aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.py1206
1 files changed, 1206 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.py
new file mode 100644
index 00000000..9730574c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.py
@@ -0,0 +1,1206 @@
+"""
+Abstract base class for the various polynomial Classes.
+
+The ABCPolyBase class provides the methods needed to implement the common API
+for the various polynomial classes. It operates as a mixin, but uses the
+abc module from the stdlib, hence it is only available for Python >= 2.6.
+
+"""
+import os
+import abc
+import numbers
+
+import numpy as np
+from . import polyutils as pu
+
+__all__ = ['ABCPolyBase']
+
+class ABCPolyBase(abc.ABC):
+ """An abstract base class for immutable series classes.
+
+ ABCPolyBase provides the standard Python numerical methods
+ '+', '-', '*', '//', '%', 'divmod', '**', and '()' along with the
+ methods listed below.
+
+ .. versionadded:: 1.9.0
+
+ Parameters
+ ----------
+ coef : array_like
+ Series coefficients in order of increasing degree, i.e.,
+ ``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``, where
+ ``P_i`` is the basis polynomials of degree ``i``.
+ domain : (2,) array_like, optional
+ Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
+ to the interval ``[window[0], window[1]]`` by shifting and scaling.
+ The default value is the derived class domain.
+ window : (2,) array_like, optional
+ Window, see domain for its use. The default value is the
+ derived class window.
+ symbol : str, optional
+ Symbol used to represent the independent variable in string
+ representations of the polynomial expression, e.g. for printing.
+ The symbol must be a valid Python identifier. Default value is 'x'.
+
+ .. versionadded:: 1.24
+
+ Attributes
+ ----------
+ coef : (N,) ndarray
+ Series coefficients in order of increasing degree.
+ domain : (2,) ndarray
+ Domain that is mapped to window.
+ window : (2,) ndarray
+ Window that domain is mapped to.
+ symbol : str
+ Symbol representing the independent variable.
+
+ Class Attributes
+ ----------------
+ maxpower : int
+ Maximum power allowed, i.e., the largest number ``n`` such that
+ ``p(x)**n`` is allowed. This is to limit runaway polynomial size.
+ domain : (2,) ndarray
+ Default domain of the class.
+ window : (2,) ndarray
+ Default window of the class.
+
+ """
+
+ # Not hashable
+ __hash__ = None
+
+ # Opt out of numpy ufuncs and Python ops with ndarray subclasses.
+ __array_ufunc__ = None
+
+ # Limit runaway size. T_n^m has degree n*m
+ maxpower = 100
+
+ # Unicode character mappings for improved __str__
+ _superscript_mapping = str.maketrans({
+ "0": "⁰",
+ "1": "¹",
+ "2": "²",
+ "3": "³",
+ "4": "⁴",
+ "5": "⁵",
+ "6": "⁶",
+ "7": "⁷",
+ "8": "⁸",
+ "9": "⁹"
+ })
+ _subscript_mapping = str.maketrans({
+ "0": "₀",
+ "1": "₁",
+ "2": "₂",
+ "3": "₃",
+ "4": "₄",
+ "5": "₅",
+ "6": "₆",
+ "7": "₇",
+ "8": "₈",
+ "9": "₉"
+ })
+ # Some fonts don't support full unicode character ranges necessary for
+ # the full set of superscripts and subscripts, including common/default
+ # fonts in Windows shells/terminals. Therefore, default to ascii-only
+ # printing on windows.
+ _use_unicode = not os.name == 'nt'
+
+ @property
+ def symbol(self):
+ return self._symbol
+
+ @property
+ @abc.abstractmethod
+ def domain(self):
+ pass
+
+ @property
+ @abc.abstractmethod
+ def window(self):
+ pass
+
+ @property
+ @abc.abstractmethod
+ def basis_name(self):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _add(c1, c2):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _sub(c1, c2):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _mul(c1, c2):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _div(c1, c2):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _pow(c, pow, maxpower=None):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _val(x, c):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _int(c, m, k, lbnd, scl):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _der(c, m, scl):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _fit(x, y, deg, rcond, full):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _line(off, scl):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _roots(c):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def _fromroots(r):
+ pass
+
+ def has_samecoef(self, other):
+ """Check if coefficients match.
+
+ .. versionadded:: 1.6.0
+
+ Parameters
+ ----------
+ other : class instance
+ The other class must have the ``coef`` attribute.
+
+ Returns
+ -------
+ bool : boolean
+ True if the coefficients are the same, False otherwise.
+
+ """
+ if len(self.coef) != len(other.coef):
+ return False
+ elif not np.all(self.coef == other.coef):
+ return False
+ else:
+ return True
+
+ def has_samedomain(self, other):
+ """Check if domains match.
+
+ .. versionadded:: 1.6.0
+
+ Parameters
+ ----------
+ other : class instance
+ The other class must have the ``domain`` attribute.
+
+ Returns
+ -------
+ bool : boolean
+ True if the domains are the same, False otherwise.
+
+ """
+ return np.all(self.domain == other.domain)
+
+ def has_samewindow(self, other):
+ """Check if windows match.
+
+ .. versionadded:: 1.6.0
+
+ Parameters
+ ----------
+ other : class instance
+ The other class must have the ``window`` attribute.
+
+ Returns
+ -------
+ bool : boolean
+ True if the windows are the same, False otherwise.
+
+ """
+ return np.all(self.window == other.window)
+
+ def has_sametype(self, other):
+ """Check if types match.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ other : object
+ Class instance.
+
+ Returns
+ -------
+ bool : boolean
+ True if other is same class as self
+
+ """
+ return isinstance(other, self.__class__)
+
+ def _get_coefficients(self, other):
+ """Interpret other as polynomial coefficients.
+
+ The `other` argument is checked to see if it is of the same
+ class as self with identical domain and window. If so,
+ return its coefficients, otherwise return `other`.
+
+ .. versionadded:: 1.9.0
+
+ Parameters
+ ----------
+ other : anything
+ Object to be checked.
+
+ Returns
+ -------
+ coef
+ The coefficients of`other` if it is a compatible instance,
+ of ABCPolyBase, otherwise `other`.
+
+ Raises
+ ------
+ TypeError
+ When `other` is an incompatible instance of ABCPolyBase.
+
+ """
+ if isinstance(other, ABCPolyBase):
+ if not isinstance(other, self.__class__):
+ raise TypeError("Polynomial types differ")
+ elif not np.all(self.domain == other.domain):
+ raise TypeError("Domains differ")
+ elif not np.all(self.window == other.window):
+ raise TypeError("Windows differ")
+ elif self.symbol != other.symbol:
+ raise ValueError("Polynomial symbols differ")
+ return other.coef
+ return other
+
+ def __init__(self, coef, domain=None, window=None, symbol='x'):
+ [coef] = pu.as_series([coef], trim=False)
+ self.coef = coef
+
+ if domain is not None:
+ [domain] = pu.as_series([domain], trim=False)
+ if len(domain) != 2:
+ raise ValueError("Domain has wrong number of elements.")
+ self.domain = domain
+
+ if window is not None:
+ [window] = pu.as_series([window], trim=False)
+ if len(window) != 2:
+ raise ValueError("Window has wrong number of elements.")
+ self.window = window
+
+ # Validation for symbol
+ try:
+ if not symbol.isidentifier():
+ raise ValueError(
+ "Symbol string must be a valid Python identifier"
+ )
+ # If a user passes in something other than a string, the above
+ # results in an AttributeError. Catch this and raise a more
+ # informative exception
+ except AttributeError:
+ raise TypeError("Symbol must be a non-empty string")
+
+ self._symbol = symbol
+
+ def __repr__(self):
+ coef = repr(self.coef)[6:-1]
+ domain = repr(self.domain)[6:-1]
+ window = repr(self.window)[6:-1]
+ name = self.__class__.__name__
+ return (f"{name}({coef}, domain={domain}, window={window}, "
+ f"symbol='{self.symbol}')")
+
+ def __format__(self, fmt_str):
+ if fmt_str == '':
+ return self.__str__()
+ if fmt_str not in ('ascii', 'unicode'):
+ raise ValueError(
+ f"Unsupported format string '{fmt_str}' passed to "
+ f"{self.__class__}.__format__. Valid options are "
+ f"'ascii' and 'unicode'"
+ )
+ if fmt_str == 'ascii':
+ return self._generate_string(self._str_term_ascii)
+ return self._generate_string(self._str_term_unicode)
+
+ def __str__(self):
+ if self._use_unicode:
+ return self._generate_string(self._str_term_unicode)
+ return self._generate_string(self._str_term_ascii)
+
+ def _generate_string(self, term_method):
+ """
+ Generate the full string representation of the polynomial, using
+ ``term_method`` to generate each polynomial term.
+ """
+ # Get configuration for line breaks
+ linewidth = np.get_printoptions().get('linewidth', 75)
+ if linewidth < 1:
+ linewidth = 1
+ out = pu.format_float(self.coef[0])
+ for i, coef in enumerate(self.coef[1:]):
+ out += " "
+ power = str(i + 1)
+ # Polynomial coefficient
+ # The coefficient array can be an object array with elements that
+ # will raise a TypeError with >= 0 (e.g. strings or Python
+ # complex). In this case, represent the coefficient as-is.
+ try:
+ if coef >= 0:
+ next_term = f"+ " + pu.format_float(coef, parens=True)
+ else:
+ next_term = f"- " + pu.format_float(-coef, parens=True)
+ except TypeError:
+ next_term = f"+ {coef}"
+ # Polynomial term
+ next_term += term_method(power, self.symbol)
+ # Length of the current line with next term added
+ line_len = len(out.split('\n')[-1]) + len(next_term)
+ # If not the last term in the polynomial, it will be two
+ # characters longer due to the +/- with the next term
+ if i < len(self.coef[1:]) - 1:
+ line_len += 2
+ # Handle linebreaking
+ if line_len >= linewidth:
+ next_term = next_term.replace(" ", "\n", 1)
+ out += next_term
+ return out
+
+ @classmethod
+ def _str_term_unicode(cls, i, arg_str):
+ """
+ String representation of single polynomial term using unicode
+ characters for superscripts and subscripts.
+ """
+ if cls.basis_name is None:
+ raise NotImplementedError(
+ "Subclasses must define either a basis_name, or override "
+ "_str_term_unicode(cls, i, arg_str)"
+ )
+ return (f"·{cls.basis_name}{i.translate(cls._subscript_mapping)}"
+ f"({arg_str})")
+
+ @classmethod
+ def _str_term_ascii(cls, i, arg_str):
+ """
+ String representation of a single polynomial term using ** and _ to
+ represent superscripts and subscripts, respectively.
+ """
+ if cls.basis_name is None:
+ raise NotImplementedError(
+ "Subclasses must define either a basis_name, or override "
+ "_str_term_ascii(cls, i, arg_str)"
+ )
+ return f" {cls.basis_name}_{i}({arg_str})"
+
+ @classmethod
+ def _repr_latex_term(cls, i, arg_str, needs_parens):
+ if cls.basis_name is None:
+ raise NotImplementedError(
+ "Subclasses must define either a basis name, or override "
+ "_repr_latex_term(i, arg_str, needs_parens)")
+ # since we always add parens, we don't care if the expression needs them
+ return f"{{{cls.basis_name}}}_{{{i}}}({arg_str})"
+
+ @staticmethod
+ def _repr_latex_scalar(x, parens=False):
+ # TODO: we're stuck with disabling math formatting until we handle
+ # exponents in this function
+ return r'\text{{{}}}'.format(pu.format_float(x, parens=parens))
+
+ def _repr_latex_(self):
+ # get the scaled argument string to the basis functions
+ off, scale = self.mapparms()
+ if off == 0 and scale == 1:
+ term = self.symbol
+ needs_parens = False
+ elif scale == 1:
+ term = f"{self._repr_latex_scalar(off)} + {self.symbol}"
+ needs_parens = True
+ elif off == 0:
+ term = f"{self._repr_latex_scalar(scale)}{self.symbol}"
+ needs_parens = True
+ else:
+ term = (
+ f"{self._repr_latex_scalar(off)} + "
+ f"{self._repr_latex_scalar(scale)}{self.symbol}"
+ )
+ needs_parens = True
+
+ mute = r"\color{{LightGray}}{{{}}}".format
+
+ parts = []
+ for i, c in enumerate(self.coef):
+ # prevent duplication of + and - signs
+ if i == 0:
+ coef_str = f"{self._repr_latex_scalar(c)}"
+ elif not isinstance(c, numbers.Real):
+ coef_str = f" + ({self._repr_latex_scalar(c)})"
+ elif not np.signbit(c):
+ coef_str = f" + {self._repr_latex_scalar(c, parens=True)}"
+ else:
+ coef_str = f" - {self._repr_latex_scalar(-c, parens=True)}"
+
+ # produce the string for the term
+ term_str = self._repr_latex_term(i, term, needs_parens)
+ if term_str == '1':
+ part = coef_str
+ else:
+ part = rf"{coef_str}\,{term_str}"
+
+ if c == 0:
+ part = mute(part)
+
+ parts.append(part)
+
+ if parts:
+ body = ''.join(parts)
+ else:
+ # in case somehow there are no coefficients at all
+ body = '0'
+
+ return rf"${self.symbol} \mapsto {body}$"
+
+
+
+ # Pickle and copy
+
+ def __getstate__(self):
+ ret = self.__dict__.copy()
+ ret['coef'] = self.coef.copy()
+ ret['domain'] = self.domain.copy()
+ ret['window'] = self.window.copy()
+ ret['symbol'] = self.symbol
+ return ret
+
+ def __setstate__(self, dict):
+ self.__dict__ = dict
+
+ # Call
+
+ def __call__(self, arg):
+ off, scl = pu.mapparms(self.domain, self.window)
+ arg = off + scl*arg
+ return self._val(arg, self.coef)
+
+ def __iter__(self):
+ return iter(self.coef)
+
+ def __len__(self):
+ return len(self.coef)
+
+ # Numeric properties.
+
+ def __neg__(self):
+ return self.__class__(
+ -self.coef, self.domain, self.window, self.symbol
+ )
+
+ def __pos__(self):
+ return self
+
+ def __add__(self, other):
+ othercoef = self._get_coefficients(other)
+ try:
+ coef = self._add(self.coef, othercoef)
+ except Exception:
+ return NotImplemented
+ return self.__class__(coef, self.domain, self.window, self.symbol)
+
+ def __sub__(self, other):
+ othercoef = self._get_coefficients(other)
+ try:
+ coef = self._sub(self.coef, othercoef)
+ except Exception:
+ return NotImplemented
+ return self.__class__(coef, self.domain, self.window, self.symbol)
+
+ def __mul__(self, other):
+ othercoef = self._get_coefficients(other)
+ try:
+ coef = self._mul(self.coef, othercoef)
+ except Exception:
+ return NotImplemented
+ return self.__class__(coef, self.domain, self.window, self.symbol)
+
+ def __truediv__(self, other):
+ # there is no true divide if the rhs is not a Number, although it
+ # could return the first n elements of an infinite series.
+ # It is hard to see where n would come from, though.
+ if not isinstance(other, numbers.Number) or isinstance(other, bool):
+ raise TypeError(
+ f"unsupported types for true division: "
+ f"'{type(self)}', '{type(other)}'"
+ )
+ return self.__floordiv__(other)
+
+ def __floordiv__(self, other):
+ res = self.__divmod__(other)
+ if res is NotImplemented:
+ return res
+ return res[0]
+
+ def __mod__(self, other):
+ res = self.__divmod__(other)
+ if res is NotImplemented:
+ return res
+ return res[1]
+
+ def __divmod__(self, other):
+ othercoef = self._get_coefficients(other)
+ try:
+ quo, rem = self._div(self.coef, othercoef)
+ except ZeroDivisionError:
+ raise
+ except Exception:
+ return NotImplemented
+ quo = self.__class__(quo, self.domain, self.window, self.symbol)
+ rem = self.__class__(rem, self.domain, self.window, self.symbol)
+ return quo, rem
+
+ def __pow__(self, other):
+ coef = self._pow(self.coef, other, maxpower=self.maxpower)
+ res = self.__class__(coef, self.domain, self.window, self.symbol)
+ return res
+
+ def __radd__(self, other):
+ try:
+ coef = self._add(other, self.coef)
+ except Exception:
+ return NotImplemented
+ return self.__class__(coef, self.domain, self.window, self.symbol)
+
+ def __rsub__(self, other):
+ try:
+ coef = self._sub(other, self.coef)
+ except Exception:
+ return NotImplemented
+ return self.__class__(coef, self.domain, self.window, self.symbol)
+
+ def __rmul__(self, other):
+ try:
+ coef = self._mul(other, self.coef)
+ except Exception:
+ return NotImplemented
+ return self.__class__(coef, self.domain, self.window, self.symbol)
+
+ def __rdiv__(self, other):
+ # set to __floordiv__ /.
+ return self.__rfloordiv__(other)
+
+ def __rtruediv__(self, other):
+ # An instance of ABCPolyBase is not considered a
+ # Number.
+ return NotImplemented
+
+ def __rfloordiv__(self, other):
+ res = self.__rdivmod__(other)
+ if res is NotImplemented:
+ return res
+ return res[0]
+
+ def __rmod__(self, other):
+ res = self.__rdivmod__(other)
+ if res is NotImplemented:
+ return res
+ return res[1]
+
+ def __rdivmod__(self, other):
+ try:
+ quo, rem = self._div(other, self.coef)
+ except ZeroDivisionError:
+ raise
+ except Exception:
+ return NotImplemented
+ quo = self.__class__(quo, self.domain, self.window, self.symbol)
+ rem = self.__class__(rem, self.domain, self.window, self.symbol)
+ return quo, rem
+
+ def __eq__(self, other):
+ res = (isinstance(other, self.__class__) and
+ np.all(self.domain == other.domain) and
+ np.all(self.window == other.window) and
+ (self.coef.shape == other.coef.shape) and
+ np.all(self.coef == other.coef) and
+ (self.symbol == other.symbol))
+ return res
+
+ def __ne__(self, other):
+ return not self.__eq__(other)
+
+ #
+ # Extra methods.
+ #
+
+ def copy(self):
+ """Return a copy.
+
+ Returns
+ -------
+ new_series : series
+ Copy of self.
+
+ """
+ return self.__class__(self.coef, self.domain, self.window, self.symbol)
+
+ def degree(self):
+ """The degree of the series.
+
+ .. versionadded:: 1.5.0
+
+ Returns
+ -------
+ degree : int
+ Degree of the series, one less than the number of coefficients.
+
+ Examples
+ --------
+
+ Create a polynomial object for ``1 + 7*x + 4*x**2``:
+
+ >>> poly = np.polynomial.Polynomial([1, 7, 4])
+ >>> print(poly)
+ 1.0 + 7.0·x + 4.0·x²
+ >>> poly.degree()
+ 2
+
+ Note that this method does not check for non-zero coefficients.
+ You must trim the polynomial to remove any trailing zeroes:
+
+ >>> poly = np.polynomial.Polynomial([1, 7, 0])
+ >>> print(poly)
+ 1.0 + 7.0·x + 0.0·x²
+ >>> poly.degree()
+ 2
+ >>> poly.trim().degree()
+ 1
+
+ """
+ return len(self) - 1
+
+ def cutdeg(self, deg):
+ """Truncate series to the given degree.
+
+ Reduce the degree of the series to `deg` by discarding the
+ high order terms. If `deg` is greater than the current degree a
+ copy of the current series is returned. This can be useful in least
+ squares where the coefficients of the high degree terms may be very
+ small.
+
+ .. versionadded:: 1.5.0
+
+ Parameters
+ ----------
+ deg : non-negative int
+ The series is reduced to degree `deg` by discarding the high
+ order terms. The value of `deg` must be a non-negative integer.
+
+ Returns
+ -------
+ new_series : series
+ New instance of series with reduced degree.
+
+ """
+ return self.truncate(deg + 1)
+
+ def trim(self, tol=0):
+ """Remove trailing coefficients
+
+ Remove trailing coefficients until a coefficient is reached whose
+ absolute value greater than `tol` or the beginning of the series is
+ reached. If all the coefficients would be removed the series is set
+ to ``[0]``. A new series instance is returned with the new
+ coefficients. The current instance remains unchanged.
+
+ Parameters
+ ----------
+ tol : non-negative number.
+ All trailing coefficients less than `tol` will be removed.
+
+ Returns
+ -------
+ new_series : series
+ New instance of series with trimmed coefficients.
+
+ """
+ coef = pu.trimcoef(self.coef, tol)
+ return self.__class__(coef, self.domain, self.window, self.symbol)
+
+ def truncate(self, size):
+ """Truncate series to length `size`.
+
+ Reduce the series to length `size` by discarding the high
+ degree terms. The value of `size` must be a positive integer. This
+ can be useful in least squares where the coefficients of the
+ high degree terms may be very small.
+
+ Parameters
+ ----------
+ size : positive int
+ The series is reduced to length `size` by discarding the high
+ degree terms. The value of `size` must be a positive integer.
+
+ Returns
+ -------
+ new_series : series
+ New instance of series with truncated coefficients.
+
+ """
+ isize = int(size)
+ if isize != size or isize < 1:
+ raise ValueError("size must be a positive integer")
+ if isize >= len(self.coef):
+ coef = self.coef
+ else:
+ coef = self.coef[:isize]
+ return self.__class__(coef, self.domain, self.window, self.symbol)
+
+ def convert(self, domain=None, kind=None, window=None):
+ """Convert series to a different kind and/or domain and/or window.
+
+ Parameters
+ ----------
+ domain : array_like, optional
+ The domain of the converted series. If the value is None,
+ the default domain of `kind` is used.
+ kind : class, optional
+ The polynomial series type class to which the current instance
+ should be converted. If kind is None, then the class of the
+ current instance is used.
+ window : array_like, optional
+ The window of the converted series. If the value is None,
+ the default window of `kind` is used.
+
+ Returns
+ -------
+ new_series : series
+ The returned class can be of different type than the current
+ instance and/or have a different domain and/or different
+ window.
+
+ Notes
+ -----
+ Conversion between domains and class types can result in
+ numerically ill defined series.
+
+ """
+ if kind is None:
+ kind = self.__class__
+ if domain is None:
+ domain = kind.domain
+ if window is None:
+ window = kind.window
+ return self(kind.identity(domain, window=window, symbol=self.symbol))
+
+ def mapparms(self):
+ """Return the mapping parameters.
+
+ The returned values define a linear map ``off + scl*x`` that is
+ applied to the input arguments before the series is evaluated. The
+ map depends on the ``domain`` and ``window``; if the current
+ ``domain`` is equal to the ``window`` the resulting map is the
+ identity. If the coefficients of the series instance are to be
+ used by themselves outside this class, then the linear function
+ must be substituted for the ``x`` in the standard representation of
+ the base polynomials.
+
+ Returns
+ -------
+ off, scl : float or complex
+ The mapping function is defined by ``off + scl*x``.
+
+ Notes
+ -----
+ If the current domain is the interval ``[l1, r1]`` and the window
+ is ``[l2, r2]``, then the linear mapping function ``L`` is
+ defined by the equations::
+
+ L(l1) = l2
+ L(r1) = r2
+
+ """
+ return pu.mapparms(self.domain, self.window)
+
+ def integ(self, m=1, k=[], lbnd=None):
+ """Integrate.
+
+ Return a series instance that is the definite integral of the
+ current series.
+
+ Parameters
+ ----------
+ m : non-negative int
+ The number of integrations to perform.
+ k : array_like
+ Integration constants. The first constant is applied to the
+ first integration, the second to the second, and so on. The
+ list of values must less than or equal to `m` in length and any
+ missing values are set to zero.
+ lbnd : Scalar
+ The lower bound of the definite integral.
+
+ Returns
+ -------
+ new_series : series
+ A new series representing the integral. The domain is the same
+ as the domain of the integrated series.
+
+ """
+ off, scl = self.mapparms()
+ if lbnd is None:
+ lbnd = 0
+ else:
+ lbnd = off + scl*lbnd
+ coef = self._int(self.coef, m, k, lbnd, 1./scl)
+ return self.__class__(coef, self.domain, self.window, self.symbol)
+
+ def deriv(self, m=1):
+ """Differentiate.
+
+ Return a series instance of that is the derivative of the current
+ series.
+
+ Parameters
+ ----------
+ m : non-negative int
+ Find the derivative of order `m`.
+
+ Returns
+ -------
+ new_series : series
+ A new series representing the derivative. The domain is the same
+ as the domain of the differentiated series.
+
+ """
+ off, scl = self.mapparms()
+ coef = self._der(self.coef, m, scl)
+ return self.__class__(coef, self.domain, self.window, self.symbol)
+
+ def roots(self):
+ """Return the roots of the series polynomial.
+
+ Compute the roots for the series. Note that the accuracy of the
+ roots decreases the further outside the `domain` they lie.
+
+ Returns
+ -------
+ roots : ndarray
+ Array containing the roots of the series.
+
+ """
+ roots = self._roots(self.coef)
+ return pu.mapdomain(roots, self.window, self.domain)
+
+ def linspace(self, n=100, domain=None):
+ """Return x, y values at equally spaced points in domain.
+
+ Returns the x, y values at `n` linearly spaced points across the
+ domain. Here y is the value of the polynomial at the points x. By
+ default the domain is the same as that of the series instance.
+ This method is intended mostly as a plotting aid.
+
+ .. versionadded:: 1.5.0
+
+ Parameters
+ ----------
+ n : int, optional
+ Number of point pairs to return. The default value is 100.
+ domain : {None, array_like}, optional
+ If not None, the specified domain is used instead of that of
+ the calling instance. It should be of the form ``[beg,end]``.
+ The default is None which case the class domain is used.
+
+ Returns
+ -------
+ x, y : ndarray
+ x is equal to linspace(self.domain[0], self.domain[1], n) and
+ y is the series evaluated at element of x.
+
+ """
+ if domain is None:
+ domain = self.domain
+ x = np.linspace(domain[0], domain[1], n)
+ y = self(x)
+ return x, y
+
+ @classmethod
+ def fit(cls, x, y, deg, domain=None, rcond=None, full=False, w=None,
+ window=None, symbol='x'):
+ """Least squares fit to data.
+
+ Return a series instance that is the least squares fit to the data
+ `y` sampled at `x`. The domain of the returned instance can be
+ specified and this will often result in a superior fit with less
+ chance of ill conditioning.
+
+ Parameters
+ ----------
+ x : array_like, shape (M,)
+ x-coordinates of the M sample points ``(x[i], y[i])``.
+ y : array_like, shape (M,)
+ y-coordinates of the M sample points ``(x[i], y[i])``.
+ deg : int or 1-D array_like
+ Degree(s) of the fitting polynomials. If `deg` is a single integer
+ all terms up to and including the `deg`'th term are included in the
+ fit. For NumPy versions >= 1.11.0 a list of integers specifying the
+ degrees of the terms to include may be used instead.
+ domain : {None, [beg, end], []}, optional
+ Domain to use for the returned series. If ``None``,
+ then a minimal domain that covers the points `x` is chosen. If
+ ``[]`` the class domain is used. The default value was the
+ class domain in NumPy 1.4 and ``None`` in later versions.
+ The ``[]`` option was added in numpy 1.5.0.
+ rcond : float, optional
+ Relative condition number of the fit. Singular values smaller
+ than this relative to the largest singular value will be
+ ignored. The default value is len(x)*eps, where eps is the
+ relative precision of the float type, about 2e-16 in most
+ cases.
+ full : bool, optional
+ Switch determining nature of return value. When it is False
+ (the default) just the coefficients are returned, when True
+ diagnostic information from the singular value decomposition is
+ also returned.
+ w : array_like, shape (M,), optional
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have
+ the same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
+
+ .. versionadded:: 1.5.0
+ window : {[beg, end]}, optional
+ Window to use for the returned series. The default
+ value is the default class domain
+
+ .. versionadded:: 1.6.0
+ symbol : str, optional
+ Symbol representing the independent variable. Default is 'x'.
+
+ Returns
+ -------
+ new_series : series
+ A series that represents the least squares fit to the data and
+ has the domain and window specified in the call. If the
+ coefficients for the unscaled and unshifted basis polynomials are
+ of interest, do ``new_series.convert().coef``.
+
+ [resid, rank, sv, rcond] : list
+ These values are only returned if ``full == True``
+
+ - resid -- sum of squared residuals of the least squares fit
+ - rank -- the numerical rank of the scaled Vandermonde matrix
+ - sv -- singular values of the scaled Vandermonde matrix
+ - rcond -- value of `rcond`.
+
+ For more details, see `linalg.lstsq`.
+
+ """
+ if domain is None:
+ domain = pu.getdomain(x)
+ elif type(domain) is list and len(domain) == 0:
+ domain = cls.domain
+
+ if window is None:
+ window = cls.window
+
+ xnew = pu.mapdomain(x, domain, window)
+ res = cls._fit(xnew, y, deg, w=w, rcond=rcond, full=full)
+ if full:
+ [coef, status] = res
+ return (
+ cls(coef, domain=domain, window=window, symbol=symbol), status
+ )
+ else:
+ coef = res
+ return cls(coef, domain=domain, window=window, symbol=symbol)
+
+ @classmethod
+ def fromroots(cls, roots, domain=[], window=None, symbol='x'):
+ """Return series instance that has the specified roots.
+
+ Returns a series representing the product
+ ``(x - r[0])*(x - r[1])*...*(x - r[n-1])``, where ``r`` is a
+ list of roots.
+
+ Parameters
+ ----------
+ roots : array_like
+ List of roots.
+ domain : {[], None, array_like}, optional
+ Domain for the resulting series. If None the domain is the
+ interval from the smallest root to the largest. If [] the
+ domain is the class domain. The default is [].
+ window : {None, array_like}, optional
+ Window for the returned series. If None the class window is
+ used. The default is None.
+ symbol : str, optional
+ Symbol representing the independent variable. Default is 'x'.
+
+ Returns
+ -------
+ new_series : series
+ Series with the specified roots.
+
+ """
+ [roots] = pu.as_series([roots], trim=False)
+ if domain is None:
+ domain = pu.getdomain(roots)
+ elif type(domain) is list and len(domain) == 0:
+ domain = cls.domain
+
+ if window is None:
+ window = cls.window
+
+ deg = len(roots)
+ off, scl = pu.mapparms(domain, window)
+ rnew = off + scl*roots
+ coef = cls._fromroots(rnew) / scl**deg
+ return cls(coef, domain=domain, window=window, symbol=symbol)
+
+ @classmethod
+ def identity(cls, domain=None, window=None, symbol='x'):
+ """Identity function.
+
+ If ``p`` is the returned series, then ``p(x) == x`` for all
+ values of x.
+
+ Parameters
+ ----------
+ domain : {None, array_like}, optional
+ If given, the array must be of the form ``[beg, end]``, where
+ ``beg`` and ``end`` are the endpoints of the domain. If None is
+ given then the class domain is used. The default is None.
+ window : {None, array_like}, optional
+ If given, the resulting array must be if the form
+ ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
+ the window. If None is given then the class window is used. The
+ default is None.
+ symbol : str, optional
+ Symbol representing the independent variable. Default is 'x'.
+
+ Returns
+ -------
+ new_series : series
+ Series of representing the identity.
+
+ """
+ if domain is None:
+ domain = cls.domain
+ if window is None:
+ window = cls.window
+ off, scl = pu.mapparms(window, domain)
+ coef = cls._line(off, scl)
+ return cls(coef, domain, window, symbol)
+
+ @classmethod
+ def basis(cls, deg, domain=None, window=None, symbol='x'):
+ """Series basis polynomial of degree `deg`.
+
+ Returns the series representing the basis polynomial of degree `deg`.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ deg : int
+ Degree of the basis polynomial for the series. Must be >= 0.
+ domain : {None, array_like}, optional
+ If given, the array must be of the form ``[beg, end]``, where
+ ``beg`` and ``end`` are the endpoints of the domain. If None is
+ given then the class domain is used. The default is None.
+ window : {None, array_like}, optional
+ If given, the resulting array must be if the form
+ ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
+ the window. If None is given then the class window is used. The
+ default is None.
+ symbol : str, optional
+ Symbol representing the independent variable. Default is 'x'.
+
+ Returns
+ -------
+ new_series : series
+ A series with the coefficient of the `deg` term set to one and
+ all others zero.
+
+ """
+ if domain is None:
+ domain = cls.domain
+ if window is None:
+ window = cls.window
+ ideg = int(deg)
+
+ if ideg != deg or ideg < 0:
+ raise ValueError("deg must be non-negative integer")
+ return cls([0]*ideg + [1], domain, window, symbol)
+
+ @classmethod
+ def cast(cls, series, domain=None, window=None):
+ """Convert series to series of this class.
+
+ The `series` is expected to be an instance of some polynomial
+ series of one of the types supported by by the numpy.polynomial
+ module, but could be some other class that supports the convert
+ method.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ series : series
+ The series instance to be converted.
+ domain : {None, array_like}, optional
+ If given, the array must be of the form ``[beg, end]``, where
+ ``beg`` and ``end`` are the endpoints of the domain. If None is
+ given then the class domain is used. The default is None.
+ window : {None, array_like}, optional
+ If given, the resulting array must be if the form
+ ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
+ the window. If None is given then the class window is used. The
+ default is None.
+
+ Returns
+ -------
+ new_series : series
+ A series of the same kind as the calling class and equal to
+ `series` when evaluated.
+
+ See Also
+ --------
+ convert : similar instance method
+
+ """
+ if domain is None:
+ domain = cls.domain
+ if window is None:
+ window = cls.window
+ return series.convert(domain, cls, window)