about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py460
1 files changed, 460 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py
new file mode 100644
index 00000000..e3c88525
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py
@@ -0,0 +1,460 @@
+# pylint: disable-msg=W0611, W0612, W0511,R0201
+"""Tests suite for MaskedArray & subclassing.
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
+
+"""
+import numpy as np
+from numpy.lib.mixins import NDArrayOperatorsMixin
+from numpy.testing import assert_, assert_raises
+from numpy.ma.testutils import assert_equal
+from numpy.ma.core import (
+    array, arange, masked, MaskedArray, masked_array, log, add, hypot,
+    divide, asarray, asanyarray, nomask
+    )
+# from numpy.ma.core import (
+
+def assert_startswith(a, b):
+    # produces a better error message than assert_(a.startswith(b))
+    assert_equal(a[:len(b)], b)
+
+class SubArray(np.ndarray):
+    # Defines a generic np.ndarray subclass, that stores some metadata
+    # in the  dictionary `info`.
+    def __new__(cls,arr,info={}):
+        x = np.asanyarray(arr).view(cls)
+        x.info = info.copy()
+        return x
+
+    def __array_finalize__(self, obj):
+        super().__array_finalize__(obj)
+        self.info = getattr(obj, 'info', {}).copy()
+        return
+
+    def __add__(self, other):
+        result = super().__add__(other)
+        result.info['added'] = result.info.get('added', 0) + 1
+        return result
+
+    def __iadd__(self, other):
+        result = super().__iadd__(other)
+        result.info['iadded'] = result.info.get('iadded', 0) + 1
+        return result
+
+
+subarray = SubArray
+
+
+class SubMaskedArray(MaskedArray):
+    """Pure subclass of MaskedArray, keeping some info on subclass."""
+    def __new__(cls, info=None, **kwargs):
+        obj = super().__new__(cls, **kwargs)
+        obj._optinfo['info'] = info
+        return obj
+
+
+class MSubArray(SubArray, MaskedArray):
+
+    def __new__(cls, data, info={}, mask=nomask):
+        subarr = SubArray(data, info)
+        _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
+        _data.info = subarr.info
+        return _data
+
+    @property
+    def _series(self):
+        _view = self.view(MaskedArray)
+        _view._sharedmask = False
+        return _view
+
+msubarray = MSubArray
+
+
+# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
+# setting to non-class values (and thus np.ma.core.masked_print_option)
+# and overrides __array_wrap__, updating the info dict, to check that this
+# doesn't get destroyed by MaskedArray._update_from.  But this one also needs
+# its own iterator...
+class CSAIterator:
+    """
+    Flat iterator object that uses its own setter/getter
+    (works around ndarray.flat not propagating subclass setters/getters
+    see https://github.com/numpy/numpy/issues/4564)
+    roughly following MaskedIterator
+    """
+    def __init__(self, a):
+        self._original = a
+        self._dataiter = a.view(np.ndarray).flat
+
+    def __iter__(self):
+        return self
+
+    def __getitem__(self, indx):
+        out = self._dataiter.__getitem__(indx)
+        if not isinstance(out, np.ndarray):
+            out = out.__array__()
+        out = out.view(type(self._original))
+        return out
+
+    def __setitem__(self, index, value):
+        self._dataiter[index] = self._original._validate_input(value)
+
+    def __next__(self):
+        return next(self._dataiter).__array__().view(type(self._original))
+
+
+class ComplicatedSubArray(SubArray):
+
+    def __str__(self):
+        return f'myprefix {self.view(SubArray)} mypostfix'
+
+    def __repr__(self):
+        # Return a repr that does not start with 'name('
+        return f'<{self.__class__.__name__} {self}>'
+
+    def _validate_input(self, value):
+        if not isinstance(value, ComplicatedSubArray):
+            raise ValueError("Can only set to MySubArray values")
+        return value
+
+    def __setitem__(self, item, value):
+        # validation ensures direct assignment with ndarray or
+        # masked_print_option will fail
+        super().__setitem__(item, self._validate_input(value))
+
+    def __getitem__(self, item):
+        # ensure getter returns our own class also for scalars
+        value = super().__getitem__(item)
+        if not isinstance(value, np.ndarray):  # scalar
+            value = value.__array__().view(ComplicatedSubArray)
+        return value
+
+    @property
+    def flat(self):
+        return CSAIterator(self)
+
+    @flat.setter
+    def flat(self, value):
+        y = self.ravel()
+        y[:] = value
+
+    def __array_wrap__(self, obj, context=None):
+        obj = super().__array_wrap__(obj, context)
+        if context is not None and context[0] is np.multiply:
+            obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
+
+        return obj
+
+
+class WrappedArray(NDArrayOperatorsMixin):
+    """
+    Wrapping a MaskedArray rather than subclassing to test that
+    ufunc deferrals are commutative.
+    See: https://github.com/numpy/numpy/issues/15200)
+    """
+    __slots__ = ('_array', 'attrs')
+    __array_priority__ = 20
+
+    def __init__(self, array, **attrs):
+        self._array = array
+        self.attrs = attrs
+
+    def __repr__(self):
+        return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)"
+
+    def __array__(self):
+        return np.asarray(self._array)
+
+    def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+        if method == '__call__':
+            inputs = [arg._array if isinstance(arg, self.__class__) else arg
+                      for arg in inputs]
+            return self.__class__(ufunc(*inputs, **kwargs), **self.attrs)
+        else:
+            return NotImplemented
+
+
+class TestSubclassing:
+    # Test suite for masked subclasses of ndarray.
+
+    def setup_method(self):
+        x = np.arange(5, dtype='float')
+        mx = msubarray(x, mask=[0, 1, 0, 0, 0])
+        self.data = (x, mx)
+
+    def test_data_subclassing(self):
+        # Tests whether the subclass is kept.
+        x = np.arange(5)
+        m = [0, 0, 1, 0, 0]
+        xsub = SubArray(x)
+        xmsub = masked_array(xsub, mask=m)
+        assert_(isinstance(xmsub, MaskedArray))
+        assert_equal(xmsub._data, xsub)
+        assert_(isinstance(xmsub._data, SubArray))
+
+    def test_maskedarray_subclassing(self):
+        # Tests subclassing MaskedArray
+        (x, mx) = self.data
+        assert_(isinstance(mx._data, subarray))
+
+    def test_masked_unary_operations(self):
+        # Tests masked_unary_operation
+        (x, mx) = self.data
+        with np.errstate(divide='ignore'):
+            assert_(isinstance(log(mx), msubarray))
+            assert_equal(log(x), np.log(x))
+
+    def test_masked_binary_operations(self):
+        # Tests masked_binary_operation
+        (x, mx) = self.data
+        # Result should be a msubarray
+        assert_(isinstance(add(mx, mx), msubarray))
+        assert_(isinstance(add(mx, x), msubarray))
+        # Result should work
+        assert_equal(add(mx, x), mx+x)
+        assert_(isinstance(add(mx, mx)._data, subarray))
+        assert_(isinstance(add.outer(mx, mx), msubarray))
+        assert_(isinstance(hypot(mx, mx), msubarray))
+        assert_(isinstance(hypot(mx, x), msubarray))
+
+    def test_masked_binary_operations2(self):
+        # Tests domained_masked_binary_operation
+        (x, mx) = self.data
+        xmx = masked_array(mx.data.__array__(), mask=mx.mask)
+        assert_(isinstance(divide(mx, mx), msubarray))
+        assert_(isinstance(divide(mx, x), msubarray))
+        assert_equal(divide(mx, mx), divide(xmx, xmx))
+
+    def test_attributepropagation(self):
+        x = array(arange(5), mask=[0]+[1]*4)
+        my = masked_array(subarray(x))
+        ym = msubarray(x)
+        #
+        z = (my+1)
+        assert_(isinstance(z, MaskedArray))
+        assert_(not isinstance(z, MSubArray))
+        assert_(isinstance(z._data, SubArray))
+        assert_equal(z._data.info, {})
+        #
+        z = (ym+1)
+        assert_(isinstance(z, MaskedArray))
+        assert_(isinstance(z, MSubArray))
+        assert_(isinstance(z._data, SubArray))
+        assert_(z._data.info['added'] > 0)
+        # Test that inplace methods from data get used (gh-4617)
+        ym += 1
+        assert_(isinstance(ym, MaskedArray))
+        assert_(isinstance(ym, MSubArray))
+        assert_(isinstance(ym._data, SubArray))
+        assert_(ym._data.info['iadded'] > 0)
+        #
+        ym._set_mask([1, 0, 0, 0, 1])
+        assert_equal(ym._mask, [1, 0, 0, 0, 1])
+        ym._series._set_mask([0, 0, 0, 0, 1])
+        assert_equal(ym._mask, [0, 0, 0, 0, 1])
+        #
+        xsub = subarray(x, info={'name':'x'})
+        mxsub = masked_array(xsub)
+        assert_(hasattr(mxsub, 'info'))
+        assert_equal(mxsub.info, xsub.info)
+
+    def test_subclasspreservation(self):
+        # Checks that masked_array(...,subok=True) preserves the class.
+        x = np.arange(5)
+        m = [0, 0, 1, 0, 0]
+        xinfo = [(i, j) for (i, j) in zip(x, m)]
+        xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
+        #
+        mxsub = masked_array(xsub, subok=False)
+        assert_(not isinstance(mxsub, MSubArray))
+        assert_(isinstance(mxsub, MaskedArray))
+        assert_equal(mxsub._mask, m)
+        #
+        mxsub = asarray(xsub)
+        assert_(not isinstance(mxsub, MSubArray))
+        assert_(isinstance(mxsub, MaskedArray))
+        assert_equal(mxsub._mask, m)
+        #
+        mxsub = masked_array(xsub, subok=True)
+        assert_(isinstance(mxsub, MSubArray))
+        assert_equal(mxsub.info, xsub.info)
+        assert_equal(mxsub._mask, xsub._mask)
+        #
+        mxsub = asanyarray(xsub)
+        assert_(isinstance(mxsub, MSubArray))
+        assert_equal(mxsub.info, xsub.info)
+        assert_equal(mxsub._mask, m)
+
+    def test_subclass_items(self):
+        """test that getter and setter go via baseclass"""
+        x = np.arange(5)
+        xcsub = ComplicatedSubArray(x)
+        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
+        # getter should  return a ComplicatedSubArray, even for single item
+        # first check we wrote ComplicatedSubArray correctly
+        assert_(isinstance(xcsub[1], ComplicatedSubArray))
+        assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
+        assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
+
+        # now that it propagates inside the MaskedArray
+        assert_(isinstance(mxcsub[1], ComplicatedSubArray))
+        assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
+        assert_(mxcsub[0] is masked)
+        assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
+        assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
+
+        # also for flattened version (which goes via MaskedIterator)
+        assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
+        assert_(mxcsub.flat[0] is masked)
+        assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
+
+        # setter should only work with ComplicatedSubArray input
+        # first check we wrote ComplicatedSubArray correctly
+        assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
+        # now that it propagates inside the MaskedArray
+        assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
+        assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
+        mxcsub[1] = xcsub[4]
+        mxcsub[1:4] = xcsub[1:4]
+        # also for flattened version (which goes via MaskedIterator)
+        assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
+        assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
+        mxcsub.flat[1] = xcsub[4]
+        mxcsub.flat[1:4] = xcsub[1:4]
+
+    def test_subclass_nomask_items(self):
+        x = np.arange(5)
+        xcsub = ComplicatedSubArray(x)
+        mxcsub_nomask = masked_array(xcsub)
+
+        assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
+        assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
+
+        assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
+        assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
+
+    def test_subclass_repr(self):
+        """test that repr uses the name of the subclass
+        and 'array' for np.ndarray"""
+        x = np.arange(5)
+        mx = masked_array(x, mask=[True, False, True, False, False])
+        assert_startswith(repr(mx), 'masked_array')
+        xsub = SubArray(x)
+        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
+        assert_startswith(repr(mxsub),
+            f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')
+
+    def test_subclass_str(self):
+        """test str with subclass that has overridden str, setitem"""
+        # first without override
+        x = np.arange(5)
+        xsub = SubArray(x)
+        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
+        assert_equal(str(mxsub), '[-- 1 -- 3 4]')
+
+        xcsub = ComplicatedSubArray(x)
+        assert_raises(ValueError, xcsub.__setitem__, 0,
+                      np.ma.core.masked_print_option)
+        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
+        assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
+
+    def test_pure_subclass_info_preservation(self):
+        # Test that ufuncs and methods conserve extra information consistently;
+        # see gh-7122.
+        arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
+        arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
+        diff1 = np.subtract(arr1, arr2)
+        assert_('info' in diff1._optinfo)
+        assert_(diff1._optinfo['info'] == 'test')
+        diff2 = arr1 - arr2
+        assert_('info' in diff2._optinfo)
+        assert_(diff2._optinfo['info'] == 'test')
+
+
+class ArrayNoInheritance:
+    """Quantity-like class that does not inherit from ndarray"""
+    def __init__(self, data, units):
+        self.magnitude = data
+        self.units = units
+
+    def __getattr__(self, attr):
+        return getattr(self.magnitude, attr)
+
+
+def test_array_no_inheritance():
+    data_masked = np.ma.array([1, 2, 3], mask=[True, False, True])
+    data_masked_units = ArrayNoInheritance(data_masked, 'meters')
+
+    # Get the masked representation of the Quantity-like class
+    new_array = np.ma.array(data_masked_units)
+    assert_equal(data_masked.data, new_array.data)
+    assert_equal(data_masked.mask, new_array.mask)
+    # Test sharing the mask
+    data_masked.mask = [True, False, False]
+    assert_equal(data_masked.mask, new_array.mask)
+    assert_(new_array.sharedmask)
+
+    # Get the masked representation of the Quantity-like class
+    new_array = np.ma.array(data_masked_units, copy=True)
+    assert_equal(data_masked.data, new_array.data)
+    assert_equal(data_masked.mask, new_array.mask)
+    # Test that the mask is not shared when copy=True
+    data_masked.mask = [True, False, True]
+    assert_equal([True, False, False], new_array.mask)
+    assert_(not new_array.sharedmask)
+
+    # Get the masked representation of the Quantity-like class
+    new_array = np.ma.array(data_masked_units, keep_mask=False)
+    assert_equal(data_masked.data, new_array.data)
+    # The change did not affect the original mask
+    assert_equal(data_masked.mask, [True, False, True])
+    # Test that the mask is False and not shared when keep_mask=False
+    assert_(not new_array.mask)
+    assert_(not new_array.sharedmask)
+
+
+class TestClassWrapping:
+    # Test suite for classes that wrap MaskedArrays
+
+    def setup_method(self):
+        m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
+        wm = WrappedArray(m)
+        self.data = (m, wm)
+
+    def test_masked_unary_operations(self):
+        # Tests masked_unary_operation
+        (m, wm) = self.data
+        with np.errstate(divide='ignore'):
+            assert_(isinstance(np.log(wm), WrappedArray))
+
+    def test_masked_binary_operations(self):
+        # Tests masked_binary_operation
+        (m, wm) = self.data
+        # Result should be a WrappedArray
+        assert_(isinstance(np.add(wm, wm), WrappedArray))
+        assert_(isinstance(np.add(m, wm), WrappedArray))
+        assert_(isinstance(np.add(wm, m), WrappedArray))
+        # add and '+' should call the same ufunc
+        assert_equal(np.add(m, wm), m + wm)
+        assert_(isinstance(np.hypot(m, wm), WrappedArray))
+        assert_(isinstance(np.hypot(wm, m), WrappedArray))
+        # Test domained binary operations
+        assert_(isinstance(np.divide(wm, m), WrappedArray))
+        assert_(isinstance(np.divide(m, wm), WrappedArray))
+        assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm)
+        # Test broadcasting
+        m2 = np.stack([m, m])
+        assert_(isinstance(np.divide(wm, m2), WrappedArray))
+        assert_(isinstance(np.divide(m2, wm), WrappedArray))
+        assert_equal(np.divide(m2, wm), np.divide(wm, m2))
+
+    def test_mixins_have_slots(self):
+        mixin = NDArrayOperatorsMixin()
+        # Should raise an error
+        assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1)
+
+        m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
+        wm = WrappedArray(m)
+        assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2)