about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py231
1 files changed, 231 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py
new file mode 100644
index 00000000..d0ce357a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py
@@ -0,0 +1,231 @@
+import numpy as np
+from numpy.testing import assert_warns
+from numpy.ma.testutils import (assert_, assert_equal, assert_raises,
+                                assert_array_equal)
+from numpy.ma.core import (masked_array, masked_values, masked, allequal,
+                           MaskType, getmask, MaskedArray, nomask,
+                           log, add, hypot, divide)
+from numpy.ma.extras import mr_
+from numpy.compat import pickle
+
+
+class MMatrix(MaskedArray, np.matrix,):
+
+    def __new__(cls, data, mask=nomask):
+        mat = np.matrix(data)
+        _data = MaskedArray.__new__(cls, data=mat, mask=mask)
+        return _data
+
+    def __array_finalize__(self, obj):
+        np.matrix.__array_finalize__(self, obj)
+        MaskedArray.__array_finalize__(self, obj)
+        return
+
+    @property
+    def _series(self):
+        _view = self.view(MaskedArray)
+        _view._sharedmask = False
+        return _view
+
+
+class TestMaskedMatrix:
+    def test_matrix_indexing(self):
+        # Tests conversions and indexing
+        x1 = np.matrix([[1, 2, 3], [4, 3, 2]])
+        x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]])
+        x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]])
+        x4 = masked_array(x1)
+        # test conversion to strings
+        str(x2)  # raises?
+        repr(x2)  # raises?
+        # tests of indexing
+        assert_(type(x2[1, 0]) is type(x1[1, 0]))
+        assert_(x1[1, 0] == x2[1, 0])
+        assert_(x2[1, 1] is masked)
+        assert_equal(x1[0, 2], x2[0, 2])
+        assert_equal(x1[0, 1:], x2[0, 1:])
+        assert_equal(x1[:, 2], x2[:, 2])
+        assert_equal(x1[:], x2[:])
+        assert_equal(x1[1:], x3[1:])
+        x1[0, 2] = 9
+        x2[0, 2] = 9
+        assert_equal(x1, x2)
+        x1[0, 1:] = 99
+        x2[0, 1:] = 99
+        assert_equal(x1, x2)
+        x2[0, 1] = masked
+        assert_equal(x1, x2)
+        x2[0, 1:] = masked
+        assert_equal(x1, x2)
+        x2[0, :] = x1[0, :]
+        x2[0, 1] = masked
+        assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]])))
+        x3[1, :] = masked_array([1, 2, 3], [1, 1, 0])
+        assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0])))
+        assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0])))
+        x4[1, :] = masked_array([1, 2, 3], [1, 1, 0])
+        assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0])))
+        assert_(allequal(x4[1], masked_array([1, 2, 3])))
+        x1 = np.matrix(np.arange(5) * 1.0)
+        x2 = masked_values(x1, 3.0)
+        assert_equal(x1, x2)
+        assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType),
+                         x2.mask))
+        assert_equal(3.0, x2.fill_value)
+
+    def test_pickling_subbaseclass(self):
+        # Test pickling w/ a subclass of ndarray
+        a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2)
+        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+            a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
+            assert_equal(a_pickled._mask, a._mask)
+            assert_equal(a_pickled, a)
+            assert_(isinstance(a_pickled._data, np.matrix))
+
+    def test_count_mean_with_matrix(self):
+        m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2)))
+
+        assert_equal(m.count(axis=0).shape, (1, 2))
+        assert_equal(m.count(axis=1).shape, (2, 1))
+
+        # Make sure broadcasting inside mean and var work
+        assert_equal(m.mean(axis=0), [[2., 3.]])
+        assert_equal(m.mean(axis=1), [[1.5], [3.5]])
+
+    def test_flat(self):
+        # Test that flat can return items even for matrices [#4585, #4615]
+        # test simple access
+        test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
+        assert_equal(test.flat[1], 2)
+        assert_equal(test.flat[2], masked)
+        assert_(np.all(test.flat[0:2] == test[0, 0:2]))
+        # Test flat on masked_matrices
+        test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
+        test.flat = masked_array([3, 2, 1], mask=[1, 0, 0])
+        control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0])
+        assert_equal(test, control)
+        # Test setting
+        test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
+        testflat = test.flat
+        testflat[:] = testflat[[2, 1, 0]]
+        assert_equal(test, control)
+        testflat[0] = 9
+        # test that matrices keep the correct shape (#4615)
+        a = masked_array(np.matrix(np.eye(2)), mask=0)
+        b = a.flat
+        b01 = b[:2]
+        assert_equal(b01.data, np.array([[1., 0.]]))
+        assert_equal(b01.mask, np.array([[False, False]]))
+
+    def test_allany_onmatrices(self):
+        x = np.array([[0.13, 0.26, 0.90],
+                      [0.28, 0.33, 0.63],
+                      [0.31, 0.87, 0.70]])
+        X = np.matrix(x)
+        m = np.array([[True, False, False],
+                      [False, False, False],
+                      [True, True, False]], dtype=np.bool_)
+        mX = masked_array(X, mask=m)
+        mXbig = (mX > 0.5)
+        mXsmall = (mX < 0.5)
+
+        assert_(not mXbig.all())
+        assert_(mXbig.any())
+        assert_equal(mXbig.all(0), np.matrix([False, False, True]))
+        assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
+        assert_equal(mXbig.any(0), np.matrix([False, False, True]))
+        assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)
+
+        assert_(not mXsmall.all())
+        assert_(mXsmall.any())
+        assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
+        assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
+        assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
+        assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
+
+    def test_compressed(self):
+        a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0])
+        b = a.compressed()
+        assert_equal(b, a)
+        assert_(isinstance(b, np.matrix))
+        a[0, 0] = masked
+        b = a.compressed()
+        assert_equal(b, [[2, 3, 4]])
+
+    def test_ravel(self):
+        a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
+        aravel = a.ravel()
+        assert_equal(aravel.shape, (1, 5))
+        assert_equal(aravel._mask.shape, a.shape)
+
+    def test_view(self):
+        # Test view w/ flexible dtype
+        iterator = list(zip(np.arange(10), np.random.rand(10)))
+        data = np.array(iterator)
+        a = masked_array(iterator, dtype=[('a', float), ('b', float)])
+        a.mask[0] = (1, 0)
+        test = a.view((float, 2), np.matrix)
+        assert_equal(test, data)
+        assert_(isinstance(test, np.matrix))
+        assert_(not isinstance(test, MaskedArray))
+
+
+class TestSubclassing:
+    # Test suite for masked subclasses of ndarray.
+
+    def setup_method(self):
+        x = np.arange(5, dtype='float')
+        mx = MMatrix(x, mask=[0, 1, 0, 0, 0])
+        self.data = (x, mx)
+
+    def test_maskedarray_subclassing(self):
+        # Tests subclassing MaskedArray
+        (x, mx) = self.data
+        assert_(isinstance(mx._data, np.matrix))
+
+    def test_masked_unary_operations(self):
+        # Tests masked_unary_operation
+        (x, mx) = self.data
+        with np.errstate(divide='ignore'):
+            assert_(isinstance(log(mx), MMatrix))
+            assert_equal(log(x), np.log(x))
+
+    def test_masked_binary_operations(self):
+        # Tests masked_binary_operation
+        (x, mx) = self.data
+        # Result should be a MMatrix
+        assert_(isinstance(add(mx, mx), MMatrix))
+        assert_(isinstance(add(mx, x), MMatrix))
+        # Result should work
+        assert_equal(add(mx, x), mx+x)
+        assert_(isinstance(add(mx, mx)._data, np.matrix))
+        with assert_warns(DeprecationWarning):
+            assert_(isinstance(add.outer(mx, mx), MMatrix))
+        assert_(isinstance(hypot(mx, mx), MMatrix))
+        assert_(isinstance(hypot(mx, x), MMatrix))
+
+    def test_masked_binary_operations2(self):
+        # Tests domained_masked_binary_operation
+        (x, mx) = self.data
+        xmx = masked_array(mx.data.__array__(), mask=mx.mask)
+        assert_(isinstance(divide(mx, mx), MMatrix))
+        assert_(isinstance(divide(mx, x), MMatrix))
+        assert_equal(divide(mx, mx), divide(xmx, xmx))
+
+class TestConcatenator:
+    # Tests for mr_, the equivalent of r_ for masked arrays.
+
+    def test_matrix_builder(self):
+        assert_raises(np.ma.MAError, lambda: mr_['1, 2; 3, 4'])
+
+    def test_matrix(self):
+        # Test consistency with unmasked version.  If we ever deprecate
+        # matrix, this test should either still pass, or both actual and
+        # expected should fail to be build.
+        actual = mr_['r', 1, 2, 3]
+        expected = np.ma.array(np.r_['r', 1, 2, 3])
+        assert_array_equal(actual, expected)
+
+        # outer type is masked array, inner type is matrix
+        assert_equal(type(actual), type(expected))
+        assert_equal(type(actual.data), type(expected.data))