about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/matrixlib
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/matrixlib')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.py11
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.pyi15
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.py1114
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.pyi16
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/setup.py12
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_defmatrix.py453
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py354
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py231
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py93
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_multiarray.py16
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_numeric.py17
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_regression.py31
13 files changed, 2363 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.py
new file mode 100644
index 00000000..8a7597d3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.py
@@ -0,0 +1,11 @@
+"""Sub-package containing the matrix class and related functions.
+
+"""
+from . import defmatrix
+from .defmatrix import *
+
+__all__ = defmatrix.__all__
+
+from numpy._pytesttester import PytestTester
+test = PytestTester(__name__)
+del PytestTester
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.pyi
new file mode 100644
index 00000000..b0ca8c9c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.pyi
@@ -0,0 +1,15 @@
+from numpy._pytesttester import PytestTester
+
+from numpy import (
+    matrix as matrix,
+)
+
+from numpy.matrixlib.defmatrix import (
+    bmat as bmat,
+    mat as mat,
+    asmatrix as asmatrix,
+)
+
+__all__: list[str]
+__path__: list[str]
+test: PytestTester
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.py
new file mode 100644
index 00000000..d029b13f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.py
@@ -0,0 +1,1114 @@
+__all__ = ['matrix', 'bmat', 'mat', 'asmatrix']
+
+import sys
+import warnings
+import ast
+
+from .._utils import set_module
+import numpy.core.numeric as N
+from numpy.core.numeric import concatenate, isscalar
+# While not in __all__, matrix_power used to be defined here, so we import
+# it for backward compatibility.
+from numpy.linalg import matrix_power
+
+
+def _convert_from_string(data):
+    for char in '[]':
+        data = data.replace(char, '')
+
+    rows = data.split(';')
+    newdata = []
+    count = 0
+    for row in rows:
+        trow = row.split(',')
+        newrow = []
+        for col in trow:
+            temp = col.split()
+            newrow.extend(map(ast.literal_eval, temp))
+        if count == 0:
+            Ncols = len(newrow)
+        elif len(newrow) != Ncols:
+            raise ValueError("Rows not the same size.")
+        count += 1
+        newdata.append(newrow)
+    return newdata
+
+
+@set_module('numpy')
+def asmatrix(data, dtype=None):
+    """
+    Interpret the input as a matrix.
+
+    Unlike `matrix`, `asmatrix` does not make a copy if the input is already
+    a matrix or an ndarray.  Equivalent to ``matrix(data, copy=False)``.
+
+    Parameters
+    ----------
+    data : array_like
+        Input data.
+    dtype : data-type
+       Data-type of the output matrix.
+
+    Returns
+    -------
+    mat : matrix
+        `data` interpreted as a matrix.
+
+    Examples
+    --------
+    >>> x = np.array([[1, 2], [3, 4]])
+
+    >>> m = np.asmatrix(x)
+
+    >>> x[0,0] = 5
+
+    >>> m
+    matrix([[5, 2],
+            [3, 4]])
+
+    """
+    return matrix(data, dtype=dtype, copy=False)
+
+
+@set_module('numpy')
+class matrix(N.ndarray):
+    """
+    matrix(data, dtype=None, copy=True)
+
+    .. note:: It is no longer recommended to use this class, even for linear
+              algebra. Instead use regular arrays. The class may be removed
+              in the future.
+
+    Returns a matrix from an array-like object, or from a string of data.
+    A matrix is a specialized 2-D array that retains its 2-D nature
+    through operations.  It has certain special operators, such as ``*``
+    (matrix multiplication) and ``**`` (matrix power).
+
+    Parameters
+    ----------
+    data : array_like or string
+       If `data` is a string, it is interpreted as a matrix with commas
+       or spaces separating columns, and semicolons separating rows.
+    dtype : data-type
+       Data-type of the output matrix.
+    copy : bool
+       If `data` is already an `ndarray`, then this flag determines
+       whether the data is copied (the default), or whether a view is
+       constructed.
+
+    See Also
+    --------
+    array
+
+    Examples
+    --------
+    >>> a = np.matrix('1 2; 3 4')
+    >>> a
+    matrix([[1, 2],
+            [3, 4]])
+
+    >>> np.matrix([[1, 2], [3, 4]])
+    matrix([[1, 2],
+            [3, 4]])
+
+    """
+    __array_priority__ = 10.0
+    def __new__(subtype, data, dtype=None, copy=True):
+        warnings.warn('the matrix subclass is not the recommended way to '
+                      'represent matrices or deal with linear algebra (see '
+                      'https://docs.scipy.org/doc/numpy/user/'
+                      'numpy-for-matlab-users.html). '
+                      'Please adjust your code to use regular ndarray.',
+                      PendingDeprecationWarning, stacklevel=2)
+        if isinstance(data, matrix):
+            dtype2 = data.dtype
+            if (dtype is None):
+                dtype = dtype2
+            if (dtype2 == dtype) and (not copy):
+                return data
+            return data.astype(dtype)
+
+        if isinstance(data, N.ndarray):
+            if dtype is None:
+                intype = data.dtype
+            else:
+                intype = N.dtype(dtype)
+            new = data.view(subtype)
+            if intype != data.dtype:
+                return new.astype(intype)
+            if copy: return new.copy()
+            else: return new
+
+        if isinstance(data, str):
+            data = _convert_from_string(data)
+
+        # now convert data to an array
+        arr = N.array(data, dtype=dtype, copy=copy)
+        ndim = arr.ndim
+        shape = arr.shape
+        if (ndim > 2):
+            raise ValueError("matrix must be 2-dimensional")
+        elif ndim == 0:
+            shape = (1, 1)
+        elif ndim == 1:
+            shape = (1, shape[0])
+
+        order = 'C'
+        if (ndim == 2) and arr.flags.fortran:
+            order = 'F'
+
+        if not (order or arr.flags.contiguous):
+            arr = arr.copy()
+
+        ret = N.ndarray.__new__(subtype, shape, arr.dtype,
+                                buffer=arr,
+                                order=order)
+        return ret
+
+    def __array_finalize__(self, obj):
+        self._getitem = False
+        if (isinstance(obj, matrix) and obj._getitem): return
+        ndim = self.ndim
+        if (ndim == 2):
+            return
+        if (ndim > 2):
+            newshape = tuple([x for x in self.shape if x > 1])
+            ndim = len(newshape)
+            if ndim == 2:
+                self.shape = newshape
+                return
+            elif (ndim > 2):
+                raise ValueError("shape too large to be a matrix.")
+        else:
+            newshape = self.shape
+        if ndim == 0:
+            self.shape = (1, 1)
+        elif ndim == 1:
+            self.shape = (1, newshape[0])
+        return
+
+    def __getitem__(self, index):
+        self._getitem = True
+
+        try:
+            out = N.ndarray.__getitem__(self, index)
+        finally:
+            self._getitem = False
+
+        if not isinstance(out, N.ndarray):
+            return out
+
+        if out.ndim == 0:
+            return out[()]
+        if out.ndim == 1:
+            sh = out.shape[0]
+            # Determine when we should have a column array
+            try:
+                n = len(index)
+            except Exception:
+                n = 0
+            if n > 1 and isscalar(index[1]):
+                out.shape = (sh, 1)
+            else:
+                out.shape = (1, sh)
+        return out
+
+    def __mul__(self, other):
+        if isinstance(other, (N.ndarray, list, tuple)) :
+            # This promotes 1-D vectors to row vectors
+            return N.dot(self, asmatrix(other))
+        if isscalar(other) or not hasattr(other, '__rmul__') :
+            return N.dot(self, other)
+        return NotImplemented
+
+    def __rmul__(self, other):
+        return N.dot(other, self)
+
+    def __imul__(self, other):
+        self[:] = self * other
+        return self
+
+    def __pow__(self, other):
+        return matrix_power(self, other)
+
+    def __ipow__(self, other):
+        self[:] = self ** other
+        return self
+
+    def __rpow__(self, other):
+        return NotImplemented
+
+    def _align(self, axis):
+        """A convenience function for operations that need to preserve axis
+        orientation.
+        """
+        if axis is None:
+            return self[0, 0]
+        elif axis==0:
+            return self
+        elif axis==1:
+            return self.transpose()
+        else:
+            raise ValueError("unsupported axis")
+
+    def _collapse(self, axis):
+        """A convenience function for operations that want to collapse
+        to a scalar like _align, but are using keepdims=True
+        """
+        if axis is None:
+            return self[0, 0]
+        else:
+            return self
+
+    # Necessary because base-class tolist expects dimension
+    #  reduction by x[0]
+    def tolist(self):
+        """
+        Return the matrix as a (possibly nested) list.
+
+        See `ndarray.tolist` for full documentation.
+
+        See Also
+        --------
+        ndarray.tolist
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> x.tolist()
+        [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
+
+        """
+        return self.__array__().tolist()
+
+    # To preserve orientation of result...
+    def sum(self, axis=None, dtype=None, out=None):
+        """
+        Returns the sum of the matrix elements, along the given axis.
+
+        Refer to `numpy.sum` for full documentation.
+
+        See Also
+        --------
+        numpy.sum
+
+        Notes
+        -----
+        This is the same as `ndarray.sum`, except that where an `ndarray` would
+        be returned, a `matrix` object is returned instead.
+
+        Examples
+        --------
+        >>> x = np.matrix([[1, 2], [4, 3]])
+        >>> x.sum()
+        10
+        >>> x.sum(axis=1)
+        matrix([[3],
+                [7]])
+        >>> x.sum(axis=1, dtype='float')
+        matrix([[3.],
+                [7.]])
+        >>> out = np.zeros((2, 1), dtype='float')
+        >>> x.sum(axis=1, dtype='float', out=np.asmatrix(out))
+        matrix([[3.],
+                [7.]])
+
+        """
+        return N.ndarray.sum(self, axis, dtype, out, keepdims=True)._collapse(axis)
+
+
+    # To update docstring from array to matrix...
+    def squeeze(self, axis=None):
+        """
+        Return a possibly reshaped matrix.
+
+        Refer to `numpy.squeeze` for more documentation.
+
+        Parameters
+        ----------
+        axis : None or int or tuple of ints, optional
+            Selects a subset of the axes of length one in the shape.
+            If an axis is selected with shape entry greater than one,
+            an error is raised.
+
+        Returns
+        -------
+        squeezed : matrix
+            The matrix, but as a (1, N) matrix if it had shape (N, 1).
+
+        See Also
+        --------
+        numpy.squeeze : related function
+
+        Notes
+        -----
+        If `m` has a single column then that column is returned
+        as the single row of a matrix.  Otherwise `m` is returned.
+        The returned matrix is always either `m` itself or a view into `m`.
+        Supplying an axis keyword argument will not affect the returned matrix
+        but it may cause an error to be raised.
+
+        Examples
+        --------
+        >>> c = np.matrix([[1], [2]])
+        >>> c
+        matrix([[1],
+                [2]])
+        >>> c.squeeze()
+        matrix([[1, 2]])
+        >>> r = c.T
+        >>> r
+        matrix([[1, 2]])
+        >>> r.squeeze()
+        matrix([[1, 2]])
+        >>> m = np.matrix([[1, 2], [3, 4]])
+        >>> m.squeeze()
+        matrix([[1, 2],
+                [3, 4]])
+
+        """
+        return N.ndarray.squeeze(self, axis=axis)
+
+
+    # To update docstring from array to matrix...
+    def flatten(self, order='C'):
+        """
+        Return a flattened copy of the matrix.
+
+        All `N` elements of the matrix are placed into a single row.
+
+        Parameters
+        ----------
+        order : {'C', 'F', 'A', 'K'}, optional
+            'C' means to flatten in row-major (C-style) order. 'F' means to
+            flatten in column-major (Fortran-style) order. 'A' means to
+            flatten in column-major order if `m` is Fortran *contiguous* in
+            memory, row-major order otherwise. 'K' means to flatten `m` in
+            the order the elements occur in memory. The default is 'C'.
+
+        Returns
+        -------
+        y : matrix
+            A copy of the matrix, flattened to a `(1, N)` matrix where `N`
+            is the number of elements in the original matrix.
+
+        See Also
+        --------
+        ravel : Return a flattened array.
+        flat : A 1-D flat iterator over the matrix.
+
+        Examples
+        --------
+        >>> m = np.matrix([[1,2], [3,4]])
+        >>> m.flatten()
+        matrix([[1, 2, 3, 4]])
+        >>> m.flatten('F')
+        matrix([[1, 3, 2, 4]])
+
+        """
+        return N.ndarray.flatten(self, order=order)
+
+    def mean(self, axis=None, dtype=None, out=None):
+        """
+        Returns the average of the matrix elements along the given axis.
+
+        Refer to `numpy.mean` for full documentation.
+
+        See Also
+        --------
+        numpy.mean
+
+        Notes
+        -----
+        Same as `ndarray.mean` except that, where that returns an `ndarray`,
+        this returns a `matrix` object.
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3, 4)))
+        >>> x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> x.mean()
+        5.5
+        >>> x.mean(0)
+        matrix([[4., 5., 6., 7.]])
+        >>> x.mean(1)
+        matrix([[ 1.5],
+                [ 5.5],
+                [ 9.5]])
+
+        """
+        return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis)
+
+    def std(self, axis=None, dtype=None, out=None, ddof=0):
+        """
+        Return the standard deviation of the array elements along the given axis.
+
+        Refer to `numpy.std` for full documentation.
+
+        See Also
+        --------
+        numpy.std
+
+        Notes
+        -----
+        This is the same as `ndarray.std`, except that where an `ndarray` would
+        be returned, a `matrix` object is returned instead.
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3, 4)))
+        >>> x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> x.std()
+        3.4520525295346629 # may vary
+        >>> x.std(0)
+        matrix([[ 3.26598632,  3.26598632,  3.26598632,  3.26598632]]) # may vary
+        >>> x.std(1)
+        matrix([[ 1.11803399],
+                [ 1.11803399],
+                [ 1.11803399]])
+
+        """
+        return N.ndarray.std(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis)
+
+    def var(self, axis=None, dtype=None, out=None, ddof=0):
+        """
+        Returns the variance of the matrix elements, along the given axis.
+
+        Refer to `numpy.var` for full documentation.
+
+        See Also
+        --------
+        numpy.var
+
+        Notes
+        -----
+        This is the same as `ndarray.var`, except that where an `ndarray` would
+        be returned, a `matrix` object is returned instead.
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3, 4)))
+        >>> x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> x.var()
+        11.916666666666666
+        >>> x.var(0)
+        matrix([[ 10.66666667,  10.66666667,  10.66666667,  10.66666667]]) # may vary
+        >>> x.var(1)
+        matrix([[1.25],
+                [1.25],
+                [1.25]])
+
+        """
+        return N.ndarray.var(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis)
+
+    def prod(self, axis=None, dtype=None, out=None):
+        """
+        Return the product of the array elements over the given axis.
+
+        Refer to `prod` for full documentation.
+
+        See Also
+        --------
+        prod, ndarray.prod
+
+        Notes
+        -----
+        Same as `ndarray.prod`, except, where that returns an `ndarray`, this
+        returns a `matrix` object instead.
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> x.prod()
+        0
+        >>> x.prod(0)
+        matrix([[  0,  45, 120, 231]])
+        >>> x.prod(1)
+        matrix([[   0],
+                [ 840],
+                [7920]])
+
+        """
+        return N.ndarray.prod(self, axis, dtype, out, keepdims=True)._collapse(axis)
+
+    def any(self, axis=None, out=None):
+        """
+        Test whether any array element along a given axis evaluates to True.
+
+        Refer to `numpy.any` for full documentation.
+
+        Parameters
+        ----------
+        axis : int, optional
+            Axis along which logical OR is performed
+        out : ndarray, optional
+            Output to existing array instead of creating new one, must have
+            same shape as expected output
+
+        Returns
+        -------
+            any : bool, ndarray
+                Returns a single bool if `axis` is ``None``; otherwise,
+                returns `ndarray`
+
+        """
+        return N.ndarray.any(self, axis, out, keepdims=True)._collapse(axis)
+
+    def all(self, axis=None, out=None):
+        """
+        Test whether all matrix elements along a given axis evaluate to True.
+
+        Parameters
+        ----------
+        See `numpy.all` for complete descriptions
+
+        See Also
+        --------
+        numpy.all
+
+        Notes
+        -----
+        This is the same as `ndarray.all`, but it returns a `matrix` object.
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> y = x[0]; y
+        matrix([[0, 1, 2, 3]])
+        >>> (x == y)
+        matrix([[ True,  True,  True,  True],
+                [False, False, False, False],
+                [False, False, False, False]])
+        >>> (x == y).all()
+        False
+        >>> (x == y).all(0)
+        matrix([[False, False, False, False]])
+        >>> (x == y).all(1)
+        matrix([[ True],
+                [False],
+                [False]])
+
+        """
+        return N.ndarray.all(self, axis, out, keepdims=True)._collapse(axis)
+
+    def max(self, axis=None, out=None):
+        """
+        Return the maximum value along an axis.
+
+        Parameters
+        ----------
+        See `amax` for complete descriptions
+
+        See Also
+        --------
+        amax, ndarray.max
+
+        Notes
+        -----
+        This is the same as `ndarray.max`, but returns a `matrix` object
+        where `ndarray.max` would return an ndarray.
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> x.max()
+        11
+        >>> x.max(0)
+        matrix([[ 8,  9, 10, 11]])
+        >>> x.max(1)
+        matrix([[ 3],
+                [ 7],
+                [11]])
+
+        """
+        return N.ndarray.max(self, axis, out, keepdims=True)._collapse(axis)
+
+    def argmax(self, axis=None, out=None):
+        """
+        Indexes of the maximum values along an axis.
+
+        Return the indexes of the first occurrences of the maximum values
+        along the specified axis.  If axis is None, the index is for the
+        flattened matrix.
+
+        Parameters
+        ----------
+        See `numpy.argmax` for complete descriptions
+
+        See Also
+        --------
+        numpy.argmax
+
+        Notes
+        -----
+        This is the same as `ndarray.argmax`, but returns a `matrix` object
+        where `ndarray.argmax` would return an `ndarray`.
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> x.argmax()
+        11
+        >>> x.argmax(0)
+        matrix([[2, 2, 2, 2]])
+        >>> x.argmax(1)
+        matrix([[3],
+                [3],
+                [3]])
+
+        """
+        return N.ndarray.argmax(self, axis, out)._align(axis)
+
+    def min(self, axis=None, out=None):
+        """
+        Return the minimum value along an axis.
+
+        Parameters
+        ----------
+        See `amin` for complete descriptions.
+
+        See Also
+        --------
+        amin, ndarray.min
+
+        Notes
+        -----
+        This is the same as `ndarray.min`, but returns a `matrix` object
+        where `ndarray.min` would return an ndarray.
+
+        Examples
+        --------
+        >>> x = -np.matrix(np.arange(12).reshape((3,4))); x
+        matrix([[  0,  -1,  -2,  -3],
+                [ -4,  -5,  -6,  -7],
+                [ -8,  -9, -10, -11]])
+        >>> x.min()
+        -11
+        >>> x.min(0)
+        matrix([[ -8,  -9, -10, -11]])
+        >>> x.min(1)
+        matrix([[ -3],
+                [ -7],
+                [-11]])
+
+        """
+        return N.ndarray.min(self, axis, out, keepdims=True)._collapse(axis)
+
+    def argmin(self, axis=None, out=None):
+        """
+        Indexes of the minimum values along an axis.
+
+        Return the indexes of the first occurrences of the minimum values
+        along the specified axis.  If axis is None, the index is for the
+        flattened matrix.
+
+        Parameters
+        ----------
+        See `numpy.argmin` for complete descriptions.
+
+        See Also
+        --------
+        numpy.argmin
+
+        Notes
+        -----
+        This is the same as `ndarray.argmin`, but returns a `matrix` object
+        where `ndarray.argmin` would return an `ndarray`.
+
+        Examples
+        --------
+        >>> x = -np.matrix(np.arange(12).reshape((3,4))); x
+        matrix([[  0,  -1,  -2,  -3],
+                [ -4,  -5,  -6,  -7],
+                [ -8,  -9, -10, -11]])
+        >>> x.argmin()
+        11
+        >>> x.argmin(0)
+        matrix([[2, 2, 2, 2]])
+        >>> x.argmin(1)
+        matrix([[3],
+                [3],
+                [3]])
+
+        """
+        return N.ndarray.argmin(self, axis, out)._align(axis)
+
+    def ptp(self, axis=None, out=None):
+        """
+        Peak-to-peak (maximum - minimum) value along the given axis.
+
+        Refer to `numpy.ptp` for full documentation.
+
+        See Also
+        --------
+        numpy.ptp
+
+        Notes
+        -----
+        Same as `ndarray.ptp`, except, where that would return an `ndarray` object,
+        this returns a `matrix` object.
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> x.ptp()
+        11
+        >>> x.ptp(0)
+        matrix([[8, 8, 8, 8]])
+        >>> x.ptp(1)
+        matrix([[3],
+                [3],
+                [3]])
+
+        """
+        return N.ndarray.ptp(self, axis, out)._align(axis)
+
+    @property
+    def I(self):
+        """
+        Returns the (multiplicative) inverse of invertible `self`.
+
+        Parameters
+        ----------
+        None
+
+        Returns
+        -------
+        ret : matrix object
+            If `self` is non-singular, `ret` is such that ``ret * self`` ==
+            ``self * ret`` == ``np.matrix(np.eye(self[0,:].size))`` all return
+            ``True``.
+
+        Raises
+        ------
+        numpy.linalg.LinAlgError: Singular matrix
+            If `self` is singular.
+
+        See Also
+        --------
+        linalg.inv
+
+        Examples
+        --------
+        >>> m = np.matrix('[1, 2; 3, 4]'); m
+        matrix([[1, 2],
+                [3, 4]])
+        >>> m.getI()
+        matrix([[-2. ,  1. ],
+                [ 1.5, -0.5]])
+        >>> m.getI() * m
+        matrix([[ 1.,  0.], # may vary
+                [ 0.,  1.]])
+
+        """
+        M, N = self.shape
+        if M == N:
+            from numpy.linalg import inv as func
+        else:
+            from numpy.linalg import pinv as func
+        return asmatrix(func(self))
+
+    @property
+    def A(self):
+        """
+        Return `self` as an `ndarray` object.
+
+        Equivalent to ``np.asarray(self)``.
+
+        Parameters
+        ----------
+        None
+
+        Returns
+        -------
+        ret : ndarray
+            `self` as an `ndarray`
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> x.getA()
+        array([[ 0,  1,  2,  3],
+               [ 4,  5,  6,  7],
+               [ 8,  9, 10, 11]])
+
+        """
+        return self.__array__()
+
+    @property
+    def A1(self):
+        """
+        Return `self` as a flattened `ndarray`.
+
+        Equivalent to ``np.asarray(x).ravel()``
+
+        Parameters
+        ----------
+        None
+
+        Returns
+        -------
+        ret : ndarray
+            `self`, 1-D, as an `ndarray`
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
+        matrix([[ 0,  1,  2,  3],
+                [ 4,  5,  6,  7],
+                [ 8,  9, 10, 11]])
+        >>> x.getA1()
+        array([ 0,  1,  2, ...,  9, 10, 11])
+
+
+        """
+        return self.__array__().ravel()
+
+
+    def ravel(self, order='C'):
+        """
+        Return a flattened matrix.
+
+        Refer to `numpy.ravel` for more documentation.
+
+        Parameters
+        ----------
+        order : {'C', 'F', 'A', 'K'}, optional
+            The elements of `m` are read using this index order. 'C' means to
+            index the elements in C-like order, with the last axis index
+            changing fastest, back to the first axis index changing slowest.
+            'F' means to index the elements in Fortran-like index order, with
+            the first index changing fastest, and the last index changing
+            slowest. Note that the 'C' and 'F' options take no account of the
+            memory layout of the underlying array, and only refer to the order
+            of axis indexing.  'A' means to read the elements in Fortran-like
+            index order if `m` is Fortran *contiguous* in memory, C-like order
+            otherwise.  'K' means to read the elements in the order they occur
+            in memory, except for reversing the data when strides are negative.
+            By default, 'C' index order is used.
+
+        Returns
+        -------
+        ret : matrix
+            Return the matrix flattened to shape `(1, N)` where `N`
+            is the number of elements in the original matrix.
+            A copy is made only if necessary.
+
+        See Also
+        --------
+        matrix.flatten : returns a similar output matrix but always a copy
+        matrix.flat : a flat iterator on the array.
+        numpy.ravel : related function which returns an ndarray
+
+        """
+        return N.ndarray.ravel(self, order=order)
+
+    @property
+    def T(self):
+        """
+        Returns the transpose of the matrix.
+
+        Does *not* conjugate!  For the complex conjugate transpose, use ``.H``.
+
+        Parameters
+        ----------
+        None
+
+        Returns
+        -------
+        ret : matrix object
+            The (non-conjugated) transpose of the matrix.
+
+        See Also
+        --------
+        transpose, getH
+
+        Examples
+        --------
+        >>> m = np.matrix('[1, 2; 3, 4]')
+        >>> m
+        matrix([[1, 2],
+                [3, 4]])
+        >>> m.getT()
+        matrix([[1, 3],
+                [2, 4]])
+
+        """
+        return self.transpose()
+
+    @property
+    def H(self):
+        """
+        Returns the (complex) conjugate transpose of `self`.
+
+        Equivalent to ``np.transpose(self)`` if `self` is real-valued.
+
+        Parameters
+        ----------
+        None
+
+        Returns
+        -------
+        ret : matrix object
+            complex conjugate transpose of `self`
+
+        Examples
+        --------
+        >>> x = np.matrix(np.arange(12).reshape((3,4)))
+        >>> z = x - 1j*x; z
+        matrix([[  0. +0.j,   1. -1.j,   2. -2.j,   3. -3.j],
+                [  4. -4.j,   5. -5.j,   6. -6.j,   7. -7.j],
+                [  8. -8.j,   9. -9.j,  10.-10.j,  11.-11.j]])
+        >>> z.getH()
+        matrix([[ 0. -0.j,  4. +4.j,  8. +8.j],
+                [ 1. +1.j,  5. +5.j,  9. +9.j],
+                [ 2. +2.j,  6. +6.j, 10.+10.j],
+                [ 3. +3.j,  7. +7.j, 11.+11.j]])
+
+        """
+        if issubclass(self.dtype.type, N.complexfloating):
+            return self.transpose().conjugate()
+        else:
+            return self.transpose()
+
+    # kept for compatibility
+    getT = T.fget
+    getA = A.fget
+    getA1 = A1.fget
+    getH = H.fget
+    getI = I.fget
+
+def _from_string(str, gdict, ldict):
+    rows = str.split(';')
+    rowtup = []
+    for row in rows:
+        trow = row.split(',')
+        newrow = []
+        for x in trow:
+            newrow.extend(x.split())
+        trow = newrow
+        coltup = []
+        for col in trow:
+            col = col.strip()
+            try:
+                thismat = ldict[col]
+            except KeyError:
+                try:
+                    thismat = gdict[col]
+                except KeyError as e:
+                    raise NameError(f"name {col!r} is not defined") from None
+
+            coltup.append(thismat)
+        rowtup.append(concatenate(coltup, axis=-1))
+    return concatenate(rowtup, axis=0)
+
+
+@set_module('numpy')
+def bmat(obj, ldict=None, gdict=None):
+    """
+    Build a matrix object from a string, nested sequence, or array.
+
+    Parameters
+    ----------
+    obj : str or array_like
+        Input data. If a string, variables in the current scope may be
+        referenced by name.
+    ldict : dict, optional
+        A dictionary that replaces local operands in current frame.
+        Ignored if `obj` is not a string or `gdict` is None.
+    gdict : dict, optional
+        A dictionary that replaces global operands in current frame.
+        Ignored if `obj` is not a string.
+
+    Returns
+    -------
+    out : matrix
+        Returns a matrix object, which is a specialized 2-D array.
+
+    See Also
+    --------
+    block :
+        A generalization of this function for N-d arrays, that returns normal
+        ndarrays.
+
+    Examples
+    --------
+    >>> A = np.mat('1 1; 1 1')
+    >>> B = np.mat('2 2; 2 2')
+    >>> C = np.mat('3 4; 5 6')
+    >>> D = np.mat('7 8; 9 0')
+
+    All the following expressions construct the same block matrix:
+
+    >>> np.bmat([[A, B], [C, D]])
+    matrix([[1, 1, 2, 2],
+            [1, 1, 2, 2],
+            [3, 4, 7, 8],
+            [5, 6, 9, 0]])
+    >>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
+    matrix([[1, 1, 2, 2],
+            [1, 1, 2, 2],
+            [3, 4, 7, 8],
+            [5, 6, 9, 0]])
+    >>> np.bmat('A,B; C,D')
+    matrix([[1, 1, 2, 2],
+            [1, 1, 2, 2],
+            [3, 4, 7, 8],
+            [5, 6, 9, 0]])
+
+    """
+    if isinstance(obj, str):
+        if gdict is None:
+            # get previous frame
+            frame = sys._getframe().f_back
+            glob_dict = frame.f_globals
+            loc_dict = frame.f_locals
+        else:
+            glob_dict = gdict
+            loc_dict = ldict
+
+        return matrix(_from_string(obj, glob_dict, loc_dict))
+
+    if isinstance(obj, (tuple, list)):
+        # [[A,B],[C,D]]
+        arr_rows = []
+        for row in obj:
+            if isinstance(row, N.ndarray):  # not 2-d
+                return matrix(concatenate(obj, axis=-1))
+            else:
+                arr_rows.append(concatenate(row, axis=-1))
+        return matrix(concatenate(arr_rows, axis=0))
+    if isinstance(obj, N.ndarray):
+        return matrix(obj)
+
+mat = asmatrix
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.pyi b/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.pyi
new file mode 100644
index 00000000..9d0d1ee5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.pyi
@@ -0,0 +1,16 @@
+from collections.abc import Sequence, Mapping
+from typing import Any
+from numpy import matrix as matrix
+from numpy._typing import ArrayLike, DTypeLike, NDArray
+
+__all__: list[str]
+
+def bmat(
+    obj: str | Sequence[ArrayLike] | NDArray[Any],
+    ldict: None | Mapping[str, Any] = ...,
+    gdict: None | Mapping[str, Any] = ...,
+) -> matrix[Any, Any]: ...
+
+def asmatrix(data: ArrayLike, dtype: DTypeLike = ...) -> matrix[Any, Any]: ...
+
+mat = asmatrix
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/setup.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/setup.py
new file mode 100644
index 00000000..4fed75de
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/setup.py
@@ -0,0 +1,12 @@
+#!/usr/bin/env python3
+def configuration(parent_package='', top_path=None):
+    from numpy.distutils.misc_util import Configuration
+    config = Configuration('matrixlib', parent_package, top_path)
+    config.add_subpackage('tests')
+    config.add_data_files('*.pyi')
+    return config
+
+if __name__ == "__main__":
+    from numpy.distutils.core import setup
+    config = configuration(top_path='').todict()
+    setup(**config)
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_defmatrix.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_defmatrix.py
new file mode 100644
index 00000000..4cb5f3a3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_defmatrix.py
@@ -0,0 +1,453 @@
+import collections.abc
+
+import numpy as np
+from numpy import matrix, asmatrix, bmat
+from numpy.testing import (
+    assert_, assert_equal, assert_almost_equal, assert_array_equal,
+    assert_array_almost_equal, assert_raises
+    )
+from numpy.linalg import matrix_power
+from numpy.matrixlib import mat
+
+class TestCtor:
+    def test_basic(self):
+        A = np.array([[1, 2], [3, 4]])
+        mA = matrix(A)
+        assert_(np.all(mA.A == A))
+
+        B = bmat("A,A;A,A")
+        C = bmat([[A, A], [A, A]])
+        D = np.array([[1, 2, 1, 2],
+                      [3, 4, 3, 4],
+                      [1, 2, 1, 2],
+                      [3, 4, 3, 4]])
+        assert_(np.all(B.A == D))
+        assert_(np.all(C.A == D))
+
+        E = np.array([[5, 6], [7, 8]])
+        AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
+        assert_(np.all(bmat([A, E]) == AEresult))
+
+        vec = np.arange(5)
+        mvec = matrix(vec)
+        assert_(mvec.shape == (1, 5))
+
+    def test_exceptions(self):
+        # Check for ValueError when called with invalid string data.
+        assert_raises(ValueError, matrix, "invalid")
+
+    def test_bmat_nondefault_str(self):
+        A = np.array([[1, 2], [3, 4]])
+        B = np.array([[5, 6], [7, 8]])
+        Aresult = np.array([[1, 2, 1, 2],
+                            [3, 4, 3, 4],
+                            [1, 2, 1, 2],
+                            [3, 4, 3, 4]])
+        mixresult = np.array([[1, 2, 5, 6],
+                              [3, 4, 7, 8],
+                              [5, 6, 1, 2],
+                              [7, 8, 3, 4]])
+        assert_(np.all(bmat("A,A;A,A") == Aresult))
+        assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
+        assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
+        assert_(
+            np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
+        b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
+        assert_(np.all(b2 == mixresult))
+
+
+class TestProperties:
+    def test_sum(self):
+        """Test whether matrix.sum(axis=1) preserves orientation.
+        Fails in NumPy <= 0.9.6.2127.
+        """
+        M = matrix([[1, 2, 0, 0],
+                   [3, 4, 0, 0],
+                   [1, 2, 1, 2],
+                   [3, 4, 3, 4]])
+        sum0 = matrix([8, 12, 4, 6])
+        sum1 = matrix([3, 7, 6, 14]).T
+        sumall = 30
+        assert_array_equal(sum0, M.sum(axis=0))
+        assert_array_equal(sum1, M.sum(axis=1))
+        assert_equal(sumall, M.sum())
+
+        assert_array_equal(sum0, np.sum(M, axis=0))
+        assert_array_equal(sum1, np.sum(M, axis=1))
+        assert_equal(sumall, np.sum(M))
+
+    def test_prod(self):
+        x = matrix([[1, 2, 3], [4, 5, 6]])
+        assert_equal(x.prod(), 720)
+        assert_equal(x.prod(0), matrix([[4, 10, 18]]))
+        assert_equal(x.prod(1), matrix([[6], [120]]))
+
+        assert_equal(np.prod(x), 720)
+        assert_equal(np.prod(x, axis=0), matrix([[4, 10, 18]]))
+        assert_equal(np.prod(x, axis=1), matrix([[6], [120]]))
+
+        y = matrix([0, 1, 3])
+        assert_(y.prod() == 0)
+
+    def test_max(self):
+        x = matrix([[1, 2, 3], [4, 5, 6]])
+        assert_equal(x.max(), 6)
+        assert_equal(x.max(0), matrix([[4, 5, 6]]))
+        assert_equal(x.max(1), matrix([[3], [6]]))
+
+        assert_equal(np.max(x), 6)
+        assert_equal(np.max(x, axis=0), matrix([[4, 5, 6]]))
+        assert_equal(np.max(x, axis=1), matrix([[3], [6]]))
+
+    def test_min(self):
+        x = matrix([[1, 2, 3], [4, 5, 6]])
+        assert_equal(x.min(), 1)
+        assert_equal(x.min(0), matrix([[1, 2, 3]]))
+        assert_equal(x.min(1), matrix([[1], [4]]))
+
+        assert_equal(np.min(x), 1)
+        assert_equal(np.min(x, axis=0), matrix([[1, 2, 3]]))
+        assert_equal(np.min(x, axis=1), matrix([[1], [4]]))
+
+    def test_ptp(self):
+        x = np.arange(4).reshape((2, 2))
+        assert_(x.ptp() == 3)
+        assert_(np.all(x.ptp(0) == np.array([2, 2])))
+        assert_(np.all(x.ptp(1) == np.array([1, 1])))
+
+    def test_var(self):
+        x = np.arange(9).reshape((3, 3))
+        mx = x.view(np.matrix)
+        assert_equal(x.var(ddof=0), mx.var(ddof=0))
+        assert_equal(x.var(ddof=1), mx.var(ddof=1))
+
+    def test_basic(self):
+        import numpy.linalg as linalg
+
+        A = np.array([[1., 2.],
+                      [3., 4.]])
+        mA = matrix(A)
+        assert_(np.allclose(linalg.inv(A), mA.I))
+        assert_(np.all(np.array(np.transpose(A) == mA.T)))
+        assert_(np.all(np.array(np.transpose(A) == mA.H)))
+        assert_(np.all(A == mA.A))
+
+        B = A + 2j*A
+        mB = matrix(B)
+        assert_(np.allclose(linalg.inv(B), mB.I))
+        assert_(np.all(np.array(np.transpose(B) == mB.T)))
+        assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))
+
+    def test_pinv(self):
+        x = matrix(np.arange(6).reshape(2, 3))
+        xpinv = matrix([[-0.77777778,  0.27777778],
+                        [-0.11111111,  0.11111111],
+                        [ 0.55555556, -0.05555556]])
+        assert_almost_equal(x.I, xpinv)
+
+    def test_comparisons(self):
+        A = np.arange(100).reshape(10, 10)
+        mA = matrix(A)
+        mB = matrix(A) + 0.1
+        assert_(np.all(mB == A+0.1))
+        assert_(np.all(mB == matrix(A+0.1)))
+        assert_(not np.any(mB == matrix(A-0.1)))
+        assert_(np.all(mA < mB))
+        assert_(np.all(mA <= mB))
+        assert_(np.all(mA <= mA))
+        assert_(not np.any(mA < mA))
+
+        assert_(not np.any(mB < mA))
+        assert_(np.all(mB >= mA))
+        assert_(np.all(mB >= mB))
+        assert_(not np.any(mB > mB))
+
+        assert_(np.all(mA == mA))
+        assert_(not np.any(mA == mB))
+        assert_(np.all(mB != mA))
+
+        assert_(not np.all(abs(mA) > 0))
+        assert_(np.all(abs(mB > 0)))
+
+    def test_asmatrix(self):
+        A = np.arange(100).reshape(10, 10)
+        mA = asmatrix(A)
+        A[0, 0] = -10
+        assert_(A[0, 0] == mA[0, 0])
+
+    def test_noaxis(self):
+        A = matrix([[1, 0], [0, 1]])
+        assert_(A.sum() == matrix(2))
+        assert_(A.mean() == matrix(0.5))
+
+    def test_repr(self):
+        A = matrix([[1, 0], [0, 1]])
+        assert_(repr(A) == "matrix([[1, 0],\n        [0, 1]])")
+
+    def test_make_bool_matrix_from_str(self):
+        A = matrix('True; True; False')
+        B = matrix([[True], [True], [False]])
+        assert_array_equal(A, B)
+
+class TestCasting:
+    def test_basic(self):
+        A = np.arange(100).reshape(10, 10)
+        mA = matrix(A)
+
+        mB = mA.copy()
+        O = np.ones((10, 10), np.float64) * 0.1
+        mB = mB + O
+        assert_(mB.dtype.type == np.float64)
+        assert_(np.all(mA != mB))
+        assert_(np.all(mB == mA+0.1))
+
+        mC = mA.copy()
+        O = np.ones((10, 10), np.complex128)
+        mC = mC * O
+        assert_(mC.dtype.type == np.complex128)
+        assert_(np.all(mA != mB))
+
+
+class TestAlgebra:
+    def test_basic(self):
+        import numpy.linalg as linalg
+
+        A = np.array([[1., 2.], [3., 4.]])
+        mA = matrix(A)
+
+        B = np.identity(2)
+        for i in range(6):
+            assert_(np.allclose((mA ** i).A, B))
+            B = np.dot(B, A)
+
+        Ainv = linalg.inv(A)
+        B = np.identity(2)
+        for i in range(6):
+            assert_(np.allclose((mA ** -i).A, B))
+            B = np.dot(B, Ainv)
+
+        assert_(np.allclose((mA * mA).A, np.dot(A, A)))
+        assert_(np.allclose((mA + mA).A, (A + A)))
+        assert_(np.allclose((3*mA).A, (3*A)))
+
+        mA2 = matrix(A)
+        mA2 *= 3
+        assert_(np.allclose(mA2.A, 3*A))
+
+    def test_pow(self):
+        """Test raising a matrix to an integer power works as expected."""
+        m = matrix("1. 2.; 3. 4.")
+        m2 = m.copy()
+        m2 **= 2
+        mi = m.copy()
+        mi **= -1
+        m4 = m2.copy()
+        m4 **= 2
+        assert_array_almost_equal(m2, m**2)
+        assert_array_almost_equal(m4, np.dot(m2, m2))
+        assert_array_almost_equal(np.dot(mi, m), np.eye(2))
+
+    def test_scalar_type_pow(self):
+        m = matrix([[1, 2], [3, 4]])
+        for scalar_t in [np.int8, np.uint8]:
+            two = scalar_t(2)
+            assert_array_almost_equal(m ** 2, m ** two)
+
+    def test_notimplemented(self):
+        '''Check that 'not implemented' operations produce a failure.'''
+        A = matrix([[1., 2.],
+                    [3., 4.]])
+
+        # __rpow__
+        with assert_raises(TypeError):
+            1.0**A
+
+        # __mul__ with something not a list, ndarray, tuple, or scalar
+        with assert_raises(TypeError):
+            A*object()
+
+
+class TestMatrixReturn:
+    def test_instance_methods(self):
+        a = matrix([1.0], dtype='f8')
+        methodargs = {
+            'astype': ('intc',),
+            'clip': (0.0, 1.0),
+            'compress': ([1],),
+            'repeat': (1,),
+            'reshape': (1,),
+            'swapaxes': (0, 0),
+            'dot': np.array([1.0]),
+            }
+        excluded_methods = [
+            'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield',
+            'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize',
+            'searchsorted', 'setflags', 'setfield', 'sort',
+            'partition', 'argpartition',
+            'take', 'tofile', 'tolist', 'tostring', 'tobytes', 'all', 'any',
+            'sum', 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp',
+            'prod', 'std', 'ctypes', 'itemset',
+            ]
+        for attrib in dir(a):
+            if attrib.startswith('_') or attrib in excluded_methods:
+                continue
+            f = getattr(a, attrib)
+            if isinstance(f, collections.abc.Callable):
+                # reset contents of a
+                a.astype('f8')
+                a.fill(1.0)
+                if attrib in methodargs:
+                    args = methodargs[attrib]
+                else:
+                    args = ()
+                b = f(*args)
+                assert_(type(b) is matrix, "%s" % attrib)
+        assert_(type(a.real) is matrix)
+        assert_(type(a.imag) is matrix)
+        c, d = matrix([0.0]).nonzero()
+        assert_(type(c) is np.ndarray)
+        assert_(type(d) is np.ndarray)
+
+
+class TestIndexing:
+    def test_basic(self):
+        x = asmatrix(np.zeros((3, 2), float))
+        y = np.zeros((3, 1), float)
+        y[:, 0] = [0.8, 0.2, 0.3]
+        x[:, 1] = y > 0.5
+        assert_equal(x, [[0, 1], [0, 0], [0, 0]])
+
+
+class TestNewScalarIndexing:
+    a = matrix([[1, 2], [3, 4]])
+
+    def test_dimesions(self):
+        a = self.a
+        x = a[0]
+        assert_equal(x.ndim, 2)
+
+    def test_array_from_matrix_list(self):
+        a = self.a
+        x = np.array([a, a])
+        assert_equal(x.shape, [2, 2, 2])
+
+    def test_array_to_list(self):
+        a = self.a
+        assert_equal(a.tolist(), [[1, 2], [3, 4]])
+
+    def test_fancy_indexing(self):
+        a = self.a
+        x = a[1, [0, 1, 0]]
+        assert_(isinstance(x, matrix))
+        assert_equal(x, matrix([[3,  4,  3]]))
+        x = a[[1, 0]]
+        assert_(isinstance(x, matrix))
+        assert_equal(x, matrix([[3,  4], [1, 2]]))
+        x = a[[[1], [0]], [[1, 0], [0, 1]]]
+        assert_(isinstance(x, matrix))
+        assert_equal(x, matrix([[4,  3], [1,  2]]))
+
+    def test_matrix_element(self):
+        x = matrix([[1, 2, 3], [4, 5, 6]])
+        assert_equal(x[0][0], matrix([[1, 2, 3]]))
+        assert_equal(x[0][0].shape, (1, 3))
+        assert_equal(x[0].shape, (1, 3))
+        assert_equal(x[:, 0].shape, (2, 1))
+
+        x = matrix(0)
+        assert_equal(x[0, 0], 0)
+        assert_equal(x[0], 0)
+        assert_equal(x[:, 0].shape, x.shape)
+
+    def test_scalar_indexing(self):
+        x = asmatrix(np.zeros((3, 2), float))
+        assert_equal(x[0, 0], x[0][0])
+
+    def test_row_column_indexing(self):
+        x = asmatrix(np.eye(2))
+        assert_array_equal(x[0,:], [[1, 0]])
+        assert_array_equal(x[1,:], [[0, 1]])
+        assert_array_equal(x[:, 0], [[1], [0]])
+        assert_array_equal(x[:, 1], [[0], [1]])
+
+    def test_boolean_indexing(self):
+        A = np.arange(6)
+        A.shape = (3, 2)
+        x = asmatrix(A)
+        assert_array_equal(x[:, np.array([True, False])], x[:, 0])
+        assert_array_equal(x[np.array([True, False, False]),:], x[0,:])
+
+    def test_list_indexing(self):
+        A = np.arange(6)
+        A.shape = (3, 2)
+        x = asmatrix(A)
+        assert_array_equal(x[:, [1, 0]], x[:, ::-1])
+        assert_array_equal(x[[2, 1, 0],:], x[::-1,:])
+
+
+class TestPower:
+    def test_returntype(self):
+        a = np.array([[0, 1], [0, 0]])
+        assert_(type(matrix_power(a, 2)) is np.ndarray)
+        a = mat(a)
+        assert_(type(matrix_power(a, 2)) is matrix)
+
+    def test_list(self):
+        assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]])
+
+
+class TestShape:
+
+    a = np.array([[1], [2]])
+    m = matrix([[1], [2]])
+
+    def test_shape(self):
+        assert_equal(self.a.shape, (2, 1))
+        assert_equal(self.m.shape, (2, 1))
+
+    def test_numpy_ravel(self):
+        assert_equal(np.ravel(self.a).shape, (2,))
+        assert_equal(np.ravel(self.m).shape, (2,))
+
+    def test_member_ravel(self):
+        assert_equal(self.a.ravel().shape, (2,))
+        assert_equal(self.m.ravel().shape, (1, 2))
+
+    def test_member_flatten(self):
+        assert_equal(self.a.flatten().shape, (2,))
+        assert_equal(self.m.flatten().shape, (1, 2))
+
+    def test_numpy_ravel_order(self):
+        x = np.array([[1, 2, 3], [4, 5, 6]])
+        assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
+        assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
+        assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
+        assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
+        x = matrix([[1, 2, 3], [4, 5, 6]])
+        assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
+        assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
+        assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
+        assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
+
+    def test_matrix_ravel_order(self):
+        x = matrix([[1, 2, 3], [4, 5, 6]])
+        assert_equal(x.ravel(), [[1, 2, 3, 4, 5, 6]])
+        assert_equal(x.ravel(order='F'), [[1, 4, 2, 5, 3, 6]])
+        assert_equal(x.T.ravel(), [[1, 4, 2, 5, 3, 6]])
+        assert_equal(x.T.ravel(order='A'), [[1, 2, 3, 4, 5, 6]])
+
+    def test_array_memory_sharing(self):
+        assert_(np.may_share_memory(self.a, self.a.ravel()))
+        assert_(not np.may_share_memory(self.a, self.a.flatten()))
+
+    def test_matrix_memory_sharing(self):
+        assert_(np.may_share_memory(self.m, self.m.ravel()))
+        assert_(not np.may_share_memory(self.m, self.m.flatten()))
+
+    def test_expand_dims_matrix(self):
+        # matrices are always 2d - so expand_dims only makes sense when the
+        # type is changed away from matrix.
+        a = np.arange(10).reshape((2, 5)).view(np.matrix)
+        expanded = np.expand_dims(a, axis=1)
+        assert_equal(expanded.ndim, 3)
+        assert_(not isinstance(expanded, np.matrix))
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py
new file mode 100644
index 00000000..5154bd62
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py
@@ -0,0 +1,354 @@
+"""Tests of interaction of matrix with other parts of numpy.
+
+Note that tests with MaskedArray and linalg are done in separate files.
+"""
+import pytest
+
+import textwrap
+import warnings
+
+import numpy as np
+from numpy.testing import (assert_, assert_equal, assert_raises,
+                           assert_raises_regex, assert_array_equal,
+                           assert_almost_equal, assert_array_almost_equal)
+
+
+def test_fancy_indexing():
+    # The matrix class messes with the shape. While this is always
+    # weird (getitem is not used, it does not have setitem nor knows
+    # about fancy indexing), this tests gh-3110
+    # 2018-04-29: moved here from core.tests.test_index.
+    m = np.matrix([[1, 2], [3, 4]])
+
+    assert_(isinstance(m[[0, 1, 0], :], np.matrix))
+
+    # gh-3110. Note the transpose currently because matrices do *not*
+    # support dimension fixing for fancy indexing correctly.
+    x = np.asmatrix(np.arange(50).reshape(5, 10))
+    assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
+
+
+def test_polynomial_mapdomain():
+    # test that polynomial preserved matrix subtype.
+    # 2018-04-29: moved here from polynomial.tests.polyutils.
+    dom1 = [0, 4]
+    dom2 = [1, 3]
+    x = np.matrix([dom1, dom1])
+    res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
+    assert_(isinstance(res, np.matrix))
+
+
+def test_sort_matrix_none():
+    # 2018-04-29: moved here from core.tests.test_multiarray
+    a = np.matrix([[2, 1, 0]])
+    actual = np.sort(a, axis=None)
+    expected = np.matrix([[0, 1, 2]])
+    assert_equal(actual, expected)
+    assert_(type(expected) is np.matrix)
+
+
+def test_partition_matrix_none():
+    # gh-4301
+    # 2018-04-29: moved here from core.tests.test_multiarray
+    a = np.matrix([[2, 1, 0]])
+    actual = np.partition(a, 1, axis=None)
+    expected = np.matrix([[0, 1, 2]])
+    assert_equal(actual, expected)
+    assert_(type(expected) is np.matrix)
+
+
+def test_dot_scalar_and_matrix_of_objects():
+    # Ticket #2469
+    # 2018-04-29: moved here from core.tests.test_multiarray
+    arr = np.matrix([1, 2], dtype=object)
+    desired = np.matrix([[3, 6]], dtype=object)
+    assert_equal(np.dot(arr, 3), desired)
+    assert_equal(np.dot(3, arr), desired)
+
+
+def test_inner_scalar_and_matrix():
+    # 2018-04-29: moved here from core.tests.test_multiarray
+    for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
+        sca = np.array(3, dtype=dt)[()]
+        arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
+        desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
+        assert_equal(np.inner(arr, sca), desired)
+        assert_equal(np.inner(sca, arr), desired)
+
+
+def test_inner_scalar_and_matrix_of_objects():
+    # Ticket #4482
+    # 2018-04-29: moved here from core.tests.test_multiarray
+    arr = np.matrix([1, 2], dtype=object)
+    desired = np.matrix([[3, 6]], dtype=object)
+    assert_equal(np.inner(arr, 3), desired)
+    assert_equal(np.inner(3, arr), desired)
+
+
+def test_iter_allocate_output_subtype():
+    # Make sure that the subtype with priority wins
+    # 2018-04-29: moved here from core.tests.test_nditer, given the
+    # matrix specific shape test.
+
+    # matrix vs ndarray
+    a = np.matrix([[1, 2], [3, 4]])
+    b = np.arange(4).reshape(2, 2).T
+    i = np.nditer([a, b, None], [],
+                  [['readonly'], ['readonly'], ['writeonly', 'allocate']])
+    assert_(type(i.operands[2]) is np.matrix)
+    assert_(type(i.operands[2]) is not np.ndarray)
+    assert_equal(i.operands[2].shape, (2, 2))
+
+    # matrix always wants things to be 2D
+    b = np.arange(4).reshape(1, 2, 2)
+    assert_raises(RuntimeError, np.nditer, [a, b, None], [],
+                  [['readonly'], ['readonly'], ['writeonly', 'allocate']])
+    # but if subtypes are disabled, the result can still work
+    i = np.nditer([a, b, None], [],
+                  [['readonly'], ['readonly'],
+                   ['writeonly', 'allocate', 'no_subtype']])
+    assert_(type(i.operands[2]) is np.ndarray)
+    assert_(type(i.operands[2]) is not np.matrix)
+    assert_equal(i.operands[2].shape, (1, 2, 2))
+
+
+def like_function():
+    # 2018-04-29: moved here from core.tests.test_numeric
+    a = np.matrix([[1, 2], [3, 4]])
+    for like_function in np.zeros_like, np.ones_like, np.empty_like:
+        b = like_function(a)
+        assert_(type(b) is np.matrix)
+
+        c = like_function(a, subok=False)
+        assert_(type(c) is not np.matrix)
+
+
+def test_array_astype():
+    # 2018-04-29: copied here from core.tests.test_api
+    # subok=True passes through a matrix
+    a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
+    b = a.astype('f4', subok=True, copy=False)
+    assert_(a is b)
+
+    # subok=True is default, and creates a subtype on a cast
+    b = a.astype('i4', copy=False)
+    assert_equal(a, b)
+    assert_equal(type(b), np.matrix)
+
+    # subok=False never returns a matrix
+    b = a.astype('f4', subok=False, copy=False)
+    assert_equal(a, b)
+    assert_(not (a is b))
+    assert_(type(b) is not np.matrix)
+
+
+def test_stack():
+    # 2018-04-29: copied here from core.tests.test_shape_base
+    # check np.matrix cannot be stacked
+    m = np.matrix([[1, 2], [3, 4]])
+    assert_raises_regex(ValueError, 'shape too large to be a matrix',
+                        np.stack, [m, m])
+
+
+def test_object_scalar_multiply():
+    # Tickets #2469 and #4482
+    # 2018-04-29: moved here from core.tests.test_ufunc
+    arr = np.matrix([1, 2], dtype=object)
+    desired = np.matrix([[3, 6]], dtype=object)
+    assert_equal(np.multiply(arr, 3), desired)
+    assert_equal(np.multiply(3, arr), desired)
+
+
+def test_nanfunctions_matrices():
+    # Check that it works and that type and
+    # shape are preserved
+    # 2018-04-29: moved here from core.tests.test_nanfunctions
+    mat = np.matrix(np.eye(3))
+    for f in [np.nanmin, np.nanmax]:
+        res = f(mat, axis=0)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (1, 3))
+        res = f(mat, axis=1)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (3, 1))
+        res = f(mat)
+        assert_(np.isscalar(res))
+    # check that rows of nan are dealt with for subclasses (#4628)
+    mat[1] = np.nan
+    for f in [np.nanmin, np.nanmax]:
+        with warnings.catch_warnings(record=True) as w:
+            warnings.simplefilter('always')
+            res = f(mat, axis=0)
+            assert_(isinstance(res, np.matrix))
+            assert_(not np.any(np.isnan(res)))
+            assert_(len(w) == 0)
+
+        with warnings.catch_warnings(record=True) as w:
+            warnings.simplefilter('always')
+            res = f(mat, axis=1)
+            assert_(isinstance(res, np.matrix))
+            assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
+                    and not np.isnan(res[2, 0]))
+            assert_(len(w) == 1, 'no warning raised')
+            assert_(issubclass(w[0].category, RuntimeWarning))
+
+        with warnings.catch_warnings(record=True) as w:
+            warnings.simplefilter('always')
+            res = f(mat)
+            assert_(np.isscalar(res))
+            assert_(res != np.nan)
+            assert_(len(w) == 0)
+
+
+def test_nanfunctions_matrices_general():
+    # Check that it works and that type and
+    # shape are preserved
+    # 2018-04-29: moved here from core.tests.test_nanfunctions
+    mat = np.matrix(np.eye(3))
+    for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
+              np.nanmean, np.nanvar, np.nanstd):
+        res = f(mat, axis=0)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (1, 3))
+        res = f(mat, axis=1)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (3, 1))
+        res = f(mat)
+        assert_(np.isscalar(res))
+
+    for f in np.nancumsum, np.nancumprod:
+        res = f(mat, axis=0)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (3, 3))
+        res = f(mat, axis=1)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (3, 3))
+        res = f(mat)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (1, 3*3))
+
+
+def test_average_matrix():
+    # 2018-04-29: moved here from core.tests.test_function_base.
+    y = np.matrix(np.random.rand(5, 5))
+    assert_array_equal(y.mean(0), np.average(y, 0))
+
+    a = np.matrix([[1, 2], [3, 4]])
+    w = np.matrix([[1, 2], [3, 4]])
+
+    r = np.average(a, axis=0, weights=w)
+    assert_equal(type(r), np.matrix)
+    assert_equal(r, [[2.5, 10.0/3]])
+
+
+def test_trapz_matrix():
+    # Test to make sure matrices give the same answer as ndarrays
+    # 2018-04-29: moved here from core.tests.test_function_base.
+    x = np.linspace(0, 5)
+    y = x * x
+    r = np.trapz(y, x)
+    mx = np.matrix(x)
+    my = np.matrix(y)
+    mr = np.trapz(my, mx)
+    assert_almost_equal(mr, r)
+
+
+def test_ediff1d_matrix():
+    # 2018-04-29: moved here from core.tests.test_arraysetops.
+    assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix))
+    assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix))
+
+
+def test_apply_along_axis_matrix():
+    # this test is particularly malicious because matrix
+    # refuses to become 1d
+    # 2018-04-29: moved here from core.tests.test_shape_base.
+    def double(row):
+        return row * 2
+
+    m = np.matrix([[0, 1], [2, 3]])
+    expected = np.matrix([[0, 2], [4, 6]])
+
+    result = np.apply_along_axis(double, 0, m)
+    assert_(isinstance(result, np.matrix))
+    assert_array_equal(result, expected)
+
+    result = np.apply_along_axis(double, 1, m)
+    assert_(isinstance(result, np.matrix))
+    assert_array_equal(result, expected)
+
+
+def test_kron_matrix():
+    # 2018-04-29: moved here from core.tests.test_shape_base.
+    a = np.ones([2, 2])
+    m = np.asmatrix(a)
+    assert_equal(type(np.kron(a, a)), np.ndarray)
+    assert_equal(type(np.kron(m, m)), np.matrix)
+    assert_equal(type(np.kron(a, m)), np.matrix)
+    assert_equal(type(np.kron(m, a)), np.matrix)
+
+
+class TestConcatenatorMatrix:
+    # 2018-04-29: moved here from core.tests.test_index_tricks.
+    def test_matrix(self):
+        a = [1, 2]
+        b = [3, 4]
+
+        ab_r = np.r_['r', a, b]
+        ab_c = np.r_['c', a, b]
+
+        assert_equal(type(ab_r), np.matrix)
+        assert_equal(type(ab_c), np.matrix)
+
+        assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
+        assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
+
+        assert_raises(ValueError, lambda: np.r_['rc', a, b])
+
+    def test_matrix_scalar(self):
+        r = np.r_['r', [1, 2], 3]
+        assert_equal(type(r), np.matrix)
+        assert_equal(np.array(r), [[1, 2, 3]])
+
+    def test_matrix_builder(self):
+        a = np.array([1])
+        b = np.array([2])
+        c = np.array([3])
+        d = np.array([4])
+        actual = np.r_['a, b; c, d']
+        expected = np.bmat([[a, b], [c, d]])
+
+        assert_equal(actual, expected)
+        assert_equal(type(actual), type(expected))
+
+
+def test_array_equal_error_message_matrix():
+    # 2018-04-29: moved here from testing.tests.test_utils.
+    with pytest.raises(AssertionError) as exc_info:
+        assert_equal(np.array([1, 2]), np.matrix([1, 2]))
+    msg = str(exc_info.value)
+    msg_reference = textwrap.dedent("""\
+
+    Arrays are not equal
+
+    (shapes (2,), (1, 2) mismatch)
+     x: array([1, 2])
+     y: matrix([[1, 2]])""")
+    assert_equal(msg, msg_reference)
+
+
+def test_array_almost_equal_matrix():
+    # Matrix slicing keeps things 2-D, while array does not necessarily.
+    # See gh-8452.
+    # 2018-04-29: moved here from testing.tests.test_utils.
+    m1 = np.matrix([[1., 2.]])
+    m2 = np.matrix([[1., np.nan]])
+    m3 = np.matrix([[1., -np.inf]])
+    m4 = np.matrix([[np.nan, np.inf]])
+    m5 = np.matrix([[1., 2.], [np.nan, np.inf]])
+    for assert_func in assert_array_almost_equal, assert_almost_equal:
+        for m in m1, m2, m3, m4, m5:
+            assert_func(m, m)
+            a = np.array(m)
+            assert_func(a, m)
+            assert_func(m, a)
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py
new file mode 100644
index 00000000..d0ce357a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py
@@ -0,0 +1,231 @@
+import numpy as np
+from numpy.testing import assert_warns
+from numpy.ma.testutils import (assert_, assert_equal, assert_raises,
+                                assert_array_equal)
+from numpy.ma.core import (masked_array, masked_values, masked, allequal,
+                           MaskType, getmask, MaskedArray, nomask,
+                           log, add, hypot, divide)
+from numpy.ma.extras import mr_
+from numpy.compat import pickle
+
+
+class MMatrix(MaskedArray, np.matrix,):
+
+    def __new__(cls, data, mask=nomask):
+        mat = np.matrix(data)
+        _data = MaskedArray.__new__(cls, data=mat, mask=mask)
+        return _data
+
+    def __array_finalize__(self, obj):
+        np.matrix.__array_finalize__(self, obj)
+        MaskedArray.__array_finalize__(self, obj)
+        return
+
+    @property
+    def _series(self):
+        _view = self.view(MaskedArray)
+        _view._sharedmask = False
+        return _view
+
+
+class TestMaskedMatrix:
+    def test_matrix_indexing(self):
+        # Tests conversions and indexing
+        x1 = np.matrix([[1, 2, 3], [4, 3, 2]])
+        x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]])
+        x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]])
+        x4 = masked_array(x1)
+        # test conversion to strings
+        str(x2)  # raises?
+        repr(x2)  # raises?
+        # tests of indexing
+        assert_(type(x2[1, 0]) is type(x1[1, 0]))
+        assert_(x1[1, 0] == x2[1, 0])
+        assert_(x2[1, 1] is masked)
+        assert_equal(x1[0, 2], x2[0, 2])
+        assert_equal(x1[0, 1:], x2[0, 1:])
+        assert_equal(x1[:, 2], x2[:, 2])
+        assert_equal(x1[:], x2[:])
+        assert_equal(x1[1:], x3[1:])
+        x1[0, 2] = 9
+        x2[0, 2] = 9
+        assert_equal(x1, x2)
+        x1[0, 1:] = 99
+        x2[0, 1:] = 99
+        assert_equal(x1, x2)
+        x2[0, 1] = masked
+        assert_equal(x1, x2)
+        x2[0, 1:] = masked
+        assert_equal(x1, x2)
+        x2[0, :] = x1[0, :]
+        x2[0, 1] = masked
+        assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]])))
+        x3[1, :] = masked_array([1, 2, 3], [1, 1, 0])
+        assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0])))
+        assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0])))
+        x4[1, :] = masked_array([1, 2, 3], [1, 1, 0])
+        assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0])))
+        assert_(allequal(x4[1], masked_array([1, 2, 3])))
+        x1 = np.matrix(np.arange(5) * 1.0)
+        x2 = masked_values(x1, 3.0)
+        assert_equal(x1, x2)
+        assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType),
+                         x2.mask))
+        assert_equal(3.0, x2.fill_value)
+
+    def test_pickling_subbaseclass(self):
+        # Test pickling w/ a subclass of ndarray
+        a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2)
+        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+            a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
+            assert_equal(a_pickled._mask, a._mask)
+            assert_equal(a_pickled, a)
+            assert_(isinstance(a_pickled._data, np.matrix))
+
+    def test_count_mean_with_matrix(self):
+        m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2)))
+
+        assert_equal(m.count(axis=0).shape, (1, 2))
+        assert_equal(m.count(axis=1).shape, (2, 1))
+
+        # Make sure broadcasting inside mean and var work
+        assert_equal(m.mean(axis=0), [[2., 3.]])
+        assert_equal(m.mean(axis=1), [[1.5], [3.5]])
+
+    def test_flat(self):
+        # Test that flat can return items even for matrices [#4585, #4615]
+        # test simple access
+        test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
+        assert_equal(test.flat[1], 2)
+        assert_equal(test.flat[2], masked)
+        assert_(np.all(test.flat[0:2] == test[0, 0:2]))
+        # Test flat on masked_matrices
+        test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
+        test.flat = masked_array([3, 2, 1], mask=[1, 0, 0])
+        control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0])
+        assert_equal(test, control)
+        # Test setting
+        test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
+        testflat = test.flat
+        testflat[:] = testflat[[2, 1, 0]]
+        assert_equal(test, control)
+        testflat[0] = 9
+        # test that matrices keep the correct shape (#4615)
+        a = masked_array(np.matrix(np.eye(2)), mask=0)
+        b = a.flat
+        b01 = b[:2]
+        assert_equal(b01.data, np.array([[1., 0.]]))
+        assert_equal(b01.mask, np.array([[False, False]]))
+
+    def test_allany_onmatrices(self):
+        x = np.array([[0.13, 0.26, 0.90],
+                      [0.28, 0.33, 0.63],
+                      [0.31, 0.87, 0.70]])
+        X = np.matrix(x)
+        m = np.array([[True, False, False],
+                      [False, False, False],
+                      [True, True, False]], dtype=np.bool_)
+        mX = masked_array(X, mask=m)
+        mXbig = (mX > 0.5)
+        mXsmall = (mX < 0.5)
+
+        assert_(not mXbig.all())
+        assert_(mXbig.any())
+        assert_equal(mXbig.all(0), np.matrix([False, False, True]))
+        assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
+        assert_equal(mXbig.any(0), np.matrix([False, False, True]))
+        assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)
+
+        assert_(not mXsmall.all())
+        assert_(mXsmall.any())
+        assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
+        assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
+        assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
+        assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
+
+    def test_compressed(self):
+        a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0])
+        b = a.compressed()
+        assert_equal(b, a)
+        assert_(isinstance(b, np.matrix))
+        a[0, 0] = masked
+        b = a.compressed()
+        assert_equal(b, [[2, 3, 4]])
+
+    def test_ravel(self):
+        a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
+        aravel = a.ravel()
+        assert_equal(aravel.shape, (1, 5))
+        assert_equal(aravel._mask.shape, a.shape)
+
+    def test_view(self):
+        # Test view w/ flexible dtype
+        iterator = list(zip(np.arange(10), np.random.rand(10)))
+        data = np.array(iterator)
+        a = masked_array(iterator, dtype=[('a', float), ('b', float)])
+        a.mask[0] = (1, 0)
+        test = a.view((float, 2), np.matrix)
+        assert_equal(test, data)
+        assert_(isinstance(test, np.matrix))
+        assert_(not isinstance(test, MaskedArray))
+
+
+class TestSubclassing:
+    # Test suite for masked subclasses of ndarray.
+
+    def setup_method(self):
+        x = np.arange(5, dtype='float')
+        mx = MMatrix(x, mask=[0, 1, 0, 0, 0])
+        self.data = (x, mx)
+
+    def test_maskedarray_subclassing(self):
+        # Tests subclassing MaskedArray
+        (x, mx) = self.data
+        assert_(isinstance(mx._data, np.matrix))
+
+    def test_masked_unary_operations(self):
+        # Tests masked_unary_operation
+        (x, mx) = self.data
+        with np.errstate(divide='ignore'):
+            assert_(isinstance(log(mx), MMatrix))
+            assert_equal(log(x), np.log(x))
+
+    def test_masked_binary_operations(self):
+        # Tests masked_binary_operation
+        (x, mx) = self.data
+        # Result should be a MMatrix
+        assert_(isinstance(add(mx, mx), MMatrix))
+        assert_(isinstance(add(mx, x), MMatrix))
+        # Result should work
+        assert_equal(add(mx, x), mx+x)
+        assert_(isinstance(add(mx, mx)._data, np.matrix))
+        with assert_warns(DeprecationWarning):
+            assert_(isinstance(add.outer(mx, mx), MMatrix))
+        assert_(isinstance(hypot(mx, mx), MMatrix))
+        assert_(isinstance(hypot(mx, x), MMatrix))
+
+    def test_masked_binary_operations2(self):
+        # Tests domained_masked_binary_operation
+        (x, mx) = self.data
+        xmx = masked_array(mx.data.__array__(), mask=mx.mask)
+        assert_(isinstance(divide(mx, mx), MMatrix))
+        assert_(isinstance(divide(mx, x), MMatrix))
+        assert_equal(divide(mx, mx), divide(xmx, xmx))
+
+class TestConcatenator:
+    # Tests for mr_, the equivalent of r_ for masked arrays.
+
+    def test_matrix_builder(self):
+        assert_raises(np.ma.MAError, lambda: mr_['1, 2; 3, 4'])
+
+    def test_matrix(self):
+        # Test consistency with unmasked version.  If we ever deprecate
+        # matrix, this test should either still pass, or both actual and
+        # expected should fail to be build.
+        actual = mr_['r', 1, 2, 3]
+        expected = np.ma.array(np.r_['r', 1, 2, 3])
+        assert_array_equal(actual, expected)
+
+        # outer type is masked array, inner type is matrix
+        assert_equal(type(actual), type(expected))
+        assert_equal(type(actual.data), type(expected.data))
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py
new file mode 100644
index 00000000..106c2e38
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py
@@ -0,0 +1,93 @@
+""" Test functions for linalg module using the matrix class."""
+import numpy as np
+
+from numpy.linalg.tests.test_linalg import (
+    LinalgCase, apply_tag, TestQR as _TestQR, LinalgTestCase,
+    _TestNorm2D, _TestNormDoubleBase, _TestNormSingleBase, _TestNormInt64Base,
+    SolveCases, InvCases, EigvalsCases, EigCases, SVDCases, CondCases,
+    PinvCases, DetCases, LstsqCases)
+
+
+CASES = []
+
+# square test cases
+CASES += apply_tag('square', [
+    LinalgCase("0x0_matrix",
+               np.empty((0, 0), dtype=np.double).view(np.matrix),
+               np.empty((0, 1), dtype=np.double).view(np.matrix),
+               tags={'size-0'}),
+    LinalgCase("matrix_b_only",
+               np.array([[1., 2.], [3., 4.]]),
+               np.matrix([2., 1.]).T),
+    LinalgCase("matrix_a_and_b",
+               np.matrix([[1., 2.], [3., 4.]]),
+               np.matrix([2., 1.]).T),
+])
+
+# hermitian test-cases
+CASES += apply_tag('hermitian', [
+    LinalgCase("hmatrix_a_and_b",
+               np.matrix([[1., 2.], [2., 1.]]),
+               None),
+])
+# No need to make generalized or strided cases for matrices.
+
+
+class MatrixTestCase(LinalgTestCase):
+    TEST_CASES = CASES
+
+
+class TestSolveMatrix(SolveCases, MatrixTestCase):
+    pass
+
+
+class TestInvMatrix(InvCases, MatrixTestCase):
+    pass
+
+
+class TestEigvalsMatrix(EigvalsCases, MatrixTestCase):
+    pass
+
+
+class TestEigMatrix(EigCases, MatrixTestCase):
+    pass
+
+
+class TestSVDMatrix(SVDCases, MatrixTestCase):
+    pass
+
+
+class TestCondMatrix(CondCases, MatrixTestCase):
+    pass
+
+
+class TestPinvMatrix(PinvCases, MatrixTestCase):
+    pass
+
+
+class TestDetMatrix(DetCases, MatrixTestCase):
+    pass
+
+
+class TestLstsqMatrix(LstsqCases, MatrixTestCase):
+    pass
+
+
+class _TestNorm2DMatrix(_TestNorm2D):
+    array = np.matrix
+
+
+class TestNormDoubleMatrix(_TestNorm2DMatrix, _TestNormDoubleBase):
+    pass
+
+
+class TestNormSingleMatrix(_TestNorm2DMatrix, _TestNormSingleBase):
+    pass
+
+
+class TestNormInt64Matrix(_TestNorm2DMatrix, _TestNormInt64Base):
+    pass
+
+
+class TestQRMatrix(_TestQR):
+    array = np.matrix
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_multiarray.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_multiarray.py
new file mode 100644
index 00000000..638d0d15
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_multiarray.py
@@ -0,0 +1,16 @@
+import numpy as np
+from numpy.testing import assert_, assert_equal, assert_array_equal
+
+class TestView:
+    def test_type(self):
+        x = np.array([1, 2, 3])
+        assert_(isinstance(x.view(np.matrix), np.matrix))
+
+    def test_keywords(self):
+        x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
+        # We must be specific about the endianness here:
+        y = x.view(dtype='<i2', type=np.matrix)
+        assert_array_equal(y, [[513]])
+
+        assert_(isinstance(y, np.matrix))
+        assert_equal(y.dtype, np.dtype('<i2'))
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_numeric.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_numeric.py
new file mode 100644
index 00000000..a772bb38
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_numeric.py
@@ -0,0 +1,17 @@
+import numpy as np
+from numpy.testing import assert_equal
+
+class TestDot:
+    def test_matscalar(self):
+        b1 = np.matrix(np.ones((3, 3), dtype=complex))
+        assert_equal(b1*1.0, b1)
+
+
+def test_diagonal():
+    b1 = np.matrix([[1,2],[3,4]])
+    diag_b1 = np.matrix([[1, 4]])
+    array_b1 = np.array([1, 4])
+
+    assert_equal(b1.diagonal(), diag_b1)
+    assert_equal(np.diagonal(b1), array_b1)
+    assert_equal(np.diag(b1), array_b1)
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_regression.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_regression.py
new file mode 100644
index 00000000..a54d4402
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_regression.py
@@ -0,0 +1,31 @@
+import numpy as np
+from numpy.testing import assert_, assert_equal, assert_raises
+
+
+class TestRegression:
+    def test_kron_matrix(self):
+        # Ticket #71
+        x = np.matrix('[1 0; 1 0]')
+        assert_equal(type(np.kron(x, x)), type(x))
+
+    def test_matrix_properties(self):
+        # Ticket #125
+        a = np.matrix([1.0], dtype=float)
+        assert_(type(a.real) is np.matrix)
+        assert_(type(a.imag) is np.matrix)
+        c, d = np.matrix([0.0]).nonzero()
+        assert_(type(c) is np.ndarray)
+        assert_(type(d) is np.ndarray)
+
+    def test_matrix_multiply_by_1d_vector(self):
+        # Ticket #473
+        def mul():
+            np.mat(np.eye(2))*np.ones(2)
+
+        assert_raises(ValueError, mul)
+
+    def test_matrix_std_argmax(self):
+        # Ticket #83
+        x = np.asmatrix(np.random.uniform(0, 1, (3, 3)))
+        assert_equal(x.std().shape, ())
+        assert_equal(x.argmax().shape, ())