aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py443
1 files changed, 443 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py b/.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py
new file mode 100644
index 00000000..9eb1a23c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/timer_comparison.py
@@ -0,0 +1,443 @@
+import timeit
+from functools import reduce
+
+import numpy as np
+from numpy import float_
+import numpy.core.fromnumeric as fromnumeric
+
+from numpy.testing import build_err_msg
+
+
+pi = np.pi
+
+class ModuleTester:
+ def __init__(self, module):
+ self.module = module
+ self.allequal = module.allequal
+ self.arange = module.arange
+ self.array = module.array
+ self.concatenate = module.concatenate
+ self.count = module.count
+ self.equal = module.equal
+ self.filled = module.filled
+ self.getmask = module.getmask
+ self.getmaskarray = module.getmaskarray
+ self.id = id
+ self.inner = module.inner
+ self.make_mask = module.make_mask
+ self.masked = module.masked
+ self.masked_array = module.masked_array
+ self.masked_values = module.masked_values
+ self.mask_or = module.mask_or
+ self.nomask = module.nomask
+ self.ones = module.ones
+ self.outer = module.outer
+ self.repeat = module.repeat
+ self.resize = module.resize
+ self.sort = module.sort
+ self.take = module.take
+ self.transpose = module.transpose
+ self.zeros = module.zeros
+ self.MaskType = module.MaskType
+ try:
+ self.umath = module.umath
+ except AttributeError:
+ self.umath = module.core.umath
+ self.testnames = []
+
+ def assert_array_compare(self, comparison, x, y, err_msg='', header='',
+ fill_value=True):
+ """
+ Assert that a comparison of two masked arrays is satisfied elementwise.
+
+ """
+ xf = self.filled(x)
+ yf = self.filled(y)
+ m = self.mask_or(self.getmask(x), self.getmask(y))
+
+ x = self.filled(self.masked_array(xf, mask=m), fill_value)
+ y = self.filled(self.masked_array(yf, mask=m), fill_value)
+ if (x.dtype.char != "O"):
+ x = x.astype(float_)
+ if isinstance(x, np.ndarray) and x.size > 1:
+ x[np.isnan(x)] = 0
+ elif np.isnan(x):
+ x = 0
+ if (y.dtype.char != "O"):
+ y = y.astype(float_)
+ if isinstance(y, np.ndarray) and y.size > 1:
+ y[np.isnan(y)] = 0
+ elif np.isnan(y):
+ y = 0
+ try:
+ cond = (x.shape == () or y.shape == ()) or x.shape == y.shape
+ if not cond:
+ msg = build_err_msg([x, y],
+ err_msg
+ + f'\n(shapes {x.shape}, {y.shape} mismatch)',
+ header=header,
+ names=('x', 'y'))
+ assert cond, msg
+ val = comparison(x, y)
+ if m is not self.nomask and fill_value:
+ val = self.masked_array(val, mask=m)
+ if isinstance(val, bool):
+ cond = val
+ reduced = [0]
+ else:
+ reduced = val.ravel()
+ cond = reduced.all()
+ reduced = reduced.tolist()
+ if not cond:
+ match = 100-100.0*reduced.count(1)/len(reduced)
+ msg = build_err_msg([x, y],
+ err_msg
+ + '\n(mismatch %s%%)' % (match,),
+ header=header,
+ names=('x', 'y'))
+ assert cond, msg
+ except ValueError as e:
+ msg = build_err_msg([x, y], err_msg, header=header, names=('x', 'y'))
+ raise ValueError(msg) from e
+
+ def assert_array_equal(self, x, y, err_msg=''):
+ """
+ Checks the elementwise equality of two masked arrays.
+
+ """
+ self.assert_array_compare(self.equal, x, y, err_msg=err_msg,
+ header='Arrays are not equal')
+
+ @np.errstate(all='ignore')
+ def test_0(self):
+ """
+ Tests creation
+
+ """
+ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+ m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ xm = self.masked_array(x, mask=m)
+ xm[0]
+
+ @np.errstate(all='ignore')
+ def test_1(self):
+ """
+ Tests creation
+
+ """
+ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+ y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+ m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+ xm = self.masked_array(x, mask=m1)
+ ym = self.masked_array(y, mask=m2)
+ xf = np.where(m1, 1.e+20, x)
+ xm.set_fill_value(1.e+20)
+
+ assert((xm-ym).filled(0).any())
+ s = x.shape
+ assert(xm.size == reduce(lambda x, y:x*y, s))
+ assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1))
+
+ for s in [(4, 3), (6, 2)]:
+ x.shape = s
+ y.shape = s
+ xm.shape = s
+ ym.shape = s
+ xf.shape = s
+ assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1))
+
+ @np.errstate(all='ignore')
+ def test_2(self):
+ """
+ Tests conversions and indexing.
+
+ """
+ x1 = np.array([1, 2, 4, 3])
+ x2 = self.array(x1, mask=[1, 0, 0, 0])
+ x3 = self.array(x1, mask=[0, 1, 0, 1])
+ x4 = self.array(x1)
+ # test conversion to strings, no errors
+ str(x2)
+ repr(x2)
+ # tests of indexing
+ assert type(x2[1]) is type(x1[1])
+ assert x1[1] == x2[1]
+ x1[2] = 9
+ x2[2] = 9
+ self.assert_array_equal(x1, x2)
+ x1[1:3] = 99
+ x2[1:3] = 99
+ x2[1] = self.masked
+ x2[1:3] = self.masked
+ x2[:] = x1
+ x2[1] = self.masked
+ x3[:] = self.masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+ x4[:] = self.masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+ x1 = np.arange(5)*1.0
+ x2 = self.masked_values(x1, 3.0)
+ x1 = self.array([1, 'hello', 2, 3], object)
+ x2 = np.array([1, 'hello', 2, 3], object)
+ # check that no error occurs.
+ x1[1]
+ x2[1]
+ assert x1[1:1].shape == (0,)
+ # Tests copy-size
+ n = [0, 0, 1, 0, 0]
+ m = self.make_mask(n)
+ m2 = self.make_mask(m)
+ assert(m is m2)
+ m3 = self.make_mask(m, copy=1)
+ assert(m is not m3)
+
+ @np.errstate(all='ignore')
+ def test_3(self):
+ """
+ Tests resize/repeat
+
+ """
+ x4 = self.arange(4)
+ x4[2] = self.masked
+ y4 = self.resize(x4, (8,))
+ assert self.allequal(self.concatenate([x4, x4]), y4)
+ assert self.allequal(self.getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0])
+ y5 = self.repeat(x4, (2, 2, 2, 2), axis=0)
+ self.assert_array_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3])
+ y6 = self.repeat(x4, 2, axis=0)
+ assert self.allequal(y5, y6)
+ y7 = x4.repeat((2, 2, 2, 2), axis=0)
+ assert self.allequal(y5, y7)
+ y8 = x4.repeat(2, 0)
+ assert self.allequal(y5, y8)
+
+ @np.errstate(all='ignore')
+ def test_4(self):
+ """
+ Test of take, transpose, inner, outer products.
+
+ """
+ x = self.arange(24)
+ y = np.arange(24)
+ x[5:6] = self.masked
+ x = x.reshape(2, 3, 4)
+ y = y.reshape(2, 3, 4)
+ assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
+ assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
+ assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
+ self.inner(x, y))
+ assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
+ self.outer(x, y))
+ y = self.array(['abc', 1, 'def', 2, 3], object)
+ y[2] = self.masked
+ t = self.take(y, [0, 3, 4])
+ assert t[0] == 'abc'
+ assert t[1] == 2
+ assert t[2] == 3
+
+ @np.errstate(all='ignore')
+ def test_5(self):
+ """
+ Tests inplace w/ scalar
+
+ """
+ x = self.arange(10)
+ y = self.arange(10)
+ xm = self.arange(10)
+ xm[2] = self.masked
+ x += 1
+ assert self.allequal(x, y+1)
+ xm += 1
+ assert self.allequal(xm, y+1)
+
+ x = self.arange(10)
+ xm = self.arange(10)
+ xm[2] = self.masked
+ x -= 1
+ assert self.allequal(x, y-1)
+ xm -= 1
+ assert self.allequal(xm, y-1)
+
+ x = self.arange(10)*1.0
+ xm = self.arange(10)*1.0
+ xm[2] = self.masked
+ x *= 2.0
+ assert self.allequal(x, y*2)
+ xm *= 2.0
+ assert self.allequal(xm, y*2)
+
+ x = self.arange(10)*2
+ xm = self.arange(10)*2
+ xm[2] = self.masked
+ x /= 2
+ assert self.allequal(x, y)
+ xm /= 2
+ assert self.allequal(xm, y)
+
+ x = self.arange(10)*1.0
+ xm = self.arange(10)*1.0
+ xm[2] = self.masked
+ x /= 2.0
+ assert self.allequal(x, y/2.0)
+ xm /= self.arange(10)
+ self.assert_array_equal(xm, self.ones((10,)))
+
+ x = self.arange(10).astype(float_)
+ xm = self.arange(10)
+ xm[2] = self.masked
+ x += 1.
+ assert self.allequal(x, y + 1.)
+
+ @np.errstate(all='ignore')
+ def test_6(self):
+ """
+ Tests inplace w/ array
+
+ """
+ x = self.arange(10, dtype=float_)
+ y = self.arange(10)
+ xm = self.arange(10, dtype=float_)
+ xm[2] = self.masked
+ m = xm.mask
+ a = self.arange(10, dtype=float_)
+ a[-1] = self.masked
+ x += a
+ xm += a
+ assert self.allequal(x, y+a)
+ assert self.allequal(xm, y+a)
+ assert self.allequal(xm.mask, self.mask_or(m, a.mask))
+
+ x = self.arange(10, dtype=float_)
+ xm = self.arange(10, dtype=float_)
+ xm[2] = self.masked
+ m = xm.mask
+ a = self.arange(10, dtype=float_)
+ a[-1] = self.masked
+ x -= a
+ xm -= a
+ assert self.allequal(x, y-a)
+ assert self.allequal(xm, y-a)
+ assert self.allequal(xm.mask, self.mask_or(m, a.mask))
+
+ x = self.arange(10, dtype=float_)
+ xm = self.arange(10, dtype=float_)
+ xm[2] = self.masked
+ m = xm.mask
+ a = self.arange(10, dtype=float_)
+ a[-1] = self.masked
+ x *= a
+ xm *= a
+ assert self.allequal(x, y*a)
+ assert self.allequal(xm, y*a)
+ assert self.allequal(xm.mask, self.mask_or(m, a.mask))
+
+ x = self.arange(10, dtype=float_)
+ xm = self.arange(10, dtype=float_)
+ xm[2] = self.masked
+ m = xm.mask
+ a = self.arange(10, dtype=float_)
+ a[-1] = self.masked
+ x /= a
+ xm /= a
+
+ @np.errstate(all='ignore')
+ def test_7(self):
+ "Tests ufunc"
+ d = (self.array([1.0, 0, -1, pi/2]*2, mask=[0, 1]+[0]*6),
+ self.array([1.0, 0, -1, pi/2]*2, mask=[1, 0]+[0]*6),)
+ for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
+# 'sin', 'cos', 'tan',
+# 'arcsin', 'arccos', 'arctan',
+# 'sinh', 'cosh', 'tanh',
+# 'arcsinh',
+# 'arccosh',
+# 'arctanh',
+# 'absolute', 'fabs', 'negative',
+# # 'nonzero', 'around',
+# 'floor', 'ceil',
+# # 'sometrue', 'alltrue',
+# 'logical_not',
+# 'add', 'subtract', 'multiply',
+# 'divide', 'true_divide', 'floor_divide',
+# 'remainder', 'fmod', 'hypot', 'arctan2',
+# 'equal', 'not_equal', 'less_equal', 'greater_equal',
+# 'less', 'greater',
+# 'logical_and', 'logical_or', 'logical_xor',
+ ]:
+ try:
+ uf = getattr(self.umath, f)
+ except AttributeError:
+ uf = getattr(fromnumeric, f)
+ mf = getattr(self.module, f)
+ args = d[:uf.nin]
+ ur = uf(*args)
+ mr = mf(*args)
+ self.assert_array_equal(ur.filled(0), mr.filled(0), f)
+ self.assert_array_equal(ur._mask, mr._mask)
+
+ @np.errstate(all='ignore')
+ def test_99(self):
+ # test average
+ ott = self.array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+ self.assert_array_equal(2.0, self.average(ott, axis=0))
+ self.assert_array_equal(2.0, self.average(ott, weights=[1., 1., 2., 1.]))
+ result, wts = self.average(ott, weights=[1., 1., 2., 1.], returned=1)
+ self.assert_array_equal(2.0, result)
+ assert(wts == 4.0)
+ ott[:] = self.masked
+ assert(self.average(ott, axis=0) is self.masked)
+ ott = self.array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+ ott = ott.reshape(2, 2)
+ ott[:, 1] = self.masked
+ self.assert_array_equal(self.average(ott, axis=0), [2.0, 0.0])
+ assert(self.average(ott, axis=1)[0] is self.masked)
+ self.assert_array_equal([2., 0.], self.average(ott, axis=0))
+ result, wts = self.average(ott, axis=0, returned=1)
+ self.assert_array_equal(wts, [1., 0.])
+ w1 = [0, 1, 1, 1, 1, 0]
+ w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
+ x = self.arange(6)
+ self.assert_array_equal(self.average(x, axis=0), 2.5)
+ self.assert_array_equal(self.average(x, axis=0, weights=w1), 2.5)
+ y = self.array([self.arange(6), 2.0*self.arange(6)])
+ self.assert_array_equal(self.average(y, None), np.add.reduce(np.arange(6))*3./12.)
+ self.assert_array_equal(self.average(y, axis=0), np.arange(6) * 3./2.)
+ self.assert_array_equal(self.average(y, axis=1), [self.average(x, axis=0), self.average(x, axis=0) * 2.0])
+ self.assert_array_equal(self.average(y, None, weights=w2), 20./6.)
+ self.assert_array_equal(self.average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.])
+ self.assert_array_equal(self.average(y, axis=1), [self.average(x, axis=0), self.average(x, axis=0) * 2.0])
+ m1 = self.zeros(6)
+ m2 = [0, 0, 1, 1, 0, 0]
+ m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
+ m4 = self.ones(6)
+ m5 = [0, 1, 1, 1, 1, 1]
+ self.assert_array_equal(self.average(self.masked_array(x, m1), axis=0), 2.5)
+ self.assert_array_equal(self.average(self.masked_array(x, m2), axis=0), 2.5)
+ self.assert_array_equal(self.average(self.masked_array(x, m5), axis=0), 0.0)
+ self.assert_array_equal(self.count(self.average(self.masked_array(x, m4), axis=0)), 0)
+ z = self.masked_array(y, m3)
+ self.assert_array_equal(self.average(z, None), 20./6.)
+ self.assert_array_equal(self.average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
+ self.assert_array_equal(self.average(z, axis=1), [2.5, 5.0])
+ self.assert_array_equal(self.average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0])
+
+ @np.errstate(all='ignore')
+ def test_A(self):
+ x = self.arange(24)
+ x[5:6] = self.masked
+ x = x.reshape(2, 3, 4)
+
+
+if __name__ == '__main__':
+ setup_base = ("from __main__ import ModuleTester \n"
+ "import numpy\n"
+ "tester = ModuleTester(module)\n")
+ setup_cur = "import numpy.ma.core as module\n" + setup_base
+ (nrepeat, nloop) = (10, 10)
+
+ for i in range(1, 8):
+ func = 'tester.test_%i()' % i
+ cur = timeit.Timer(func, setup_cur).repeat(nrepeat, nloop*10)
+ cur = np.sort(cur)
+ print("#%i" % i + 50*'.')
+ print(eval("ModuleTester.test_%i.__doc__" % i))
+ print(f'core_current : {cur[0]:.3f} - {cur[1]:.3f}')