sub(c1, c2)
+
+
+def legmulx(c):
+ """Multiply a Legendre series by x.
+
+ Multiply the Legendre series `c` by x, where x is the independent
+ variable.
+
+
+ Parameters
+ ----------
+ c : array_like
+ 1-D array of Legendre series coefficients ordered from low to
+ high.
+
+ Returns
+ -------
+ out : ndarray
+ Array representing the result of the multiplication.
+
+ See Also
+ --------
+ legadd, legmul, legdiv, legpow
+
+ Notes
+ -----
+ The multiplication uses the recursion relationship for Legendre
+ polynomials in the form
+
+ .. math::
+
+ xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)
+
+ Examples
+ --------
+ >>> from numpy.polynomial import legendre as L
+ >>> L.legmulx([1,2,3])
+ array([ 0.66666667, 2.2, 1.33333333, 1.8]) # may vary
+
+ """
+ # c is a trimmed copy
+ [c] = pu.as_series([c])
+ # The zero series needs special treatment
+ if len(c) == 1 and c[0] == 0:
+ return c
+
+ prd = np.empty(len(c) + 1, dtype=c.dtype)
+ prd[0] = c[0]*0
+ prd[1] = c[0]
+ for i in range(1, len(c)):
+ j = i + 1
+ k = i - 1
+ s = i + j
+ prd[j] = (c[i]*j)/s
+ prd[k] += (c[i]*i)/s
+ return prd
+
+
+def legmul(c1, c2):
+ """
+ Multiply one Legendre series by another.
+
+ Returns the product of two Legendre series `c1` * `c2`. The arguments
+ are sequences of coefficients, from lowest order "term" to highest,
+ e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
+
+ Parameters
+ ----------
+ c1, c2 : array_like
+ 1-D arrays of Legendre series coefficients ordered from low to
+ high.
+
+ Returns
+ -------
+ out : ndarray
+ Of Legendre series coefficients representing their product.
+
+ See Also
+ --------
+ legadd, legsub, legmulx, legdiv, legpow
+
+ Notes
+ -----
+ In general, the (polynomial) product of two C-series results in terms
+ that are not in the Legendre polynomial basis set. Thus, to express
+ the product as a Legendre series, it is necessary to "reproject" the
+ product onto said basis set, which may produce "unintuitive" (but
+ correct) results; see Examples section below.
+
+ Examples
+ --------
+ >>> from numpy.polynomial import legendre as L
+ >>> c1 = (1,2,3)
+ >>> c2 = (3,2)
+ >>> L.legmul(c1,c2) # multiplication requires "reprojection"
+ array([ 4.33333333, 10.4 , 11.66666667, 3.6 ]) # may vary
+
+ """
+ # s1, s2 are trimmed copies
+ [c1, c2] = pu.as_series([c1, c2])
+
+ if len(c1) > len(c2):
+ c = c2
+ xs = c1
+ else:
+ c = c1
+ xs = c2
+
+ if len(c) == 1:
+ c0 = c[0]*xs
+ c1 = 0
+ elif len(c) == 2:
+ c0 = c[0]*xs
+ c1 = c[1]*xs
+ else:
+ nd = len(c)
+ c0 = c[-2]*xs
+ c1 = c[-1]*xs
+ for i in range(3, len(c) + 1):
+ tmp = c0
+ nd = nd - 1
+ c0 = legsub(c[-i]*xs, (c1*(nd - 1))/nd)
+ c1 = legadd(tmp, (legmulx(c1)*(2*nd - 1))/nd)
+ return legadd(c0, legmulx(c1))
+
+
+def legdiv(c1, c2):
+ """
+ Divide one Legendre series by another.
+
+ Returns the quotient-with-remainder of two Legendre series
+ `c1` / `c2`. The arguments are sequences of coefficients from lowest
+ order "term" to highest, e.g., [1,2,3] represents the series
+ ``P_0 + 2*P_1 + 3*P_2``.
+
+ Parameters
+ ----------
+ c1, c2 : array_like
+ 1-D arrays of Legendre series coefficients ordered from low to
+ high.
+
+ Returns
+ -------
+ quo, rem : ndarrays
+ Of Legendre series coefficients representing the quotient and
+ remainder.
+
+ See Also
+ --------
+ legadd, legsub, legmulx, legmul, legpow
+
+ Notes
+ -----
+ In general, the (polynomial) division of one Legendre series by another
+ results in quotient and remainder terms that are not in the Legendre
+ polynomial basis set. Thus, to express these results as a Legendre
+ series, it is necessary to "reproject" the results onto the Legendre
+ basis set, which may produce "unintuitive" (but correct) results; see
+ Examples section below.
+
+ Examples
+ --------
+ >>> from numpy.polynomial import legendre as L
+ >>> c1 = (1,2,3)
+ >>> c2 = (3,2,1)
+ >>> L.legdiv(c1,c2) # quotient "intuitive," remainder not
+ (array([3.]), array([-8., -4.]))
+ >>> c2 = (0,1,2,3)
+ >>> L.legdiv(c2,c1) # neither "intuitive"
+ (array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852])) # may vary
+
+ """
+ return pu._div(legmul, c1, c2)
+
+
+def legpow(c, pow, maxpower=16):
+ """Raise a Legendre series to a power.
+
+ Returns the Legendre series `c` raised to the power `pow`. The
+ argument `c` is a sequence of coefficients ordered from low to high.
+ i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
+
+ Parameters
+ ----------
+ c : array_like
+ 1-D array of Legendre series coefficients ordered from low to
+ high.
+ pow : integer
+ Power to which the series will be raised
+ maxpower : integer, optional
+ Maximum power allowed. This is mainly to limit growth of the series
+ to unmanageable size. Default is 16
+
+ Returns
+ -------
+ coef : ndarray
+ Legendre series of power.
+
+ See Also
+ --------
+ legadd, legsub, legmulx, legmul, legdiv
+
+ """
+ return pu._pow(legmul, c, pow, maxpower)
+
+
+def legder(c, m=1, scl=1, axis=0):
+ """
+ Differentiate a Legendre series.
+
+ Returns the Legendre series coefficients `c` differentiated `m` times
+ along `axis`. At each iteration the result is multiplied by `scl` (the
+ scaling factor is for use in a linear change of variable). The argument
+ `c` is an array of coefficients from low to high degree along each
+ axis, e.g., [1,2,3] represents the series ``1*L_0 + 2*L_1 + 3*L_2``
+ while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
+ 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is
+ ``y``.
+
+ Parameters
+ ----------
+ c : array_like
+ Array of Legendre series coefficients. If c is multidimensional the
+ different axis correspond to different variables with the degree in
+ each axis given by the corresponding index.
+ m : int, optional
+ Number of derivatives taken, must be non-negative. (Default: 1)
+ scl : scalar, optional
+ Each differentiation is multiplied by `scl`. The end result is
+ multiplication by ``scl**m``. This is for use in a linear change of
+ variable. (Default: 1)
+ axis : int, optional
+ Axis over which the derivative is taken. (Default: 0).
+
+ .. versionadded:: 1.7.0
+
+ Returns
+ -------
+ der : ndarray
+ Legendre series of the derivative.
+
+ See Also
+ --------
+ legint
+
+ Notes
+ -----
+ In general, the result of differentiating a Legendre series does not
+ resemble the same operation on a power series. Thus the result of this
+ function may be "unintuitive," albeit correct; see Examples section
+ below.
+
+ Examples
+ --------
+ >>> from numpy.polynomial import legendre as L
+ >>> c = (1,2,3,4)
+ >>> L.legder(c)
+ array([ 6., 9., 20.])
+ >>> L.legder(c, 3)
+ array([60.])
+ >>> L.legder(c, scl=-1)
+ array([ -6., -9., -20.])
+ >>> L.legder(c, 2,-1)
+ array([ 9., 60.])
+
+ """
+ c = np.array(c, ndmin=1, copy=True)
+ if c.dtype.char in '?bBhHiIlLqQpP':
+ c = c.astype(np.double)
+ cnt = pu._deprecate_as_int(m, "the order of derivation")
+ iaxis = pu._deprecate_as_int(axis, "the axis")
+ if cnt < 0:
+ raise ValueError("The order of derivation must be non-negative")
+ iaxis = normalize_axis_index(iaxis, c.ndim)
+
+ if cnt == 0:
+ return c
+
+ c = np.moveaxis(c, iaxis, 0)
+ n = len(c)
+ if cnt >= n:
+ c = c[:1]*0
+ else:
+ for i in range(cnt):
+ n = n - 1
+ c *= scl
+ der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
+ for j in range(n, 2, -1):
+ der[j - 1] = (2*j - 1)*c[j]
+ c[j - 2] += c[j]
+ if n > 1:
+ der[1] = 3*c[2]
+ der[0] = c[1]
+ c = der
+ c = np.moveaxis(c, 0, iaxis)
+ return c
+
+
+def legint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
+ """
+ Integrate a Legendre series.
+
+ Returns the Legendre series coefficients `c` integrated `m` times from
+ `lbnd` along `axis`. At each iteration the resulting series is
+ **multiplied** by `scl` and an integration constant, `k`, is added.
+ The scaling factor is for use in a linear change of variable. ("Buyer
+ beware": note that, depending on what one is doing, one may want `scl`
+ to be the reciprocal of what one might expect; for more information,
+ see the Notes section below.) The argument `c` is an array of
+ coefficients from low to high degree along each axis, e.g., [1,2,3]
+ represents the series ``L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]]
+ represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
+ 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
+
+ Parameters
+ ----------
+ c : array_like
+ Array of Legendre series coefficients. If c is multidimensional the
+ different axis correspond to different variables with the degree in
+ each axis given by the corresponding index.
+ m : int, optional
+ Order of integration, must be positive. (Default: 1)
+ k : {[], list, scalar}, optional
+ Integration constant(s). The value of the first integral at
+ ``lbnd`` is the first value in the list, the value of the second
+ integral at ``lbnd`` is the second value, etc. If ``k == []`` (the
+ default), all constants are set to zero. If ``m == 1``, a single
+ scalar can be given instead of a list.
+ lbnd : scalar, optional
+ The lower bound of the integral. (Default: 0)
+ scl : scalar, optional
+ Following each integration the result is *multiplied* by `scl`
+ before the integration constant is added. (Default: 1)
+ axis : int, optional
+ Axis over which the integral is taken. (Default: 0).
+
+ .. versionadded:: 1.7.0
+
+ Returns
+ -------
+ S : ndarray
+ Legendre series coefficient array of the integral.
+
+ Raises
+ ------
+ ValueError
+ If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
+ ``np.ndim(scl) != 0``.
+
+ See Also
+ --------
+ legder
+
+ Notes
+ -----
+ Note that the result of each integration is *multiplied* by `scl`.
+ Why is this important to note? Say one is making a linear change of
+ variable :math:`u = ax + b` in an integral relative to `x`. Then
+ :math:`dx = du/a`, so one will need to set `scl` equal to
+ :math:`1/a` - perhaps not what one would have first thought.
+
+ Also note that, in general, the result of integrating a C-series needs
+ to be "reprojected" onto the C-series basis set. Thus, typically,
+ the result of this function is "unintuitive," albeit correct; see
+ Examples section below.
+
+ Examples
+ --------
+ >>> from numpy.polynomial import legendre as L
+ >>> c = (1,2,3)
+ >>> L.legint(c)
+ array([ 0.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary
+ >>> L.legint(c, 3)
+ array([ 1.66666667e-02, -1.78571429e-02, 4.76190476e-02, # may vary
+ -1.73472348e-18, 1.90476190e-02, 9.52380952e-03])
+ >>> L.legint(c, k=3)
+ array([ 3.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary
+ >>> L.legint(c, lbnd=-2)
+ array([ 7.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary
+ >>> L.legint(c, scl=2)
+ array([ 0.66666667, 0.8 , 1.33333333, 1.2 ]) # may vary
+
+ """
+ c = np.array(c, ndmin=1, copy=True)
+ if c.dtype.char in '?bBhHiIlLqQpP':
+ c = c.astype(np.double)
+ if not np.iterable(k):
+ k = [k]
+ cnt = pu._deprecate_as_int(m, "the order of integration")
+ iaxis = pu._deprecate_as_int(axis, "the axis")
+ if cnt < 0:
+ raise ValueError("The order of integration must be non-negative")
+ if len(k) > cnt:
+ raise ValueError("Too many integration constants")
+ if np.ndim(lbnd) != 0:
+ raise ValueError("lbnd must be a scalar.")
+ if np.ndim(scl) != 0:
+ raise ValueError("scl must be a scalar.")
+ iaxis = normalize_axis_index(iaxis, c.ndim)
+
+ if cnt == 0:
+ return c
+
+ c = np.moveaxis(c, iaxis, 0)
+ k = list(k) + [0]*(cnt - len(k))
+ for i in range(cnt):
+ n = len(c)
+ c *= scl
+ if n == 1 and np.all(c[0] == 0):
+ c[0] += k[i]
+ else:
+ tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
+ tmp[0] = c[0]*0
+ tmp[1] = c[0]
+ if n > 1:
+ tmp[2] = c[1]/3
+ for j in range(2, n):
+ t = c[j]/(2*j + 1)
+ tmp[j + 1] = t
+ tmp[j - 1] -= t
+ tmp[0] += k[i] - legval(lbnd, tmp)
+ c = tmp
+ c = np.moveaxis(c, 0, iaxis)
+ return c
+
+
+def legval(x, c, tensor=True):
+ """
+ Evaluate a Legendre series at points x.
+
+ If `c` is of length `n + 1`, this function returns the value:
+
+ .. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x)
+
+ The parameter `x` is converted to an array only if it is a tuple or a
+ list, otherwise it is treated as a scalar. In either case, either `x`
+ or its elements must support multiplication and addition both with
+ themselves and with the elements of `c`.
+
+ If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
+ `c` is multidimensional, then the shape of the result depends on the
+ value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
+ x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
+ scalars have shape (,).
+
+ Trailing zeros in the coefficients will be used in the evaluation, so
+ they should be avoided if efficiency is a concern.
+
+ Parameters
+ ----------
+ x : array_like, compatible object
+ If `x` is a list or tuple, it is converted to an ndarray, otherwise
+ it is left unchanged and treated as a scalar. In either case, `x`
+ or its elements must support addition and multiplication with
+ themselves and with the elements of `c`.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree n are contained in c[n]. If `c` is multidimensional the
+ remaining indices enumerate multiple polynomials. In the two
+ dimensional case the coefficients may be thought of as stored in
+ the columns of `c`.
+ tensor : boolean, optional
+ If True, the shape of the coefficient array is extended with ones
+ on the right, one for each dimension of `x`. Scalars have dimension 0
+ for this action. The result is that every column of coefficients in
+ `c` is evaluated for every element of `x`. If False, `x` is broadcast
+ over the columns of `c` for the evaluation. This keyword is useful
+ when `c` is multidimensional. The default value is True.
+
+ .. versionadded:: 1.7.0
+
+ Returns
+ -------
+ values : ndarray, algebra_like
+ The shape of the return value is described above.
+
+ See Also
+ --------
+ legval2d, leggrid2d, legval3d, leggrid3d
+
+ Notes
+ -----
+ The evaluation uses Clenshaw recursion, aka synthetic division.
+
+ """
+ c = np.array(c, ndmin=1, copy=False)
+ if c.dtype.char in '?bBhHiIlLqQpP':
+ c = c.astype(np.double)
+ if isinstance(x, (tuple, list)):
+ x = np.asarray(x)
+ if isinstance(x, np.ndarray) and tensor:
+ c = c.reshape(c.shape + (1,)*x.ndim)
+
+ if len(c) == 1:
+ c0 = c[0]
+ c1 = 0
+ elif len(c) == 2:
+ c0 = c[0]
+ c1 = c[1]
+ else:
+ nd = len(c)
+ c0 = c[-2]
+ c1 = c[-1]
+ for i in range(3, len(c) + 1):
+ tmp = c0
+ nd = nd - 1
+ c0 = c[-i] - (c1*(nd - 1))/nd
+ c1 = tmp + (c1*x*(2*nd - 1))/nd
+ return c0 + c1*x
+
+
+def legval2d(x, y, c):
+ """
+ Evaluate a 2-D Legendre series at points (x, y).
+
+ This function returns the values:
+
+ .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * L_i(x) * L_j(y)
+
+ The parameters `x` and `y` are converted to arrays only if they are
+ tuples or a lists, otherwise they are treated as a scalars and they
+ must have the same shape after conversion. In either case, either `x`
+ and `y` or their elements must support multiplication and addition both
+ with themselves and with the elements of `c`.
+
+ If `c` is a 1-D array a one is implicitly appended to its shape to make
+ it 2-D. The shape of the result will be c.shape[2:] + x.shape.
+
+ Parameters
+ ----------
+ x, y : array_like, compatible objects
+ The two dimensional series is evaluated at the points `(x, y)`,
+ where `x` and `y` must have the same shape. If `x` or `y` is a list
+ or tuple, it is first converted to an ndarray, otherwise it is left
+ unchanged and if it isn't an ndarray it is treated as a scalar.
+ c : array_like
+ Array of coefficients ordered so that the coefficient of the term
+ of multi-degree i,j is contained in ``c[i,j]``. If `c` has
+ dimension greater than two the remaining indices enumerate multiple
+ sets of coefficients.
+
+ Returns
+ -------
+ values : ndarray, compatible object
+ The values of the two dimensional Legendre series at points formed
+ from pairs of corresponding values from `x` and `y`.
+
+ See Also
+ --------
+ legval, leggrid2d, legval3d, leggrid3d
+
+ Notes
+ -----
+
+ .. versionadded:: 1.7.0
+
+ """
+ return pu._valnd(legval, c, x, y)
+
+
+def leggrid2d(x, y, c):
+ """
+ Evaluate a 2-D Legendre series on the Cartesian product of x and y.
+
+ This function returns the values:
+
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * L_i(a) * L_j(b)
+
+ where the points `(a, b)` consist of all pairs formed by taking
+ `a` from `x` and `b` from `y`. The resulting points form a grid with
+ `x` in the first dimension and `y` in the second.
+
+ The parameters `x` and `y` are converted to arrays only if they are
+ tuples or a lists, otherwise they are treated as a scalars. In either
+ case, either `x` and `y` or their elements must support multiplication
+ and addition both with themselves and with the elements of `c`.
+
+ If `c` has fewer than two dimensions, ones are implicitly appended to
+ its shape to make it 2-D. The shape of the result will be c.shape[2:] +
+ x.shape + y.shape.
+
+ Parameters
+ ----------
+ x, y : array_like, compatible objects
+ The two dimensional series is evaluated at the points in the
+ Cartesian product of `x` and `y`. If `x` or `y` is a list or
+ tuple, it is first converted to an ndarray, otherwise it is left
+ unchanged and, if it isn't an ndarray, it is treated as a scalar.
+ c : array_like
+ Array of coefficients ordered so that the coefficient of the term of
+ multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
+ greater than two the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, compatible object
+ The values of the two dimensional Chebyshev series at points in the
+ Cartesian product of `x` and `y`.
+
+ See Also
+ --------
+ legval, legval2d, legval3d, leggrid3d
+
+ Notes
+ -----
+
+ .. versionadded:: 1.7.0
+
+ """
+ return pu._gridnd(legval, c, x, y)
+
+
+def legval3d(x, y, z, c):
+ """
+ Evaluate a 3-D Legendre series at points (x, y, z).
+
+ This function returns the values:
+
+ .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z)
+
+ The parameters `x`, `y`, and `z` are converted to arrays only if
+ they are tuples or a lists, otherwise they are treated as a scalars and
+ they must have the same shape after conversion. In either case, either
+ `x`, `y`, and `z` or their elements must support multiplication and
+ addition both with themselves and with the elements of `c`.
+
+ If `c` has fewer than 3 dimensions, ones are implicitly appended to its
+ shape to make it 3-D. The shape of the result will be c.shape[3:] +
+ x.shape.
+
+ Parameters
+ ----------
+ x, y, z : array_like, compatible object
+ The three dimensional series is evaluated at the points
+ `(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
+ any of `x`, `y`, or `z` is a list or tuple, it is first converted
+ to an ndarray, otherwise it is left unchanged and if it isn't an
+ ndarray it is treated as a scalar.
+ c : array_like
+ Array of coefficients ordered so that the coefficient of the term of
+ multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
+ greater than 3 the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, compatible object
+ The values of the multidimensional polynomial on points formed with
+ triples of corresponding values from `x`, `y`, and `z`.
+
+ See Also
+ --------
+ legval, legval2d, leggrid2d, leggrid3d
+
+ Notes
+ -----
+
+ .. versionadded:: 1.7.0
+
+ """
+ return pu._valnd(legval, c, x, y, z)
+
+
+def leggrid3d(x, y, z, c):
+ """
+ Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z.
+
+ This function returns the values:
+
+ .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c)
+
+ where the points `(a, b, c)` consist of all triples formed by taking
+ `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
+ a grid with `x` in the first dimension, `y` in the second, and `z` in
+ the third.
+
+ The parameters `x`, `y`, and `z` are converted to arrays only if they
+ are tuples or a lists, otherwise they are treated as a scalars. In
+ either case, either `x`, `y`, and `z` or their elements must support
+ multiplication and addition both with themselves and with the elements
+ of `c`.
+
+ If `c` has fewer than three dimensions, ones are implicitly appended to
+ its shape to make it 3-D. The shape of the result will be c.shape[3:] +
+ x.shape + y.shape + z.shape.
+
+ Parameters
+ ----------
+ x, y, z : array_like, compatible objects
+ The three dimensional series is evaluated at the points in the
+ Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
+ list or tuple, it is first converted to an ndarray, otherwise it is
+ left unchanged and, if it isn't an ndarray, it is treated as a
+ scalar.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
+ greater than two the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, compatible object
+ The values of the two dimensional polynomial at points in the Cartesian
+ product of `x` and `y`.
+
+ See Also
+ --------
+ legval, legval2d, leggrid2d, legval3d
+
+ Notes
+ -----
+
+ .. versionadded:: 1.7.0
+
+ """
+ return pu._gridnd(legval, c, x, y, z)
+
+
+def legvander(x, deg):
+ """Pseudo-Vandermonde matrix of given degree.
+
+ Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
+ `x`. The pseudo-Vandermonde matrix is defined by
+
+ .. math:: V[..., i] = L_i(x)
+
+ where `0 <= i <= deg`. The leading indices of `V` index the elements of
+ `x` and the last index is the degree of the Legendre polynomial.
+
+ If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
+ array ``V = legvander(x, n)``, then ``np.dot(V, c)`` and
+ ``legval(x, c)`` are the same up to roundoff. This equivalence is
+ useful both for least squares fitting and for the evaluation of a large
+ number of Legendre series of the same degree and sample points.
+
+ Parameters
+ ----------
+ x : array_like
+ Array of points. The dtype is converted to float64 or complex128
+ depending on whether any of the elements are complex. If `x` is
+ scalar it is converted to a 1-D array.
+ deg : int
+ Degree of the resulting matrix.
+
+ Returns
+ -------
+ vander : ndarray
+ The pseudo-Vandermonde matrix. The shape of the returned matrix is
+ ``x.shape + (deg + 1,)``, where The last index is the degree of the
+ corresponding Legendre polynomial. The dtype will be the same as
+ the converted `x`.
+
+ """
+ ideg = pu._deprecate_as_int(deg, "deg")
+ if ideg < 0:
+ raise ValueError("deg must be non-negative")
+
+ x = np.array(x, copy=False, ndmin=1) + 0.0
+ dims = (ideg + 1,) + x.shape
+ dtyp = x.dtype
+ v = np.empty(dims, dtype=dtyp)
+ # Use forward recursion to generate the entries. This is not as accurate
+ # as reverse recursion in this application but it is more efficient.
+ v[0] = x*0 + 1
+ if ideg > 0:
+ v[1] = x
+ for i in range(2, ideg + 1):
+ v[i] = (v[i-1]*x*(2*i - 1) - v[i-2]*(i - 1))/i
+ return np.moveaxis(v, 0, -1)
+
+
+def legvander2d(x, y, deg):
+ """Pseudo-Vandermonde matrix of given degrees.
+
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
+ points `(x, y)`. The pseudo-Vandermonde matrix is defined by
+
+ .. math:: V[..., (deg[1] + 1)*i + j] = L_i(x) * L_j(y),
+
+ where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
+ `V` index the points `(x, y)` and the last index encodes the degrees of
+ the Legendre polynomials.
+
+ If ``V = legvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
+ correspond to the elements of a 2-D coefficient array `c` of shape
+ (xdeg + 1, ydeg + 1) in the order
+
+ .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
+
+ and ``np.dot(V, c.flat)`` and ``legval2d(x, y, c)`` will be the same
+ up to roundoff. This equivalence is useful both for least squares
+ fitting and for the evaluation of a large number of 2-D Legendre
+ series of the same degrees and sample points.
+
+ Parameters
+ ----------
+ x, y : array_like
+ Arrays of point coordinates, all of the same shape. The dtypes
+ will be converted to either float64 or complex128 depending on
+ whether any of the elements are complex. Scalars are converted to
+ 1-D arrays.
+ deg : list of ints
+ List of maximum degrees of the form [x_deg, y_deg].
+
+ Returns
+ -------
+ vander2d : ndarray
+ The shape of the returned matrix is ``x.shape + (order,)``, where
+ :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
+ as the converted `x` and `y`.
+
+ See Also
+ --------
+ legvander, legvander3d, legval2d, legval3d
+
+ Notes
+ -----
+
+ .. versionadded:: 1.7.0
+
+ """
+ return pu._vander_nd_flat((legvander, legvander), (x, y), deg)
+
+
+def legvander3d(x, y, z, deg):
+ """Pseudo-Vandermonde matrix of given degrees.
+
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
+ points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
+ then The pseudo-Vandermonde matrix is defined by
+
+ .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z),
+
+ where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
+ indices of `V` index the points `(x, y, z)` and the last index encodes
+ the degrees of the Legendre polynomials.
+
+ If ``V = legvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
+ of `V` correspond to the elements of a 3-D coefficient array `c` of
+ shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
+
+ .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
+
+ and ``np.dot(V, c.flat)`` and ``legval3d(x, y, z, c)`` will be the
+ same up to roundoff. This equivalence is useful both for least squares
+ fitting and for the evaluation of a large number of 3-D Legendre
+ series of the same degrees and sample points.
+
+ Parameters
+ ----------
+ x, y, z : array_like
+ Arrays of point coordinates, all of the same shape. The dtypes will
+ be converted to either float64 or complex128 depending on whether
+ any of the elements are complex. Scalars are converted to 1-D
+ arrays.
+ deg : list of ints
+ List of maximum degrees of the form [x_deg, y_deg, z_deg].
+
+ Returns
+ -------
+ vander3d : ndarray
+ The shape of the returned matrix is ``x.shape + (order,)``, where
+ :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
+ be the same as the converted `x`, `y`, and `z`.
+
+ See Also
+ --------
+ legvander, legvander3d, legval2d, legval3d
+
+ Notes
+ -----
+
+ .. versionadded:: 1.7.0
+
+ """
+ return pu._vander_nd_flat((legvander, legvander, legvander), (x, y, z), deg)
+
+
+def legfit(x, y, deg, rcond=None, full=False, w=None):
+ """
+ Least squares fit of Legendre series to data.
+
+ Return the coefficients of a Legendre series of degree `deg` that is the
+ least squares fit to the data values `y` given at points `x`. If `y` is
+ 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
+ fits are done, one for each column of `y`, and the resulting
+ coefficients are stored in the corresponding columns of a 2-D return.
+ The fitted polynomial(s) are in the form
+
+ .. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x),
+
+ where `n` is `deg`.
+
+ Parameters
+ ----------
+ x : array_like, shape (M,)
+ x-coordinates of the M sample points ``(x[i], y[i])``.
+ y : array_like, shape (M,) or (M, K)
+ y-coordinates of the sample points. Several data sets of sample
+ points sharing the same x-coordinates can be fitted at once by
+ passing in a 2D-array that contains one dataset per column.
+ deg : int or 1-D array_like
+ Degree(s) of the fitting polynomials. If `deg` is a single integer
+ all terms up to and including the `deg`'th term are included in the
+ fit. For NumPy versions >= 1.11.0 a list of integers specifying the
+ degrees of the terms to include may be used instead.
+ rcond : float, optional
+ Relative condition number of the fit. Singular values smaller than
+ this relative to the largest singular value will be ignored. The
+ default value is len(x)*eps, where eps is the relative precision of
+ the float type, about 2e-16 in most cases.
+ full : bool, optional
+ Switch determining nature of return value. When it is False (the
+ default) just the coefficients are returned, when True diagnostic
+ information from the singular value decomposition is also returned.
+ w : array_like, shape (`M`,), optional
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
+ same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
+
+ .. versionadded:: 1.5.0
+
+ Returns
+ -------
+ coef : ndarray, shape (M,) or (M, K)
+ Legendre coefficients ordered from low to high. If `y` was
+ 2-D, the coefficients for the data in column k of `y` are in
+ column `k`. If `deg` is specified as a list, coefficients for
+ terms not included in the fit are set equal to zero in the
+ returned `coef`.
+
+ [residuals, rank, singular_values, rcond] : list
+ These values are only returned if ``full == True``
+
+ - residuals -- sum of squared residuals of the least squares fit
+ - rank -- the numerical rank of the scaled Vandermonde matrix
+ - singular_values -- singular values of the scaled Vandermonde matrix
+ - rcond -- value of `rcond`.
+
+ For more details, see `numpy.linalg.lstsq`.
+
+ Warns
+ -----
+ RankWarning
+ The rank of the coefficient matrix in the least-squares fit is
+ deficient. The warning is only raised if ``full == False``. The
+ warnings can be turned off by
+
+ >>> import warnings
+ >>> warnings.simplefilter('ignore', np.RankWarning)
+
+ See Also
+ --------
+ numpy.polynomial.polynomial.polyfit
+ numpy.polynomial.chebyshev.chebfit
+ numpy.polynomial.laguerre.lagfit
+ numpy.polynomial.hermite.hermfit
+ numpy.polynomial.hermite_e.hermefit
+ legval : Evaluates a Legendre series.
+ legvander : Vandermonde matrix of Legendre series.
+ legweight : Legendre weight function (= 1).
+ numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
+ scipy.interpolate.UnivariateSpline : Computes spline fits.
+
+ Notes
+ -----
+ The solution is the coefficients of the Legendre series `p` that
+ minimizes the sum of the weighted squared errors
+
+ .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
+
+ where :math:`w_j` are the weights. This problem is solved by setting up
+ as the (typically) overdetermined matrix equation
+
+ .. math:: V(x) * c = w * y,
+
+ where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
+ coefficients to be solved for, `w` are the weights, and `y` are the
+ observed values. This equation is then solved using the singular value
+ decomposition of `V`.
+
+ If some of the singular values of `V` are so small that they are
+ neglected, then a `RankWarning` will be issued. This means that the
+ coefficient values may be poorly determined. Using a lower order fit
+ will usually get rid of the warning. The `rcond` parameter can also be
+ set to a value smaller than its default, but the resulting fit may be
+ spurious and have large contributions from roundoff error.
+
+ Fits using Legendre series are usually better conditioned than fits
+ using power series, but much can depend on the distribution of the
+ sample points and the smoothness of the data. If the quality of the fit
+ is inadequate splines may be a good alternative.
+
+ References
+ ----------
+ .. [1] Wikipedia, "Curve fitting",
+ https://en.wikipedia.org/wiki/Curve_fitting
+
+ Examples
+ --------
+
+ """
+ return pu._fit(legvander, x, y, deg, rcond, full, w)
+
+
+def legcompanion(c):
+ """Return the scaled companion matrix of c.
+
+ The basis polynomials are scaled so that the companion matrix is
+ symmetric when `c` is an Legendre basis polynomial. This provides
+ better eigenvalue estimates than the unscaled case and for basis
+ polynomials the eigenvalues are guaranteed to be real if
+ `numpy.linalg.eigvalsh` is used to obtain them.
+
+ Parameters
+ ----------
+ c : array_like
+ 1-D array of Legendre series coefficients ordered from low to high
+ degree.
+
+ Returns
+ -------
+ mat : ndarray
+ Scaled companion matrix of dimensions (deg, deg).
+
+ Notes
+ -----
+
+ .. versionadded:: 1.7.0
+
+ """
+ # c is a trimmed copy
+ [c] = pu.as_series([c])
+ if len(c) < 2:
+ raise ValueError('Series must have maximum degree of at least 1.')
+ if len(c) == 2:
+ return np.array([[-c[0]/c[1]]])
+
+ n = len(c) - 1
+ mat = np.zeros((n, n), dtype=c.dtype)
+ scl = 1./np.sqrt(2*np.arange(n) + 1)
+ top = mat.reshape(-1)[1::n+1]
+ bot = mat.reshape(-1)[n::n+1]
+ top[...] = np.arange(1, n)*scl[:n-1]*scl[1:n]
+ bot[...] = top
+ mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*(n/(2*n - 1))
+ return mat
+
+
+def legroots(c):
+ """
+ Compute the roots of a Legendre series.
+
+ Return the roots (a.k.a. "zeros") of the polynomial
+
+ .. math:: p(x) = \\sum_i c[i] * L_i(x).
+
+ Parameters
+ ----------
+ c : 1-D array_like
+ 1-D array of coefficients.
+
+ Returns
+ -------
+ out : ndarray
+ Array of the roots of the series. If all the roots are real,
+ then `out` is also real, otherwise it is complex.
+
+ See Also
+ --------
+ numpy.polynomial.polynomial.polyroots
+ numpy.polynomial.chebyshev.chebroots
+ numpy.polynomial.laguerre.lagroots
+ numpy.polynomial.hermite.hermroots
+ numpy.polynomial.hermite_e.hermeroots
+
+ Notes
+ -----
+ The root estimates are obtained as the eigenvalues of the companion
+ matrix, Roots far from the origin of the complex plane may have large
+ errors due to the numerical instability of the series for such values.
+ Roots with multiplicity greater than 1 will also show larger errors as
+ the value of the series near such points is relatively insensitive to
+ errors in the roots. Isolated roots near the origin can be improved by
+ a few iterations of Newton's method.
+
+ The Legendre series basis polynomials aren't powers of ``x`` so the
+ results of this function may seem unintuitive.
+
+ Examples
+ --------
+ >>> import numpy.polynomial.legendre as leg
+ >>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
+ array([-0.85099543, -0.11407192, 0.51506735]) # may vary
+
+ """
+ # c is a trimmed copy
+ [c] = pu.as_series([c])
+ if len(c) < 2:
+ return np.array([], dtype=c.dtype)
+ if len(c) == 2:
+ return np.array([-c[0]/c[1]])
+
+ # rotated companion matrix reduces error
+ m = legcompanion(c)[::-1,::-1]
+ r = la.eigvals(m)
+ r.sort()
+ return r
+
+
+def leggauss(deg):
+ """
+ Gauss-Legendre quadrature.
+
+ Computes the sample points and weights for Gauss-Legendre quadrature.
+ These sample points and weights will correctly integrate polynomials of
+ degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with
+ the weight function :math:`f(x) = 1`.
+
+ Parameters
+ ----------
+ deg : int
+ Number of sample points and weights. It must be >= 1.
+
+ Returns
+ -------
+ x : ndarray
+ 1-D ndarray containing the sample points.
+ y : ndarray
+ 1-D ndarray containing the weights.
+
+ Notes
+ -----
+
+ .. versionadded:: 1.7.0
+
+ The results have only been tested up to degree 100, higher degrees may
+ be problematic. The weights are determined by using the fact that
+
+ .. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k))
+
+ where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
+ is the k'th root of :math:`L_n`, and then scaling the results to get
+ the right value when integrating 1.
+
+ """
+ ideg = pu._deprecate_as_int(deg, "deg")
+ if ideg <= 0:
+ raise ValueError("deg must be a positive integer")
+
+ # first approximation of roots. We use the fact that the companion
+ # matrix is symmetric in this case in order to obtain better zeros.
+ c = np.array([0]*deg + [1])
+ m = legcompanion(c)
+ x = la.eigvalsh(m)
+
+ # improve roots by one application of Newton
+ dy = legval(x, c)
+ df = legval(x, legder(c))
+ x -= dy/df
+
+ # compute the weights. We scale the factor to avoid possible numerical
+ # overflow.
+ fm = legval(x, c[1:])
+ fm /= np.abs(fm).max()
+ df /= np.abs(df).max()
+ w = 1/(fm * df)
+
+ # for Legendre we can also symmetrize
+ w = (w + w[::-1])/2
+ x = (x - x[::-1])/2
+
+ # scale w to get the right value
+ w *= 2. / w.sum()
+
+ return x, w
+
+
+def legweight(x):
+ """
+ Weight function of the Legendre polynomials.
+
+ The weight function is :math:`1` and the interval of integration is
+ :math:`[-1, 1]`. The Legendre polynomials are orthogonal, but not
+ normalized, with respect to this weight function.
+
+ Parameters
+ ----------
+ x : array_like
+ Values at which the weight function will be computed.
+
+ Returns
+ -------
+ w : ndarray
+ The weight function at `x`.
+
+ Notes
+ -----
+
+ .. versionadded:: 1.7.0
+
+ """
+ w = x*0.0 + 1.0
+ return w
+
+#
+# Legendre series class
+#
+
+class Legendre(ABCPolyBase):
+ """A Legendre series class.
+
+ The Legendre class provides the standard Python numerical methods
+ '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
+ attributes and methods listed in the `ABCPolyBase` documentation.
+
+ Parameters
+ ----------
+ coef : array_like
+ Legendre coefficients in order of increasing degree, i.e.,
+ ``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``.
+ domain : (2,) array_like, optional
+ Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
+ to the interval ``[window[0], window[1]]`` by shifting and scaling.
+ The default value is [-1, 1].
+ window : (2,) array_like, optional
+ Window, see `domain` for its use. The default value is [-1, 1].
+
+ .. versionadded:: 1.6.0
+ symbol : str, optional
+ Symbol used to represent the independent variable in string
+ representations of the polynomial expression, e.g. for printing.
+ The symbol must be a valid Python identifier. Default value is 'x'.
+
+ .. versionadded:: 1.24
+
+ """
+ # Virtual Functions
+ _add = staticmethod(legadd)
+ _sub = staticmethod(legsub)
+ _mul = staticmethod(legmul)
+ _div = staticmethod(legdiv)
+ _pow = staticmethod(legpow)
+ _val = staticmethod(legval)
+ _int = staticmethod(legint)
+ _der = staticmethod(legder)
+ _fit = staticmethod(legfit)
+ _line = staticmethod(legline)
+ _roots = staticmethod(legroots)
+ _fromroots = staticmethod(legfromroots)
+
+ # Virtual properties
+ domain = np.array(legdomain)
+ window = np.array(legdomain)
+ basis_name = 'P'