about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py443
1 files changed, 443 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py b/.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py
new file mode 100644
index 00000000..9eb1a23c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py
@@ -0,0 +1,443 @@
+import timeit
+from functools import reduce
+
+import numpy as np
+from numpy import float_
+import numpy.core.fromnumeric as fromnumeric
+
+from numpy.testing import build_err_msg
+
+
+pi = np.pi
+
+class ModuleTester:
+    def __init__(self, module):
+        self.module = module
+        self.allequal = module.allequal
+        self.arange = module.arange
+        self.array = module.array
+        self.concatenate = module.concatenate
+        self.count = module.count
+        self.equal = module.equal
+        self.filled = module.filled
+        self.getmask = module.getmask
+        self.getmaskarray = module.getmaskarray
+        self.id = id
+        self.inner = module.inner
+        self.make_mask = module.make_mask
+        self.masked = module.masked
+        self.masked_array = module.masked_array
+        self.masked_values = module.masked_values
+        self.mask_or = module.mask_or
+        self.nomask = module.nomask
+        self.ones = module.ones
+        self.outer = module.outer
+        self.repeat = module.repeat
+        self.resize = module.resize
+        self.sort = module.sort
+        self.take = module.take
+        self.transpose = module.transpose
+        self.zeros = module.zeros
+        self.MaskType = module.MaskType
+        try:
+            self.umath = module.umath
+        except AttributeError:
+            self.umath = module.core.umath
+        self.testnames = []
+
+    def assert_array_compare(self, comparison, x, y, err_msg='', header='',
+                         fill_value=True):
+        """
+        Assert that a comparison of two masked arrays is satisfied elementwise.
+
+        """
+        xf = self.filled(x)
+        yf = self.filled(y)
+        m = self.mask_or(self.getmask(x), self.getmask(y))
+
+        x = self.filled(self.masked_array(xf, mask=m), fill_value)
+        y = self.filled(self.masked_array(yf, mask=m), fill_value)
+        if (x.dtype.char != "O"):
+            x = x.astype(float_)
+            if isinstance(x, np.ndarray) and x.size > 1:
+                x[np.isnan(x)] = 0
+            elif np.isnan(x):
+                x = 0
+        if (y.dtype.char != "O"):
+            y = y.astype(float_)
+            if isinstance(y, np.ndarray) and y.size > 1:
+                y[np.isnan(y)] = 0
+            elif np.isnan(y):
+                y = 0
+        try:
+            cond = (x.shape == () or y.shape == ()) or x.shape == y.shape
+            if not cond:
+                msg = build_err_msg([x, y],
+                                    err_msg
+                                    + f'\n(shapes {x.shape}, {y.shape} mismatch)',
+                                    header=header,
+                                    names=('x', 'y'))
+                assert cond, msg
+            val = comparison(x, y)
+            if m is not self.nomask and fill_value:
+                val = self.masked_array(val, mask=m)
+            if isinstance(val, bool):
+                cond = val
+                reduced = [0]
+            else:
+                reduced = val.ravel()
+                cond = reduced.all()
+                reduced = reduced.tolist()
+            if not cond:
+                match = 100-100.0*reduced.count(1)/len(reduced)
+                msg = build_err_msg([x, y],
+                                    err_msg
+                                    + '\n(mismatch %s%%)' % (match,),
+                                    header=header,
+                                    names=('x', 'y'))
+                assert cond, msg
+        except ValueError as e:
+            msg = build_err_msg([x, y], err_msg, header=header, names=('x', 'y'))
+            raise ValueError(msg) from e
+
+    def assert_array_equal(self, x, y, err_msg=''):
+        """
+        Checks the elementwise equality of two masked arrays.
+
+        """
+        self.assert_array_compare(self.equal, x, y, err_msg=err_msg,
+                                  header='Arrays are not equal')
+
+    @np.errstate(all='ignore')
+    def test_0(self):
+        """
+        Tests creation
+
+        """
+        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+        m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+        xm = self.masked_array(x, mask=m)
+        xm[0]
+
+    @np.errstate(all='ignore')
+    def test_1(self):
+        """
+        Tests creation
+
+        """
+        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+        xm = self.masked_array(x, mask=m1)
+        ym = self.masked_array(y, mask=m2)
+        xf = np.where(m1, 1.e+20, x)
+        xm.set_fill_value(1.e+20)
+
+        assert((xm-ym).filled(0).any())
+        s = x.shape
+        assert(xm.size == reduce(lambda x, y:x*y, s))
+        assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1))
+
+        for s in [(4, 3), (6, 2)]:
+            x.shape = s
+            y.shape = s
+            xm.shape = s
+            ym.shape = s
+            xf.shape = s
+            assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1))
+
+    @np.errstate(all='ignore')
+    def test_2(self):
+        """
+        Tests conversions and indexing.
+
+        """
+        x1 = np.array([1, 2, 4, 3])
+        x2 = self.array(x1, mask=[1, 0, 0, 0])
+        x3 = self.array(x1, mask=[0, 1, 0, 1])
+        x4 = self.array(x1)
+        # test conversion to strings, no errors
+        str(x2)
+        repr(x2)
+        # tests of indexing
+        assert type(x2[1]) is type(x1[1])
+        assert x1[1] == x2[1]
+        x1[2] = 9
+        x2[2] = 9
+        self.assert_array_equal(x1, x2)
+        x1[1:3] = 99
+        x2[1:3] = 99
+        x2[1] = self.masked
+        x2[1:3] = self.masked
+        x2[:] = x1
+        x2[1] = self.masked
+        x3[:] = self.masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+        x4[:] = self.masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+        x1 = np.arange(5)*1.0
+        x2 = self.masked_values(x1, 3.0)
+        x1 = self.array([1, 'hello', 2, 3], object)
+        x2 = np.array([1, 'hello', 2, 3], object)
+        # check that no error occurs.
+        x1[1]
+        x2[1]
+        assert x1[1:1].shape == (0,)
+        # Tests copy-size
+        n = [0, 0, 1, 0, 0]
+        m = self.make_mask(n)
+        m2 = self.make_mask(m)
+        assert(m is m2)
+        m3 = self.make_mask(m, copy=1)
+        assert(m is not m3)
+
+    @np.errstate(all='ignore')
+    def test_3(self):
+        """
+        Tests resize/repeat
+
+        """
+        x4 = self.arange(4)
+        x4[2] = self.masked
+        y4 = self.resize(x4, (8,))
+        assert self.allequal(self.concatenate([x4, x4]), y4)
+        assert self.allequal(self.getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0])
+        y5 = self.repeat(x4, (2, 2, 2, 2), axis=0)
+        self.assert_array_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3])
+        y6 = self.repeat(x4, 2, axis=0)
+        assert self.allequal(y5, y6)
+        y7 = x4.repeat((2, 2, 2, 2), axis=0)
+        assert self.allequal(y5, y7)
+        y8 = x4.repeat(2, 0)
+        assert self.allequal(y5, y8)
+
+    @np.errstate(all='ignore')
+    def test_4(self):
+        """
+        Test of take, transpose, inner, outer products.
+
+        """
+        x = self.arange(24)
+        y = np.arange(24)
+        x[5:6] = self.masked
+        x = x.reshape(2, 3, 4)
+        y = y.reshape(2, 3, 4)
+        assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
+        assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
+        assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
+                            self.inner(x, y))
+        assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
+                            self.outer(x, y))
+        y = self.array(['abc', 1, 'def', 2, 3], object)
+        y[2] = self.masked
+        t = self.take(y, [0, 3, 4])
+        assert t[0] == 'abc'
+        assert t[1] == 2
+        assert t[2] == 3
+
+    @np.errstate(all='ignore')
+    def test_5(self):
+        """
+        Tests inplace w/ scalar
+
+        """
+        x = self.arange(10)
+        y = self.arange(10)
+        xm = self.arange(10)
+        xm[2] = self.masked
+        x += 1
+        assert self.allequal(x, y+1)
+        xm += 1
+        assert self.allequal(xm, y+1)
+
+        x = self.arange(10)
+        xm = self.arange(10)
+        xm[2] = self.masked
+        x -= 1
+        assert self.allequal(x, y-1)
+        xm -= 1
+        assert self.allequal(xm, y-1)
+
+        x = self.arange(10)*1.0
+        xm = self.arange(10)*1.0
+        xm[2] = self.masked
+        x *= 2.0
+        assert self.allequal(x, y*2)
+        xm *= 2.0
+        assert self.allequal(xm, y*2)
+
+        x = self.arange(10)*2
+        xm = self.arange(10)*2
+        xm[2] = self.masked
+        x /= 2
+        assert self.allequal(x, y)
+        xm /= 2
+        assert self.allequal(xm, y)
+
+        x = self.arange(10)*1.0
+        xm = self.arange(10)*1.0
+        xm[2] = self.masked
+        x /= 2.0
+        assert self.allequal(x, y/2.0)
+        xm /= self.arange(10)
+        self.assert_array_equal(xm, self.ones((10,)))
+
+        x = self.arange(10).astype(float_)
+        xm = self.arange(10)
+        xm[2] = self.masked
+        x += 1.
+        assert self.allequal(x, y + 1.)
+
+    @np.errstate(all='ignore')
+    def test_6(self):
+        """
+        Tests inplace w/ array
+
+        """
+        x = self.arange(10, dtype=float_)
+        y = self.arange(10)
+        xm = self.arange(10, dtype=float_)
+        xm[2] = self.masked
+        m = xm.mask
+        a = self.arange(10, dtype=float_)
+        a[-1] = self.masked
+        x += a
+        xm += a
+        assert self.allequal(x, y+a)
+        assert self.allequal(xm, y+a)
+        assert self.allequal(xm.mask, self.mask_or(m, a.mask))
+
+        x = self.arange(10, dtype=float_)
+        xm = self.arange(10, dtype=float_)
+        xm[2] = self.masked
+        m = xm.mask
+        a = self.arange(10, dtype=float_)
+        a[-1] = self.masked
+        x -= a
+        xm -= a
+        assert self.allequal(x, y-a)
+        assert self.allequal(xm, y-a)
+        assert self.allequal(xm.mask, self.mask_or(m, a.mask))
+
+        x = self.arange(10, dtype=float_)
+        xm = self.arange(10, dtype=float_)
+        xm[2] = self.masked
+        m = xm.mask
+        a = self.arange(10, dtype=float_)
+        a[-1] = self.masked
+        x *= a
+        xm *= a
+        assert self.allequal(x, y*a)
+        assert self.allequal(xm, y*a)
+        assert self.allequal(xm.mask, self.mask_or(m, a.mask))
+
+        x = self.arange(10, dtype=float_)
+        xm = self.arange(10, dtype=float_)
+        xm[2] = self.masked
+        m = xm.mask
+        a = self.arange(10, dtype=float_)
+        a[-1] = self.masked
+        x /= a
+        xm /= a
+
+    @np.errstate(all='ignore')
+    def test_7(self):
+        "Tests ufunc"
+        d = (self.array([1.0, 0, -1, pi/2]*2, mask=[0, 1]+[0]*6),
+             self.array([1.0, 0, -1, pi/2]*2, mask=[1, 0]+[0]*6),)
+        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
+#                  'sin', 'cos', 'tan',
+#                  'arcsin', 'arccos', 'arctan',
+#                  'sinh', 'cosh', 'tanh',
+#                  'arcsinh',
+#                  'arccosh',
+#                  'arctanh',
+#                  'absolute', 'fabs', 'negative',
+#                  # 'nonzero', 'around',
+#                  'floor', 'ceil',
+#                  # 'sometrue', 'alltrue',
+#                  'logical_not',
+#                  'add', 'subtract', 'multiply',
+#                  'divide', 'true_divide', 'floor_divide',
+#                  'remainder', 'fmod', 'hypot', 'arctan2',
+#                  'equal', 'not_equal', 'less_equal', 'greater_equal',
+#                  'less', 'greater',
+#                  'logical_and', 'logical_or', 'logical_xor',
+                  ]:
+            try:
+                uf = getattr(self.umath, f)
+            except AttributeError:
+                uf = getattr(fromnumeric, f)
+            mf = getattr(self.module, f)
+            args = d[:uf.nin]
+            ur = uf(*args)
+            mr = mf(*args)
+            self.assert_array_equal(ur.filled(0), mr.filled(0), f)
+            self.assert_array_equal(ur._mask, mr._mask)
+
+    @np.errstate(all='ignore')
+    def test_99(self):
+        # test average
+        ott = self.array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+        self.assert_array_equal(2.0, self.average(ott, axis=0))
+        self.assert_array_equal(2.0, self.average(ott, weights=[1., 1., 2., 1.]))
+        result, wts = self.average(ott, weights=[1., 1., 2., 1.], returned=1)
+        self.assert_array_equal(2.0, result)
+        assert(wts == 4.0)
+        ott[:] = self.masked
+        assert(self.average(ott, axis=0) is self.masked)
+        ott = self.array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+        ott = ott.reshape(2, 2)
+        ott[:, 1] = self.masked
+        self.assert_array_equal(self.average(ott, axis=0), [2.0, 0.0])
+        assert(self.average(ott, axis=1)[0] is self.masked)
+        self.assert_array_equal([2., 0.], self.average(ott, axis=0))
+        result, wts = self.average(ott, axis=0, returned=1)
+        self.assert_array_equal(wts, [1., 0.])
+        w1 = [0, 1, 1, 1, 1, 0]
+        w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
+        x = self.arange(6)
+        self.assert_array_equal(self.average(x, axis=0), 2.5)
+        self.assert_array_equal(self.average(x, axis=0, weights=w1), 2.5)
+        y = self.array([self.arange(6), 2.0*self.arange(6)])
+        self.assert_array_equal(self.average(y, None), np.add.reduce(np.arange(6))*3./12.)
+        self.assert_array_equal(self.average(y, axis=0), np.arange(6) * 3./2.)
+        self.assert_array_equal(self.average(y, axis=1), [self.average(x, axis=0), self.average(x, axis=0) * 2.0])
+        self.assert_array_equal(self.average(y, None, weights=w2), 20./6.)
+        self.assert_array_equal(self.average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.])
+        self.assert_array_equal(self.average(y, axis=1), [self.average(x, axis=0), self.average(x, axis=0) * 2.0])
+        m1 = self.zeros(6)
+        m2 = [0, 0, 1, 1, 0, 0]
+        m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
+        m4 = self.ones(6)
+        m5 = [0, 1, 1, 1, 1, 1]
+        self.assert_array_equal(self.average(self.masked_array(x, m1), axis=0), 2.5)
+        self.assert_array_equal(self.average(self.masked_array(x, m2), axis=0), 2.5)
+        self.assert_array_equal(self.average(self.masked_array(x, m5), axis=0), 0.0)
+        self.assert_array_equal(self.count(self.average(self.masked_array(x, m4), axis=0)), 0)
+        z = self.masked_array(y, m3)
+        self.assert_array_equal(self.average(z, None), 20./6.)
+        self.assert_array_equal(self.average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
+        self.assert_array_equal(self.average(z, axis=1), [2.5, 5.0])
+        self.assert_array_equal(self.average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0])
+
+    @np.errstate(all='ignore')
+    def test_A(self):
+        x = self.arange(24)
+        x[5:6] = self.masked
+        x = x.reshape(2, 3, 4)
+
+
+if __name__ == '__main__':
+    setup_base = ("from __main__ import ModuleTester \n"
+                  "import numpy\n"
+                  "tester = ModuleTester(module)\n")
+    setup_cur = "import numpy.ma.core as module\n" + setup_base
+    (nrepeat, nloop) = (10, 10)
+
+    for i in range(1, 8):
+        func = 'tester.test_%i()' % i
+        cur = timeit.Timer(func, setup_cur).repeat(nrepeat, nloop*10)
+        cur = np.sort(cur)
+        print("#%i" % i + 50*'.')
+        print(eval("ModuleTester.test_%i.__doc__" % i))
+        print(f'core_current : {cur[0]:.3f} - {cur[1]:.3f}')