aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/ma/core.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/ma/core.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/core.py8565
1 files changed, 8565 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/core.py b/.venv/lib/python3.12/site-packages/numpy/ma/core.py
new file mode 100644
index 00000000..16f74e89
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/core.py
@@ -0,0 +1,8565 @@
+"""
+numpy.ma : a package to handle missing or invalid values.
+
+This package was initially written for numarray by Paul F. Dubois
+at Lawrence Livermore National Laboratory.
+In 2006, the package was completely rewritten by Pierre Gerard-Marchant
+(University of Georgia) to make the MaskedArray class a subclass of ndarray,
+and to improve support of structured arrays.
+
+
+Copyright 1999, 2000, 2001 Regents of the University of California.
+Released for unlimited redistribution.
+
+* Adapted for numpy_core 2005 by Travis Oliphant and (mainly) Paul Dubois.
+* Subclassing of the base `ndarray` 2006 by Pierre Gerard-Marchant
+ (pgmdevlist_AT_gmail_DOT_com)
+* Improvements suggested by Reggie Dugard (reggie_AT_merfinllc_DOT_com)
+
+.. moduleauthor:: Pierre Gerard-Marchant
+
+"""
+# pylint: disable-msg=E1002
+import builtins
+import inspect
+import operator
+import warnings
+import textwrap
+import re
+from functools import reduce
+
+import numpy as np
+import numpy.core.umath as umath
+import numpy.core.numerictypes as ntypes
+from numpy.core import multiarray as mu
+from numpy import ndarray, amax, amin, iscomplexobj, bool_, _NoValue
+from numpy import array as narray
+from numpy.lib.function_base import angle
+from numpy.compat import (
+ getargspec, formatargspec, long, unicode, bytes
+ )
+from numpy import expand_dims
+from numpy.core.numeric import normalize_axis_tuple
+
+
+__all__ = [
+ 'MAError', 'MaskError', 'MaskType', 'MaskedArray', 'abs', 'absolute',
+ 'add', 'all', 'allclose', 'allequal', 'alltrue', 'amax', 'amin',
+ 'angle', 'anom', 'anomalies', 'any', 'append', 'arange', 'arccos',
+ 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh',
+ 'argmax', 'argmin', 'argsort', 'around', 'array', 'asanyarray',
+ 'asarray', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'bool_', 'ceil',
+ 'choose', 'clip', 'common_fill_value', 'compress', 'compressed',
+ 'concatenate', 'conjugate', 'convolve', 'copy', 'correlate', 'cos', 'cosh',
+ 'count', 'cumprod', 'cumsum', 'default_fill_value', 'diag', 'diagonal',
+ 'diff', 'divide', 'empty', 'empty_like', 'equal', 'exp',
+ 'expand_dims', 'fabs', 'filled', 'fix_invalid', 'flatten_mask',
+ 'flatten_structured_array', 'floor', 'floor_divide', 'fmod',
+ 'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask',
+ 'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot',
+ 'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA',
+ 'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift',
+ 'less', 'less_equal', 'log', 'log10', 'log2',
+ 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask',
+ 'make_mask_descr', 'make_mask_none', 'mask_or', 'masked',
+ 'masked_array', 'masked_equal', 'masked_greater',
+ 'masked_greater_equal', 'masked_inside', 'masked_invalid',
+ 'masked_less', 'masked_less_equal', 'masked_not_equal',
+ 'masked_object', 'masked_outside', 'masked_print_option',
+ 'masked_singleton', 'masked_values', 'masked_where', 'max', 'maximum',
+ 'maximum_fill_value', 'mean', 'min', 'minimum', 'minimum_fill_value',
+ 'mod', 'multiply', 'mvoid', 'ndim', 'negative', 'nomask', 'nonzero',
+ 'not_equal', 'ones', 'ones_like', 'outer', 'outerproduct', 'power', 'prod',
+ 'product', 'ptp', 'put', 'putmask', 'ravel', 'remainder',
+ 'repeat', 'reshape', 'resize', 'right_shift', 'round', 'round_',
+ 'set_fill_value', 'shape', 'sin', 'sinh', 'size', 'soften_mask',
+ 'sometrue', 'sort', 'sqrt', 'squeeze', 'std', 'subtract', 'sum',
+ 'swapaxes', 'take', 'tan', 'tanh', 'trace', 'transpose', 'true_divide',
+ 'var', 'where', 'zeros', 'zeros_like',
+ ]
+
+MaskType = np.bool_
+nomask = MaskType(0)
+
+class MaskedArrayFutureWarning(FutureWarning):
+ pass
+
+def _deprecate_argsort_axis(arr):
+ """
+ Adjust the axis passed to argsort, warning if necessary
+
+ Parameters
+ ----------
+ arr
+ The array which argsort was called on
+
+ np.ma.argsort has a long-term bug where the default of the axis argument
+ is wrong (gh-8701), which now must be kept for backwards compatibility.
+ Thankfully, this only makes a difference when arrays are 2- or more-
+ dimensional, so we only need a warning then.
+ """
+ if arr.ndim <= 1:
+ # no warning needed - but switch to -1 anyway, to avoid surprising
+ # subclasses, which are more likely to implement scalar axes.
+ return -1
+ else:
+ # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default
+ warnings.warn(
+ "In the future the default for argsort will be axis=-1, not the "
+ "current None, to match its documentation and np.argsort. "
+ "Explicitly pass -1 or None to silence this warning.",
+ MaskedArrayFutureWarning, stacklevel=3)
+ return None
+
+
+def doc_note(initialdoc, note):
+ """
+ Adds a Notes section to an existing docstring.
+
+ """
+ if initialdoc is None:
+ return
+ if note is None:
+ return initialdoc
+
+ notesplit = re.split(r'\n\s*?Notes\n\s*?-----', inspect.cleandoc(initialdoc))
+ notedoc = "\n\nNotes\n-----\n%s\n" % inspect.cleandoc(note)
+
+ return ''.join(notesplit[:1] + [notedoc] + notesplit[1:])
+
+
+def get_object_signature(obj):
+ """
+ Get the signature from obj
+
+ """
+ try:
+ sig = formatargspec(*getargspec(obj))
+ except TypeError:
+ sig = ''
+ return sig
+
+
+###############################################################################
+# Exceptions #
+###############################################################################
+
+
+class MAError(Exception):
+ """
+ Class for masked array related errors.
+
+ """
+ pass
+
+
+class MaskError(MAError):
+ """
+ Class for mask related errors.
+
+ """
+ pass
+
+
+###############################################################################
+# Filling options #
+###############################################################################
+
+
+# b: boolean - c: complex - f: floats - i: integer - O: object - S: string
+default_filler = {'b': True,
+ 'c': 1.e20 + 0.0j,
+ 'f': 1.e20,
+ 'i': 999999,
+ 'O': '?',
+ 'S': b'N/A',
+ 'u': 999999,
+ 'V': b'???',
+ 'U': 'N/A'
+ }
+
+# Add datetime64 and timedelta64 types
+for v in ["Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps",
+ "fs", "as"]:
+ default_filler["M8[" + v + "]"] = np.datetime64("NaT", v)
+ default_filler["m8[" + v + "]"] = np.timedelta64("NaT", v)
+
+float_types_list = [np.half, np.single, np.double, np.longdouble,
+ np.csingle, np.cdouble, np.clongdouble]
+max_filler = ntypes._minvals
+max_filler.update([(k, -np.inf) for k in float_types_list[:4]])
+max_filler.update([(k, complex(-np.inf, -np.inf)) for k in float_types_list[-3:]])
+
+min_filler = ntypes._maxvals
+min_filler.update([(k, +np.inf) for k in float_types_list[:4]])
+min_filler.update([(k, complex(+np.inf, +np.inf)) for k in float_types_list[-3:]])
+
+del float_types_list
+
+def _recursive_fill_value(dtype, f):
+ """
+ Recursively produce a fill value for `dtype`, calling f on scalar dtypes
+ """
+ if dtype.names is not None:
+ # We wrap into `array` here, which ensures we use NumPy cast rules
+ # for integer casts, this allows the use of 99999 as a fill value
+ # for int8.
+ # TODO: This is probably a mess, but should best preserve behavior?
+ vals = tuple(
+ np.array(_recursive_fill_value(dtype[name], f))
+ for name in dtype.names)
+ return np.array(vals, dtype=dtype)[()] # decay to void scalar from 0d
+ elif dtype.subdtype:
+ subtype, shape = dtype.subdtype
+ subval = _recursive_fill_value(subtype, f)
+ return np.full(shape, subval)
+ else:
+ return f(dtype)
+
+
+def _get_dtype_of(obj):
+ """ Convert the argument for *_fill_value into a dtype """
+ if isinstance(obj, np.dtype):
+ return obj
+ elif hasattr(obj, 'dtype'):
+ return obj.dtype
+ else:
+ return np.asanyarray(obj).dtype
+
+
+def default_fill_value(obj):
+ """
+ Return the default fill value for the argument object.
+
+ The default filling value depends on the datatype of the input
+ array or the type of the input scalar:
+
+ ======== ========
+ datatype default
+ ======== ========
+ bool True
+ int 999999
+ float 1.e20
+ complex 1.e20+0j
+ object '?'
+ string 'N/A'
+ ======== ========
+
+ For structured types, a structured scalar is returned, with each field the
+ default fill value for its type.
+
+ For subarray types, the fill value is an array of the same size containing
+ the default scalar fill value.
+
+ Parameters
+ ----------
+ obj : ndarray, dtype or scalar
+ The array data-type or scalar for which the default fill value
+ is returned.
+
+ Returns
+ -------
+ fill_value : scalar
+ The default fill value.
+
+ Examples
+ --------
+ >>> np.ma.default_fill_value(1)
+ 999999
+ >>> np.ma.default_fill_value(np.array([1.1, 2., np.pi]))
+ 1e+20
+ >>> np.ma.default_fill_value(np.dtype(complex))
+ (1e+20+0j)
+
+ """
+ def _scalar_fill_value(dtype):
+ if dtype.kind in 'Mm':
+ return default_filler.get(dtype.str[1:], '?')
+ else:
+ return default_filler.get(dtype.kind, '?')
+
+ dtype = _get_dtype_of(obj)
+ return _recursive_fill_value(dtype, _scalar_fill_value)
+
+
+def _extremum_fill_value(obj, extremum, extremum_name):
+
+ def _scalar_fill_value(dtype):
+ try:
+ return extremum[dtype]
+ except KeyError as e:
+ raise TypeError(
+ f"Unsuitable type {dtype} for calculating {extremum_name}."
+ ) from None
+
+ dtype = _get_dtype_of(obj)
+ return _recursive_fill_value(dtype, _scalar_fill_value)
+
+
+def minimum_fill_value(obj):
+ """
+ Return the maximum value that can be represented by the dtype of an object.
+
+ This function is useful for calculating a fill value suitable for
+ taking the minimum of an array with a given dtype.
+
+ Parameters
+ ----------
+ obj : ndarray, dtype or scalar
+ An object that can be queried for it's numeric type.
+
+ Returns
+ -------
+ val : scalar
+ The maximum representable value.
+
+ Raises
+ ------
+ TypeError
+ If `obj` isn't a suitable numeric type.
+
+ See Also
+ --------
+ maximum_fill_value : The inverse function.
+ set_fill_value : Set the filling value of a masked array.
+ MaskedArray.fill_value : Return current fill value.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.int8()
+ >>> ma.minimum_fill_value(a)
+ 127
+ >>> a = np.int32()
+ >>> ma.minimum_fill_value(a)
+ 2147483647
+
+ An array of numeric data can also be passed.
+
+ >>> a = np.array([1, 2, 3], dtype=np.int8)
+ >>> ma.minimum_fill_value(a)
+ 127
+ >>> a = np.array([1, 2, 3], dtype=np.float32)
+ >>> ma.minimum_fill_value(a)
+ inf
+
+ """
+ return _extremum_fill_value(obj, min_filler, "minimum")
+
+
+def maximum_fill_value(obj):
+ """
+ Return the minimum value that can be represented by the dtype of an object.
+
+ This function is useful for calculating a fill value suitable for
+ taking the maximum of an array with a given dtype.
+
+ Parameters
+ ----------
+ obj : ndarray, dtype or scalar
+ An object that can be queried for it's numeric type.
+
+ Returns
+ -------
+ val : scalar
+ The minimum representable value.
+
+ Raises
+ ------
+ TypeError
+ If `obj` isn't a suitable numeric type.
+
+ See Also
+ --------
+ minimum_fill_value : The inverse function.
+ set_fill_value : Set the filling value of a masked array.
+ MaskedArray.fill_value : Return current fill value.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.int8()
+ >>> ma.maximum_fill_value(a)
+ -128
+ >>> a = np.int32()
+ >>> ma.maximum_fill_value(a)
+ -2147483648
+
+ An array of numeric data can also be passed.
+
+ >>> a = np.array([1, 2, 3], dtype=np.int8)
+ >>> ma.maximum_fill_value(a)
+ -128
+ >>> a = np.array([1, 2, 3], dtype=np.float32)
+ >>> ma.maximum_fill_value(a)
+ -inf
+
+ """
+ return _extremum_fill_value(obj, max_filler, "maximum")
+
+
+def _recursive_set_fill_value(fillvalue, dt):
+ """
+ Create a fill value for a structured dtype.
+
+ Parameters
+ ----------
+ fillvalue : scalar or array_like
+ Scalar or array representing the fill value. If it is of shorter
+ length than the number of fields in dt, it will be resized.
+ dt : dtype
+ The structured dtype for which to create the fill value.
+
+ Returns
+ -------
+ val : tuple
+ A tuple of values corresponding to the structured fill value.
+
+ """
+ fillvalue = np.resize(fillvalue, len(dt.names))
+ output_value = []
+ for (fval, name) in zip(fillvalue, dt.names):
+ cdtype = dt[name]
+ if cdtype.subdtype:
+ cdtype = cdtype.subdtype[0]
+
+ if cdtype.names is not None:
+ output_value.append(tuple(_recursive_set_fill_value(fval, cdtype)))
+ else:
+ output_value.append(np.array(fval, dtype=cdtype).item())
+ return tuple(output_value)
+
+
+def _check_fill_value(fill_value, ndtype):
+ """
+ Private function validating the given `fill_value` for the given dtype.
+
+ If fill_value is None, it is set to the default corresponding to the dtype.
+
+ If fill_value is not None, its value is forced to the given dtype.
+
+ The result is always a 0d array.
+
+ """
+ ndtype = np.dtype(ndtype)
+ if fill_value is None:
+ fill_value = default_fill_value(ndtype)
+ elif ndtype.names is not None:
+ if isinstance(fill_value, (ndarray, np.void)):
+ try:
+ fill_value = np.array(fill_value, copy=False, dtype=ndtype)
+ except ValueError as e:
+ err_msg = "Unable to transform %s to dtype %s"
+ raise ValueError(err_msg % (fill_value, ndtype)) from e
+ else:
+ fill_value = np.asarray(fill_value, dtype=object)
+ fill_value = np.array(_recursive_set_fill_value(fill_value, ndtype),
+ dtype=ndtype)
+ else:
+ if isinstance(fill_value, str) and (ndtype.char not in 'OSVU'):
+ # Note this check doesn't work if fill_value is not a scalar
+ err_msg = "Cannot set fill value of string with array of dtype %s"
+ raise TypeError(err_msg % ndtype)
+ else:
+ # In case we want to convert 1e20 to int.
+ # Also in case of converting string arrays.
+ try:
+ fill_value = np.array(fill_value, copy=False, dtype=ndtype)
+ except (OverflowError, ValueError) as e:
+ # Raise TypeError instead of OverflowError or ValueError.
+ # OverflowError is seldom used, and the real problem here is
+ # that the passed fill_value is not compatible with the ndtype.
+ err_msg = "Cannot convert fill_value %s to dtype %s"
+ raise TypeError(err_msg % (fill_value, ndtype)) from e
+ return np.array(fill_value)
+
+
+def set_fill_value(a, fill_value):
+ """
+ Set the filling value of a, if a is a masked array.
+
+ This function changes the fill value of the masked array `a` in place.
+ If `a` is not a masked array, the function returns silently, without
+ doing anything.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ fill_value : dtype
+ Filling value. A consistency test is performed to make sure
+ the value is compatible with the dtype of `a`.
+
+ Returns
+ -------
+ None
+ Nothing returned by this function.
+
+ See Also
+ --------
+ maximum_fill_value : Return the default fill value for a dtype.
+ MaskedArray.fill_value : Return current fill value.
+ MaskedArray.set_fill_value : Equivalent method.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.arange(5)
+ >>> a
+ array([0, 1, 2, 3, 4])
+ >>> a = ma.masked_where(a < 3, a)
+ >>> a
+ masked_array(data=[--, --, --, 3, 4],
+ mask=[ True, True, True, False, False],
+ fill_value=999999)
+ >>> ma.set_fill_value(a, -999)
+ >>> a
+ masked_array(data=[--, --, --, 3, 4],
+ mask=[ True, True, True, False, False],
+ fill_value=-999)
+
+ Nothing happens if `a` is not a masked array.
+
+ >>> a = list(range(5))
+ >>> a
+ [0, 1, 2, 3, 4]
+ >>> ma.set_fill_value(a, 100)
+ >>> a
+ [0, 1, 2, 3, 4]
+ >>> a = np.arange(5)
+ >>> a
+ array([0, 1, 2, 3, 4])
+ >>> ma.set_fill_value(a, 100)
+ >>> a
+ array([0, 1, 2, 3, 4])
+
+ """
+ if isinstance(a, MaskedArray):
+ a.set_fill_value(fill_value)
+ return
+
+
+def get_fill_value(a):
+ """
+ Return the filling value of a, if any. Otherwise, returns the
+ default filling value for that type.
+
+ """
+ if isinstance(a, MaskedArray):
+ result = a.fill_value
+ else:
+ result = default_fill_value(a)
+ return result
+
+
+def common_fill_value(a, b):
+ """
+ Return the common filling value of two masked arrays, if any.
+
+ If ``a.fill_value == b.fill_value``, return the fill value,
+ otherwise return None.
+
+ Parameters
+ ----------
+ a, b : MaskedArray
+ The masked arrays for which to compare fill values.
+
+ Returns
+ -------
+ fill_value : scalar or None
+ The common fill value, or None.
+
+ Examples
+ --------
+ >>> x = np.ma.array([0, 1.], fill_value=3)
+ >>> y = np.ma.array([0, 1.], fill_value=3)
+ >>> np.ma.common_fill_value(x, y)
+ 3.0
+
+ """
+ t1 = get_fill_value(a)
+ t2 = get_fill_value(b)
+ if t1 == t2:
+ return t1
+ return None
+
+
+def filled(a, fill_value=None):
+ """
+ Return input as an array with masked data replaced by a fill value.
+
+ If `a` is not a `MaskedArray`, `a` itself is returned.
+ If `a` is a `MaskedArray` and `fill_value` is None, `fill_value` is set to
+ ``a.fill_value``.
+
+ Parameters
+ ----------
+ a : MaskedArray or array_like
+ An input object.
+ fill_value : array_like, optional.
+ Can be scalar or non-scalar. If non-scalar, the
+ resulting filled array should be broadcastable
+ over input array. Default is None.
+
+ Returns
+ -------
+ a : ndarray
+ The filled array.
+
+ See Also
+ --------
+ compressed
+
+ Examples
+ --------
+ >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
+ ... [1, 0, 0],
+ ... [0, 0, 0]])
+ >>> x.filled()
+ array([[999999, 1, 2],
+ [999999, 4, 5],
+ [ 6, 7, 8]])
+ >>> x.filled(fill_value=333)
+ array([[333, 1, 2],
+ [333, 4, 5],
+ [ 6, 7, 8]])
+ >>> x.filled(fill_value=np.arange(3))
+ array([[0, 1, 2],
+ [0, 4, 5],
+ [6, 7, 8]])
+
+ """
+ if hasattr(a, 'filled'):
+ return a.filled(fill_value)
+
+ elif isinstance(a, ndarray):
+ # Should we check for contiguity ? and a.flags['CONTIGUOUS']:
+ return a
+ elif isinstance(a, dict):
+ return np.array(a, 'O')
+ else:
+ return np.array(a)
+
+
+def get_masked_subclass(*arrays):
+ """
+ Return the youngest subclass of MaskedArray from a list of (masked) arrays.
+
+ In case of siblings, the first listed takes over.
+
+ """
+ if len(arrays) == 1:
+ arr = arrays[0]
+ if isinstance(arr, MaskedArray):
+ rcls = type(arr)
+ else:
+ rcls = MaskedArray
+ else:
+ arrcls = [type(a) for a in arrays]
+ rcls = arrcls[0]
+ if not issubclass(rcls, MaskedArray):
+ rcls = MaskedArray
+ for cls in arrcls[1:]:
+ if issubclass(cls, rcls):
+ rcls = cls
+ # Don't return MaskedConstant as result: revert to MaskedArray
+ if rcls.__name__ == 'MaskedConstant':
+ return MaskedArray
+ return rcls
+
+
+def getdata(a, subok=True):
+ """
+ Return the data of a masked array as an ndarray.
+
+ Return the data of `a` (if any) as an ndarray if `a` is a ``MaskedArray``,
+ else return `a` as a ndarray or subclass (depending on `subok`) if not.
+
+ Parameters
+ ----------
+ a : array_like
+ Input ``MaskedArray``, alternatively a ndarray or a subclass thereof.
+ subok : bool
+ Whether to force the output to be a `pure` ndarray (False) or to
+ return a subclass of ndarray if appropriate (True, default).
+
+ See Also
+ --------
+ getmask : Return the mask of a masked array, or nomask.
+ getmaskarray : Return the mask of a masked array, or full array of False.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = ma.masked_equal([[1,2],[3,4]], 2)
+ >>> a
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=2)
+ >>> ma.getdata(a)
+ array([[1, 2],
+ [3, 4]])
+
+ Equivalently use the ``MaskedArray`` `data` attribute.
+
+ >>> a.data
+ array([[1, 2],
+ [3, 4]])
+
+ """
+ try:
+ data = a._data
+ except AttributeError:
+ data = np.array(a, copy=False, subok=subok)
+ if not subok:
+ return data.view(ndarray)
+ return data
+
+
+get_data = getdata
+
+
+def fix_invalid(a, mask=nomask, copy=True, fill_value=None):
+ """
+ Return input with invalid data masked and replaced by a fill value.
+
+ Invalid data means values of `nan`, `inf`, etc.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array, a (subclass of) ndarray.
+ mask : sequence, optional
+ Mask. Must be convertible to an array of booleans with the same
+ shape as `data`. True indicates a masked (i.e. invalid) data.
+ copy : bool, optional
+ Whether to use a copy of `a` (True) or to fix `a` in place (False).
+ Default is True.
+ fill_value : scalar, optional
+ Value used for fixing invalid data. Default is None, in which case
+ the ``a.fill_value`` is used.
+
+ Returns
+ -------
+ b : MaskedArray
+ The input array with invalid entries fixed.
+
+ Notes
+ -----
+ A copy is performed by default.
+
+ Examples
+ --------
+ >>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
+ >>> x
+ masked_array(data=[--, -1.0, nan, inf],
+ mask=[ True, False, False, False],
+ fill_value=1e+20)
+ >>> np.ma.fix_invalid(x)
+ masked_array(data=[--, -1.0, --, --],
+ mask=[ True, False, True, True],
+ fill_value=1e+20)
+
+ >>> fixed = np.ma.fix_invalid(x)
+ >>> fixed.data
+ array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20])
+ >>> x.data
+ array([ 1., -1., nan, inf])
+
+ """
+ a = masked_array(a, copy=copy, mask=mask, subok=True)
+ invalid = np.logical_not(np.isfinite(a._data))
+ if not invalid.any():
+ return a
+ a._mask |= invalid
+ if fill_value is None:
+ fill_value = a.fill_value
+ a._data[invalid] = fill_value
+ return a
+
+def is_string_or_list_of_strings(val):
+ return (isinstance(val, str) or
+ (isinstance(val, list) and val and
+ builtins.all(isinstance(s, str) for s in val)))
+
+###############################################################################
+# Ufuncs #
+###############################################################################
+
+
+ufunc_domain = {}
+ufunc_fills = {}
+
+
+class _DomainCheckInterval:
+ """
+ Define a valid interval, so that :
+
+ ``domain_check_interval(a,b)(x) == True`` where
+ ``x < a`` or ``x > b``.
+
+ """
+
+ def __init__(self, a, b):
+ "domain_check_interval(a,b)(x) = true where x < a or y > b"
+ if a > b:
+ (a, b) = (b, a)
+ self.a = a
+ self.b = b
+
+ def __call__(self, x):
+ "Execute the call behavior."
+ # nans at masked positions cause RuntimeWarnings, even though
+ # they are masked. To avoid this we suppress warnings.
+ with np.errstate(invalid='ignore'):
+ return umath.logical_or(umath.greater(x, self.b),
+ umath.less(x, self.a))
+
+
+class _DomainTan:
+ """
+ Define a valid interval for the `tan` function, so that:
+
+ ``domain_tan(eps) = True`` where ``abs(cos(x)) < eps``
+
+ """
+
+ def __init__(self, eps):
+ "domain_tan(eps) = true where abs(cos(x)) < eps)"
+ self.eps = eps
+
+ def __call__(self, x):
+ "Executes the call behavior."
+ with np.errstate(invalid='ignore'):
+ return umath.less(umath.absolute(umath.cos(x)), self.eps)
+
+
+class _DomainSafeDivide:
+ """
+ Define a domain for safe division.
+
+ """
+
+ def __init__(self, tolerance=None):
+ self.tolerance = tolerance
+
+ def __call__(self, a, b):
+ # Delay the selection of the tolerance to here in order to reduce numpy
+ # import times. The calculation of these parameters is a substantial
+ # component of numpy's import time.
+ if self.tolerance is None:
+ self.tolerance = np.finfo(float).tiny
+ # don't call ma ufuncs from __array_wrap__ which would fail for scalars
+ a, b = np.asarray(a), np.asarray(b)
+ with np.errstate(invalid='ignore'):
+ return umath.absolute(a) * self.tolerance >= umath.absolute(b)
+
+
+class _DomainGreater:
+ """
+ DomainGreater(v)(x) is True where x <= v.
+
+ """
+
+ def __init__(self, critical_value):
+ "DomainGreater(v)(x) = true where x <= v"
+ self.critical_value = critical_value
+
+ def __call__(self, x):
+ "Executes the call behavior."
+ with np.errstate(invalid='ignore'):
+ return umath.less_equal(x, self.critical_value)
+
+
+class _DomainGreaterEqual:
+ """
+ DomainGreaterEqual(v)(x) is True where x < v.
+
+ """
+
+ def __init__(self, critical_value):
+ "DomainGreaterEqual(v)(x) = true where x < v"
+ self.critical_value = critical_value
+
+ def __call__(self, x):
+ "Executes the call behavior."
+ with np.errstate(invalid='ignore'):
+ return umath.less(x, self.critical_value)
+
+
+class _MaskedUFunc:
+ def __init__(self, ufunc):
+ self.f = ufunc
+ self.__doc__ = ufunc.__doc__
+ self.__name__ = ufunc.__name__
+
+ def __str__(self):
+ return f"Masked version of {self.f}"
+
+
+class _MaskedUnaryOperation(_MaskedUFunc):
+ """
+ Defines masked version of unary operations, where invalid values are
+ pre-masked.
+
+ Parameters
+ ----------
+ mufunc : callable
+ The function for which to define a masked version. Made available
+ as ``_MaskedUnaryOperation.f``.
+ fill : scalar, optional
+ Filling value, default is 0.
+ domain : class instance
+ Domain for the function. Should be one of the ``_Domain*``
+ classes. Default is None.
+
+ """
+
+ def __init__(self, mufunc, fill=0, domain=None):
+ super().__init__(mufunc)
+ self.fill = fill
+ self.domain = domain
+ ufunc_domain[mufunc] = domain
+ ufunc_fills[mufunc] = fill
+
+ def __call__(self, a, *args, **kwargs):
+ """
+ Execute the call behavior.
+
+ """
+ d = getdata(a)
+ # Deal with domain
+ if self.domain is not None:
+ # Case 1.1. : Domained function
+ # nans at masked positions cause RuntimeWarnings, even though
+ # they are masked. To avoid this we suppress warnings.
+ with np.errstate(divide='ignore', invalid='ignore'):
+ result = self.f(d, *args, **kwargs)
+ # Make a mask
+ m = ~umath.isfinite(result)
+ m |= self.domain(d)
+ m |= getmask(a)
+ else:
+ # Case 1.2. : Function without a domain
+ # Get the result and the mask
+ with np.errstate(divide='ignore', invalid='ignore'):
+ result = self.f(d, *args, **kwargs)
+ m = getmask(a)
+
+ if not result.ndim:
+ # Case 2.1. : The result is scalarscalar
+ if m:
+ return masked
+ return result
+
+ if m is not nomask:
+ # Case 2.2. The result is an array
+ # We need to fill the invalid data back w/ the input Now,
+ # that's plain silly: in C, we would just skip the element and
+ # keep the original, but we do have to do it that way in Python
+
+ # In case result has a lower dtype than the inputs (as in
+ # equal)
+ try:
+ np.copyto(result, d, where=m)
+ except TypeError:
+ pass
+ # Transform to
+ masked_result = result.view(get_masked_subclass(a))
+ masked_result._mask = m
+ masked_result._update_from(a)
+ return masked_result
+
+
+class _MaskedBinaryOperation(_MaskedUFunc):
+ """
+ Define masked version of binary operations, where invalid
+ values are pre-masked.
+
+ Parameters
+ ----------
+ mbfunc : function
+ The function for which to define a masked version. Made available
+ as ``_MaskedBinaryOperation.f``.
+ domain : class instance
+ Default domain for the function. Should be one of the ``_Domain*``
+ classes. Default is None.
+ fillx : scalar, optional
+ Filling value for the first argument, default is 0.
+ filly : scalar, optional
+ Filling value for the second argument, default is 0.
+
+ """
+
+ def __init__(self, mbfunc, fillx=0, filly=0):
+ """
+ abfunc(fillx, filly) must be defined.
+
+ abfunc(x, filly) = x for all x to enable reduce.
+
+ """
+ super().__init__(mbfunc)
+ self.fillx = fillx
+ self.filly = filly
+ ufunc_domain[mbfunc] = None
+ ufunc_fills[mbfunc] = (fillx, filly)
+
+ def __call__(self, a, b, *args, **kwargs):
+ """
+ Execute the call behavior.
+
+ """
+ # Get the data, as ndarray
+ (da, db) = (getdata(a), getdata(b))
+ # Get the result
+ with np.errstate():
+ np.seterr(divide='ignore', invalid='ignore')
+ result = self.f(da, db, *args, **kwargs)
+ # Get the mask for the result
+ (ma, mb) = (getmask(a), getmask(b))
+ if ma is nomask:
+ if mb is nomask:
+ m = nomask
+ else:
+ m = umath.logical_or(getmaskarray(a), mb)
+ elif mb is nomask:
+ m = umath.logical_or(ma, getmaskarray(b))
+ else:
+ m = umath.logical_or(ma, mb)
+
+ # Case 1. : scalar
+ if not result.ndim:
+ if m:
+ return masked
+ return result
+
+ # Case 2. : array
+ # Revert result to da where masked
+ if m is not nomask and m.any():
+ # any errors, just abort; impossible to guarantee masked values
+ try:
+ np.copyto(result, da, casting='unsafe', where=m)
+ except Exception:
+ pass
+
+ # Transforms to a (subclass of) MaskedArray
+ masked_result = result.view(get_masked_subclass(a, b))
+ masked_result._mask = m
+ if isinstance(a, MaskedArray):
+ masked_result._update_from(a)
+ elif isinstance(b, MaskedArray):
+ masked_result._update_from(b)
+ return masked_result
+
+ def reduce(self, target, axis=0, dtype=None):
+ """
+ Reduce `target` along the given `axis`.
+
+ """
+ tclass = get_masked_subclass(target)
+ m = getmask(target)
+ t = filled(target, self.filly)
+ if t.shape == ():
+ t = t.reshape(1)
+ if m is not nomask:
+ m = make_mask(m, copy=True)
+ m.shape = (1,)
+
+ if m is nomask:
+ tr = self.f.reduce(t, axis)
+ mr = nomask
+ else:
+ tr = self.f.reduce(t, axis, dtype=dtype)
+ mr = umath.logical_and.reduce(m, axis)
+
+ if not tr.shape:
+ if mr:
+ return masked
+ else:
+ return tr
+ masked_tr = tr.view(tclass)
+ masked_tr._mask = mr
+ return masked_tr
+
+ def outer(self, a, b):
+ """
+ Return the function applied to the outer product of a and b.
+
+ """
+ (da, db) = (getdata(a), getdata(b))
+ d = self.f.outer(da, db)
+ ma = getmask(a)
+ mb = getmask(b)
+ if ma is nomask and mb is nomask:
+ m = nomask
+ else:
+ ma = getmaskarray(a)
+ mb = getmaskarray(b)
+ m = umath.logical_or.outer(ma, mb)
+ if (not m.ndim) and m:
+ return masked
+ if m is not nomask:
+ np.copyto(d, da, where=m)
+ if not d.shape:
+ return d
+ masked_d = d.view(get_masked_subclass(a, b))
+ masked_d._mask = m
+ return masked_d
+
+ def accumulate(self, target, axis=0):
+ """Accumulate `target` along `axis` after filling with y fill
+ value.
+
+ """
+ tclass = get_masked_subclass(target)
+ t = filled(target, self.filly)
+ result = self.f.accumulate(t, axis)
+ masked_result = result.view(tclass)
+ return masked_result
+
+
+
+class _DomainedBinaryOperation(_MaskedUFunc):
+ """
+ Define binary operations that have a domain, like divide.
+
+ They have no reduce, outer or accumulate.
+
+ Parameters
+ ----------
+ mbfunc : function
+ The function for which to define a masked version. Made available
+ as ``_DomainedBinaryOperation.f``.
+ domain : class instance
+ Default domain for the function. Should be one of the ``_Domain*``
+ classes.
+ fillx : scalar, optional
+ Filling value for the first argument, default is 0.
+ filly : scalar, optional
+ Filling value for the second argument, default is 0.
+
+ """
+
+ def __init__(self, dbfunc, domain, fillx=0, filly=0):
+ """abfunc(fillx, filly) must be defined.
+ abfunc(x, filly) = x for all x to enable reduce.
+ """
+ super().__init__(dbfunc)
+ self.domain = domain
+ self.fillx = fillx
+ self.filly = filly
+ ufunc_domain[dbfunc] = domain
+ ufunc_fills[dbfunc] = (fillx, filly)
+
+ def __call__(self, a, b, *args, **kwargs):
+ "Execute the call behavior."
+ # Get the data
+ (da, db) = (getdata(a), getdata(b))
+ # Get the result
+ with np.errstate(divide='ignore', invalid='ignore'):
+ result = self.f(da, db, *args, **kwargs)
+ # Get the mask as a combination of the source masks and invalid
+ m = ~umath.isfinite(result)
+ m |= getmask(a)
+ m |= getmask(b)
+ # Apply the domain
+ domain = ufunc_domain.get(self.f, None)
+ if domain is not None:
+ m |= domain(da, db)
+ # Take care of the scalar case first
+ if not m.ndim:
+ if m:
+ return masked
+ else:
+ return result
+ # When the mask is True, put back da if possible
+ # any errors, just abort; impossible to guarantee masked values
+ try:
+ np.copyto(result, 0, casting='unsafe', where=m)
+ # avoid using "*" since this may be overlaid
+ masked_da = umath.multiply(m, da)
+ # only add back if it can be cast safely
+ if np.can_cast(masked_da.dtype, result.dtype, casting='safe'):
+ result += masked_da
+ except Exception:
+ pass
+
+ # Transforms to a (subclass of) MaskedArray
+ masked_result = result.view(get_masked_subclass(a, b))
+ masked_result._mask = m
+ if isinstance(a, MaskedArray):
+ masked_result._update_from(a)
+ elif isinstance(b, MaskedArray):
+ masked_result._update_from(b)
+ return masked_result
+
+
+# Unary ufuncs
+exp = _MaskedUnaryOperation(umath.exp)
+conjugate = _MaskedUnaryOperation(umath.conjugate)
+sin = _MaskedUnaryOperation(umath.sin)
+cos = _MaskedUnaryOperation(umath.cos)
+arctan = _MaskedUnaryOperation(umath.arctan)
+arcsinh = _MaskedUnaryOperation(umath.arcsinh)
+sinh = _MaskedUnaryOperation(umath.sinh)
+cosh = _MaskedUnaryOperation(umath.cosh)
+tanh = _MaskedUnaryOperation(umath.tanh)
+abs = absolute = _MaskedUnaryOperation(umath.absolute)
+angle = _MaskedUnaryOperation(angle) # from numpy.lib.function_base
+fabs = _MaskedUnaryOperation(umath.fabs)
+negative = _MaskedUnaryOperation(umath.negative)
+floor = _MaskedUnaryOperation(umath.floor)
+ceil = _MaskedUnaryOperation(umath.ceil)
+around = _MaskedUnaryOperation(np.round_)
+logical_not = _MaskedUnaryOperation(umath.logical_not)
+
+# Domained unary ufuncs
+sqrt = _MaskedUnaryOperation(umath.sqrt, 0.0,
+ _DomainGreaterEqual(0.0))
+log = _MaskedUnaryOperation(umath.log, 1.0,
+ _DomainGreater(0.0))
+log2 = _MaskedUnaryOperation(umath.log2, 1.0,
+ _DomainGreater(0.0))
+log10 = _MaskedUnaryOperation(umath.log10, 1.0,
+ _DomainGreater(0.0))
+tan = _MaskedUnaryOperation(umath.tan, 0.0,
+ _DomainTan(1e-35))
+arcsin = _MaskedUnaryOperation(umath.arcsin, 0.0,
+ _DomainCheckInterval(-1.0, 1.0))
+arccos = _MaskedUnaryOperation(umath.arccos, 0.0,
+ _DomainCheckInterval(-1.0, 1.0))
+arccosh = _MaskedUnaryOperation(umath.arccosh, 1.0,
+ _DomainGreaterEqual(1.0))
+arctanh = _MaskedUnaryOperation(umath.arctanh, 0.0,
+ _DomainCheckInterval(-1.0 + 1e-15, 1.0 - 1e-15))
+
+# Binary ufuncs
+add = _MaskedBinaryOperation(umath.add)
+subtract = _MaskedBinaryOperation(umath.subtract)
+multiply = _MaskedBinaryOperation(umath.multiply, 1, 1)
+arctan2 = _MaskedBinaryOperation(umath.arctan2, 0.0, 1.0)
+equal = _MaskedBinaryOperation(umath.equal)
+equal.reduce = None
+not_equal = _MaskedBinaryOperation(umath.not_equal)
+not_equal.reduce = None
+less_equal = _MaskedBinaryOperation(umath.less_equal)
+less_equal.reduce = None
+greater_equal = _MaskedBinaryOperation(umath.greater_equal)
+greater_equal.reduce = None
+less = _MaskedBinaryOperation(umath.less)
+less.reduce = None
+greater = _MaskedBinaryOperation(umath.greater)
+greater.reduce = None
+logical_and = _MaskedBinaryOperation(umath.logical_and)
+alltrue = _MaskedBinaryOperation(umath.logical_and, 1, 1).reduce
+logical_or = _MaskedBinaryOperation(umath.logical_or)
+sometrue = logical_or.reduce
+logical_xor = _MaskedBinaryOperation(umath.logical_xor)
+bitwise_and = _MaskedBinaryOperation(umath.bitwise_and)
+bitwise_or = _MaskedBinaryOperation(umath.bitwise_or)
+bitwise_xor = _MaskedBinaryOperation(umath.bitwise_xor)
+hypot = _MaskedBinaryOperation(umath.hypot)
+
+# Domained binary ufuncs
+divide = _DomainedBinaryOperation(umath.divide, _DomainSafeDivide(), 0, 1)
+true_divide = _DomainedBinaryOperation(umath.true_divide,
+ _DomainSafeDivide(), 0, 1)
+floor_divide = _DomainedBinaryOperation(umath.floor_divide,
+ _DomainSafeDivide(), 0, 1)
+remainder = _DomainedBinaryOperation(umath.remainder,
+ _DomainSafeDivide(), 0, 1)
+fmod = _DomainedBinaryOperation(umath.fmod, _DomainSafeDivide(), 0, 1)
+mod = _DomainedBinaryOperation(umath.mod, _DomainSafeDivide(), 0, 1)
+
+
+###############################################################################
+# Mask creation functions #
+###############################################################################
+
+
+def _replace_dtype_fields_recursive(dtype, primitive_dtype):
+ "Private function allowing recursion in _replace_dtype_fields."
+ _recurse = _replace_dtype_fields_recursive
+
+ # Do we have some name fields ?
+ if dtype.names is not None:
+ descr = []
+ for name in dtype.names:
+ field = dtype.fields[name]
+ if len(field) == 3:
+ # Prepend the title to the name
+ name = (field[-1], name)
+ descr.append((name, _recurse(field[0], primitive_dtype)))
+ new_dtype = np.dtype(descr)
+
+ # Is this some kind of composite a la (float,2)
+ elif dtype.subdtype:
+ descr = list(dtype.subdtype)
+ descr[0] = _recurse(dtype.subdtype[0], primitive_dtype)
+ new_dtype = np.dtype(tuple(descr))
+
+ # this is a primitive type, so do a direct replacement
+ else:
+ new_dtype = primitive_dtype
+
+ # preserve identity of dtypes
+ if new_dtype == dtype:
+ new_dtype = dtype
+
+ return new_dtype
+
+
+def _replace_dtype_fields(dtype, primitive_dtype):
+ """
+ Construct a dtype description list from a given dtype.
+
+ Returns a new dtype object, with all fields and subtypes in the given type
+ recursively replaced with `primitive_dtype`.
+
+ Arguments are coerced to dtypes first.
+ """
+ dtype = np.dtype(dtype)
+ primitive_dtype = np.dtype(primitive_dtype)
+ return _replace_dtype_fields_recursive(dtype, primitive_dtype)
+
+
+def make_mask_descr(ndtype):
+ """
+ Construct a dtype description list from a given dtype.
+
+ Returns a new dtype object, with the type of all fields in `ndtype` to a
+ boolean type. Field names are not altered.
+
+ Parameters
+ ----------
+ ndtype : dtype
+ The dtype to convert.
+
+ Returns
+ -------
+ result : dtype
+ A dtype that looks like `ndtype`, the type of all fields is boolean.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> dtype = np.dtype({'names':['foo', 'bar'],
+ ... 'formats':[np.float32, np.int64]})
+ >>> dtype
+ dtype([('foo', '<f4'), ('bar', '<i8')])
+ >>> ma.make_mask_descr(dtype)
+ dtype([('foo', '|b1'), ('bar', '|b1')])
+ >>> ma.make_mask_descr(np.float32)
+ dtype('bool')
+
+ """
+ return _replace_dtype_fields(ndtype, MaskType)
+
+
+def getmask(a):
+ """
+ Return the mask of a masked array, or nomask.
+
+ Return the mask of `a` as an ndarray if `a` is a `MaskedArray` and the
+ mask is not `nomask`, else return `nomask`. To guarantee a full array
+ of booleans of the same shape as a, use `getmaskarray`.
+
+ Parameters
+ ----------
+ a : array_like
+ Input `MaskedArray` for which the mask is required.
+
+ See Also
+ --------
+ getdata : Return the data of a masked array as an ndarray.
+ getmaskarray : Return the mask of a masked array, or full array of False.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = ma.masked_equal([[1,2],[3,4]], 2)
+ >>> a
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=2)
+ >>> ma.getmask(a)
+ array([[False, True],
+ [False, False]])
+
+ Equivalently use the `MaskedArray` `mask` attribute.
+
+ >>> a.mask
+ array([[False, True],
+ [False, False]])
+
+ Result when mask == `nomask`
+
+ >>> b = ma.masked_array([[1,2],[3,4]])
+ >>> b
+ masked_array(
+ data=[[1, 2],
+ [3, 4]],
+ mask=False,
+ fill_value=999999)
+ >>> ma.nomask
+ False
+ >>> ma.getmask(b) == ma.nomask
+ True
+ >>> b.mask == ma.nomask
+ True
+
+ """
+ return getattr(a, '_mask', nomask)
+
+
+get_mask = getmask
+
+
+def getmaskarray(arr):
+ """
+ Return the mask of a masked array, or full boolean array of False.
+
+ Return the mask of `arr` as an ndarray if `arr` is a `MaskedArray` and
+ the mask is not `nomask`, else return a full boolean array of False of
+ the same shape as `arr`.
+
+ Parameters
+ ----------
+ arr : array_like
+ Input `MaskedArray` for which the mask is required.
+
+ See Also
+ --------
+ getmask : Return the mask of a masked array, or nomask.
+ getdata : Return the data of a masked array as an ndarray.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = ma.masked_equal([[1,2],[3,4]], 2)
+ >>> a
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=2)
+ >>> ma.getmaskarray(a)
+ array([[False, True],
+ [False, False]])
+
+ Result when mask == ``nomask``
+
+ >>> b = ma.masked_array([[1,2],[3,4]])
+ >>> b
+ masked_array(
+ data=[[1, 2],
+ [3, 4]],
+ mask=False,
+ fill_value=999999)
+ >>> ma.getmaskarray(b)
+ array([[False, False],
+ [False, False]])
+
+ """
+ mask = getmask(arr)
+ if mask is nomask:
+ mask = make_mask_none(np.shape(arr), getattr(arr, 'dtype', None))
+ return mask
+
+
+def is_mask(m):
+ """
+ Return True if m is a valid, standard mask.
+
+ This function does not check the contents of the input, only that the
+ type is MaskType. In particular, this function returns False if the
+ mask has a flexible dtype.
+
+ Parameters
+ ----------
+ m : array_like
+ Array to test.
+
+ Returns
+ -------
+ result : bool
+ True if `m.dtype.type` is MaskType, False otherwise.
+
+ See Also
+ --------
+ ma.isMaskedArray : Test whether input is an instance of MaskedArray.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
+ >>> m
+ masked_array(data=[--, 1, --, 2, 3],
+ mask=[ True, False, True, False, False],
+ fill_value=0)
+ >>> ma.is_mask(m)
+ False
+ >>> ma.is_mask(m.mask)
+ True
+
+ Input must be an ndarray (or have similar attributes)
+ for it to be considered a valid mask.
+
+ >>> m = [False, True, False]
+ >>> ma.is_mask(m)
+ False
+ >>> m = np.array([False, True, False])
+ >>> m
+ array([False, True, False])
+ >>> ma.is_mask(m)
+ True
+
+ Arrays with complex dtypes don't return True.
+
+ >>> dtype = np.dtype({'names':['monty', 'pithon'],
+ ... 'formats':[bool, bool]})
+ >>> dtype
+ dtype([('monty', '|b1'), ('pithon', '|b1')])
+ >>> m = np.array([(True, False), (False, True), (True, False)],
+ ... dtype=dtype)
+ >>> m
+ array([( True, False), (False, True), ( True, False)],
+ dtype=[('monty', '?'), ('pithon', '?')])
+ >>> ma.is_mask(m)
+ False
+
+ """
+ try:
+ return m.dtype.type is MaskType
+ except AttributeError:
+ return False
+
+
+def _shrink_mask(m):
+ """
+ Shrink a mask to nomask if possible
+ """
+ if m.dtype.names is None and not m.any():
+ return nomask
+ else:
+ return m
+
+
+def make_mask(m, copy=False, shrink=True, dtype=MaskType):
+ """
+ Create a boolean mask from an array.
+
+ Return `m` as a boolean mask, creating a copy if necessary or requested.
+ The function can accept any sequence that is convertible to integers,
+ or ``nomask``. Does not require that contents must be 0s and 1s, values
+ of 0 are interpreted as False, everything else as True.
+
+ Parameters
+ ----------
+ m : array_like
+ Potential mask.
+ copy : bool, optional
+ Whether to return a copy of `m` (True) or `m` itself (False).
+ shrink : bool, optional
+ Whether to shrink `m` to ``nomask`` if all its values are False.
+ dtype : dtype, optional
+ Data-type of the output mask. By default, the output mask has a
+ dtype of MaskType (bool). If the dtype is flexible, each field has
+ a boolean dtype. This is ignored when `m` is ``nomask``, in which
+ case ``nomask`` is always returned.
+
+ Returns
+ -------
+ result : ndarray
+ A boolean mask derived from `m`.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> m = [True, False, True, True]
+ >>> ma.make_mask(m)
+ array([ True, False, True, True])
+ >>> m = [1, 0, 1, 1]
+ >>> ma.make_mask(m)
+ array([ True, False, True, True])
+ >>> m = [1, 0, 2, -3]
+ >>> ma.make_mask(m)
+ array([ True, False, True, True])
+
+ Effect of the `shrink` parameter.
+
+ >>> m = np.zeros(4)
+ >>> m
+ array([0., 0., 0., 0.])
+ >>> ma.make_mask(m)
+ False
+ >>> ma.make_mask(m, shrink=False)
+ array([False, False, False, False])
+
+ Using a flexible `dtype`.
+
+ >>> m = [1, 0, 1, 1]
+ >>> n = [0, 1, 0, 0]
+ >>> arr = []
+ >>> for man, mouse in zip(m, n):
+ ... arr.append((man, mouse))
+ >>> arr
+ [(1, 0), (0, 1), (1, 0), (1, 0)]
+ >>> dtype = np.dtype({'names':['man', 'mouse'],
+ ... 'formats':[np.int64, np.int64]})
+ >>> arr = np.array(arr, dtype=dtype)
+ >>> arr
+ array([(1, 0), (0, 1), (1, 0), (1, 0)],
+ dtype=[('man', '<i8'), ('mouse', '<i8')])
+ >>> ma.make_mask(arr, dtype=dtype)
+ array([(True, False), (False, True), (True, False), (True, False)],
+ dtype=[('man', '|b1'), ('mouse', '|b1')])
+
+ """
+ if m is nomask:
+ return nomask
+
+ # Make sure the input dtype is valid.
+ dtype = make_mask_descr(dtype)
+
+ # legacy boolean special case: "existence of fields implies true"
+ if isinstance(m, ndarray) and m.dtype.fields and dtype == np.bool_:
+ return np.ones(m.shape, dtype=dtype)
+
+ # Fill the mask in case there are missing data; turn it into an ndarray.
+ result = np.array(filled(m, True), copy=copy, dtype=dtype, subok=True)
+ # Bas les masques !
+ if shrink:
+ result = _shrink_mask(result)
+ return result
+
+
+def make_mask_none(newshape, dtype=None):
+ """
+ Return a boolean mask of the given shape, filled with False.
+
+ This function returns a boolean ndarray with all entries False, that can
+ be used in common mask manipulations. If a complex dtype is specified, the
+ type of each field is converted to a boolean type.
+
+ Parameters
+ ----------
+ newshape : tuple
+ A tuple indicating the shape of the mask.
+ dtype : {None, dtype}, optional
+ If None, use a MaskType instance. Otherwise, use a new datatype with
+ the same fields as `dtype`, converted to boolean types.
+
+ Returns
+ -------
+ result : ndarray
+ An ndarray of appropriate shape and dtype, filled with False.
+
+ See Also
+ --------
+ make_mask : Create a boolean mask from an array.
+ make_mask_descr : Construct a dtype description list from a given dtype.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> ma.make_mask_none((3,))
+ array([False, False, False])
+
+ Defining a more complex dtype.
+
+ >>> dtype = np.dtype({'names':['foo', 'bar'],
+ ... 'formats':[np.float32, np.int64]})
+ >>> dtype
+ dtype([('foo', '<f4'), ('bar', '<i8')])
+ >>> ma.make_mask_none((3,), dtype=dtype)
+ array([(False, False), (False, False), (False, False)],
+ dtype=[('foo', '|b1'), ('bar', '|b1')])
+
+ """
+ if dtype is None:
+ result = np.zeros(newshape, dtype=MaskType)
+ else:
+ result = np.zeros(newshape, dtype=make_mask_descr(dtype))
+ return result
+
+
+def _recursive_mask_or(m1, m2, newmask):
+ names = m1.dtype.names
+ for name in names:
+ current1 = m1[name]
+ if current1.dtype.names is not None:
+ _recursive_mask_or(current1, m2[name], newmask[name])
+ else:
+ umath.logical_or(current1, m2[name], newmask[name])
+
+
+def mask_or(m1, m2, copy=False, shrink=True):
+ """
+ Combine two masks with the ``logical_or`` operator.
+
+ The result may be a view on `m1` or `m2` if the other is `nomask`
+ (i.e. False).
+
+ Parameters
+ ----------
+ m1, m2 : array_like
+ Input masks.
+ copy : bool, optional
+ If copy is False and one of the inputs is `nomask`, return a view
+ of the other input mask. Defaults to False.
+ shrink : bool, optional
+ Whether to shrink the output to `nomask` if all its values are
+ False. Defaults to True.
+
+ Returns
+ -------
+ mask : output mask
+ The result masks values that are masked in either `m1` or `m2`.
+
+ Raises
+ ------
+ ValueError
+ If `m1` and `m2` have different flexible dtypes.
+
+ Examples
+ --------
+ >>> m1 = np.ma.make_mask([0, 1, 1, 0])
+ >>> m2 = np.ma.make_mask([1, 0, 0, 0])
+ >>> np.ma.mask_or(m1, m2)
+ array([ True, True, True, False])
+
+ """
+
+ if (m1 is nomask) or (m1 is False):
+ dtype = getattr(m2, 'dtype', MaskType)
+ return make_mask(m2, copy=copy, shrink=shrink, dtype=dtype)
+ if (m2 is nomask) or (m2 is False):
+ dtype = getattr(m1, 'dtype', MaskType)
+ return make_mask(m1, copy=copy, shrink=shrink, dtype=dtype)
+ if m1 is m2 and is_mask(m1):
+ return m1
+ (dtype1, dtype2) = (getattr(m1, 'dtype', None), getattr(m2, 'dtype', None))
+ if dtype1 != dtype2:
+ raise ValueError("Incompatible dtypes '%s'<>'%s'" % (dtype1, dtype2))
+ if dtype1.names is not None:
+ # Allocate an output mask array with the properly broadcast shape.
+ newmask = np.empty(np.broadcast(m1, m2).shape, dtype1)
+ _recursive_mask_or(m1, m2, newmask)
+ return newmask
+ return make_mask(umath.logical_or(m1, m2), copy=copy, shrink=shrink)
+
+
+def flatten_mask(mask):
+ """
+ Returns a completely flattened version of the mask, where nested fields
+ are collapsed.
+
+ Parameters
+ ----------
+ mask : array_like
+ Input array, which will be interpreted as booleans.
+
+ Returns
+ -------
+ flattened_mask : ndarray of bools
+ The flattened input.
+
+ Examples
+ --------
+ >>> mask = np.array([0, 0, 1])
+ >>> np.ma.flatten_mask(mask)
+ array([False, False, True])
+
+ >>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
+ >>> np.ma.flatten_mask(mask)
+ array([False, False, False, True])
+
+ >>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
+ >>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype)
+ >>> np.ma.flatten_mask(mask)
+ array([False, False, False, False, False, True])
+
+ """
+
+ def _flatmask(mask):
+ "Flatten the mask and returns a (maybe nested) sequence of booleans."
+ mnames = mask.dtype.names
+ if mnames is not None:
+ return [flatten_mask(mask[name]) for name in mnames]
+ else:
+ return mask
+
+ def _flatsequence(sequence):
+ "Generates a flattened version of the sequence."
+ try:
+ for element in sequence:
+ if hasattr(element, '__iter__'):
+ yield from _flatsequence(element)
+ else:
+ yield element
+ except TypeError:
+ yield sequence
+
+ mask = np.asarray(mask)
+ flattened = _flatsequence(_flatmask(mask))
+ return np.array([_ for _ in flattened], dtype=bool)
+
+
+def _check_mask_axis(mask, axis, keepdims=np._NoValue):
+ "Check whether there are masked values along the given axis"
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+ if mask is not nomask:
+ return mask.all(axis=axis, **kwargs)
+ return nomask
+
+
+###############################################################################
+# Masking functions #
+###############################################################################
+
+def masked_where(condition, a, copy=True):
+ """
+ Mask an array where a condition is met.
+
+ Return `a` as an array masked where `condition` is True.
+ Any masked values of `a` or `condition` are also masked in the output.
+
+ Parameters
+ ----------
+ condition : array_like
+ Masking condition. When `condition` tests floating point values for
+ equality, consider using ``masked_values`` instead.
+ a : array_like
+ Array to mask.
+ copy : bool
+ If True (default) make a copy of `a` in the result. If False modify
+ `a` in place and return a view.
+
+ Returns
+ -------
+ result : MaskedArray
+ The result of masking `a` where `condition` is True.
+
+ See Also
+ --------
+ masked_values : Mask using floating point equality.
+ masked_equal : Mask where equal to a given value.
+ masked_not_equal : Mask where `not` equal to a given value.
+ masked_less_equal : Mask where less than or equal to a given value.
+ masked_greater_equal : Mask where greater than or equal to a given value.
+ masked_less : Mask where less than a given value.
+ masked_greater : Mask where greater than a given value.
+ masked_inside : Mask inside a given interval.
+ masked_outside : Mask outside a given interval.
+ masked_invalid : Mask invalid values (NaNs or infs).
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.arange(4)
+ >>> a
+ array([0, 1, 2, 3])
+ >>> ma.masked_where(a <= 2, a)
+ masked_array(data=[--, --, --, 3],
+ mask=[ True, True, True, False],
+ fill_value=999999)
+
+ Mask array `b` conditional on `a`.
+
+ >>> b = ['a', 'b', 'c', 'd']
+ >>> ma.masked_where(a == 2, b)
+ masked_array(data=['a', 'b', --, 'd'],
+ mask=[False, False, True, False],
+ fill_value='N/A',
+ dtype='<U1')
+
+ Effect of the `copy` argument.
+
+ >>> c = ma.masked_where(a <= 2, a)
+ >>> c
+ masked_array(data=[--, --, --, 3],
+ mask=[ True, True, True, False],
+ fill_value=999999)
+ >>> c[0] = 99
+ >>> c
+ masked_array(data=[99, --, --, 3],
+ mask=[False, True, True, False],
+ fill_value=999999)
+ >>> a
+ array([0, 1, 2, 3])
+ >>> c = ma.masked_where(a <= 2, a, copy=False)
+ >>> c[0] = 99
+ >>> c
+ masked_array(data=[99, --, --, 3],
+ mask=[False, True, True, False],
+ fill_value=999999)
+ >>> a
+ array([99, 1, 2, 3])
+
+ When `condition` or `a` contain masked values.
+
+ >>> a = np.arange(4)
+ >>> a = ma.masked_where(a == 2, a)
+ >>> a
+ masked_array(data=[0, 1, --, 3],
+ mask=[False, False, True, False],
+ fill_value=999999)
+ >>> b = np.arange(4)
+ >>> b = ma.masked_where(b == 0, b)
+ >>> b
+ masked_array(data=[--, 1, 2, 3],
+ mask=[ True, False, False, False],
+ fill_value=999999)
+ >>> ma.masked_where(a == 3, b)
+ masked_array(data=[--, 1, --, --],
+ mask=[ True, False, True, True],
+ fill_value=999999)
+
+ """
+ # Make sure that condition is a valid standard-type mask.
+ cond = make_mask(condition, shrink=False)
+ a = np.array(a, copy=copy, subok=True)
+
+ (cshape, ashape) = (cond.shape, a.shape)
+ if cshape and cshape != ashape:
+ raise IndexError("Inconsistent shape between the condition and the input"
+ " (got %s and %s)" % (cshape, ashape))
+ if hasattr(a, '_mask'):
+ cond = mask_or(cond, a._mask)
+ cls = type(a)
+ else:
+ cls = MaskedArray
+ result = a.view(cls)
+ # Assign to *.mask so that structured masks are handled correctly.
+ result.mask = _shrink_mask(cond)
+ # There is no view of a boolean so when 'a' is a MaskedArray with nomask
+ # the update to the result's mask has no effect.
+ if not copy and hasattr(a, '_mask') and getmask(a) is nomask:
+ a._mask = result._mask.view()
+ return result
+
+
+def masked_greater(x, value, copy=True):
+ """
+ Mask an array where greater than a given value.
+
+ This function is a shortcut to ``masked_where``, with
+ `condition` = (x > value).
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.arange(4)
+ >>> a
+ array([0, 1, 2, 3])
+ >>> ma.masked_greater(a, 2)
+ masked_array(data=[0, 1, 2, --],
+ mask=[False, False, False, True],
+ fill_value=999999)
+
+ """
+ return masked_where(greater(x, value), x, copy=copy)
+
+
+def masked_greater_equal(x, value, copy=True):
+ """
+ Mask an array where greater than or equal to a given value.
+
+ This function is a shortcut to ``masked_where``, with
+ `condition` = (x >= value).
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.arange(4)
+ >>> a
+ array([0, 1, 2, 3])
+ >>> ma.masked_greater_equal(a, 2)
+ masked_array(data=[0, 1, --, --],
+ mask=[False, False, True, True],
+ fill_value=999999)
+
+ """
+ return masked_where(greater_equal(x, value), x, copy=copy)
+
+
+def masked_less(x, value, copy=True):
+ """
+ Mask an array where less than a given value.
+
+ This function is a shortcut to ``masked_where``, with
+ `condition` = (x < value).
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.arange(4)
+ >>> a
+ array([0, 1, 2, 3])
+ >>> ma.masked_less(a, 2)
+ masked_array(data=[--, --, 2, 3],
+ mask=[ True, True, False, False],
+ fill_value=999999)
+
+ """
+ return masked_where(less(x, value), x, copy=copy)
+
+
+def masked_less_equal(x, value, copy=True):
+ """
+ Mask an array where less than or equal to a given value.
+
+ This function is a shortcut to ``masked_where``, with
+ `condition` = (x <= value).
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.arange(4)
+ >>> a
+ array([0, 1, 2, 3])
+ >>> ma.masked_less_equal(a, 2)
+ masked_array(data=[--, --, --, 3],
+ mask=[ True, True, True, False],
+ fill_value=999999)
+
+ """
+ return masked_where(less_equal(x, value), x, copy=copy)
+
+
+def masked_not_equal(x, value, copy=True):
+ """
+ Mask an array where `not` equal to a given value.
+
+ This function is a shortcut to ``masked_where``, with
+ `condition` = (x != value).
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.arange(4)
+ >>> a
+ array([0, 1, 2, 3])
+ >>> ma.masked_not_equal(a, 2)
+ masked_array(data=[--, --, 2, --],
+ mask=[ True, True, False, True],
+ fill_value=999999)
+
+ """
+ return masked_where(not_equal(x, value), x, copy=copy)
+
+
+def masked_equal(x, value, copy=True):
+ """
+ Mask an array where equal to a given value.
+
+ Return a MaskedArray, masked where the data in array `x` are
+ equal to `value`. The fill_value of the returned MaskedArray
+ is set to `value`.
+
+ For floating point arrays, consider using ``masked_values(x, value)``.
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+ masked_values : Mask using floating point equality.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.arange(4)
+ >>> a
+ array([0, 1, 2, 3])
+ >>> ma.masked_equal(a, 2)
+ masked_array(data=[0, 1, --, 3],
+ mask=[False, False, True, False],
+ fill_value=2)
+
+ """
+ output = masked_where(equal(x, value), x, copy=copy)
+ output.fill_value = value
+ return output
+
+
+def masked_inside(x, v1, v2, copy=True):
+ """
+ Mask an array inside a given interval.
+
+ Shortcut to ``masked_where``, where `condition` is True for `x` inside
+ the interval [v1,v2] (v1 <= x <= v2). The boundaries `v1` and `v2`
+ can be given in either order.
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+
+ Notes
+ -----
+ The array `x` is prefilled with its filling value.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
+ >>> ma.masked_inside(x, -0.3, 0.3)
+ masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
+ mask=[False, False, True, True, False, False],
+ fill_value=1e+20)
+
+ The order of `v1` and `v2` doesn't matter.
+
+ >>> ma.masked_inside(x, 0.3, -0.3)
+ masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
+ mask=[False, False, True, True, False, False],
+ fill_value=1e+20)
+
+ """
+ if v2 < v1:
+ (v1, v2) = (v2, v1)
+ xf = filled(x)
+ condition = (xf >= v1) & (xf <= v2)
+ return masked_where(condition, x, copy=copy)
+
+
+def masked_outside(x, v1, v2, copy=True):
+ """
+ Mask an array outside a given interval.
+
+ Shortcut to ``masked_where``, where `condition` is True for `x` outside
+ the interval [v1,v2] (x < v1)|(x > v2).
+ The boundaries `v1` and `v2` can be given in either order.
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+
+ Notes
+ -----
+ The array `x` is prefilled with its filling value.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
+ >>> ma.masked_outside(x, -0.3, 0.3)
+ masked_array(data=[--, --, 0.01, 0.2, --, --],
+ mask=[ True, True, False, False, True, True],
+ fill_value=1e+20)
+
+ The order of `v1` and `v2` doesn't matter.
+
+ >>> ma.masked_outside(x, 0.3, -0.3)
+ masked_array(data=[--, --, 0.01, 0.2, --, --],
+ mask=[ True, True, False, False, True, True],
+ fill_value=1e+20)
+
+ """
+ if v2 < v1:
+ (v1, v2) = (v2, v1)
+ xf = filled(x)
+ condition = (xf < v1) | (xf > v2)
+ return masked_where(condition, x, copy=copy)
+
+
+def masked_object(x, value, copy=True, shrink=True):
+ """
+ Mask the array `x` where the data are exactly equal to value.
+
+ This function is similar to `masked_values`, but only suitable
+ for object arrays: for floating point, use `masked_values` instead.
+
+ Parameters
+ ----------
+ x : array_like
+ Array to mask
+ value : object
+ Comparison value
+ copy : {True, False}, optional
+ Whether to return a copy of `x`.
+ shrink : {True, False}, optional
+ Whether to collapse a mask full of False to nomask
+
+ Returns
+ -------
+ result : MaskedArray
+ The result of masking `x` where equal to `value`.
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+ masked_equal : Mask where equal to a given value (integers).
+ masked_values : Mask using floating point equality.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> food = np.array(['green_eggs', 'ham'], dtype=object)
+ >>> # don't eat spoiled food
+ >>> eat = ma.masked_object(food, 'green_eggs')
+ >>> eat
+ masked_array(data=[--, 'ham'],
+ mask=[ True, False],
+ fill_value='green_eggs',
+ dtype=object)
+ >>> # plain ol` ham is boring
+ >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
+ >>> eat = ma.masked_object(fresh_food, 'green_eggs')
+ >>> eat
+ masked_array(data=['cheese', 'ham', 'pineapple'],
+ mask=False,
+ fill_value='green_eggs',
+ dtype=object)
+
+ Note that `mask` is set to ``nomask`` if possible.
+
+ >>> eat
+ masked_array(data=['cheese', 'ham', 'pineapple'],
+ mask=False,
+ fill_value='green_eggs',
+ dtype=object)
+
+ """
+ if isMaskedArray(x):
+ condition = umath.equal(x._data, value)
+ mask = x._mask
+ else:
+ condition = umath.equal(np.asarray(x), value)
+ mask = nomask
+ mask = mask_or(mask, make_mask(condition, shrink=shrink))
+ return masked_array(x, mask=mask, copy=copy, fill_value=value)
+
+
+def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True):
+ """
+ Mask using floating point equality.
+
+ Return a MaskedArray, masked where the data in array `x` are approximately
+ equal to `value`, determined using `isclose`. The default tolerances for
+ `masked_values` are the same as those for `isclose`.
+
+ For integer types, exact equality is used, in the same way as
+ `masked_equal`.
+
+ The fill_value is set to `value` and the mask is set to ``nomask`` if
+ possible.
+
+ Parameters
+ ----------
+ x : array_like
+ Array to mask.
+ value : float
+ Masking value.
+ rtol, atol : float, optional
+ Tolerance parameters passed on to `isclose`
+ copy : bool, optional
+ Whether to return a copy of `x`.
+ shrink : bool, optional
+ Whether to collapse a mask full of False to ``nomask``.
+
+ Returns
+ -------
+ result : MaskedArray
+ The result of masking `x` where approximately equal to `value`.
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+ masked_equal : Mask where equal to a given value (integers).
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = np.array([1, 1.1, 2, 1.1, 3])
+ >>> ma.masked_values(x, 1.1)
+ masked_array(data=[1.0, --, 2.0, --, 3.0],
+ mask=[False, True, False, True, False],
+ fill_value=1.1)
+
+ Note that `mask` is set to ``nomask`` if possible.
+
+ >>> ma.masked_values(x, 2.1)
+ masked_array(data=[1. , 1.1, 2. , 1.1, 3. ],
+ mask=False,
+ fill_value=2.1)
+
+ Unlike `masked_equal`, `masked_values` can perform approximate equalities.
+
+ >>> ma.masked_values(x, 2.1, atol=1e-1)
+ masked_array(data=[1.0, 1.1, --, 1.1, 3.0],
+ mask=[False, False, True, False, False],
+ fill_value=2.1)
+
+ """
+ xnew = filled(x, value)
+ if np.issubdtype(xnew.dtype, np.floating):
+ mask = np.isclose(xnew, value, atol=atol, rtol=rtol)
+ else:
+ mask = umath.equal(xnew, value)
+ ret = masked_array(xnew, mask=mask, copy=copy, fill_value=value)
+ if shrink:
+ ret.shrink_mask()
+ return ret
+
+
+def masked_invalid(a, copy=True):
+ """
+ Mask an array where invalid values occur (NaNs or infs).
+
+ This function is a shortcut to ``masked_where``, with
+ `condition` = ~(np.isfinite(a)). Any pre-existing mask is conserved.
+ Only applies to arrays with a dtype where NaNs or infs make sense
+ (i.e. floating point types), but accepts any array_like object.
+
+ See Also
+ --------
+ masked_where : Mask where a condition is met.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.arange(5, dtype=float)
+ >>> a[2] = np.NaN
+ >>> a[3] = np.PINF
+ >>> a
+ array([ 0., 1., nan, inf, 4.])
+ >>> ma.masked_invalid(a)
+ masked_array(data=[0.0, 1.0, --, --, 4.0],
+ mask=[False, False, True, True, False],
+ fill_value=1e+20)
+
+ """
+ a = np.array(a, copy=False, subok=True)
+ res = masked_where(~(np.isfinite(a)), a, copy=copy)
+ # masked_invalid previously never returned nomask as a mask and doing so
+ # threw off matplotlib (gh-22842). So use shrink=False:
+ if res._mask is nomask:
+ res._mask = make_mask_none(res.shape, res.dtype)
+ return res
+
+###############################################################################
+# Printing options #
+###############################################################################
+
+
+class _MaskedPrintOption:
+ """
+ Handle the string used to represent missing data in a masked array.
+
+ """
+
+ def __init__(self, display):
+ """
+ Create the masked_print_option object.
+
+ """
+ self._display = display
+ self._enabled = True
+
+ def display(self):
+ """
+ Display the string to print for masked values.
+
+ """
+ return self._display
+
+ def set_display(self, s):
+ """
+ Set the string to print for masked values.
+
+ """
+ self._display = s
+
+ def enabled(self):
+ """
+ Is the use of the display value enabled?
+
+ """
+ return self._enabled
+
+ def enable(self, shrink=1):
+ """
+ Set the enabling shrink to `shrink`.
+
+ """
+ self._enabled = shrink
+
+ def __str__(self):
+ return str(self._display)
+
+ __repr__ = __str__
+
+# if you single index into a masked location you get this object.
+masked_print_option = _MaskedPrintOption('--')
+
+
+def _recursive_printoption(result, mask, printopt):
+ """
+ Puts printoptions in result where mask is True.
+
+ Private function allowing for recursion
+
+ """
+ names = result.dtype.names
+ if names is not None:
+ for name in names:
+ curdata = result[name]
+ curmask = mask[name]
+ _recursive_printoption(curdata, curmask, printopt)
+ else:
+ np.copyto(result, printopt, where=mask)
+ return
+
+# For better or worse, these end in a newline
+_legacy_print_templates = dict(
+ long_std=textwrap.dedent("""\
+ masked_%(name)s(data =
+ %(data)s,
+ %(nlen)s mask =
+ %(mask)s,
+ %(nlen)s fill_value = %(fill)s)
+ """),
+ long_flx=textwrap.dedent("""\
+ masked_%(name)s(data =
+ %(data)s,
+ %(nlen)s mask =
+ %(mask)s,
+ %(nlen)s fill_value = %(fill)s,
+ %(nlen)s dtype = %(dtype)s)
+ """),
+ short_std=textwrap.dedent("""\
+ masked_%(name)s(data = %(data)s,
+ %(nlen)s mask = %(mask)s,
+ %(nlen)s fill_value = %(fill)s)
+ """),
+ short_flx=textwrap.dedent("""\
+ masked_%(name)s(data = %(data)s,
+ %(nlen)s mask = %(mask)s,
+ %(nlen)s fill_value = %(fill)s,
+ %(nlen)s dtype = %(dtype)s)
+ """)
+)
+
+###############################################################################
+# MaskedArray class #
+###############################################################################
+
+
+def _recursive_filled(a, mask, fill_value):
+ """
+ Recursively fill `a` with `fill_value`.
+
+ """
+ names = a.dtype.names
+ for name in names:
+ current = a[name]
+ if current.dtype.names is not None:
+ _recursive_filled(current, mask[name], fill_value[name])
+ else:
+ np.copyto(current, fill_value[name], where=mask[name])
+
+
+def flatten_structured_array(a):
+ """
+ Flatten a structured array.
+
+ The data type of the output is chosen such that it can represent all of the
+ (nested) fields.
+
+ Parameters
+ ----------
+ a : structured array
+
+ Returns
+ -------
+ output : masked array or ndarray
+ A flattened masked array if the input is a masked array, otherwise a
+ standard ndarray.
+
+ Examples
+ --------
+ >>> ndtype = [('a', int), ('b', float)]
+ >>> a = np.array([(1, 1), (2, 2)], dtype=ndtype)
+ >>> np.ma.flatten_structured_array(a)
+ array([[1., 1.],
+ [2., 2.]])
+
+ """
+
+ def flatten_sequence(iterable):
+ """
+ Flattens a compound of nested iterables.
+
+ """
+ for elm in iter(iterable):
+ if hasattr(elm, '__iter__'):
+ yield from flatten_sequence(elm)
+ else:
+ yield elm
+
+ a = np.asanyarray(a)
+ inishape = a.shape
+ a = a.ravel()
+ if isinstance(a, MaskedArray):
+ out = np.array([tuple(flatten_sequence(d.item())) for d in a._data])
+ out = out.view(MaskedArray)
+ out._mask = np.array([tuple(flatten_sequence(d.item()))
+ for d in getmaskarray(a)])
+ else:
+ out = np.array([tuple(flatten_sequence(d.item())) for d in a])
+ if len(inishape) > 1:
+ newshape = list(out.shape)
+ newshape[0] = inishape
+ out.shape = tuple(flatten_sequence(newshape))
+ return out
+
+
+def _arraymethod(funcname, onmask=True):
+ """
+ Return a class method wrapper around a basic array method.
+
+ Creates a class method which returns a masked array, where the new
+ ``_data`` array is the output of the corresponding basic method called
+ on the original ``_data``.
+
+ If `onmask` is True, the new mask is the output of the method called
+ on the initial mask. Otherwise, the new mask is just a reference
+ to the initial mask.
+
+ Parameters
+ ----------
+ funcname : str
+ Name of the function to apply on data.
+ onmask : bool
+ Whether the mask must be processed also (True) or left
+ alone (False). Default is True. Make available as `_onmask`
+ attribute.
+
+ Returns
+ -------
+ method : instancemethod
+ Class method wrapper of the specified basic array method.
+
+ """
+ def wrapped_method(self, *args, **params):
+ result = getattr(self._data, funcname)(*args, **params)
+ result = result.view(type(self))
+ result._update_from(self)
+ mask = self._mask
+ if not onmask:
+ result.__setmask__(mask)
+ elif mask is not nomask:
+ # __setmask__ makes a copy, which we don't want
+ result._mask = getattr(mask, funcname)(*args, **params)
+ return result
+ methdoc = getattr(ndarray, funcname, None) or getattr(np, funcname, None)
+ if methdoc is not None:
+ wrapped_method.__doc__ = methdoc.__doc__
+ wrapped_method.__name__ = funcname
+ return wrapped_method
+
+
+class MaskedIterator:
+ """
+ Flat iterator object to iterate over masked arrays.
+
+ A `MaskedIterator` iterator is returned by ``x.flat`` for any masked array
+ `x`. It allows iterating over the array as if it were a 1-D array,
+ either in a for-loop or by calling its `next` method.
+
+ Iteration is done in C-contiguous style, with the last index varying the
+ fastest. The iterator can also be indexed using basic slicing or
+ advanced indexing.
+
+ See Also
+ --------
+ MaskedArray.flat : Return a flat iterator over an array.
+ MaskedArray.flatten : Returns a flattened copy of an array.
+
+ Notes
+ -----
+ `MaskedIterator` is not exported by the `ma` module. Instead of
+ instantiating a `MaskedIterator` directly, use `MaskedArray.flat`.
+
+ Examples
+ --------
+ >>> x = np.ma.array(arange(6).reshape(2, 3))
+ >>> fl = x.flat
+ >>> type(fl)
+ <class 'numpy.ma.core.MaskedIterator'>
+ >>> for item in fl:
+ ... print(item)
+ ...
+ 0
+ 1
+ 2
+ 3
+ 4
+ 5
+
+ Extracting more than a single element b indexing the `MaskedIterator`
+ returns a masked array:
+
+ >>> fl[2:4]
+ masked_array(data = [2 3],
+ mask = False,
+ fill_value = 999999)
+
+ """
+
+ def __init__(self, ma):
+ self.ma = ma
+ self.dataiter = ma._data.flat
+
+ if ma._mask is nomask:
+ self.maskiter = None
+ else:
+ self.maskiter = ma._mask.flat
+
+ def __iter__(self):
+ return self
+
+ def __getitem__(self, indx):
+ result = self.dataiter.__getitem__(indx).view(type(self.ma))
+ if self.maskiter is not None:
+ _mask = self.maskiter.__getitem__(indx)
+ if isinstance(_mask, ndarray):
+ # set shape to match that of data; this is needed for matrices
+ _mask.shape = result.shape
+ result._mask = _mask
+ elif isinstance(_mask, np.void):
+ return mvoid(result, mask=_mask, hardmask=self.ma._hardmask)
+ elif _mask: # Just a scalar, masked
+ return masked
+ return result
+
+ # This won't work if ravel makes a copy
+ def __setitem__(self, index, value):
+ self.dataiter[index] = getdata(value)
+ if self.maskiter is not None:
+ self.maskiter[index] = getmaskarray(value)
+
+ def __next__(self):
+ """
+ Return the next value, or raise StopIteration.
+
+ Examples
+ --------
+ >>> x = np.ma.array([3, 2], mask=[0, 1])
+ >>> fl = x.flat
+ >>> next(fl)
+ 3
+ >>> next(fl)
+ masked
+ >>> next(fl)
+ Traceback (most recent call last):
+ ...
+ StopIteration
+
+ """
+ d = next(self.dataiter)
+ if self.maskiter is not None:
+ m = next(self.maskiter)
+ if isinstance(m, np.void):
+ return mvoid(d, mask=m, hardmask=self.ma._hardmask)
+ elif m: # Just a scalar, masked
+ return masked
+ return d
+
+
+class MaskedArray(ndarray):
+ """
+ An array class with possibly masked values.
+
+ Masked values of True exclude the corresponding element from any
+ computation.
+
+ Construction::
+
+ x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True,
+ ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
+ shrink=True, order=None)
+
+ Parameters
+ ----------
+ data : array_like
+ Input data.
+ mask : sequence, optional
+ Mask. Must be convertible to an array of booleans with the same
+ shape as `data`. True indicates a masked (i.e. invalid) data.
+ dtype : dtype, optional
+ Data type of the output.
+ If `dtype` is None, the type of the data argument (``data.dtype``)
+ is used. If `dtype` is not None and different from ``data.dtype``,
+ a copy is performed.
+ copy : bool, optional
+ Whether to copy the input data (True), or to use a reference instead.
+ Default is False.
+ subok : bool, optional
+ Whether to return a subclass of `MaskedArray` if possible (True) or a
+ plain `MaskedArray`. Default is True.
+ ndmin : int, optional
+ Minimum number of dimensions. Default is 0.
+ fill_value : scalar, optional
+ Value used to fill in the masked values when necessary.
+ If None, a default based on the data-type is used.
+ keep_mask : bool, optional
+ Whether to combine `mask` with the mask of the input data, if any
+ (True), or to use only `mask` for the output (False). Default is True.
+ hard_mask : bool, optional
+ Whether to use a hard mask or not. With a hard mask, masked values
+ cannot be unmasked. Default is False.
+ shrink : bool, optional
+ Whether to force compression of an empty mask. Default is True.
+ order : {'C', 'F', 'A'}, optional
+ Specify the order of the array. If order is 'C', then the array
+ will be in C-contiguous order (last-index varies the fastest).
+ If order is 'F', then the returned array will be in
+ Fortran-contiguous order (first-index varies the fastest).
+ If order is 'A' (default), then the returned array may be
+ in any order (either C-, Fortran-contiguous, or even discontiguous),
+ unless a copy is required, in which case it will be C-contiguous.
+
+ Examples
+ --------
+
+ The ``mask`` can be initialized with an array of boolean values
+ with the same shape as ``data``.
+
+ >>> data = np.arange(6).reshape((2, 3))
+ >>> np.ma.MaskedArray(data, mask=[[False, True, False],
+ ... [False, False, True]])
+ masked_array(
+ data=[[0, --, 2],
+ [3, 4, --]],
+ mask=[[False, True, False],
+ [False, False, True]],
+ fill_value=999999)
+
+ Alternatively, the ``mask`` can be initialized to homogeneous boolean
+ array with the same shape as ``data`` by passing in a scalar
+ boolean value:
+
+ >>> np.ma.MaskedArray(data, mask=False)
+ masked_array(
+ data=[[0, 1, 2],
+ [3, 4, 5]],
+ mask=[[False, False, False],
+ [False, False, False]],
+ fill_value=999999)
+
+ >>> np.ma.MaskedArray(data, mask=True)
+ masked_array(
+ data=[[--, --, --],
+ [--, --, --]],
+ mask=[[ True, True, True],
+ [ True, True, True]],
+ fill_value=999999,
+ dtype=int64)
+
+ .. note::
+ The recommended practice for initializing ``mask`` with a scalar
+ boolean value is to use ``True``/``False`` rather than
+ ``np.True_``/``np.False_``. The reason is :attr:`nomask`
+ is represented internally as ``np.False_``.
+
+ >>> np.False_ is np.ma.nomask
+ True
+
+ """
+
+ __array_priority__ = 15
+ _defaultmask = nomask
+ _defaulthardmask = False
+ _baseclass = ndarray
+
+ # Maximum number of elements per axis used when printing an array. The
+ # 1d case is handled separately because we need more values in this case.
+ _print_width = 100
+ _print_width_1d = 1500
+
+ def __new__(cls, data=None, mask=nomask, dtype=None, copy=False,
+ subok=True, ndmin=0, fill_value=None, keep_mask=True,
+ hard_mask=None, shrink=True, order=None):
+ """
+ Create a new masked array from scratch.
+
+ Notes
+ -----
+ A masked array can also be created by taking a .view(MaskedArray).
+
+ """
+ # Process data.
+ _data = np.array(data, dtype=dtype, copy=copy,
+ order=order, subok=True, ndmin=ndmin)
+ _baseclass = getattr(data, '_baseclass', type(_data))
+ # Check that we're not erasing the mask.
+ if isinstance(data, MaskedArray) and (data.shape != _data.shape):
+ copy = True
+
+ # Here, we copy the _view_, so that we can attach new properties to it
+ # we must never do .view(MaskedConstant), as that would create a new
+ # instance of np.ma.masked, which make identity comparison fail
+ if isinstance(data, cls) and subok and not isinstance(data, MaskedConstant):
+ _data = ndarray.view(_data, type(data))
+ else:
+ _data = ndarray.view(_data, cls)
+
+ # Handle the case where data is not a subclass of ndarray, but
+ # still has the _mask attribute like MaskedArrays
+ if hasattr(data, '_mask') and not isinstance(data, ndarray):
+ _data._mask = data._mask
+ # FIXME: should we set `_data._sharedmask = True`?
+ # Process mask.
+ # Type of the mask
+ mdtype = make_mask_descr(_data.dtype)
+ if mask is nomask:
+ # Case 1. : no mask in input.
+ # Erase the current mask ?
+ if not keep_mask:
+ # With a reduced version
+ if shrink:
+ _data._mask = nomask
+ # With full version
+ else:
+ _data._mask = np.zeros(_data.shape, dtype=mdtype)
+ # Check whether we missed something
+ elif isinstance(data, (tuple, list)):
+ try:
+ # If data is a sequence of masked array
+ mask = np.array(
+ [getmaskarray(np.asanyarray(m, dtype=_data.dtype))
+ for m in data], dtype=mdtype)
+ except (ValueError, TypeError):
+ # If data is nested
+ mask = nomask
+ # Force shrinking of the mask if needed (and possible)
+ if (mdtype == MaskType) and mask.any():
+ _data._mask = mask
+ _data._sharedmask = False
+ else:
+ _data._sharedmask = not copy
+ if copy:
+ _data._mask = _data._mask.copy()
+ # Reset the shape of the original mask
+ if getmask(data) is not nomask:
+ # gh-21022 encounters an issue here
+ # because data._mask.shape is not writeable, but
+ # the op was also pointless in that case, because
+ # the shapes were the same, so we can at least
+ # avoid that path
+ if data._mask.shape != data.shape:
+ data._mask.shape = data.shape
+ else:
+ # Case 2. : With a mask in input.
+ # If mask is boolean, create an array of True or False
+
+ # if users pass `mask=None` be forgiving here and cast it False
+ # for speed; although the default is `mask=nomask` and can differ.
+ if mask is None:
+ mask = False
+
+ if mask is True and mdtype == MaskType:
+ mask = np.ones(_data.shape, dtype=mdtype)
+ elif mask is False and mdtype == MaskType:
+ mask = np.zeros(_data.shape, dtype=mdtype)
+ else:
+ # Read the mask with the current mdtype
+ try:
+ mask = np.array(mask, copy=copy, dtype=mdtype)
+ # Or assume it's a sequence of bool/int
+ except TypeError:
+ mask = np.array([tuple([m] * len(mdtype)) for m in mask],
+ dtype=mdtype)
+ # Make sure the mask and the data have the same shape
+ if mask.shape != _data.shape:
+ (nd, nm) = (_data.size, mask.size)
+ if nm == 1:
+ mask = np.resize(mask, _data.shape)
+ elif nm == nd:
+ mask = np.reshape(mask, _data.shape)
+ else:
+ msg = "Mask and data not compatible: data size is %i, " + \
+ "mask size is %i."
+ raise MaskError(msg % (nd, nm))
+ copy = True
+ # Set the mask to the new value
+ if _data._mask is nomask:
+ _data._mask = mask
+ _data._sharedmask = not copy
+ else:
+ if not keep_mask:
+ _data._mask = mask
+ _data._sharedmask = not copy
+ else:
+ if _data.dtype.names is not None:
+ def _recursive_or(a, b):
+ "do a|=b on each field of a, recursively"
+ for name in a.dtype.names:
+ (af, bf) = (a[name], b[name])
+ if af.dtype.names is not None:
+ _recursive_or(af, bf)
+ else:
+ af |= bf
+
+ _recursive_or(_data._mask, mask)
+ else:
+ _data._mask = np.logical_or(mask, _data._mask)
+ _data._sharedmask = False
+
+ # Update fill_value.
+ if fill_value is None:
+ fill_value = getattr(data, '_fill_value', None)
+ # But don't run the check unless we have something to check.
+ if fill_value is not None:
+ _data._fill_value = _check_fill_value(fill_value, _data.dtype)
+ # Process extra options ..
+ if hard_mask is None:
+ _data._hardmask = getattr(data, '_hardmask', False)
+ else:
+ _data._hardmask = hard_mask
+ _data._baseclass = _baseclass
+ return _data
+
+
+ def _update_from(self, obj):
+ """
+ Copies some attributes of obj to self.
+
+ """
+ if isinstance(obj, ndarray):
+ _baseclass = type(obj)
+ else:
+ _baseclass = ndarray
+ # We need to copy the _basedict to avoid backward propagation
+ _optinfo = {}
+ _optinfo.update(getattr(obj, '_optinfo', {}))
+ _optinfo.update(getattr(obj, '_basedict', {}))
+ if not isinstance(obj, MaskedArray):
+ _optinfo.update(getattr(obj, '__dict__', {}))
+ _dict = dict(_fill_value=getattr(obj, '_fill_value', None),
+ _hardmask=getattr(obj, '_hardmask', False),
+ _sharedmask=getattr(obj, '_sharedmask', False),
+ _isfield=getattr(obj, '_isfield', False),
+ _baseclass=getattr(obj, '_baseclass', _baseclass),
+ _optinfo=_optinfo,
+ _basedict=_optinfo)
+ self.__dict__.update(_dict)
+ self.__dict__.update(_optinfo)
+ return
+
+ def __array_finalize__(self, obj):
+ """
+ Finalizes the masked array.
+
+ """
+ # Get main attributes.
+ self._update_from(obj)
+
+ # We have to decide how to initialize self.mask, based on
+ # obj.mask. This is very difficult. There might be some
+ # correspondence between the elements in the array we are being
+ # created from (= obj) and us. Or there might not. This method can
+ # be called in all kinds of places for all kinds of reasons -- could
+ # be empty_like, could be slicing, could be a ufunc, could be a view.
+ # The numpy subclassing interface simply doesn't give us any way
+ # to know, which means that at best this method will be based on
+ # guesswork and heuristics. To make things worse, there isn't even any
+ # clear consensus about what the desired behavior is. For instance,
+ # most users think that np.empty_like(marr) -- which goes via this
+ # method -- should return a masked array with an empty mask (see
+ # gh-3404 and linked discussions), but others disagree, and they have
+ # existing code which depends on empty_like returning an array that
+ # matches the input mask.
+ #
+ # Historically our algorithm was: if the template object mask had the
+ # same *number of elements* as us, then we used *it's mask object
+ # itself* as our mask, so that writes to us would also write to the
+ # original array. This is horribly broken in multiple ways.
+ #
+ # Now what we do instead is, if the template object mask has the same
+ # number of elements as us, and we do not have the same base pointer
+ # as the template object (b/c views like arr[...] should keep the same
+ # mask), then we make a copy of the template object mask and use
+ # that. This is also horribly broken but somewhat less so. Maybe.
+ if isinstance(obj, ndarray):
+ # XX: This looks like a bug -- shouldn't it check self.dtype
+ # instead?
+ if obj.dtype.names is not None:
+ _mask = getmaskarray(obj)
+ else:
+ _mask = getmask(obj)
+
+ # If self and obj point to exactly the same data, then probably
+ # self is a simple view of obj (e.g., self = obj[...]), so they
+ # should share the same mask. (This isn't 100% reliable, e.g. self
+ # could be the first row of obj, or have strange strides, but as a
+ # heuristic it's not bad.) In all other cases, we make a copy of
+ # the mask, so that future modifications to 'self' do not end up
+ # side-effecting 'obj' as well.
+ if (_mask is not nomask and obj.__array_interface__["data"][0]
+ != self.__array_interface__["data"][0]):
+ # We should make a copy. But we could get here via astype,
+ # in which case the mask might need a new dtype as well
+ # (e.g., changing to or from a structured dtype), and the
+ # order could have changed. So, change the mask type if
+ # needed and use astype instead of copy.
+ if self.dtype == obj.dtype:
+ _mask_dtype = _mask.dtype
+ else:
+ _mask_dtype = make_mask_descr(self.dtype)
+
+ if self.flags.c_contiguous:
+ order = "C"
+ elif self.flags.f_contiguous:
+ order = "F"
+ else:
+ order = "K"
+
+ _mask = _mask.astype(_mask_dtype, order)
+ else:
+ # Take a view so shape changes, etc., do not propagate back.
+ _mask = _mask.view()
+ else:
+ _mask = nomask
+
+ self._mask = _mask
+ # Finalize the mask
+ if self._mask is not nomask:
+ try:
+ self._mask.shape = self.shape
+ except ValueError:
+ self._mask = nomask
+ except (TypeError, AttributeError):
+ # When _mask.shape is not writable (because it's a void)
+ pass
+
+ # Finalize the fill_value
+ if self._fill_value is not None:
+ self._fill_value = _check_fill_value(self._fill_value, self.dtype)
+ elif self.dtype.names is not None:
+ # Finalize the default fill_value for structured arrays
+ self._fill_value = _check_fill_value(None, self.dtype)
+
+ def __array_wrap__(self, obj, context=None):
+ """
+ Special hook for ufuncs.
+
+ Wraps the numpy array and sets the mask according to context.
+
+ """
+ if obj is self: # for in-place operations
+ result = obj
+ else:
+ result = obj.view(type(self))
+ result._update_from(self)
+
+ if context is not None:
+ result._mask = result._mask.copy()
+ func, args, out_i = context
+ # args sometimes contains outputs (gh-10459), which we don't want
+ input_args = args[:func.nin]
+ m = reduce(mask_or, [getmaskarray(arg) for arg in input_args])
+ # Get the domain mask
+ domain = ufunc_domain.get(func, None)
+ if domain is not None:
+ # Take the domain, and make sure it's a ndarray
+ with np.errstate(divide='ignore', invalid='ignore'):
+ d = filled(domain(*input_args), True)
+
+ if d.any():
+ # Fill the result where the domain is wrong
+ try:
+ # Binary domain: take the last value
+ fill_value = ufunc_fills[func][-1]
+ except TypeError:
+ # Unary domain: just use this one
+ fill_value = ufunc_fills[func]
+ except KeyError:
+ # Domain not recognized, use fill_value instead
+ fill_value = self.fill_value
+
+ np.copyto(result, fill_value, where=d)
+
+ # Update the mask
+ if m is nomask:
+ m = d
+ else:
+ # Don't modify inplace, we risk back-propagation
+ m = (m | d)
+
+ # Make sure the mask has the proper size
+ if result is not self and result.shape == () and m:
+ return masked
+ else:
+ result._mask = m
+ result._sharedmask = False
+
+ return result
+
+ def view(self, dtype=None, type=None, fill_value=None):
+ """
+ Return a view of the MaskedArray data.
+
+ Parameters
+ ----------
+ dtype : data-type or ndarray sub-class, optional
+ Data-type descriptor of the returned view, e.g., float32 or int16.
+ The default, None, results in the view having the same data-type
+ as `a`. As with ``ndarray.view``, dtype can also be specified as
+ an ndarray sub-class, which then specifies the type of the
+ returned object (this is equivalent to setting the ``type``
+ parameter).
+ type : Python type, optional
+ Type of the returned view, either ndarray or a subclass. The
+ default None results in type preservation.
+ fill_value : scalar, optional
+ The value to use for invalid entries (None by default).
+ If None, then this argument is inferred from the passed `dtype`, or
+ in its absence the original array, as discussed in the notes below.
+
+ See Also
+ --------
+ numpy.ndarray.view : Equivalent method on ndarray object.
+
+ Notes
+ -----
+
+ ``a.view()`` is used two different ways:
+
+ ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
+ of the array's memory with a different data-type. This can cause a
+ reinterpretation of the bytes of memory.
+
+ ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
+ returns an instance of `ndarray_subclass` that looks at the same array
+ (same shape, dtype, etc.) This does not cause a reinterpretation of the
+ memory.
+
+ If `fill_value` is not specified, but `dtype` is specified (and is not
+ an ndarray sub-class), the `fill_value` of the MaskedArray will be
+ reset. If neither `fill_value` nor `dtype` are specified (or if
+ `dtype` is an ndarray sub-class), then the fill value is preserved.
+ Finally, if `fill_value` is specified, but `dtype` is not, the fill
+ value is set to the specified value.
+
+ For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
+ bytes per entry than the previous dtype (for example, converting a
+ regular array to a structured array), then the behavior of the view
+ cannot be predicted just from the superficial appearance of ``a`` (shown
+ by ``print(a)``). It also depends on exactly how ``a`` is stored in
+ memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus
+ defined as a slice or transpose, etc., the view may give different
+ results.
+ """
+
+ if dtype is None:
+ if type is None:
+ output = ndarray.view(self)
+ else:
+ output = ndarray.view(self, type)
+ elif type is None:
+ try:
+ if issubclass(dtype, ndarray):
+ output = ndarray.view(self, dtype)
+ dtype = None
+ else:
+ output = ndarray.view(self, dtype)
+ except TypeError:
+ output = ndarray.view(self, dtype)
+ else:
+ output = ndarray.view(self, dtype, type)
+
+ # also make the mask be a view (so attr changes to the view's
+ # mask do no affect original object's mask)
+ # (especially important to avoid affecting np.masked singleton)
+ if getmask(output) is not nomask:
+ output._mask = output._mask.view()
+
+ # Make sure to reset the _fill_value if needed
+ if getattr(output, '_fill_value', None) is not None:
+ if fill_value is None:
+ if dtype is None:
+ pass # leave _fill_value as is
+ else:
+ output._fill_value = None
+ else:
+ output.fill_value = fill_value
+ return output
+
+ def __getitem__(self, indx):
+ """
+ x.__getitem__(y) <==> x[y]
+
+ Return the item described by i, as a masked array.
+
+ """
+ # We could directly use ndarray.__getitem__ on self.
+ # But then we would have to modify __array_finalize__ to prevent the
+ # mask of being reshaped if it hasn't been set up properly yet
+ # So it's easier to stick to the current version
+ dout = self.data[indx]
+ _mask = self._mask
+
+ def _is_scalar(m):
+ return not isinstance(m, np.ndarray)
+
+ def _scalar_heuristic(arr, elem):
+ """
+ Return whether `elem` is a scalar result of indexing `arr`, or None
+ if undecidable without promoting nomask to a full mask
+ """
+ # obviously a scalar
+ if not isinstance(elem, np.ndarray):
+ return True
+
+ # object array scalar indexing can return anything
+ elif arr.dtype.type is np.object_:
+ if arr.dtype is not elem.dtype:
+ # elem is an array, but dtypes do not match, so must be
+ # an element
+ return True
+
+ # well-behaved subclass that only returns 0d arrays when
+ # expected - this is not a scalar
+ elif type(arr).__getitem__ == ndarray.__getitem__:
+ return False
+
+ return None
+
+ if _mask is not nomask:
+ # _mask cannot be a subclass, so it tells us whether we should
+ # expect a scalar. It also cannot be of dtype object.
+ mout = _mask[indx]
+ scalar_expected = _is_scalar(mout)
+
+ else:
+ # attempt to apply the heuristic to avoid constructing a full mask
+ mout = nomask
+ scalar_expected = _scalar_heuristic(self.data, dout)
+ if scalar_expected is None:
+ # heuristics have failed
+ # construct a full array, so we can be certain. This is costly.
+ # we could also fall back on ndarray.__getitem__(self.data, indx)
+ scalar_expected = _is_scalar(getmaskarray(self)[indx])
+
+ # Did we extract a single item?
+ if scalar_expected:
+ # A record
+ if isinstance(dout, np.void):
+ # We should always re-cast to mvoid, otherwise users can
+ # change masks on rows that already have masked values, but not
+ # on rows that have no masked values, which is inconsistent.
+ return mvoid(dout, mask=mout, hardmask=self._hardmask)
+
+ # special case introduced in gh-5962
+ elif (self.dtype.type is np.object_ and
+ isinstance(dout, np.ndarray) and
+ dout is not masked):
+ # If masked, turn into a MaskedArray, with everything masked.
+ if mout:
+ return MaskedArray(dout, mask=True)
+ else:
+ return dout
+
+ # Just a scalar
+ else:
+ if mout:
+ return masked
+ else:
+ return dout
+ else:
+ # Force dout to MA
+ dout = dout.view(type(self))
+ # Inherit attributes from self
+ dout._update_from(self)
+ # Check the fill_value
+ if is_string_or_list_of_strings(indx):
+ if self._fill_value is not None:
+ dout._fill_value = self._fill_value[indx]
+
+ # Something like gh-15895 has happened if this check fails.
+ # _fill_value should always be an ndarray.
+ if not isinstance(dout._fill_value, np.ndarray):
+ raise RuntimeError('Internal NumPy error.')
+ # If we're indexing a multidimensional field in a
+ # structured array (such as dtype("(2,)i2,(2,)i1")),
+ # dimensionality goes up (M[field].ndim == M.ndim +
+ # M.dtype[field].ndim). That's fine for
+ # M[field] but problematic for M[field].fill_value
+ # which should have shape () to avoid breaking several
+ # methods. There is no great way out, so set to
+ # first element. See issue #6723.
+ if dout._fill_value.ndim > 0:
+ if not (dout._fill_value ==
+ dout._fill_value.flat[0]).all():
+ warnings.warn(
+ "Upon accessing multidimensional field "
+ f"{indx!s}, need to keep dimensionality "
+ "of fill_value at 0. Discarding "
+ "heterogeneous fill_value and setting "
+ f"all to {dout._fill_value[0]!s}.",
+ stacklevel=2)
+ # Need to use `.flat[0:1].squeeze(...)` instead of just
+ # `.flat[0]` to ensure the result is a 0d array and not
+ # a scalar.
+ dout._fill_value = dout._fill_value.flat[0:1].squeeze(axis=0)
+ dout._isfield = True
+ # Update the mask if needed
+ if mout is not nomask:
+ # set shape to match that of data; this is needed for matrices
+ dout._mask = reshape(mout, dout.shape)
+ dout._sharedmask = True
+ # Note: Don't try to check for m.any(), that'll take too long
+ return dout
+
+ # setitem may put NaNs into integer arrays or occasionally overflow a
+ # float. But this may happen in masked values, so avoid otherwise
+ # correct warnings (as is typical also in masked calculations).
+ @np.errstate(over='ignore', invalid='ignore')
+ def __setitem__(self, indx, value):
+ """
+ x.__setitem__(i, y) <==> x[i]=y
+
+ Set item described by index. If value is masked, masks those
+ locations.
+
+ """
+ if self is masked:
+ raise MaskError('Cannot alter the masked element.')
+ _data = self._data
+ _mask = self._mask
+ if isinstance(indx, str):
+ _data[indx] = value
+ if _mask is nomask:
+ self._mask = _mask = make_mask_none(self.shape, self.dtype)
+ _mask[indx] = getmask(value)
+ return
+
+ _dtype = _data.dtype
+
+ if value is masked:
+ # The mask wasn't set: create a full version.
+ if _mask is nomask:
+ _mask = self._mask = make_mask_none(self.shape, _dtype)
+ # Now, set the mask to its value.
+ if _dtype.names is not None:
+ _mask[indx] = tuple([True] * len(_dtype.names))
+ else:
+ _mask[indx] = True
+ return
+
+ # Get the _data part of the new value
+ dval = getattr(value, '_data', value)
+ # Get the _mask part of the new value
+ mval = getmask(value)
+ if _dtype.names is not None and mval is nomask:
+ mval = tuple([False] * len(_dtype.names))
+ if _mask is nomask:
+ # Set the data, then the mask
+ _data[indx] = dval
+ if mval is not nomask:
+ _mask = self._mask = make_mask_none(self.shape, _dtype)
+ _mask[indx] = mval
+ elif not self._hardmask:
+ # Set the data, then the mask
+ if (isinstance(indx, masked_array) and
+ not isinstance(value, masked_array)):
+ _data[indx.data] = dval
+ else:
+ _data[indx] = dval
+ _mask[indx] = mval
+ elif hasattr(indx, 'dtype') and (indx.dtype == MaskType):
+ indx = indx * umath.logical_not(_mask)
+ _data[indx] = dval
+ else:
+ if _dtype.names is not None:
+ err_msg = "Flexible 'hard' masks are not yet supported."
+ raise NotImplementedError(err_msg)
+ mindx = mask_or(_mask[indx], mval, copy=True)
+ dindx = self._data[indx]
+ if dindx.size > 1:
+ np.copyto(dindx, dval, where=~mindx)
+ elif mindx is nomask:
+ dindx = dval
+ _data[indx] = dindx
+ _mask[indx] = mindx
+ return
+
+ # Define so that we can overwrite the setter.
+ @property
+ def dtype(self):
+ return super().dtype
+
+ @dtype.setter
+ def dtype(self, dtype):
+ super(MaskedArray, type(self)).dtype.__set__(self, dtype)
+ if self._mask is not nomask:
+ self._mask = self._mask.view(make_mask_descr(dtype), ndarray)
+ # Try to reset the shape of the mask (if we don't have a void).
+ # This raises a ValueError if the dtype change won't work.
+ try:
+ self._mask.shape = self.shape
+ except (AttributeError, TypeError):
+ pass
+
+ @property
+ def shape(self):
+ return super().shape
+
+ @shape.setter
+ def shape(self, shape):
+ super(MaskedArray, type(self)).shape.__set__(self, shape)
+ # Cannot use self._mask, since it may not (yet) exist when a
+ # masked matrix sets the shape.
+ if getmask(self) is not nomask:
+ self._mask.shape = self.shape
+
+ def __setmask__(self, mask, copy=False):
+ """
+ Set the mask.
+
+ """
+ idtype = self.dtype
+ current_mask = self._mask
+ if mask is masked:
+ mask = True
+
+ if current_mask is nomask:
+ # Make sure the mask is set
+ # Just don't do anything if there's nothing to do.
+ if mask is nomask:
+ return
+ current_mask = self._mask = make_mask_none(self.shape, idtype)
+
+ if idtype.names is None:
+ # No named fields.
+ # Hardmask: don't unmask the data
+ if self._hardmask:
+ current_mask |= mask
+ # Softmask: set everything to False
+ # If it's obviously a compatible scalar, use a quick update
+ # method.
+ elif isinstance(mask, (int, float, np.bool_, np.number)):
+ current_mask[...] = mask
+ # Otherwise fall back to the slower, general purpose way.
+ else:
+ current_mask.flat = mask
+ else:
+ # Named fields w/
+ mdtype = current_mask.dtype
+ mask = np.array(mask, copy=False)
+ # Mask is a singleton
+ if not mask.ndim:
+ # It's a boolean : make a record
+ if mask.dtype.kind == 'b':
+ mask = np.array(tuple([mask.item()] * len(mdtype)),
+ dtype=mdtype)
+ # It's a record: make sure the dtype is correct
+ else:
+ mask = mask.astype(mdtype)
+ # Mask is a sequence
+ else:
+ # Make sure the new mask is a ndarray with the proper dtype
+ try:
+ mask = np.array(mask, copy=copy, dtype=mdtype)
+ # Or assume it's a sequence of bool/int
+ except TypeError:
+ mask = np.array([tuple([m] * len(mdtype)) for m in mask],
+ dtype=mdtype)
+ # Hardmask: don't unmask the data
+ if self._hardmask:
+ for n in idtype.names:
+ current_mask[n] |= mask[n]
+ # Softmask: set everything to False
+ # If it's obviously a compatible scalar, use a quick update
+ # method.
+ elif isinstance(mask, (int, float, np.bool_, np.number)):
+ current_mask[...] = mask
+ # Otherwise fall back to the slower, general purpose way.
+ else:
+ current_mask.flat = mask
+ # Reshape if needed
+ if current_mask.shape:
+ current_mask.shape = self.shape
+ return
+
+ _set_mask = __setmask__
+
+ @property
+ def mask(self):
+ """ Current mask. """
+
+ # We could try to force a reshape, but that wouldn't work in some
+ # cases.
+ # Return a view so that the dtype and shape cannot be changed in place
+ # This still preserves nomask by identity
+ return self._mask.view()
+
+ @mask.setter
+ def mask(self, value):
+ self.__setmask__(value)
+
+ @property
+ def recordmask(self):
+ """
+ Get or set the mask of the array if it has no named fields. For
+ structured arrays, returns a ndarray of booleans where entries are
+ ``True`` if **all** the fields are masked, ``False`` otherwise:
+
+ >>> x = np.ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
+ ... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
+ ... dtype=[('a', int), ('b', int)])
+ >>> x.recordmask
+ array([False, False, True, False, False])
+ """
+
+ _mask = self._mask.view(ndarray)
+ if _mask.dtype.names is None:
+ return _mask
+ return np.all(flatten_structured_array(_mask), axis=-1)
+
+ @recordmask.setter
+ def recordmask(self, mask):
+ raise NotImplementedError("Coming soon: setting the mask per records!")
+
+ def harden_mask(self):
+ """
+ Force the mask to hard, preventing unmasking by assignment.
+
+ Whether the mask of a masked array is hard or soft is determined by
+ its `~ma.MaskedArray.hardmask` property. `harden_mask` sets
+ `~ma.MaskedArray.hardmask` to ``True`` (and returns the modified
+ self).
+
+ See Also
+ --------
+ ma.MaskedArray.hardmask
+ ma.MaskedArray.soften_mask
+
+ """
+ self._hardmask = True
+ return self
+
+ def soften_mask(self):
+ """
+ Force the mask to soft (default), allowing unmasking by assignment.
+
+ Whether the mask of a masked array is hard or soft is determined by
+ its `~ma.MaskedArray.hardmask` property. `soften_mask` sets
+ `~ma.MaskedArray.hardmask` to ``False`` (and returns the modified
+ self).
+
+ See Also
+ --------
+ ma.MaskedArray.hardmask
+ ma.MaskedArray.harden_mask
+
+ """
+ self._hardmask = False
+ return self
+
+ @property
+ def hardmask(self):
+ """
+ Specifies whether values can be unmasked through assignments.
+
+ By default, assigning definite values to masked array entries will
+ unmask them. When `hardmask` is ``True``, the mask will not change
+ through assignments.
+
+ See Also
+ --------
+ ma.MaskedArray.harden_mask
+ ma.MaskedArray.soften_mask
+
+ Examples
+ --------
+ >>> x = np.arange(10)
+ >>> m = np.ma.masked_array(x, x>5)
+ >>> assert not m.hardmask
+
+ Since `m` has a soft mask, assigning an element value unmasks that
+ element:
+
+ >>> m[8] = 42
+ >>> m
+ masked_array(data=[0, 1, 2, 3, 4, 5, --, --, 42, --],
+ mask=[False, False, False, False, False, False,
+ True, True, False, True],
+ fill_value=999999)
+
+ After hardening, the mask is not affected by assignments:
+
+ >>> hardened = np.ma.harden_mask(m)
+ >>> assert m.hardmask and hardened is m
+ >>> m[:] = 23
+ >>> m
+ masked_array(data=[23, 23, 23, 23, 23, 23, --, --, 23, --],
+ mask=[False, False, False, False, False, False,
+ True, True, False, True],
+ fill_value=999999)
+
+ """
+ return self._hardmask
+
+ def unshare_mask(self):
+ """
+ Copy the mask and set the `sharedmask` flag to ``False``.
+
+ Whether the mask is shared between masked arrays can be seen from
+ the `sharedmask` property. `unshare_mask` ensures the mask is not
+ shared. A copy of the mask is only made if it was shared.
+
+ See Also
+ --------
+ sharedmask
+
+ """
+ if self._sharedmask:
+ self._mask = self._mask.copy()
+ self._sharedmask = False
+ return self
+
+ @property
+ def sharedmask(self):
+ """ Share status of the mask (read-only). """
+ return self._sharedmask
+
+ def shrink_mask(self):
+ """
+ Reduce a mask to nomask when possible.
+
+ Parameters
+ ----------
+ None
+
+ Returns
+ -------
+ None
+
+ Examples
+ --------
+ >>> x = np.ma.array([[1,2 ], [3, 4]], mask=[0]*4)
+ >>> x.mask
+ array([[False, False],
+ [False, False]])
+ >>> x.shrink_mask()
+ masked_array(
+ data=[[1, 2],
+ [3, 4]],
+ mask=False,
+ fill_value=999999)
+ >>> x.mask
+ False
+
+ """
+ self._mask = _shrink_mask(self._mask)
+ return self
+
+ @property
+ def baseclass(self):
+ """ Class of the underlying data (read-only). """
+ return self._baseclass
+
+ def _get_data(self):
+ """
+ Returns the underlying data, as a view of the masked array.
+
+ If the underlying data is a subclass of :class:`numpy.ndarray`, it is
+ returned as such.
+
+ >>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
+ >>> x.data
+ matrix([[1, 2],
+ [3, 4]])
+
+ The type of the data can be accessed through the :attr:`baseclass`
+ attribute.
+ """
+ return ndarray.view(self, self._baseclass)
+
+ _data = property(fget=_get_data)
+ data = property(fget=_get_data)
+
+ @property
+ def flat(self):
+ """ Return a flat iterator, or set a flattened version of self to value. """
+ return MaskedIterator(self)
+
+ @flat.setter
+ def flat(self, value):
+ y = self.ravel()
+ y[:] = value
+
+ @property
+ def fill_value(self):
+ """
+ The filling value of the masked array is a scalar. When setting, None
+ will set to a default based on the data type.
+
+ Examples
+ --------
+ >>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
+ ... np.ma.array([0, 1], dtype=dt).get_fill_value()
+ ...
+ 999999
+ 999999
+ 1e+20
+ (1e+20+0j)
+
+ >>> x = np.ma.array([0, 1.], fill_value=-np.inf)
+ >>> x.fill_value
+ -inf
+ >>> x.fill_value = np.pi
+ >>> x.fill_value
+ 3.1415926535897931 # may vary
+
+ Reset to default:
+
+ >>> x.fill_value = None
+ >>> x.fill_value
+ 1e+20
+
+ """
+ if self._fill_value is None:
+ self._fill_value = _check_fill_value(None, self.dtype)
+
+ # Temporary workaround to account for the fact that str and bytes
+ # scalars cannot be indexed with (), whereas all other numpy
+ # scalars can. See issues #7259 and #7267.
+ # The if-block can be removed after #7267 has been fixed.
+ if isinstance(self._fill_value, ndarray):
+ return self._fill_value[()]
+ return self._fill_value
+
+ @fill_value.setter
+ def fill_value(self, value=None):
+ target = _check_fill_value(value, self.dtype)
+ if not target.ndim == 0:
+ # 2019-11-12, 1.18.0
+ warnings.warn(
+ "Non-scalar arrays for the fill value are deprecated. Use "
+ "arrays with scalar values instead. The filled function "
+ "still supports any array as `fill_value`.",
+ DeprecationWarning, stacklevel=2)
+
+ _fill_value = self._fill_value
+ if _fill_value is None:
+ # Create the attribute if it was undefined
+ self._fill_value = target
+ else:
+ # Don't overwrite the attribute, just fill it (for propagation)
+ _fill_value[()] = target
+
+ # kept for compatibility
+ get_fill_value = fill_value.fget
+ set_fill_value = fill_value.fset
+
+ def filled(self, fill_value=None):
+ """
+ Return a copy of self, with masked values filled with a given value.
+ **However**, if there are no masked values to fill, self will be
+ returned instead as an ndarray.
+
+ Parameters
+ ----------
+ fill_value : array_like, optional
+ The value to use for invalid entries. Can be scalar or non-scalar.
+ If non-scalar, the resulting ndarray must be broadcastable over
+ input array. Default is None, in which case, the `fill_value`
+ attribute of the array is used instead.
+
+ Returns
+ -------
+ filled_array : ndarray
+ A copy of ``self`` with invalid entries replaced by *fill_value*
+ (be it the function argument or the attribute of ``self``), or
+ ``self`` itself as an ndarray if there are no invalid entries to
+ be replaced.
+
+ Notes
+ -----
+ The result is **not** a MaskedArray!
+
+ Examples
+ --------
+ >>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
+ >>> x.filled()
+ array([ 1, 2, -999, 4, -999])
+ >>> x.filled(fill_value=1000)
+ array([ 1, 2, 1000, 4, 1000])
+ >>> type(x.filled())
+ <class 'numpy.ndarray'>
+
+ Subclassing is preserved. This means that if, e.g., the data part of
+ the masked array is a recarray, `filled` returns a recarray:
+
+ >>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray)
+ >>> m = np.ma.array(x, mask=[(True, False), (False, True)])
+ >>> m.filled()
+ rec.array([(999999, 2), ( -3, 999999)],
+ dtype=[('f0', '<i8'), ('f1', '<i8')])
+ """
+ m = self._mask
+ if m is nomask:
+ return self._data
+
+ if fill_value is None:
+ fill_value = self.fill_value
+ else:
+ fill_value = _check_fill_value(fill_value, self.dtype)
+
+ if self is masked_singleton:
+ return np.asanyarray(fill_value)
+
+ if m.dtype.names is not None:
+ result = self._data.copy('K')
+ _recursive_filled(result, self._mask, fill_value)
+ elif not m.any():
+ return self._data
+ else:
+ result = self._data.copy('K')
+ try:
+ np.copyto(result, fill_value, where=m)
+ except (TypeError, AttributeError):
+ fill_value = narray(fill_value, dtype=object)
+ d = result.astype(object)
+ result = np.choose(m, (d, fill_value))
+ except IndexError:
+ # ok, if scalar
+ if self._data.shape:
+ raise
+ elif m:
+ result = np.array(fill_value, dtype=self.dtype)
+ else:
+ result = self._data
+ return result
+
+ def compressed(self):
+ """
+ Return all the non-masked data as a 1-D array.
+
+ Returns
+ -------
+ data : ndarray
+ A new `ndarray` holding the non-masked data is returned.
+
+ Notes
+ -----
+ The result is **not** a MaskedArray!
+
+ Examples
+ --------
+ >>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
+ >>> x.compressed()
+ array([0, 1])
+ >>> type(x.compressed())
+ <class 'numpy.ndarray'>
+
+ """
+ data = ndarray.ravel(self._data)
+ if self._mask is not nomask:
+ data = data.compress(np.logical_not(ndarray.ravel(self._mask)))
+ return data
+
+ def compress(self, condition, axis=None, out=None):
+ """
+ Return `a` where condition is ``True``.
+
+ If condition is a `~ma.MaskedArray`, missing values are considered
+ as ``False``.
+
+ Parameters
+ ----------
+ condition : var
+ Boolean 1-d array selecting which entries to return. If len(condition)
+ is less than the size of a along the axis, then output is truncated
+ to length of condition array.
+ axis : {None, int}, optional
+ Axis along which the operation must be performed.
+ out : {None, ndarray}, optional
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output but the type will be cast if
+ necessary.
+
+ Returns
+ -------
+ result : MaskedArray
+ A :class:`~ma.MaskedArray` object.
+
+ Notes
+ -----
+ Please note the difference with :meth:`compressed` !
+ The output of :meth:`compress` has a mask, the output of
+ :meth:`compressed` does not.
+
+ Examples
+ --------
+ >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.compress([1, 0, 1])
+ masked_array(data=[1, 3],
+ mask=[False, False],
+ fill_value=999999)
+
+ >>> x.compress([1, 0, 1], axis=1)
+ masked_array(
+ data=[[1, 3],
+ [--, --],
+ [7, 9]],
+ mask=[[False, False],
+ [ True, True],
+ [False, False]],
+ fill_value=999999)
+
+ """
+ # Get the basic components
+ (_data, _mask) = (self._data, self._mask)
+
+ # Force the condition to a regular ndarray and forget the missing
+ # values.
+ condition = np.asarray(condition)
+
+ _new = _data.compress(condition, axis=axis, out=out).view(type(self))
+ _new._update_from(self)
+ if _mask is not nomask:
+ _new._mask = _mask.compress(condition, axis=axis)
+ return _new
+
+ def _insert_masked_print(self):
+ """
+ Replace masked values with masked_print_option, casting all innermost
+ dtypes to object.
+ """
+ if masked_print_option.enabled():
+ mask = self._mask
+ if mask is nomask:
+ res = self._data
+ else:
+ # convert to object array to make filled work
+ data = self._data
+ # For big arrays, to avoid a costly conversion to the
+ # object dtype, extract the corners before the conversion.
+ print_width = (self._print_width if self.ndim > 1
+ else self._print_width_1d)
+ for axis in range(self.ndim):
+ if data.shape[axis] > print_width:
+ ind = print_width // 2
+ arr = np.split(data, (ind, -ind), axis=axis)
+ data = np.concatenate((arr[0], arr[2]), axis=axis)
+ arr = np.split(mask, (ind, -ind), axis=axis)
+ mask = np.concatenate((arr[0], arr[2]), axis=axis)
+
+ rdtype = _replace_dtype_fields(self.dtype, "O")
+ res = data.astype(rdtype)
+ _recursive_printoption(res, mask, masked_print_option)
+ else:
+ res = self.filled(self.fill_value)
+ return res
+
+ def __str__(self):
+ return str(self._insert_masked_print())
+
+ def __repr__(self):
+ """
+ Literal string representation.
+
+ """
+ if self._baseclass is np.ndarray:
+ name = 'array'
+ else:
+ name = self._baseclass.__name__
+
+
+ # 2016-11-19: Demoted to legacy format
+ if np.core.arrayprint._get_legacy_print_mode() <= 113:
+ is_long = self.ndim > 1
+ parameters = dict(
+ name=name,
+ nlen=" " * len(name),
+ data=str(self),
+ mask=str(self._mask),
+ fill=str(self.fill_value),
+ dtype=str(self.dtype)
+ )
+ is_structured = bool(self.dtype.names)
+ key = '{}_{}'.format(
+ 'long' if is_long else 'short',
+ 'flx' if is_structured else 'std'
+ )
+ return _legacy_print_templates[key] % parameters
+
+ prefix = f"masked_{name}("
+
+ dtype_needed = (
+ not np.core.arrayprint.dtype_is_implied(self.dtype) or
+ np.all(self.mask) or
+ self.size == 0
+ )
+
+ # determine which keyword args need to be shown
+ keys = ['data', 'mask', 'fill_value']
+ if dtype_needed:
+ keys.append('dtype')
+
+ # array has only one row (non-column)
+ is_one_row = builtins.all(dim == 1 for dim in self.shape[:-1])
+
+ # choose what to indent each keyword with
+ min_indent = 2
+ if is_one_row:
+ # first key on the same line as the type, remaining keys
+ # aligned by equals
+ indents = {}
+ indents[keys[0]] = prefix
+ for k in keys[1:]:
+ n = builtins.max(min_indent, len(prefix + keys[0]) - len(k))
+ indents[k] = ' ' * n
+ prefix = '' # absorbed into the first indent
+ else:
+ # each key on its own line, indented by two spaces
+ indents = {k: ' ' * min_indent for k in keys}
+ prefix = prefix + '\n' # first key on the next line
+
+ # format the field values
+ reprs = {}
+ reprs['data'] = np.array2string(
+ self._insert_masked_print(),
+ separator=", ",
+ prefix=indents['data'] + 'data=',
+ suffix=',')
+ reprs['mask'] = np.array2string(
+ self._mask,
+ separator=", ",
+ prefix=indents['mask'] + 'mask=',
+ suffix=',')
+ reprs['fill_value'] = repr(self.fill_value)
+ if dtype_needed:
+ reprs['dtype'] = np.core.arrayprint.dtype_short_repr(self.dtype)
+
+ # join keys with values and indentations
+ result = ',\n'.join(
+ '{}{}={}'.format(indents[k], k, reprs[k])
+ for k in keys
+ )
+ return prefix + result + ')'
+
+ def _delegate_binop(self, other):
+ # This emulates the logic in
+ # private/binop_override.h:forward_binop_should_defer
+ if isinstance(other, type(self)):
+ return False
+ array_ufunc = getattr(other, "__array_ufunc__", False)
+ if array_ufunc is False:
+ other_priority = getattr(other, "__array_priority__", -1000000)
+ return self.__array_priority__ < other_priority
+ else:
+ # If array_ufunc is not None, it will be called inside the ufunc;
+ # None explicitly tells us to not call the ufunc, i.e., defer.
+ return array_ufunc is None
+
+ def _comparison(self, other, compare):
+ """Compare self with other using operator.eq or operator.ne.
+
+ When either of the elements is masked, the result is masked as well,
+ but the underlying boolean data are still set, with self and other
+ considered equal if both are masked, and unequal otherwise.
+
+ For structured arrays, all fields are combined, with masked values
+ ignored. The result is masked if all fields were masked, with self
+ and other considered equal only if both were fully masked.
+ """
+ omask = getmask(other)
+ smask = self.mask
+ mask = mask_or(smask, omask, copy=True)
+
+ odata = getdata(other)
+ if mask.dtype.names is not None:
+ # only == and != are reasonably defined for structured dtypes,
+ # so give up early for all other comparisons:
+ if compare not in (operator.eq, operator.ne):
+ return NotImplemented
+ # For possibly masked structured arrays we need to be careful,
+ # since the standard structured array comparison will use all
+ # fields, masked or not. To avoid masked fields influencing the
+ # outcome, we set all masked fields in self to other, so they'll
+ # count as equal. To prepare, we ensure we have the right shape.
+ broadcast_shape = np.broadcast(self, odata).shape
+ sbroadcast = np.broadcast_to(self, broadcast_shape, subok=True)
+ sbroadcast._mask = mask
+ sdata = sbroadcast.filled(odata)
+ # Now take care of the mask; the merged mask should have an item
+ # masked if all fields were masked (in one and/or other).
+ mask = (mask == np.ones((), mask.dtype))
+ # Ensure we can compare masks below if other was not masked.
+ if omask is np.False_:
+ omask = np.zeros((), smask.dtype)
+
+ else:
+ # For regular arrays, just use the data as they come.
+ sdata = self.data
+
+ check = compare(sdata, odata)
+
+ if isinstance(check, (np.bool_, bool)):
+ return masked if mask else check
+
+ if mask is not nomask:
+ if compare in (operator.eq, operator.ne):
+ # Adjust elements that were masked, which should be treated
+ # as equal if masked in both, unequal if masked in one.
+ # Note that this works automatically for structured arrays too.
+ # Ignore this for operations other than `==` and `!=`
+ check = np.where(mask, compare(smask, omask), check)
+
+ if mask.shape != check.shape:
+ # Guarantee consistency of the shape, making a copy since the
+ # the mask may need to get written to later.
+ mask = np.broadcast_to(mask, check.shape).copy()
+
+ check = check.view(type(self))
+ check._update_from(self)
+ check._mask = mask
+
+ # Cast fill value to bool_ if needed. If it cannot be cast, the
+ # default boolean fill value is used.
+ if check._fill_value is not None:
+ try:
+ fill = _check_fill_value(check._fill_value, np.bool_)
+ except (TypeError, ValueError):
+ fill = _check_fill_value(None, np.bool_)
+ check._fill_value = fill
+
+ return check
+
+ def __eq__(self, other):
+ """Check whether other equals self elementwise.
+
+ When either of the elements is masked, the result is masked as well,
+ but the underlying boolean data are still set, with self and other
+ considered equal if both are masked, and unequal otherwise.
+
+ For structured arrays, all fields are combined, with masked values
+ ignored. The result is masked if all fields were masked, with self
+ and other considered equal only if both were fully masked.
+ """
+ return self._comparison(other, operator.eq)
+
+ def __ne__(self, other):
+ """Check whether other does not equal self elementwise.
+
+ When either of the elements is masked, the result is masked as well,
+ but the underlying boolean data are still set, with self and other
+ considered equal if both are masked, and unequal otherwise.
+
+ For structured arrays, all fields are combined, with masked values
+ ignored. The result is masked if all fields were masked, with self
+ and other considered equal only if both were fully masked.
+ """
+ return self._comparison(other, operator.ne)
+
+ # All other comparisons:
+ def __le__(self, other):
+ return self._comparison(other, operator.le)
+
+ def __lt__(self, other):
+ return self._comparison(other, operator.lt)
+
+ def __ge__(self, other):
+ return self._comparison(other, operator.ge)
+
+ def __gt__(self, other):
+ return self._comparison(other, operator.gt)
+
+ def __add__(self, other):
+ """
+ Add self to other, and return a new masked array.
+
+ """
+ if self._delegate_binop(other):
+ return NotImplemented
+ return add(self, other)
+
+ def __radd__(self, other):
+ """
+ Add other to self, and return a new masked array.
+
+ """
+ # In analogy with __rsub__ and __rdiv__, use original order:
+ # we get here from `other + self`.
+ return add(other, self)
+
+ def __sub__(self, other):
+ """
+ Subtract other from self, and return a new masked array.
+
+ """
+ if self._delegate_binop(other):
+ return NotImplemented
+ return subtract(self, other)
+
+ def __rsub__(self, other):
+ """
+ Subtract self from other, and return a new masked array.
+
+ """
+ return subtract(other, self)
+
+ def __mul__(self, other):
+ "Multiply self by other, and return a new masked array."
+ if self._delegate_binop(other):
+ return NotImplemented
+ return multiply(self, other)
+
+ def __rmul__(self, other):
+ """
+ Multiply other by self, and return a new masked array.
+
+ """
+ # In analogy with __rsub__ and __rdiv__, use original order:
+ # we get here from `other * self`.
+ return multiply(other, self)
+
+ def __div__(self, other):
+ """
+ Divide other into self, and return a new masked array.
+
+ """
+ if self._delegate_binop(other):
+ return NotImplemented
+ return divide(self, other)
+
+ def __truediv__(self, other):
+ """
+ Divide other into self, and return a new masked array.
+
+ """
+ if self._delegate_binop(other):
+ return NotImplemented
+ return true_divide(self, other)
+
+ def __rtruediv__(self, other):
+ """
+ Divide self into other, and return a new masked array.
+
+ """
+ return true_divide(other, self)
+
+ def __floordiv__(self, other):
+ """
+ Divide other into self, and return a new masked array.
+
+ """
+ if self._delegate_binop(other):
+ return NotImplemented
+ return floor_divide(self, other)
+
+ def __rfloordiv__(self, other):
+ """
+ Divide self into other, and return a new masked array.
+
+ """
+ return floor_divide(other, self)
+
+ def __pow__(self, other):
+ """
+ Raise self to the power other, masking the potential NaNs/Infs
+
+ """
+ if self._delegate_binop(other):
+ return NotImplemented
+ return power(self, other)
+
+ def __rpow__(self, other):
+ """
+ Raise other to the power self, masking the potential NaNs/Infs
+
+ """
+ return power(other, self)
+
+ def __iadd__(self, other):
+ """
+ Add other to self in-place.
+
+ """
+ m = getmask(other)
+ if self._mask is nomask:
+ if m is not nomask and m.any():
+ self._mask = make_mask_none(self.shape, self.dtype)
+ self._mask += m
+ else:
+ if m is not nomask:
+ self._mask += m
+ other_data = getdata(other)
+ other_data = np.where(self._mask, other_data.dtype.type(0), other_data)
+ self._data.__iadd__(other_data)
+ return self
+
+ def __isub__(self, other):
+ """
+ Subtract other from self in-place.
+
+ """
+ m = getmask(other)
+ if self._mask is nomask:
+ if m is not nomask and m.any():
+ self._mask = make_mask_none(self.shape, self.dtype)
+ self._mask += m
+ elif m is not nomask:
+ self._mask += m
+ other_data = getdata(other)
+ other_data = np.where(self._mask, other_data.dtype.type(0), other_data)
+ self._data.__isub__(other_data)
+ return self
+
+ def __imul__(self, other):
+ """
+ Multiply self by other in-place.
+
+ """
+ m = getmask(other)
+ if self._mask is nomask:
+ if m is not nomask and m.any():
+ self._mask = make_mask_none(self.shape, self.dtype)
+ self._mask += m
+ elif m is not nomask:
+ self._mask += m
+ other_data = getdata(other)
+ other_data = np.where(self._mask, other_data.dtype.type(1), other_data)
+ self._data.__imul__(other_data)
+ return self
+
+ def __idiv__(self, other):
+ """
+ Divide self by other in-place.
+
+ """
+ other_data = getdata(other)
+ dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
+ other_mask = getmask(other)
+ new_mask = mask_or(other_mask, dom_mask)
+ # The following 4 lines control the domain filling
+ if dom_mask.any():
+ (_, fval) = ufunc_fills[np.divide]
+ other_data = np.where(
+ dom_mask, other_data.dtype.type(fval), other_data)
+ self._mask |= new_mask
+ other_data = np.where(self._mask, other_data.dtype.type(1), other_data)
+ self._data.__idiv__(other_data)
+ return self
+
+ def __ifloordiv__(self, other):
+ """
+ Floor divide self by other in-place.
+
+ """
+ other_data = getdata(other)
+ dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
+ other_mask = getmask(other)
+ new_mask = mask_or(other_mask, dom_mask)
+ # The following 3 lines control the domain filling
+ if dom_mask.any():
+ (_, fval) = ufunc_fills[np.floor_divide]
+ other_data = np.where(
+ dom_mask, other_data.dtype.type(fval), other_data)
+ self._mask |= new_mask
+ other_data = np.where(self._mask, other_data.dtype.type(1), other_data)
+ self._data.__ifloordiv__(other_data)
+ return self
+
+ def __itruediv__(self, other):
+ """
+ True divide self by other in-place.
+
+ """
+ other_data = getdata(other)
+ dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
+ other_mask = getmask(other)
+ new_mask = mask_or(other_mask, dom_mask)
+ # The following 3 lines control the domain filling
+ if dom_mask.any():
+ (_, fval) = ufunc_fills[np.true_divide]
+ other_data = np.where(
+ dom_mask, other_data.dtype.type(fval), other_data)
+ self._mask |= new_mask
+ other_data = np.where(self._mask, other_data.dtype.type(1), other_data)
+ self._data.__itruediv__(other_data)
+ return self
+
+ def __ipow__(self, other):
+ """
+ Raise self to the power other, in place.
+
+ """
+ other_data = getdata(other)
+ other_data = np.where(self._mask, other_data.dtype.type(1), other_data)
+ other_mask = getmask(other)
+ with np.errstate(divide='ignore', invalid='ignore'):
+ self._data.__ipow__(other_data)
+ invalid = np.logical_not(np.isfinite(self._data))
+ if invalid.any():
+ if self._mask is not nomask:
+ self._mask |= invalid
+ else:
+ self._mask = invalid
+ np.copyto(self._data, self.fill_value, where=invalid)
+ new_mask = mask_or(other_mask, invalid)
+ self._mask = mask_or(self._mask, new_mask)
+ return self
+
+ def __float__(self):
+ """
+ Convert to float.
+
+ """
+ if self.size > 1:
+ raise TypeError("Only length-1 arrays can be converted "
+ "to Python scalars")
+ elif self._mask:
+ warnings.warn("Warning: converting a masked element to nan.", stacklevel=2)
+ return np.nan
+ return float(self.item())
+
+ def __int__(self):
+ """
+ Convert to int.
+
+ """
+ if self.size > 1:
+ raise TypeError("Only length-1 arrays can be converted "
+ "to Python scalars")
+ elif self._mask:
+ raise MaskError('Cannot convert masked element to a Python int.')
+ return int(self.item())
+
+ @property
+ def imag(self):
+ """
+ The imaginary part of the masked array.
+
+ This property is a view on the imaginary part of this `MaskedArray`.
+
+ See Also
+ --------
+ real
+
+ Examples
+ --------
+ >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
+ >>> x.imag
+ masked_array(data=[1.0, --, 1.6],
+ mask=[False, True, False],
+ fill_value=1e+20)
+
+ """
+ result = self._data.imag.view(type(self))
+ result.__setmask__(self._mask)
+ return result
+
+ # kept for compatibility
+ get_imag = imag.fget
+
+ @property
+ def real(self):
+ """
+ The real part of the masked array.
+
+ This property is a view on the real part of this `MaskedArray`.
+
+ See Also
+ --------
+ imag
+
+ Examples
+ --------
+ >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
+ >>> x.real
+ masked_array(data=[1.0, --, 3.45],
+ mask=[False, True, False],
+ fill_value=1e+20)
+
+ """
+ result = self._data.real.view(type(self))
+ result.__setmask__(self._mask)
+ return result
+
+ # kept for compatibility
+ get_real = real.fget
+
+ def count(self, axis=None, keepdims=np._NoValue):
+ """
+ Count the non-masked elements of the array along the given axis.
+
+ Parameters
+ ----------
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which the count is performed.
+ The default, None, performs the count over all
+ the dimensions of the input array. `axis` may be negative, in
+ which case it counts from the last to the first axis.
+
+ .. versionadded:: 1.10.0
+
+ If this is a tuple of ints, the count is performed on multiple
+ axes, instead of a single axis or all the axes as before.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the array.
+
+ Returns
+ -------
+ result : ndarray or scalar
+ An array with the same shape as the input array, with the specified
+ axis removed. If the array is a 0-d array, or if `axis` is None, a
+ scalar is returned.
+
+ See Also
+ --------
+ ma.count_masked : Count masked elements in array or along a given axis.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = ma.arange(6).reshape((2, 3))
+ >>> a[1, :] = ma.masked
+ >>> a
+ masked_array(
+ data=[[0, 1, 2],
+ [--, --, --]],
+ mask=[[False, False, False],
+ [ True, True, True]],
+ fill_value=999999)
+ >>> a.count()
+ 3
+
+ When the `axis` keyword is specified an array of appropriate size is
+ returned.
+
+ >>> a.count(axis=0)
+ array([1, 1, 1])
+ >>> a.count(axis=1)
+ array([3, 0])
+
+ """
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ m = self._mask
+ # special case for matrices (we assume no other subclasses modify
+ # their dimensions)
+ if isinstance(self.data, np.matrix):
+ if m is nomask:
+ m = np.zeros(self.shape, dtype=np.bool_)
+ m = m.view(type(self.data))
+
+ if m is nomask:
+ # compare to _count_reduce_items in _methods.py
+
+ if self.shape == ():
+ if axis not in (None, 0):
+ raise np.AxisError(axis=axis, ndim=self.ndim)
+ return 1
+ elif axis is None:
+ if kwargs.get('keepdims', False):
+ return np.array(self.size, dtype=np.intp, ndmin=self.ndim)
+ return self.size
+
+ axes = normalize_axis_tuple(axis, self.ndim)
+ items = 1
+ for ax in axes:
+ items *= self.shape[ax]
+
+ if kwargs.get('keepdims', False):
+ out_dims = list(self.shape)
+ for a in axes:
+ out_dims[a] = 1
+ else:
+ out_dims = [d for n, d in enumerate(self.shape)
+ if n not in axes]
+ # make sure to return a 0-d array if axis is supplied
+ return np.full(out_dims, items, dtype=np.intp)
+
+ # take care of the masked singleton
+ if self is masked:
+ return 0
+
+ return (~m).sum(axis=axis, dtype=np.intp, **kwargs)
+
+ def ravel(self, order='C'):
+ """
+ Returns a 1D version of self, as a view.
+
+ Parameters
+ ----------
+ order : {'C', 'F', 'A', 'K'}, optional
+ The elements of `a` are read using this index order. 'C' means to
+ index the elements in C-like order, with the last axis index
+ changing fastest, back to the first axis index changing slowest.
+ 'F' means to index the elements in Fortran-like index order, with
+ the first index changing fastest, and the last index changing
+ slowest. Note that the 'C' and 'F' options take no account of the
+ memory layout of the underlying array, and only refer to the order
+ of axis indexing. 'A' means to read the elements in Fortran-like
+ index order if `m` is Fortran *contiguous* in memory, C-like order
+ otherwise. 'K' means to read the elements in the order they occur
+ in memory, except for reversing the data when strides are negative.
+ By default, 'C' index order is used.
+ (Masked arrays currently use 'A' on the data when 'K' is passed.)
+
+ Returns
+ -------
+ MaskedArray
+ Output view is of shape ``(self.size,)`` (or
+ ``(np.ma.product(self.shape),)``).
+
+ Examples
+ --------
+ >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.ravel()
+ masked_array(data=[1, --, 3, --, 5, --, 7, --, 9],
+ mask=[False, True, False, True, False, True, False, True,
+ False],
+ fill_value=999999)
+
+ """
+ # The order of _data and _mask could be different (it shouldn't be
+ # normally). Passing order `K` or `A` would be incorrect.
+ # So we ignore the mask memory order.
+ # TODO: We don't actually support K, so use A instead. We could
+ # try to guess this correct by sorting strides or deprecate.
+ if order in "kKaA":
+ order = "F" if self._data.flags.fnc else "C"
+ r = ndarray.ravel(self._data, order=order).view(type(self))
+ r._update_from(self)
+ if self._mask is not nomask:
+ r._mask = ndarray.ravel(self._mask, order=order).reshape(r.shape)
+ else:
+ r._mask = nomask
+ return r
+
+
+ def reshape(self, *s, **kwargs):
+ """
+ Give a new shape to the array without changing its data.
+
+ Returns a masked array containing the same data, but with a new shape.
+ The result is a view on the original array; if this is not possible, a
+ ValueError is raised.
+
+ Parameters
+ ----------
+ shape : int or tuple of ints
+ The new shape should be compatible with the original shape. If an
+ integer is supplied, then the result will be a 1-D array of that
+ length.
+ order : {'C', 'F'}, optional
+ Determines whether the array data should be viewed as in C
+ (row-major) or FORTRAN (column-major) order.
+
+ Returns
+ -------
+ reshaped_array : array
+ A new view on the array.
+
+ See Also
+ --------
+ reshape : Equivalent function in the masked array module.
+ numpy.ndarray.reshape : Equivalent method on ndarray object.
+ numpy.reshape : Equivalent function in the NumPy module.
+
+ Notes
+ -----
+ The reshaping operation cannot guarantee that a copy will not be made,
+ to modify the shape in place, use ``a.shape = s``
+
+ Examples
+ --------
+ >>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
+ >>> x
+ masked_array(
+ data=[[--, 2],
+ [3, --]],
+ mask=[[ True, False],
+ [False, True]],
+ fill_value=999999)
+ >>> x = x.reshape((4,1))
+ >>> x
+ masked_array(
+ data=[[--],
+ [2],
+ [3],
+ [--]],
+ mask=[[ True],
+ [False],
+ [False],
+ [ True]],
+ fill_value=999999)
+
+ """
+ kwargs.update(order=kwargs.get('order', 'C'))
+ result = self._data.reshape(*s, **kwargs).view(type(self))
+ result._update_from(self)
+ mask = self._mask
+ if mask is not nomask:
+ result._mask = mask.reshape(*s, **kwargs)
+ return result
+
+ def resize(self, newshape, refcheck=True, order=False):
+ """
+ .. warning::
+
+ This method does nothing, except raise a ValueError exception. A
+ masked array does not own its data and therefore cannot safely be
+ resized in place. Use the `numpy.ma.resize` function instead.
+
+ This method is difficult to implement safely and may be deprecated in
+ future releases of NumPy.
+
+ """
+ # Note : the 'order' keyword looks broken, let's just drop it
+ errmsg = "A masked array does not own its data "\
+ "and therefore cannot be resized.\n" \
+ "Use the numpy.ma.resize function instead."
+ raise ValueError(errmsg)
+
+ def put(self, indices, values, mode='raise'):
+ """
+ Set storage-indexed locations to corresponding values.
+
+ Sets self._data.flat[n] = values[n] for each n in indices.
+ If `values` is shorter than `indices` then it will repeat.
+ If `values` has some masked values, the initial mask is updated
+ in consequence, else the corresponding values are unmasked.
+
+ Parameters
+ ----------
+ indices : 1-D array_like
+ Target indices, interpreted as integers.
+ values : array_like
+ Values to place in self._data copy at target indices.
+ mode : {'raise', 'wrap', 'clip'}, optional
+ Specifies how out-of-bounds indices will behave.
+ 'raise' : raise an error.
+ 'wrap' : wrap around.
+ 'clip' : clip to the range.
+
+ Notes
+ -----
+ `values` can be a scalar or length 1 array.
+
+ Examples
+ --------
+ >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.put([0,4,8],[10,20,30])
+ >>> x
+ masked_array(
+ data=[[10, --, 3],
+ [--, 20, --],
+ [7, --, 30]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+
+ >>> x.put(4,999)
+ >>> x
+ masked_array(
+ data=[[10, --, 3],
+ [--, 999, --],
+ [7, --, 30]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+
+ """
+ # Hard mask: Get rid of the values/indices that fall on masked data
+ if self._hardmask and self._mask is not nomask:
+ mask = self._mask[indices]
+ indices = narray(indices, copy=False)
+ values = narray(values, copy=False, subok=True)
+ values.resize(indices.shape)
+ indices = indices[~mask]
+ values = values[~mask]
+
+ self._data.put(indices, values, mode=mode)
+
+ # short circuit if neither self nor values are masked
+ if self._mask is nomask and getmask(values) is nomask:
+ return
+
+ m = getmaskarray(self)
+
+ if getmask(values) is nomask:
+ m.put(indices, False, mode=mode)
+ else:
+ m.put(indices, values._mask, mode=mode)
+ m = make_mask(m, copy=False, shrink=True)
+ self._mask = m
+ return
+
+ def ids(self):
+ """
+ Return the addresses of the data and mask areas.
+
+ Parameters
+ ----------
+ None
+
+ Examples
+ --------
+ >>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1])
+ >>> x.ids()
+ (166670640, 166659832) # may vary
+
+ If the array has no mask, the address of `nomask` is returned. This address
+ is typically not close to the data in memory:
+
+ >>> x = np.ma.array([1, 2, 3])
+ >>> x.ids()
+ (166691080, 3083169284) # may vary
+
+ """
+ if self._mask is nomask:
+ return (self.ctypes.data, id(nomask))
+ return (self.ctypes.data, self._mask.ctypes.data)
+
+ def iscontiguous(self):
+ """
+ Return a boolean indicating whether the data is contiguous.
+
+ Parameters
+ ----------
+ None
+
+ Examples
+ --------
+ >>> x = np.ma.array([1, 2, 3])
+ >>> x.iscontiguous()
+ True
+
+ `iscontiguous` returns one of the flags of the masked array:
+
+ >>> x.flags
+ C_CONTIGUOUS : True
+ F_CONTIGUOUS : True
+ OWNDATA : False
+ WRITEABLE : True
+ ALIGNED : True
+ WRITEBACKIFCOPY : False
+
+ """
+ return self.flags['CONTIGUOUS']
+
+ def all(self, axis=None, out=None, keepdims=np._NoValue):
+ """
+ Returns True if all elements evaluate to True.
+
+ The output array is masked where all the values along the given axis
+ are masked: if the output would have been a scalar and that all the
+ values are masked, then the output is `masked`.
+
+ Refer to `numpy.all` for full documentation.
+
+ See Also
+ --------
+ numpy.ndarray.all : corresponding function for ndarrays
+ numpy.all : equivalent function
+
+ Examples
+ --------
+ >>> np.ma.array([1,2,3]).all()
+ True
+ >>> a = np.ma.array([1,2,3], mask=True)
+ >>> (a.all() is np.ma.masked)
+ True
+
+ """
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ mask = _check_mask_axis(self._mask, axis, **kwargs)
+ if out is None:
+ d = self.filled(True).all(axis=axis, **kwargs).view(type(self))
+ if d.ndim:
+ d.__setmask__(mask)
+ elif mask:
+ return masked
+ return d
+ self.filled(True).all(axis=axis, out=out, **kwargs)
+ if isinstance(out, MaskedArray):
+ if out.ndim or mask:
+ out.__setmask__(mask)
+ return out
+
+ def any(self, axis=None, out=None, keepdims=np._NoValue):
+ """
+ Returns True if any of the elements of `a` evaluate to True.
+
+ Masked values are considered as False during computation.
+
+ Refer to `numpy.any` for full documentation.
+
+ See Also
+ --------
+ numpy.ndarray.any : corresponding function for ndarrays
+ numpy.any : equivalent function
+
+ """
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ mask = _check_mask_axis(self._mask, axis, **kwargs)
+ if out is None:
+ d = self.filled(False).any(axis=axis, **kwargs).view(type(self))
+ if d.ndim:
+ d.__setmask__(mask)
+ elif mask:
+ d = masked
+ return d
+ self.filled(False).any(axis=axis, out=out, **kwargs)
+ if isinstance(out, MaskedArray):
+ if out.ndim or mask:
+ out.__setmask__(mask)
+ return out
+
+ def nonzero(self):
+ """
+ Return the indices of unmasked elements that are not zero.
+
+ Returns a tuple of arrays, one for each dimension, containing the
+ indices of the non-zero elements in that dimension. The corresponding
+ non-zero values can be obtained with::
+
+ a[a.nonzero()]
+
+ To group the indices by element, rather than dimension, use
+ instead::
+
+ np.transpose(a.nonzero())
+
+ The result of this is always a 2d array, with a row for each non-zero
+ element.
+
+ Parameters
+ ----------
+ None
+
+ Returns
+ -------
+ tuple_of_arrays : tuple
+ Indices of elements that are non-zero.
+
+ See Also
+ --------
+ numpy.nonzero :
+ Function operating on ndarrays.
+ flatnonzero :
+ Return indices that are non-zero in the flattened version of the input
+ array.
+ numpy.ndarray.nonzero :
+ Equivalent ndarray method.
+ count_nonzero :
+ Counts the number of non-zero elements in the input array.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = ma.array(np.eye(3))
+ >>> x
+ masked_array(
+ data=[[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]],
+ mask=False,
+ fill_value=1e+20)
+ >>> x.nonzero()
+ (array([0, 1, 2]), array([0, 1, 2]))
+
+ Masked elements are ignored.
+
+ >>> x[1, 1] = ma.masked
+ >>> x
+ masked_array(
+ data=[[1.0, 0.0, 0.0],
+ [0.0, --, 0.0],
+ [0.0, 0.0, 1.0]],
+ mask=[[False, False, False],
+ [False, True, False],
+ [False, False, False]],
+ fill_value=1e+20)
+ >>> x.nonzero()
+ (array([0, 2]), array([0, 2]))
+
+ Indices can also be grouped by element.
+
+ >>> np.transpose(x.nonzero())
+ array([[0, 0],
+ [2, 2]])
+
+ A common use for ``nonzero`` is to find the indices of an array, where
+ a condition is True. Given an array `a`, the condition `a` > 3 is a
+ boolean array and since False is interpreted as 0, ma.nonzero(a > 3)
+ yields the indices of the `a` where the condition is true.
+
+ >>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
+ >>> a > 3
+ masked_array(
+ data=[[False, False, False],
+ [ True, True, True],
+ [ True, True, True]],
+ mask=False,
+ fill_value=True)
+ >>> ma.nonzero(a > 3)
+ (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
+
+ The ``nonzero`` method of the condition array can also be called.
+
+ >>> (a > 3).nonzero()
+ (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
+
+ """
+ return narray(self.filled(0), copy=False).nonzero()
+
+ def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None):
+ """
+ (this docstring should be overwritten)
+ """
+ #!!!: implement out + test!
+ m = self._mask
+ if m is nomask:
+ result = super().trace(offset=offset, axis1=axis1, axis2=axis2,
+ out=out)
+ return result.astype(dtype)
+ else:
+ D = self.diagonal(offset=offset, axis1=axis1, axis2=axis2)
+ return D.astype(dtype).filled(0).sum(axis=-1, out=out)
+ trace.__doc__ = ndarray.trace.__doc__
+
+ def dot(self, b, out=None, strict=False):
+ """
+ a.dot(b, out=None)
+
+ Masked dot product of two arrays. Note that `out` and `strict` are
+ located in different positions than in `ma.dot`. In order to
+ maintain compatibility with the functional version, it is
+ recommended that the optional arguments be treated as keyword only.
+ At some point that may be mandatory.
+
+ .. versionadded:: 1.10.0
+
+ Parameters
+ ----------
+ b : masked_array_like
+ Inputs array.
+ out : masked_array, optional
+ Output argument. This must have the exact kind that would be
+ returned if it was not used. In particular, it must have the
+ right type, must be C-contiguous, and its dtype must be the
+ dtype that would be returned for `ma.dot(a,b)`. This is a
+ performance feature. Therefore, if these conditions are not
+ met, an exception is raised, instead of attempting to be
+ flexible.
+ strict : bool, optional
+ Whether masked data are propagated (True) or set to 0 (False)
+ for the computation. Default is False. Propagating the mask
+ means that if a masked value appears in a row or column, the
+ whole row or column is considered masked.
+
+ .. versionadded:: 1.10.2
+
+ See Also
+ --------
+ numpy.ma.dot : equivalent function
+
+ """
+ return dot(self, b, out=out, strict=strict)
+
+ def sum(self, axis=None, dtype=None, out=None, keepdims=np._NoValue):
+ """
+ Return the sum of the array elements over the given axis.
+
+ Masked elements are set to 0 internally.
+
+ Refer to `numpy.sum` for full documentation.
+
+ See Also
+ --------
+ numpy.ndarray.sum : corresponding function for ndarrays
+ numpy.sum : equivalent function
+
+ Examples
+ --------
+ >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.sum()
+ 25
+ >>> x.sum(axis=1)
+ masked_array(data=[4, 5, 16],
+ mask=[False, False, False],
+ fill_value=999999)
+ >>> x.sum(axis=0)
+ masked_array(data=[8, 5, 12],
+ mask=[False, False, False],
+ fill_value=999999)
+ >>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
+ <class 'numpy.int64'>
+
+ """
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ _mask = self._mask
+ newmask = _check_mask_axis(_mask, axis, **kwargs)
+ # No explicit output
+ if out is None:
+ result = self.filled(0).sum(axis, dtype=dtype, **kwargs)
+ rndim = getattr(result, 'ndim', 0)
+ if rndim:
+ result = result.view(type(self))
+ result.__setmask__(newmask)
+ elif newmask:
+ result = masked
+ return result
+ # Explicit output
+ result = self.filled(0).sum(axis, dtype=dtype, out=out, **kwargs)
+ if isinstance(out, MaskedArray):
+ outmask = getmask(out)
+ if outmask is nomask:
+ outmask = out._mask = make_mask_none(out.shape)
+ outmask.flat = newmask
+ return out
+
+ def cumsum(self, axis=None, dtype=None, out=None):
+ """
+ Return the cumulative sum of the array elements over the given axis.
+
+ Masked values are set to 0 internally during the computation.
+ However, their position is saved, and the result will be masked at
+ the same locations.
+
+ Refer to `numpy.cumsum` for full documentation.
+
+ Notes
+ -----
+ The mask is lost if `out` is not a valid :class:`ma.MaskedArray` !
+
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow.
+
+ See Also
+ --------
+ numpy.ndarray.cumsum : corresponding function for ndarrays
+ numpy.cumsum : equivalent function
+
+ Examples
+ --------
+ >>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
+ >>> marr.cumsum()
+ masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33],
+ mask=[False, False, False, True, True, True, False, False,
+ False, False],
+ fill_value=999999)
+
+ """
+ result = self.filled(0).cumsum(axis=axis, dtype=dtype, out=out)
+ if out is not None:
+ if isinstance(out, MaskedArray):
+ out.__setmask__(self.mask)
+ return out
+ result = result.view(type(self))
+ result.__setmask__(self._mask)
+ return result
+
+ def prod(self, axis=None, dtype=None, out=None, keepdims=np._NoValue):
+ """
+ Return the product of the array elements over the given axis.
+
+ Masked elements are set to 1 internally for computation.
+
+ Refer to `numpy.prod` for full documentation.
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is raised
+ on overflow.
+
+ See Also
+ --------
+ numpy.ndarray.prod : corresponding function for ndarrays
+ numpy.prod : equivalent function
+ """
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ _mask = self._mask
+ newmask = _check_mask_axis(_mask, axis, **kwargs)
+ # No explicit output
+ if out is None:
+ result = self.filled(1).prod(axis, dtype=dtype, **kwargs)
+ rndim = getattr(result, 'ndim', 0)
+ if rndim:
+ result = result.view(type(self))
+ result.__setmask__(newmask)
+ elif newmask:
+ result = masked
+ return result
+ # Explicit output
+ result = self.filled(1).prod(axis, dtype=dtype, out=out, **kwargs)
+ if isinstance(out, MaskedArray):
+ outmask = getmask(out)
+ if outmask is nomask:
+ outmask = out._mask = make_mask_none(out.shape)
+ outmask.flat = newmask
+ return out
+ product = prod
+
+ def cumprod(self, axis=None, dtype=None, out=None):
+ """
+ Return the cumulative product of the array elements over the given axis.
+
+ Masked values are set to 1 internally during the computation.
+ However, their position is saved, and the result will be masked at
+ the same locations.
+
+ Refer to `numpy.cumprod` for full documentation.
+
+ Notes
+ -----
+ The mask is lost if `out` is not a valid MaskedArray !
+
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow.
+
+ See Also
+ --------
+ numpy.ndarray.cumprod : corresponding function for ndarrays
+ numpy.cumprod : equivalent function
+ """
+ result = self.filled(1).cumprod(axis=axis, dtype=dtype, out=out)
+ if out is not None:
+ if isinstance(out, MaskedArray):
+ out.__setmask__(self._mask)
+ return out
+ result = result.view(type(self))
+ result.__setmask__(self._mask)
+ return result
+
+ def mean(self, axis=None, dtype=None, out=None, keepdims=np._NoValue):
+ """
+ Returns the average of the array elements along given axis.
+
+ Masked entries are ignored, and result elements which are not
+ finite will be masked.
+
+ Refer to `numpy.mean` for full documentation.
+
+ See Also
+ --------
+ numpy.ndarray.mean : corresponding function for ndarrays
+ numpy.mean : Equivalent function
+ numpy.ma.average : Weighted average.
+
+ Examples
+ --------
+ >>> a = np.ma.array([1,2,3], mask=[False, False, True])
+ >>> a
+ masked_array(data=[1, 2, --],
+ mask=[False, False, True],
+ fill_value=999999)
+ >>> a.mean()
+ 1.5
+
+ """
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+ if self._mask is nomask:
+ result = super().mean(axis=axis, dtype=dtype, **kwargs)[()]
+ else:
+ is_float16_result = False
+ if dtype is None:
+ if issubclass(self.dtype.type, (ntypes.integer, ntypes.bool_)):
+ dtype = mu.dtype('f8')
+ elif issubclass(self.dtype.type, ntypes.float16):
+ dtype = mu.dtype('f4')
+ is_float16_result = True
+ dsum = self.sum(axis=axis, dtype=dtype, **kwargs)
+ cnt = self.count(axis=axis, **kwargs)
+ if cnt.shape == () and (cnt == 0):
+ result = masked
+ elif is_float16_result:
+ result = self.dtype.type(dsum * 1. / cnt)
+ else:
+ result = dsum * 1. / cnt
+ if out is not None:
+ out.flat = result
+ if isinstance(out, MaskedArray):
+ outmask = getmask(out)
+ if outmask is nomask:
+ outmask = out._mask = make_mask_none(out.shape)
+ outmask.flat = getmask(result)
+ return out
+ return result
+
+ def anom(self, axis=None, dtype=None):
+ """
+ Compute the anomalies (deviations from the arithmetic mean)
+ along the given axis.
+
+ Returns an array of anomalies, with the same shape as the input and
+ where the arithmetic mean is computed along the given axis.
+
+ Parameters
+ ----------
+ axis : int, optional
+ Axis over which the anomalies are taken.
+ The default is to use the mean of the flattened array as reference.
+ dtype : dtype, optional
+ Type to use in computing the variance. For arrays of integer type
+ the default is float32; for arrays of float types it is the same as
+ the array type.
+
+ See Also
+ --------
+ mean : Compute the mean of the array.
+
+ Examples
+ --------
+ >>> a = np.ma.array([1,2,3])
+ >>> a.anom()
+ masked_array(data=[-1., 0., 1.],
+ mask=False,
+ fill_value=1e+20)
+
+ """
+ m = self.mean(axis, dtype)
+ if not axis:
+ return self - m
+ else:
+ return self - expand_dims(m, axis)
+
+ def var(self, axis=None, dtype=None, out=None, ddof=0,
+ keepdims=np._NoValue):
+ """
+ Returns the variance of the array elements along given axis.
+
+ Masked entries are ignored, and result elements which are not
+ finite will be masked.
+
+ Refer to `numpy.var` for full documentation.
+
+ See Also
+ --------
+ numpy.ndarray.var : corresponding function for ndarrays
+ numpy.var : Equivalent function
+ """
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ # Easy case: nomask, business as usual
+ if self._mask is nomask:
+ ret = super().var(axis=axis, dtype=dtype, out=out, ddof=ddof,
+ **kwargs)[()]
+ if out is not None:
+ if isinstance(out, MaskedArray):
+ out.__setmask__(nomask)
+ return out
+ return ret
+
+ # Some data are masked, yay!
+ cnt = self.count(axis=axis, **kwargs) - ddof
+ danom = self - self.mean(axis, dtype, keepdims=True)
+ if iscomplexobj(self):
+ danom = umath.absolute(danom) ** 2
+ else:
+ danom *= danom
+ dvar = divide(danom.sum(axis, **kwargs), cnt).view(type(self))
+ # Apply the mask if it's not a scalar
+ if dvar.ndim:
+ dvar._mask = mask_or(self._mask.all(axis, **kwargs), (cnt <= 0))
+ dvar._update_from(self)
+ elif getmask(dvar):
+ # Make sure that masked is returned when the scalar is masked.
+ dvar = masked
+ if out is not None:
+ if isinstance(out, MaskedArray):
+ out.flat = 0
+ out.__setmask__(True)
+ elif out.dtype.kind in 'biu':
+ errmsg = "Masked data information would be lost in one or "\
+ "more location."
+ raise MaskError(errmsg)
+ else:
+ out.flat = np.nan
+ return out
+ # In case with have an explicit output
+ if out is not None:
+ # Set the data
+ out.flat = dvar
+ # Set the mask if needed
+ if isinstance(out, MaskedArray):
+ out.__setmask__(dvar.mask)
+ return out
+ return dvar
+ var.__doc__ = np.var.__doc__
+
+ def std(self, axis=None, dtype=None, out=None, ddof=0,
+ keepdims=np._NoValue):
+ """
+ Returns the standard deviation of the array elements along given axis.
+
+ Masked entries are ignored.
+
+ Refer to `numpy.std` for full documentation.
+
+ See Also
+ --------
+ numpy.ndarray.std : corresponding function for ndarrays
+ numpy.std : Equivalent function
+ """
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ dvar = self.var(axis, dtype, out, ddof, **kwargs)
+ if dvar is not masked:
+ if out is not None:
+ np.power(out, 0.5, out=out, casting='unsafe')
+ return out
+ dvar = sqrt(dvar)
+ return dvar
+
+ def round(self, decimals=0, out=None):
+ """
+ Return each element rounded to the given number of decimals.
+
+ Refer to `numpy.around` for full documentation.
+
+ See Also
+ --------
+ numpy.ndarray.round : corresponding function for ndarrays
+ numpy.around : equivalent function
+ """
+ result = self._data.round(decimals=decimals, out=out).view(type(self))
+ if result.ndim > 0:
+ result._mask = self._mask
+ result._update_from(self)
+ elif self._mask:
+ # Return masked when the scalar is masked
+ result = masked
+ # No explicit output: we're done
+ if out is None:
+ return result
+ if isinstance(out, MaskedArray):
+ out.__setmask__(self._mask)
+ return out
+
+ def argsort(self, axis=np._NoValue, kind=None, order=None,
+ endwith=True, fill_value=None):
+ """
+ Return an ndarray of indices that sort the array along the
+ specified axis. Masked values are filled beforehand to
+ `fill_value`.
+
+ Parameters
+ ----------
+ axis : int, optional
+ Axis along which to sort. If None, the default, the flattened array
+ is used.
+
+ .. versionchanged:: 1.13.0
+ Previously, the default was documented to be -1, but that was
+ in error. At some future date, the default will change to -1, as
+ originally intended.
+ Until then, the axis should be given explicitly when
+ ``arr.ndim > 1``, to avoid a FutureWarning.
+ kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
+ The sorting algorithm used.
+ order : list, optional
+ When `a` is an array with fields defined, this argument specifies
+ which fields to compare first, second, etc. Not all fields need be
+ specified.
+ endwith : {True, False}, optional
+ Whether missing values (if any) should be treated as the largest values
+ (True) or the smallest values (False)
+ When the array contains unmasked values at the same extremes of the
+ datatype, the ordering of these values and the masked values is
+ undefined.
+ fill_value : scalar or None, optional
+ Value used internally for the masked values.
+ If ``fill_value`` is not None, it supersedes ``endwith``.
+
+ Returns
+ -------
+ index_array : ndarray, int
+ Array of indices that sort `a` along the specified axis.
+ In other words, ``a[index_array]`` yields a sorted `a`.
+
+ See Also
+ --------
+ ma.MaskedArray.sort : Describes sorting algorithms used.
+ lexsort : Indirect stable sort with multiple keys.
+ numpy.ndarray.sort : Inplace sort.
+
+ Notes
+ -----
+ See `sort` for notes on the different sorting algorithms.
+
+ Examples
+ --------
+ >>> a = np.ma.array([3,2,1], mask=[False, False, True])
+ >>> a
+ masked_array(data=[3, 2, --],
+ mask=[False, False, True],
+ fill_value=999999)
+ >>> a.argsort()
+ array([1, 0, 2])
+
+ """
+
+ # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default
+ if axis is np._NoValue:
+ axis = _deprecate_argsort_axis(self)
+
+ if fill_value is None:
+ if endwith:
+ # nan > inf
+ if np.issubdtype(self.dtype, np.floating):
+ fill_value = np.nan
+ else:
+ fill_value = minimum_fill_value(self)
+ else:
+ fill_value = maximum_fill_value(self)
+
+ filled = self.filled(fill_value)
+ return filled.argsort(axis=axis, kind=kind, order=order)
+
+ def argmin(self, axis=None, fill_value=None, out=None, *,
+ keepdims=np._NoValue):
+ """
+ Return array of indices to the minimum values along the given axis.
+
+ Parameters
+ ----------
+ axis : {None, integer}
+ If None, the index is into the flattened array, otherwise along
+ the specified axis
+ fill_value : scalar or None, optional
+ Value used to fill in the masked values. If None, the output of
+ minimum_fill_value(self._data) is used instead.
+ out : {None, array}, optional
+ Array into which the result can be placed. Its type is preserved
+ and it must be of the right shape to hold the output.
+
+ Returns
+ -------
+ ndarray or scalar
+ If multi-dimension input, returns a new ndarray of indices to the
+ minimum values along the given axis. Otherwise, returns a scalar
+ of index to the minimum values along the given axis.
+
+ Examples
+ --------
+ >>> x = np.ma.array(np.arange(4), mask=[1,1,0,0])
+ >>> x.shape = (2,2)
+ >>> x
+ masked_array(
+ data=[[--, --],
+ [2, 3]],
+ mask=[[ True, True],
+ [False, False]],
+ fill_value=999999)
+ >>> x.argmin(axis=0, fill_value=-1)
+ array([0, 0])
+ >>> x.argmin(axis=0, fill_value=9)
+ array([1, 1])
+
+ """
+ if fill_value is None:
+ fill_value = minimum_fill_value(self)
+ d = self.filled(fill_value).view(ndarray)
+ keepdims = False if keepdims is np._NoValue else bool(keepdims)
+ return d.argmin(axis, out=out, keepdims=keepdims)
+
+ def argmax(self, axis=None, fill_value=None, out=None, *,
+ keepdims=np._NoValue):
+ """
+ Returns array of indices of the maximum values along the given axis.
+ Masked values are treated as if they had the value fill_value.
+
+ Parameters
+ ----------
+ axis : {None, integer}
+ If None, the index is into the flattened array, otherwise along
+ the specified axis
+ fill_value : scalar or None, optional
+ Value used to fill in the masked values. If None, the output of
+ maximum_fill_value(self._data) is used instead.
+ out : {None, array}, optional
+ Array into which the result can be placed. Its type is preserved
+ and it must be of the right shape to hold the output.
+
+ Returns
+ -------
+ index_array : {integer_array}
+
+ Examples
+ --------
+ >>> a = np.arange(6).reshape(2,3)
+ >>> a.argmax()
+ 5
+ >>> a.argmax(0)
+ array([1, 1, 1])
+ >>> a.argmax(1)
+ array([2, 2])
+
+ """
+ if fill_value is None:
+ fill_value = maximum_fill_value(self._data)
+ d = self.filled(fill_value).view(ndarray)
+ keepdims = False if keepdims is np._NoValue else bool(keepdims)
+ return d.argmax(axis, out=out, keepdims=keepdims)
+
+ def sort(self, axis=-1, kind=None, order=None,
+ endwith=True, fill_value=None):
+ """
+ Sort the array, in-place
+
+ Parameters
+ ----------
+ a : array_like
+ Array to be sorted.
+ axis : int, optional
+ Axis along which to sort. If None, the array is flattened before
+ sorting. The default is -1, which sorts along the last axis.
+ kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
+ The sorting algorithm used.
+ order : list, optional
+ When `a` is a structured array, this argument specifies which fields
+ to compare first, second, and so on. This list does not need to
+ include all of the fields.
+ endwith : {True, False}, optional
+ Whether missing values (if any) should be treated as the largest values
+ (True) or the smallest values (False)
+ When the array contains unmasked values sorting at the same extremes of the
+ datatype, the ordering of these values and the masked values is
+ undefined.
+ fill_value : scalar or None, optional
+ Value used internally for the masked values.
+ If ``fill_value`` is not None, it supersedes ``endwith``.
+
+ Returns
+ -------
+ sorted_array : ndarray
+ Array of the same type and shape as `a`.
+
+ See Also
+ --------
+ numpy.ndarray.sort : Method to sort an array in-place.
+ argsort : Indirect sort.
+ lexsort : Indirect stable sort on multiple keys.
+ searchsorted : Find elements in a sorted array.
+
+ Notes
+ -----
+ See ``sort`` for notes on the different sorting algorithms.
+
+ Examples
+ --------
+ >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
+ >>> # Default
+ >>> a.sort()
+ >>> a
+ masked_array(data=[1, 3, 5, --, --],
+ mask=[False, False, False, True, True],
+ fill_value=999999)
+
+ >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
+ >>> # Put missing values in the front
+ >>> a.sort(endwith=False)
+ >>> a
+ masked_array(data=[--, --, 1, 3, 5],
+ mask=[ True, True, False, False, False],
+ fill_value=999999)
+
+ >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
+ >>> # fill_value takes over endwith
+ >>> a.sort(endwith=False, fill_value=3)
+ >>> a
+ masked_array(data=[1, --, --, 3, 5],
+ mask=[False, True, True, False, False],
+ fill_value=999999)
+
+ """
+ if self._mask is nomask:
+ ndarray.sort(self, axis=axis, kind=kind, order=order)
+ return
+
+ if self is masked:
+ return
+
+ sidx = self.argsort(axis=axis, kind=kind, order=order,
+ fill_value=fill_value, endwith=endwith)
+
+ self[...] = np.take_along_axis(self, sidx, axis=axis)
+
+ def min(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
+ """
+ Return the minimum along a given axis.
+
+ Parameters
+ ----------
+ axis : None or int or tuple of ints, optional
+ Axis along which to operate. By default, ``axis`` is None and the
+ flattened input is used.
+ .. versionadded:: 1.7.0
+ If this is a tuple of ints, the minimum is selected over multiple
+ axes, instead of a single axis or all the axes as before.
+ out : array_like, optional
+ Alternative output array in which to place the result. Must be of
+ the same shape and buffer length as the expected output.
+ fill_value : scalar or None, optional
+ Value used to fill in the masked values.
+ If None, use the output of `minimum_fill_value`.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the array.
+
+ Returns
+ -------
+ amin : array_like
+ New array holding the result.
+ If ``out`` was specified, ``out`` is returned.
+
+ See Also
+ --------
+ ma.minimum_fill_value
+ Returns the minimum filling value for a given datatype.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = [[1., -2., 3.], [0.2, -0.7, 0.1]]
+ >>> mask = [[1, 1, 0], [0, 0, 1]]
+ >>> masked_x = ma.masked_array(x, mask)
+ >>> masked_x
+ masked_array(
+ data=[[--, --, 3.0],
+ [0.2, -0.7, --]],
+ mask=[[ True, True, False],
+ [False, False, True]],
+ fill_value=1e+20)
+ >>> ma.min(masked_x)
+ -0.7
+ >>> ma.min(masked_x, axis=-1)
+ masked_array(data=[3.0, -0.7],
+ mask=[False, False],
+ fill_value=1e+20)
+ >>> ma.min(masked_x, axis=0, keepdims=True)
+ masked_array(data=[[0.2, -0.7, 3.0]],
+ mask=[[False, False, False]],
+ fill_value=1e+20)
+ >>> mask = [[1, 1, 1,], [1, 1, 1]]
+ >>> masked_x = ma.masked_array(x, mask)
+ >>> ma.min(masked_x, axis=0)
+ masked_array(data=[--, --, --],
+ mask=[ True, True, True],
+ fill_value=1e+20,
+ dtype=float64)
+ """
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ _mask = self._mask
+ newmask = _check_mask_axis(_mask, axis, **kwargs)
+ if fill_value is None:
+ fill_value = minimum_fill_value(self)
+ # No explicit output
+ if out is None:
+ result = self.filled(fill_value).min(
+ axis=axis, out=out, **kwargs).view(type(self))
+ if result.ndim:
+ # Set the mask
+ result.__setmask__(newmask)
+ # Get rid of Infs
+ if newmask.ndim:
+ np.copyto(result, result.fill_value, where=newmask)
+ elif newmask:
+ result = masked
+ return result
+ # Explicit output
+ result = self.filled(fill_value).min(axis=axis, out=out, **kwargs)
+ if isinstance(out, MaskedArray):
+ outmask = getmask(out)
+ if outmask is nomask:
+ outmask = out._mask = make_mask_none(out.shape)
+ outmask.flat = newmask
+ else:
+ if out.dtype.kind in 'biu':
+ errmsg = "Masked data information would be lost in one or more"\
+ " location."
+ raise MaskError(errmsg)
+ np.copyto(out, np.nan, where=newmask)
+ return out
+
+ def max(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
+ """
+ Return the maximum along a given axis.
+
+ Parameters
+ ----------
+ axis : None or int or tuple of ints, optional
+ Axis along which to operate. By default, ``axis`` is None and the
+ flattened input is used.
+ .. versionadded:: 1.7.0
+ If this is a tuple of ints, the maximum is selected over multiple
+ axes, instead of a single axis or all the axes as before.
+ out : array_like, optional
+ Alternative output array in which to place the result. Must
+ be of the same shape and buffer length as the expected output.
+ fill_value : scalar or None, optional
+ Value used to fill in the masked values.
+ If None, use the output of maximum_fill_value().
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the array.
+
+ Returns
+ -------
+ amax : array_like
+ New array holding the result.
+ If ``out`` was specified, ``out`` is returned.
+
+ See Also
+ --------
+ ma.maximum_fill_value
+ Returns the maximum filling value for a given datatype.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = [[-1., 2.5], [4., -2.], [3., 0.]]
+ >>> mask = [[0, 0], [1, 0], [1, 0]]
+ >>> masked_x = ma.masked_array(x, mask)
+ >>> masked_x
+ masked_array(
+ data=[[-1.0, 2.5],
+ [--, -2.0],
+ [--, 0.0]],
+ mask=[[False, False],
+ [ True, False],
+ [ True, False]],
+ fill_value=1e+20)
+ >>> ma.max(masked_x)
+ 2.5
+ >>> ma.max(masked_x, axis=0)
+ masked_array(data=[-1.0, 2.5],
+ mask=[False, False],
+ fill_value=1e+20)
+ >>> ma.max(masked_x, axis=1, keepdims=True)
+ masked_array(
+ data=[[2.5],
+ [-2.0],
+ [0.0]],
+ mask=[[False],
+ [False],
+ [False]],
+ fill_value=1e+20)
+ >>> mask = [[1, 1], [1, 1], [1, 1]]
+ >>> masked_x = ma.masked_array(x, mask)
+ >>> ma.max(masked_x, axis=1)
+ masked_array(data=[--, --, --],
+ mask=[ True, True, True],
+ fill_value=1e+20,
+ dtype=float64)
+ """
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ _mask = self._mask
+ newmask = _check_mask_axis(_mask, axis, **kwargs)
+ if fill_value is None:
+ fill_value = maximum_fill_value(self)
+ # No explicit output
+ if out is None:
+ result = self.filled(fill_value).max(
+ axis=axis, out=out, **kwargs).view(type(self))
+ if result.ndim:
+ # Set the mask
+ result.__setmask__(newmask)
+ # Get rid of Infs
+ if newmask.ndim:
+ np.copyto(result, result.fill_value, where=newmask)
+ elif newmask:
+ result = masked
+ return result
+ # Explicit output
+ result = self.filled(fill_value).max(axis=axis, out=out, **kwargs)
+ if isinstance(out, MaskedArray):
+ outmask = getmask(out)
+ if outmask is nomask:
+ outmask = out._mask = make_mask_none(out.shape)
+ outmask.flat = newmask
+ else:
+
+ if out.dtype.kind in 'biu':
+ errmsg = "Masked data information would be lost in one or more"\
+ " location."
+ raise MaskError(errmsg)
+ np.copyto(out, np.nan, where=newmask)
+ return out
+
+ def ptp(self, axis=None, out=None, fill_value=None, keepdims=False):
+ """
+ Return (maximum - minimum) along the given dimension
+ (i.e. peak-to-peak value).
+
+ .. warning::
+ `ptp` preserves the data type of the array. This means the
+ return value for an input of signed integers with n bits
+ (e.g. `np.int8`, `np.int16`, etc) is also a signed integer
+ with n bits. In that case, peak-to-peak values greater than
+ ``2**(n-1)-1`` will be returned as negative values. An example
+ with a work-around is shown below.
+
+ Parameters
+ ----------
+ axis : {None, int}, optional
+ Axis along which to find the peaks. If None (default) the
+ flattened array is used.
+ out : {None, array_like}, optional
+ Alternative output array in which to place the result. It must
+ have the same shape and buffer length as the expected output
+ but the type will be cast if necessary.
+ fill_value : scalar or None, optional
+ Value used to fill in the masked values.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the array.
+
+ Returns
+ -------
+ ptp : ndarray.
+ A new array holding the result, unless ``out`` was
+ specified, in which case a reference to ``out`` is returned.
+
+ Examples
+ --------
+ >>> x = np.ma.MaskedArray([[4, 9, 2, 10],
+ ... [6, 9, 7, 12]])
+
+ >>> x.ptp(axis=1)
+ masked_array(data=[8, 6],
+ mask=False,
+ fill_value=999999)
+
+ >>> x.ptp(axis=0)
+ masked_array(data=[2, 0, 5, 2],
+ mask=False,
+ fill_value=999999)
+
+ >>> x.ptp()
+ 10
+
+ This example shows that a negative value can be returned when
+ the input is an array of signed integers.
+
+ >>> y = np.ma.MaskedArray([[1, 127],
+ ... [0, 127],
+ ... [-1, 127],
+ ... [-2, 127]], dtype=np.int8)
+ >>> y.ptp(axis=1)
+ masked_array(data=[ 126, 127, -128, -127],
+ mask=False,
+ fill_value=999999,
+ dtype=int8)
+
+ A work-around is to use the `view()` method to view the result as
+ unsigned integers with the same bit width:
+
+ >>> y.ptp(axis=1).view(np.uint8)
+ masked_array(data=[126, 127, 128, 129],
+ mask=False,
+ fill_value=999999,
+ dtype=uint8)
+ """
+ if out is None:
+ result = self.max(axis=axis, fill_value=fill_value,
+ keepdims=keepdims)
+ result -= self.min(axis=axis, fill_value=fill_value,
+ keepdims=keepdims)
+ return result
+ out.flat = self.max(axis=axis, out=out, fill_value=fill_value,
+ keepdims=keepdims)
+ min_value = self.min(axis=axis, fill_value=fill_value,
+ keepdims=keepdims)
+ np.subtract(out, min_value, out=out, casting='unsafe')
+ return out
+
+ def partition(self, *args, **kwargs):
+ warnings.warn("Warning: 'partition' will ignore the 'mask' "
+ f"of the {self.__class__.__name__}.",
+ stacklevel=2)
+ return super().partition(*args, **kwargs)
+
+ def argpartition(self, *args, **kwargs):
+ warnings.warn("Warning: 'argpartition' will ignore the 'mask' "
+ f"of the {self.__class__.__name__}.",
+ stacklevel=2)
+ return super().argpartition(*args, **kwargs)
+
+ def take(self, indices, axis=None, out=None, mode='raise'):
+ """
+ """
+ (_data, _mask) = (self._data, self._mask)
+ cls = type(self)
+ # Make sure the indices are not masked
+ maskindices = getmask(indices)
+ if maskindices is not nomask:
+ indices = indices.filled(0)
+ # Get the data, promoting scalars to 0d arrays with [...] so that
+ # .view works correctly
+ if out is None:
+ out = _data.take(indices, axis=axis, mode=mode)[...].view(cls)
+ else:
+ np.take(_data, indices, axis=axis, mode=mode, out=out)
+ # Get the mask
+ if isinstance(out, MaskedArray):
+ if _mask is nomask:
+ outmask = maskindices
+ else:
+ outmask = _mask.take(indices, axis=axis, mode=mode)
+ outmask |= maskindices
+ out.__setmask__(outmask)
+ # demote 0d arrays back to scalars, for consistency with ndarray.take
+ return out[()]
+
+ # Array methods
+ copy = _arraymethod('copy')
+ diagonal = _arraymethod('diagonal')
+ flatten = _arraymethod('flatten')
+ repeat = _arraymethod('repeat')
+ squeeze = _arraymethod('squeeze')
+ swapaxes = _arraymethod('swapaxes')
+ T = property(fget=lambda self: self.transpose())
+ transpose = _arraymethod('transpose')
+
+ def tolist(self, fill_value=None):
+ """
+ Return the data portion of the masked array as a hierarchical Python list.
+
+ Data items are converted to the nearest compatible Python type.
+ Masked values are converted to `fill_value`. If `fill_value` is None,
+ the corresponding entries in the output list will be ``None``.
+
+ Parameters
+ ----------
+ fill_value : scalar, optional
+ The value to use for invalid entries. Default is None.
+
+ Returns
+ -------
+ result : list
+ The Python list representation of the masked array.
+
+ Examples
+ --------
+ >>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4)
+ >>> x.tolist()
+ [[1, None, 3], [None, 5, None], [7, None, 9]]
+ >>> x.tolist(-999)
+ [[1, -999, 3], [-999, 5, -999], [7, -999, 9]]
+
+ """
+ _mask = self._mask
+ # No mask ? Just return .data.tolist ?
+ if _mask is nomask:
+ return self._data.tolist()
+ # Explicit fill_value: fill the array and get the list
+ if fill_value is not None:
+ return self.filled(fill_value).tolist()
+ # Structured array.
+ names = self.dtype.names
+ if names:
+ result = self._data.astype([(_, object) for _ in names])
+ for n in names:
+ result[n][_mask[n]] = None
+ return result.tolist()
+ # Standard arrays.
+ if _mask is nomask:
+ return [None]
+ # Set temps to save time when dealing w/ marrays.
+ inishape = self.shape
+ result = np.array(self._data.ravel(), dtype=object)
+ result[_mask.ravel()] = None
+ result.shape = inishape
+ return result.tolist()
+
+ def tostring(self, fill_value=None, order='C'):
+ r"""
+ A compatibility alias for `tobytes`, with exactly the same behavior.
+
+ Despite its name, it returns `bytes` not `str`\ s.
+
+ .. deprecated:: 1.19.0
+ """
+ # 2020-03-30, Numpy 1.19.0
+ warnings.warn(
+ "tostring() is deprecated. Use tobytes() instead.",
+ DeprecationWarning, stacklevel=2)
+
+ return self.tobytes(fill_value, order=order)
+
+ def tobytes(self, fill_value=None, order='C'):
+ """
+ Return the array data as a string containing the raw bytes in the array.
+
+ The array is filled with a fill value before the string conversion.
+
+ .. versionadded:: 1.9.0
+
+ Parameters
+ ----------
+ fill_value : scalar, optional
+ Value used to fill in the masked values. Default is None, in which
+ case `MaskedArray.fill_value` is used.
+ order : {'C','F','A'}, optional
+ Order of the data item in the copy. Default is 'C'.
+
+ - 'C' -- C order (row major).
+ - 'F' -- Fortran order (column major).
+ - 'A' -- Any, current order of array.
+ - None -- Same as 'A'.
+
+ See Also
+ --------
+ numpy.ndarray.tobytes
+ tolist, tofile
+
+ Notes
+ -----
+ As for `ndarray.tobytes`, information about the shape, dtype, etc.,
+ but also about `fill_value`, will be lost.
+
+ Examples
+ --------
+ >>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
+ >>> x.tobytes()
+ b'\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00'
+
+ """
+ return self.filled(fill_value).tobytes(order=order)
+
+ def tofile(self, fid, sep="", format="%s"):
+ """
+ Save a masked array to a file in binary format.
+
+ .. warning::
+ This function is not implemented yet.
+
+ Raises
+ ------
+ NotImplementedError
+ When `tofile` is called.
+
+ """
+ raise NotImplementedError("MaskedArray.tofile() not implemented yet.")
+
+ def toflex(self):
+ """
+ Transforms a masked array into a flexible-type array.
+
+ The flexible type array that is returned will have two fields:
+
+ * the ``_data`` field stores the ``_data`` part of the array.
+ * the ``_mask`` field stores the ``_mask`` part of the array.
+
+ Parameters
+ ----------
+ None
+
+ Returns
+ -------
+ record : ndarray
+ A new flexible-type `ndarray` with two fields: the first element
+ containing a value, the second element containing the corresponding
+ mask boolean. The returned record shape matches self.shape.
+
+ Notes
+ -----
+ A side-effect of transforming a masked array into a flexible `ndarray` is
+ that meta information (``fill_value``, ...) will be lost.
+
+ Examples
+ --------
+ >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.toflex()
+ array([[(1, False), (2, True), (3, False)],
+ [(4, True), (5, False), (6, True)],
+ [(7, False), (8, True), (9, False)]],
+ dtype=[('_data', '<i8'), ('_mask', '?')])
+
+ """
+ # Get the basic dtype.
+ ddtype = self.dtype
+ # Make sure we have a mask
+ _mask = self._mask
+ if _mask is None:
+ _mask = make_mask_none(self.shape, ddtype)
+ # And get its dtype
+ mdtype = self._mask.dtype
+
+ record = np.ndarray(shape=self.shape,
+ dtype=[('_data', ddtype), ('_mask', mdtype)])
+ record['_data'] = self._data
+ record['_mask'] = self._mask
+ return record
+ torecords = toflex
+
+ # Pickling
+ def __getstate__(self):
+ """Return the internal state of the masked array, for pickling
+ purposes.
+
+ """
+ cf = 'CF'[self.flags.fnc]
+ data_state = super().__reduce__()[2]
+ return data_state + (getmaskarray(self).tobytes(cf), self._fill_value)
+
+ def __setstate__(self, state):
+ """Restore the internal state of the masked array, for
+ pickling purposes. ``state`` is typically the output of the
+ ``__getstate__`` output, and is a 5-tuple:
+
+ - class name
+ - a tuple giving the shape of the data
+ - a typecode for the data
+ - a binary string for the data
+ - a binary string for the mask.
+
+ """
+ (_, shp, typ, isf, raw, msk, flv) = state
+ super().__setstate__((shp, typ, isf, raw))
+ self._mask.__setstate__((shp, make_mask_descr(typ), isf, msk))
+ self.fill_value = flv
+
+ def __reduce__(self):
+ """Return a 3-tuple for pickling a MaskedArray.
+
+ """
+ return (_mareconstruct,
+ (self.__class__, self._baseclass, (0,), 'b',),
+ self.__getstate__())
+
+ def __deepcopy__(self, memo=None):
+ from copy import deepcopy
+ copied = MaskedArray.__new__(type(self), self, copy=True)
+ if memo is None:
+ memo = {}
+ memo[id(self)] = copied
+ for (k, v) in self.__dict__.items():
+ copied.__dict__[k] = deepcopy(v, memo)
+ # as clearly documented for np.copy(), you need to use
+ # deepcopy() directly for arrays of object type that may
+ # contain compound types--you cannot depend on normal
+ # copy semantics to do the right thing here
+ if self.dtype.hasobject:
+ copied._data[...] = deepcopy(copied._data)
+ return copied
+
+
+def _mareconstruct(subtype, baseclass, baseshape, basetype,):
+ """Internal function that builds a new MaskedArray from the
+ information stored in a pickle.
+
+ """
+ _data = ndarray.__new__(baseclass, baseshape, basetype)
+ _mask = ndarray.__new__(ndarray, baseshape, make_mask_descr(basetype))
+ return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,)
+
+
+class mvoid(MaskedArray):
+ """
+ Fake a 'void' object to use for masked array with structured dtypes.
+ """
+
+ def __new__(self, data, mask=nomask, dtype=None, fill_value=None,
+ hardmask=False, copy=False, subok=True):
+ _data = np.array(data, copy=copy, subok=subok, dtype=dtype)
+ _data = _data.view(self)
+ _data._hardmask = hardmask
+ if mask is not nomask:
+ if isinstance(mask, np.void):
+ _data._mask = mask
+ else:
+ try:
+ # Mask is already a 0D array
+ _data._mask = np.void(mask)
+ except TypeError:
+ # Transform the mask to a void
+ mdtype = make_mask_descr(dtype)
+ _data._mask = np.array(mask, dtype=mdtype)[()]
+ if fill_value is not None:
+ _data.fill_value = fill_value
+ return _data
+
+ @property
+ def _data(self):
+ # Make sure that the _data part is a np.void
+ return super()._data[()]
+
+ def __getitem__(self, indx):
+ """
+ Get the index.
+
+ """
+ m = self._mask
+ if isinstance(m[indx], ndarray):
+ # Can happen when indx is a multi-dimensional field:
+ # A = ma.masked_array(data=[([0,1],)], mask=[([True,
+ # False],)], dtype=[("A", ">i2", (2,))])
+ # x = A[0]; y = x["A"]; then y.mask["A"].size==2
+ # and we can not say masked/unmasked.
+ # The result is no longer mvoid!
+ # See also issue #6724.
+ return masked_array(
+ data=self._data[indx], mask=m[indx],
+ fill_value=self._fill_value[indx],
+ hard_mask=self._hardmask)
+ if m is not nomask and m[indx]:
+ return masked
+ return self._data[indx]
+
+ def __setitem__(self, indx, value):
+ self._data[indx] = value
+ if self._hardmask:
+ self._mask[indx] |= getattr(value, "_mask", False)
+ else:
+ self._mask[indx] = getattr(value, "_mask", False)
+
+ def __str__(self):
+ m = self._mask
+ if m is nomask:
+ return str(self._data)
+
+ rdtype = _replace_dtype_fields(self._data.dtype, "O")
+ data_arr = super()._data
+ res = data_arr.astype(rdtype)
+ _recursive_printoption(res, self._mask, masked_print_option)
+ return str(res)
+
+ __repr__ = __str__
+
+ def __iter__(self):
+ "Defines an iterator for mvoid"
+ (_data, _mask) = (self._data, self._mask)
+ if _mask is nomask:
+ yield from _data
+ else:
+ for (d, m) in zip(_data, _mask):
+ if m:
+ yield masked
+ else:
+ yield d
+
+ def __len__(self):
+ return self._data.__len__()
+
+ def filled(self, fill_value=None):
+ """
+ Return a copy with masked fields filled with a given value.
+
+ Parameters
+ ----------
+ fill_value : array_like, optional
+ The value to use for invalid entries. Can be scalar or
+ non-scalar. If latter is the case, the filled array should
+ be broadcastable over input array. Default is None, in
+ which case the `fill_value` attribute is used instead.
+
+ Returns
+ -------
+ filled_void
+ A `np.void` object
+
+ See Also
+ --------
+ MaskedArray.filled
+
+ """
+ return asarray(self).filled(fill_value)[()]
+
+ def tolist(self):
+ """
+ Transforms the mvoid object into a tuple.
+
+ Masked fields are replaced by None.
+
+ Returns
+ -------
+ returned_tuple
+ Tuple of fields
+ """
+ _mask = self._mask
+ if _mask is nomask:
+ return self._data.tolist()
+ result = []
+ for (d, m) in zip(self._data, self._mask):
+ if m:
+ result.append(None)
+ else:
+ # .item() makes sure we return a standard Python object
+ result.append(d.item())
+ return tuple(result)
+
+
+##############################################################################
+# Shortcuts #
+##############################################################################
+
+
+def isMaskedArray(x):
+ """
+ Test whether input is an instance of MaskedArray.
+
+ This function returns True if `x` is an instance of MaskedArray
+ and returns False otherwise. Any object is accepted as input.
+
+ Parameters
+ ----------
+ x : object
+ Object to test.
+
+ Returns
+ -------
+ result : bool
+ True if `x` is a MaskedArray.
+
+ See Also
+ --------
+ isMA : Alias to isMaskedArray.
+ isarray : Alias to isMaskedArray.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = np.eye(3, 3)
+ >>> a
+ array([[ 1., 0., 0.],
+ [ 0., 1., 0.],
+ [ 0., 0., 1.]])
+ >>> m = ma.masked_values(a, 0)
+ >>> m
+ masked_array(
+ data=[[1.0, --, --],
+ [--, 1.0, --],
+ [--, --, 1.0]],
+ mask=[[False, True, True],
+ [ True, False, True],
+ [ True, True, False]],
+ fill_value=0.0)
+ >>> ma.isMaskedArray(a)
+ False
+ >>> ma.isMaskedArray(m)
+ True
+ >>> ma.isMaskedArray([0, 1, 2])
+ False
+
+ """
+ return isinstance(x, MaskedArray)
+
+
+isarray = isMaskedArray
+isMA = isMaskedArray # backward compatibility
+
+
+class MaskedConstant(MaskedArray):
+ # the lone np.ma.masked instance
+ __singleton = None
+
+ @classmethod
+ def __has_singleton(cls):
+ # second case ensures `cls.__singleton` is not just a view on the
+ # superclass singleton
+ return cls.__singleton is not None and type(cls.__singleton) is cls
+
+ def __new__(cls):
+ if not cls.__has_singleton():
+ # We define the masked singleton as a float for higher precedence.
+ # Note that it can be tricky sometimes w/ type comparison
+ data = np.array(0.)
+ mask = np.array(True)
+
+ # prevent any modifications
+ data.flags.writeable = False
+ mask.flags.writeable = False
+
+ # don't fall back on MaskedArray.__new__(MaskedConstant), since
+ # that might confuse it - this way, the construction is entirely
+ # within our control
+ cls.__singleton = MaskedArray(data, mask=mask).view(cls)
+
+ return cls.__singleton
+
+ def __array_finalize__(self, obj):
+ if not self.__has_singleton():
+ # this handles the `.view` in __new__, which we want to copy across
+ # properties normally
+ return super().__array_finalize__(obj)
+ elif self is self.__singleton:
+ # not clear how this can happen, play it safe
+ pass
+ else:
+ # everywhere else, we want to downcast to MaskedArray, to prevent a
+ # duplicate maskedconstant.
+ self.__class__ = MaskedArray
+ MaskedArray.__array_finalize__(self, obj)
+
+ def __array_prepare__(self, obj, context=None):
+ return self.view(MaskedArray).__array_prepare__(obj, context)
+
+ def __array_wrap__(self, obj, context=None):
+ return self.view(MaskedArray).__array_wrap__(obj, context)
+
+ def __str__(self):
+ return str(masked_print_option._display)
+
+ def __repr__(self):
+ if self is MaskedConstant.__singleton:
+ return 'masked'
+ else:
+ # it's a subclass, or something is wrong, make it obvious
+ return object.__repr__(self)
+
+ def __format__(self, format_spec):
+ # Replace ndarray.__format__ with the default, which supports no format characters.
+ # Supporting format characters is unwise here, because we do not know what type
+ # the user was expecting - better to not guess.
+ try:
+ return object.__format__(self, format_spec)
+ except TypeError:
+ # 2020-03-23, NumPy 1.19.0
+ warnings.warn(
+ "Format strings passed to MaskedConstant are ignored, but in future may "
+ "error or produce different behavior",
+ FutureWarning, stacklevel=2
+ )
+ return object.__format__(self, "")
+
+ def __reduce__(self):
+ """Override of MaskedArray's __reduce__.
+ """
+ return (self.__class__, ())
+
+ # inplace operations have no effect. We have to override them to avoid
+ # trying to modify the readonly data and mask arrays
+ def __iop__(self, other):
+ return self
+ __iadd__ = \
+ __isub__ = \
+ __imul__ = \
+ __ifloordiv__ = \
+ __itruediv__ = \
+ __ipow__ = \
+ __iop__
+ del __iop__ # don't leave this around
+
+ def copy(self, *args, **kwargs):
+ """ Copy is a no-op on the maskedconstant, as it is a scalar """
+ # maskedconstant is a scalar, so copy doesn't need to copy. There's
+ # precedent for this with `np.bool_` scalars.
+ return self
+
+ def __copy__(self):
+ return self
+
+ def __deepcopy__(self, memo):
+ return self
+
+ def __setattr__(self, attr, value):
+ if not self.__has_singleton():
+ # allow the singleton to be initialized
+ return super().__setattr__(attr, value)
+ elif self is self.__singleton:
+ raise AttributeError(
+ f"attributes of {self!r} are not writeable")
+ else:
+ # duplicate instance - we can end up here from __array_finalize__,
+ # where we set the __class__ attribute
+ return super().__setattr__(attr, value)
+
+
+masked = masked_singleton = MaskedConstant()
+masked_array = MaskedArray
+
+
+def array(data, dtype=None, copy=False, order=None,
+ mask=nomask, fill_value=None, keep_mask=True,
+ hard_mask=False, shrink=True, subok=True, ndmin=0):
+ """
+ Shortcut to MaskedArray.
+
+ The options are in a different order for convenience and backwards
+ compatibility.
+
+ """
+ return MaskedArray(data, mask=mask, dtype=dtype, copy=copy,
+ subok=subok, keep_mask=keep_mask,
+ hard_mask=hard_mask, fill_value=fill_value,
+ ndmin=ndmin, shrink=shrink, order=order)
+array.__doc__ = masked_array.__doc__
+
+
+def is_masked(x):
+ """
+ Determine whether input has masked values.
+
+ Accepts any object as input, but always returns False unless the
+ input is a MaskedArray containing masked values.
+
+ Parameters
+ ----------
+ x : array_like
+ Array to check for masked values.
+
+ Returns
+ -------
+ result : bool
+ True if `x` is a MaskedArray with masked values, False otherwise.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = ma.masked_equal([0, 1, 0, 2, 3], 0)
+ >>> x
+ masked_array(data=[--, 1, --, 2, 3],
+ mask=[ True, False, True, False, False],
+ fill_value=0)
+ >>> ma.is_masked(x)
+ True
+ >>> x = ma.masked_equal([0, 1, 0, 2, 3], 42)
+ >>> x
+ masked_array(data=[0, 1, 0, 2, 3],
+ mask=False,
+ fill_value=42)
+ >>> ma.is_masked(x)
+ False
+
+ Always returns False if `x` isn't a MaskedArray.
+
+ >>> x = [False, True, False]
+ >>> ma.is_masked(x)
+ False
+ >>> x = 'a string'
+ >>> ma.is_masked(x)
+ False
+
+ """
+ m = getmask(x)
+ if m is nomask:
+ return False
+ elif m.any():
+ return True
+ return False
+
+
+##############################################################################
+# Extrema functions #
+##############################################################################
+
+
+class _extrema_operation(_MaskedUFunc):
+ """
+ Generic class for maximum/minimum functions.
+
+ .. note::
+ This is the base class for `_maximum_operation` and
+ `_minimum_operation`.
+
+ """
+ def __init__(self, ufunc, compare, fill_value):
+ super().__init__(ufunc)
+ self.compare = compare
+ self.fill_value_func = fill_value
+
+ def __call__(self, a, b):
+ "Executes the call behavior."
+
+ return where(self.compare(a, b), a, b)
+
+ def reduce(self, target, axis=np._NoValue):
+ "Reduce target along the given axis."
+ target = narray(target, copy=False, subok=True)
+ m = getmask(target)
+
+ if axis is np._NoValue and target.ndim > 1:
+ # 2017-05-06, Numpy 1.13.0: warn on axis default
+ warnings.warn(
+ f"In the future the default for ma.{self.__name__}.reduce will be axis=0, "
+ f"not the current None, to match np.{self.__name__}.reduce. "
+ "Explicitly pass 0 or None to silence this warning.",
+ MaskedArrayFutureWarning, stacklevel=2)
+ axis = None
+
+ if axis is not np._NoValue:
+ kwargs = dict(axis=axis)
+ else:
+ kwargs = dict()
+
+ if m is nomask:
+ t = self.f.reduce(target, **kwargs)
+ else:
+ target = target.filled(
+ self.fill_value_func(target)).view(type(target))
+ t = self.f.reduce(target, **kwargs)
+ m = umath.logical_and.reduce(m, **kwargs)
+ if hasattr(t, '_mask'):
+ t._mask = m
+ elif m:
+ t = masked
+ return t
+
+ def outer(self, a, b):
+ "Return the function applied to the outer product of a and b."
+ ma = getmask(a)
+ mb = getmask(b)
+ if ma is nomask and mb is nomask:
+ m = nomask
+ else:
+ ma = getmaskarray(a)
+ mb = getmaskarray(b)
+ m = logical_or.outer(ma, mb)
+ result = self.f.outer(filled(a), filled(b))
+ if not isinstance(result, MaskedArray):
+ result = result.view(MaskedArray)
+ result._mask = m
+ return result
+
+def min(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ try:
+ return obj.min(axis=axis, fill_value=fill_value, out=out, **kwargs)
+ except (AttributeError, TypeError):
+ # If obj doesn't have a min method, or if the method doesn't accept a
+ # fill_value argument
+ return asanyarray(obj).min(axis=axis, fill_value=fill_value,
+ out=out, **kwargs)
+min.__doc__ = MaskedArray.min.__doc__
+
+def max(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
+ try:
+ return obj.max(axis=axis, fill_value=fill_value, out=out, **kwargs)
+ except (AttributeError, TypeError):
+ # If obj doesn't have a max method, or if the method doesn't accept a
+ # fill_value argument
+ return asanyarray(obj).max(axis=axis, fill_value=fill_value,
+ out=out, **kwargs)
+max.__doc__ = MaskedArray.max.__doc__
+
+
+def ptp(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
+ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+ try:
+ return obj.ptp(axis, out=out, fill_value=fill_value, **kwargs)
+ except (AttributeError, TypeError):
+ # If obj doesn't have a ptp method or if the method doesn't accept
+ # a fill_value argument
+ return asanyarray(obj).ptp(axis=axis, fill_value=fill_value,
+ out=out, **kwargs)
+ptp.__doc__ = MaskedArray.ptp.__doc__
+
+
+##############################################################################
+# Definition of functions from the corresponding methods #
+##############################################################################
+
+
+class _frommethod:
+ """
+ Define functions from existing MaskedArray methods.
+
+ Parameters
+ ----------
+ methodname : str
+ Name of the method to transform.
+
+ """
+
+ def __init__(self, methodname, reversed=False):
+ self.__name__ = methodname
+ self.__doc__ = self.getdoc()
+ self.reversed = reversed
+
+ def getdoc(self):
+ "Return the doc of the function (from the doc of the method)."
+ meth = getattr(MaskedArray, self.__name__, None) or\
+ getattr(np, self.__name__, None)
+ signature = self.__name__ + get_object_signature(meth)
+ if meth is not None:
+ doc = """ %s\n%s""" % (
+ signature, getattr(meth, '__doc__', None))
+ return doc
+
+ def __call__(self, a, *args, **params):
+ if self.reversed:
+ args = list(args)
+ a, args[0] = args[0], a
+
+ marr = asanyarray(a)
+ method_name = self.__name__
+ method = getattr(type(marr), method_name, None)
+ if method is None:
+ # use the corresponding np function
+ method = getattr(np, method_name)
+
+ return method(marr, *args, **params)
+
+
+all = _frommethod('all')
+anomalies = anom = _frommethod('anom')
+any = _frommethod('any')
+compress = _frommethod('compress', reversed=True)
+cumprod = _frommethod('cumprod')
+cumsum = _frommethod('cumsum')
+copy = _frommethod('copy')
+diagonal = _frommethod('diagonal')
+harden_mask = _frommethod('harden_mask')
+ids = _frommethod('ids')
+maximum = _extrema_operation(umath.maximum, greater, maximum_fill_value)
+mean = _frommethod('mean')
+minimum = _extrema_operation(umath.minimum, less, minimum_fill_value)
+nonzero = _frommethod('nonzero')
+prod = _frommethod('prod')
+product = _frommethod('prod')
+ravel = _frommethod('ravel')
+repeat = _frommethod('repeat')
+shrink_mask = _frommethod('shrink_mask')
+soften_mask = _frommethod('soften_mask')
+std = _frommethod('std')
+sum = _frommethod('sum')
+swapaxes = _frommethod('swapaxes')
+#take = _frommethod('take')
+trace = _frommethod('trace')
+var = _frommethod('var')
+
+count = _frommethod('count')
+
+def take(a, indices, axis=None, out=None, mode='raise'):
+ """
+ """
+ a = masked_array(a)
+ return a.take(indices, axis=axis, out=out, mode=mode)
+
+
+def power(a, b, third=None):
+ """
+ Returns element-wise base array raised to power from second array.
+
+ This is the masked array version of `numpy.power`. For details see
+ `numpy.power`.
+
+ See Also
+ --------
+ numpy.power
+
+ Notes
+ -----
+ The *out* argument to `numpy.power` is not supported, `third` has to be
+ None.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = [11.2, -3.973, 0.801, -1.41]
+ >>> mask = [0, 0, 0, 1]
+ >>> masked_x = ma.masked_array(x, mask)
+ >>> masked_x
+ masked_array(data=[11.2, -3.973, 0.801, --],
+ mask=[False, False, False, True],
+ fill_value=1e+20)
+ >>> ma.power(masked_x, 2)
+ masked_array(data=[125.43999999999998, 15.784728999999999,
+ 0.6416010000000001, --],
+ mask=[False, False, False, True],
+ fill_value=1e+20)
+ >>> y = [-0.5, 2, 0, 17]
+ >>> masked_y = ma.masked_array(y, mask)
+ >>> masked_y
+ masked_array(data=[-0.5, 2.0, 0.0, --],
+ mask=[False, False, False, True],
+ fill_value=1e+20)
+ >>> ma.power(masked_x, masked_y)
+ masked_array(data=[0.29880715233359845, 15.784728999999999, 1.0, --],
+ mask=[False, False, False, True],
+ fill_value=1e+20)
+
+ """
+ if third is not None:
+ raise MaskError("3-argument power not supported.")
+ # Get the masks
+ ma = getmask(a)
+ mb = getmask(b)
+ m = mask_or(ma, mb)
+ # Get the rawdata
+ fa = getdata(a)
+ fb = getdata(b)
+ # Get the type of the result (so that we preserve subclasses)
+ if isinstance(a, MaskedArray):
+ basetype = type(a)
+ else:
+ basetype = MaskedArray
+ # Get the result and view it as a (subclass of) MaskedArray
+ with np.errstate(divide='ignore', invalid='ignore'):
+ result = np.where(m, fa, umath.power(fa, fb)).view(basetype)
+ result._update_from(a)
+ # Find where we're in trouble w/ NaNs and Infs
+ invalid = np.logical_not(np.isfinite(result.view(ndarray)))
+ # Add the initial mask
+ if m is not nomask:
+ if not result.ndim:
+ return masked
+ result._mask = np.logical_or(m, invalid)
+ # Fix the invalid parts
+ if invalid.any():
+ if not result.ndim:
+ return masked
+ elif result._mask is nomask:
+ result._mask = invalid
+ result._data[invalid] = result.fill_value
+ return result
+
+argmin = _frommethod('argmin')
+argmax = _frommethod('argmax')
+
+def argsort(a, axis=np._NoValue, kind=None, order=None, endwith=True, fill_value=None):
+ "Function version of the eponymous method."
+ a = np.asanyarray(a)
+
+ # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default
+ if axis is np._NoValue:
+ axis = _deprecate_argsort_axis(a)
+
+ if isinstance(a, MaskedArray):
+ return a.argsort(axis=axis, kind=kind, order=order,
+ endwith=endwith, fill_value=fill_value)
+ else:
+ return a.argsort(axis=axis, kind=kind, order=order)
+argsort.__doc__ = MaskedArray.argsort.__doc__
+
+def sort(a, axis=-1, kind=None, order=None, endwith=True, fill_value=None):
+ """
+ Return a sorted copy of the masked array.
+
+ Equivalent to creating a copy of the array
+ and applying the MaskedArray ``sort()`` method.
+
+ Refer to ``MaskedArray.sort`` for the full documentation
+
+ See Also
+ --------
+ MaskedArray.sort : equivalent method
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = [11.2, -3.973, 0.801, -1.41]
+ >>> mask = [0, 0, 0, 1]
+ >>> masked_x = ma.masked_array(x, mask)
+ >>> masked_x
+ masked_array(data=[11.2, -3.973, 0.801, --],
+ mask=[False, False, False, True],
+ fill_value=1e+20)
+ >>> ma.sort(masked_x)
+ masked_array(data=[-3.973, 0.801, 11.2, --],
+ mask=[False, False, False, True],
+ fill_value=1e+20)
+ """
+ a = np.array(a, copy=True, subok=True)
+ if axis is None:
+ a = a.flatten()
+ axis = 0
+
+ if isinstance(a, MaskedArray):
+ a.sort(axis=axis, kind=kind, order=order,
+ endwith=endwith, fill_value=fill_value)
+ else:
+ a.sort(axis=axis, kind=kind, order=order)
+ return a
+
+
+def compressed(x):
+ """
+ Return all the non-masked data as a 1-D array.
+
+ This function is equivalent to calling the "compressed" method of a
+ `ma.MaskedArray`, see `ma.MaskedArray.compressed` for details.
+
+ See Also
+ --------
+ ma.MaskedArray.compressed : Equivalent method.
+
+ Examples
+ --------
+
+ Create an array with negative values masked:
+
+ >>> import numpy as np
+ >>> x = np.array([[1, -1, 0], [2, -1, 3], [7, 4, -1]])
+ >>> masked_x = np.ma.masked_array(x, mask=x < 0)
+ >>> masked_x
+ masked_array(
+ data=[[1, --, 0],
+ [2, --, 3],
+ [7, 4, --]],
+ mask=[[False, True, False],
+ [False, True, False],
+ [False, False, True]],
+ fill_value=999999)
+
+ Compress the masked array into a 1-D array of non-masked values:
+
+ >>> np.ma.compressed(masked_x)
+ array([1, 0, 2, 3, 7, 4])
+
+ """
+ return asanyarray(x).compressed()
+
+
+def concatenate(arrays, axis=0):
+ """
+ Concatenate a sequence of arrays along the given axis.
+
+ Parameters
+ ----------
+ arrays : sequence of array_like
+ The arrays must have the same shape, except in the dimension
+ corresponding to `axis` (the first, by default).
+ axis : int, optional
+ The axis along which the arrays will be joined. Default is 0.
+
+ Returns
+ -------
+ result : MaskedArray
+ The concatenated array with any masked entries preserved.
+
+ See Also
+ --------
+ numpy.concatenate : Equivalent function in the top-level NumPy module.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = ma.arange(3)
+ >>> a[1] = ma.masked
+ >>> b = ma.arange(2, 5)
+ >>> a
+ masked_array(data=[0, --, 2],
+ mask=[False, True, False],
+ fill_value=999999)
+ >>> b
+ masked_array(data=[2, 3, 4],
+ mask=False,
+ fill_value=999999)
+ >>> ma.concatenate([a, b])
+ masked_array(data=[0, --, 2, 2, 3, 4],
+ mask=[False, True, False, False, False, False],
+ fill_value=999999)
+
+ """
+ d = np.concatenate([getdata(a) for a in arrays], axis)
+ rcls = get_masked_subclass(*arrays)
+ data = d.view(rcls)
+ # Check whether one of the arrays has a non-empty mask.
+ for x in arrays:
+ if getmask(x) is not nomask:
+ break
+ else:
+ return data
+ # OK, so we have to concatenate the masks
+ dm = np.concatenate([getmaskarray(a) for a in arrays], axis)
+ dm = dm.reshape(d.shape)
+
+ # If we decide to keep a '_shrinkmask' option, we want to check that
+ # all of them are True, and then check for dm.any()
+ data._mask = _shrink_mask(dm)
+ return data
+
+
+def diag(v, k=0):
+ """
+ Extract a diagonal or construct a diagonal array.
+
+ This function is the equivalent of `numpy.diag` that takes masked
+ values into account, see `numpy.diag` for details.
+
+ See Also
+ --------
+ numpy.diag : Equivalent function for ndarrays.
+
+ Examples
+ --------
+
+ Create an array with negative values masked:
+
+ >>> import numpy as np
+ >>> x = np.array([[11.2, -3.973, 18], [0.801, -1.41, 12], [7, 33, -12]])
+ >>> masked_x = np.ma.masked_array(x, mask=x < 0)
+ >>> masked_x
+ masked_array(
+ data=[[11.2, --, 18.0],
+ [0.801, --, 12.0],
+ [7.0, 33.0, --]],
+ mask=[[False, True, False],
+ [False, True, False],
+ [False, False, True]],
+ fill_value=1e+20)
+
+ Isolate the main diagonal from the masked array:
+
+ >>> np.ma.diag(masked_x)
+ masked_array(data=[11.2, --, --],
+ mask=[False, True, True],
+ fill_value=1e+20)
+
+ Isolate the first diagonal below the main diagonal:
+
+ >>> np.ma.diag(masked_x, -1)
+ masked_array(data=[0.801, 33.0],
+ mask=[False, False],
+ fill_value=1e+20)
+
+ """
+ output = np.diag(v, k).view(MaskedArray)
+ if getmask(v) is not nomask:
+ output._mask = np.diag(v._mask, k)
+ return output
+
+
+def left_shift(a, n):
+ """
+ Shift the bits of an integer to the left.
+
+ This is the masked array version of `numpy.left_shift`, for details
+ see that function.
+
+ See Also
+ --------
+ numpy.left_shift
+
+ """
+ m = getmask(a)
+ if m is nomask:
+ d = umath.left_shift(filled(a), n)
+ return masked_array(d)
+ else:
+ d = umath.left_shift(filled(a, 0), n)
+ return masked_array(d, mask=m)
+
+
+def right_shift(a, n):
+ """
+ Shift the bits of an integer to the right.
+
+ This is the masked array version of `numpy.right_shift`, for details
+ see that function.
+
+ See Also
+ --------
+ numpy.right_shift
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = [11, 3, 8, 1]
+ >>> mask = [0, 0, 0, 1]
+ >>> masked_x = ma.masked_array(x, mask)
+ >>> masked_x
+ masked_array(data=[11, 3, 8, --],
+ mask=[False, False, False, True],
+ fill_value=999999)
+ >>> ma.right_shift(masked_x,1)
+ masked_array(data=[5, 1, 4, --],
+ mask=[False, False, False, True],
+ fill_value=999999)
+
+ """
+ m = getmask(a)
+ if m is nomask:
+ d = umath.right_shift(filled(a), n)
+ return masked_array(d)
+ else:
+ d = umath.right_shift(filled(a, 0), n)
+ return masked_array(d, mask=m)
+
+
+def put(a, indices, values, mode='raise'):
+ """
+ Set storage-indexed locations to corresponding values.
+
+ This function is equivalent to `MaskedArray.put`, see that method
+ for details.
+
+ See Also
+ --------
+ MaskedArray.put
+
+ """
+ # We can't use 'frommethod', the order of arguments is different
+ try:
+ return a.put(indices, values, mode=mode)
+ except AttributeError:
+ return narray(a, copy=False).put(indices, values, mode=mode)
+
+
+def putmask(a, mask, values): # , mode='raise'):
+ """
+ Changes elements of an array based on conditional and input values.
+
+ This is the masked array version of `numpy.putmask`, for details see
+ `numpy.putmask`.
+
+ See Also
+ --------
+ numpy.putmask
+
+ Notes
+ -----
+ Using a masked array as `values` will **not** transform a `ndarray` into
+ a `MaskedArray`.
+
+ """
+ # We can't use 'frommethod', the order of arguments is different
+ if not isinstance(a, MaskedArray):
+ a = a.view(MaskedArray)
+ (valdata, valmask) = (getdata(values), getmask(values))
+ if getmask(a) is nomask:
+ if valmask is not nomask:
+ a._sharedmask = True
+ a._mask = make_mask_none(a.shape, a.dtype)
+ np.copyto(a._mask, valmask, where=mask)
+ elif a._hardmask:
+ if valmask is not nomask:
+ m = a._mask.copy()
+ np.copyto(m, valmask, where=mask)
+ a.mask |= m
+ else:
+ if valmask is nomask:
+ valmask = getmaskarray(values)
+ np.copyto(a._mask, valmask, where=mask)
+ np.copyto(a._data, valdata, where=mask)
+ return
+
+
+def transpose(a, axes=None):
+ """
+ Permute the dimensions of an array.
+
+ This function is exactly equivalent to `numpy.transpose`.
+
+ See Also
+ --------
+ numpy.transpose : Equivalent function in top-level NumPy module.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = ma.arange(4).reshape((2,2))
+ >>> x[1, 1] = ma.masked
+ >>> x
+ masked_array(
+ data=[[0, 1],
+ [2, --]],
+ mask=[[False, False],
+ [False, True]],
+ fill_value=999999)
+
+ >>> ma.transpose(x)
+ masked_array(
+ data=[[0, 2],
+ [1, --]],
+ mask=[[False, False],
+ [False, True]],
+ fill_value=999999)
+ """
+ # We can't use 'frommethod', as 'transpose' doesn't take keywords
+ try:
+ return a.transpose(axes)
+ except AttributeError:
+ return narray(a, copy=False).transpose(axes).view(MaskedArray)
+
+
+def reshape(a, new_shape, order='C'):
+ """
+ Returns an array containing the same data with a new shape.
+
+ Refer to `MaskedArray.reshape` for full documentation.
+
+ See Also
+ --------
+ MaskedArray.reshape : equivalent function
+
+ """
+ # We can't use 'frommethod', it whine about some parameters. Dmmit.
+ try:
+ return a.reshape(new_shape, order=order)
+ except AttributeError:
+ _tmp = narray(a, copy=False).reshape(new_shape, order=order)
+ return _tmp.view(MaskedArray)
+
+
+def resize(x, new_shape):
+ """
+ Return a new masked array with the specified size and shape.
+
+ This is the masked equivalent of the `numpy.resize` function. The new
+ array is filled with repeated copies of `x` (in the order that the
+ data are stored in memory). If `x` is masked, the new array will be
+ masked, and the new mask will be a repetition of the old one.
+
+ See Also
+ --------
+ numpy.resize : Equivalent function in the top level NumPy module.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = ma.array([[1, 2] ,[3, 4]])
+ >>> a[0, 1] = ma.masked
+ >>> a
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=999999)
+ >>> np.resize(a, (3, 3))
+ masked_array(
+ data=[[1, 2, 3],
+ [4, 1, 2],
+ [3, 4, 1]],
+ mask=False,
+ fill_value=999999)
+ >>> ma.resize(a, (3, 3))
+ masked_array(
+ data=[[1, --, 3],
+ [4, 1, --],
+ [3, 4, 1]],
+ mask=[[False, True, False],
+ [False, False, True],
+ [False, False, False]],
+ fill_value=999999)
+
+ A MaskedArray is always returned, regardless of the input type.
+
+ >>> a = np.array([[1, 2] ,[3, 4]])
+ >>> ma.resize(a, (3, 3))
+ masked_array(
+ data=[[1, 2, 3],
+ [4, 1, 2],
+ [3, 4, 1]],
+ mask=False,
+ fill_value=999999)
+
+ """
+ # We can't use _frommethods here, as N.resize is notoriously whiny.
+ m = getmask(x)
+ if m is not nomask:
+ m = np.resize(m, new_shape)
+ result = np.resize(x, new_shape).view(get_masked_subclass(x))
+ if result.ndim:
+ result._mask = m
+ return result
+
+
+def ndim(obj):
+ """
+ maskedarray version of the numpy function.
+
+ """
+ return np.ndim(getdata(obj))
+
+ndim.__doc__ = np.ndim.__doc__
+
+
+def shape(obj):
+ "maskedarray version of the numpy function."
+ return np.shape(getdata(obj))
+shape.__doc__ = np.shape.__doc__
+
+
+def size(obj, axis=None):
+ "maskedarray version of the numpy function."
+ return np.size(getdata(obj), axis)
+size.__doc__ = np.size.__doc__
+
+
+def diff(a, /, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue):
+ """
+ Calculate the n-th discrete difference along the given axis.
+ The first difference is given by ``out[i] = a[i+1] - a[i]`` along
+ the given axis, higher differences are calculated by using `diff`
+ recursively.
+ Preserves the input mask.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array
+ n : int, optional
+ The number of times values are differenced. If zero, the input
+ is returned as-is.
+ axis : int, optional
+ The axis along which the difference is taken, default is the
+ last axis.
+ prepend, append : array_like, optional
+ Values to prepend or append to `a` along axis prior to
+ performing the difference. Scalar values are expanded to
+ arrays with length 1 in the direction of axis and the shape
+ of the input array in along all other axes. Otherwise the
+ dimension and shape must match `a` except along axis.
+
+ Returns
+ -------
+ diff : MaskedArray
+ The n-th differences. The shape of the output is the same as `a`
+ except along `axis` where the dimension is smaller by `n`. The
+ type of the output is the same as the type of the difference
+ between any two elements of `a`. This is the same as the type of
+ `a` in most cases. A notable exception is `datetime64`, which
+ results in a `timedelta64` output array.
+
+ See Also
+ --------
+ numpy.diff : Equivalent function in the top-level NumPy module.
+
+ Notes
+ -----
+ Type is preserved for boolean arrays, so the result will contain
+ `False` when consecutive elements are the same and `True` when they
+ differ.
+
+ For unsigned integer arrays, the results will also be unsigned. This
+ should not be surprising, as the result is consistent with
+ calculating the difference directly:
+
+ >>> u8_arr = np.array([1, 0], dtype=np.uint8)
+ >>> np.ma.diff(u8_arr)
+ masked_array(data=[255],
+ mask=False,
+ fill_value=999999,
+ dtype=uint8)
+ >>> u8_arr[1,...] - u8_arr[0,...]
+ 255
+
+ If this is not desirable, then the array should be cast to a larger
+ integer type first:
+
+ >>> i16_arr = u8_arr.astype(np.int16)
+ >>> np.ma.diff(i16_arr)
+ masked_array(data=[-1],
+ mask=False,
+ fill_value=999999,
+ dtype=int16)
+
+ Examples
+ --------
+ >>> a = np.array([1, 2, 3, 4, 7, 0, 2, 3])
+ >>> x = np.ma.masked_where(a < 2, a)
+ >>> np.ma.diff(x)
+ masked_array(data=[--, 1, 1, 3, --, --, 1],
+ mask=[ True, False, False, False, True, True, False],
+ fill_value=999999)
+
+ >>> np.ma.diff(x, n=2)
+ masked_array(data=[--, 0, 2, --, --, --],
+ mask=[ True, False, False, True, True, True],
+ fill_value=999999)
+
+ >>> a = np.array([[1, 3, 1, 5, 10], [0, 1, 5, 6, 8]])
+ >>> x = np.ma.masked_equal(a, value=1)
+ >>> np.ma.diff(x)
+ masked_array(
+ data=[[--, --, --, 5],
+ [--, --, 1, 2]],
+ mask=[[ True, True, True, False],
+ [ True, True, False, False]],
+ fill_value=1)
+
+ >>> np.ma.diff(x, axis=0)
+ masked_array(data=[[--, --, --, 1, -2]],
+ mask=[[ True, True, True, False, False]],
+ fill_value=1)
+
+ """
+ if n == 0:
+ return a
+ if n < 0:
+ raise ValueError("order must be non-negative but got " + repr(n))
+
+ a = np.ma.asanyarray(a)
+ if a.ndim == 0:
+ raise ValueError(
+ "diff requires input that is at least one dimensional"
+ )
+
+ combined = []
+ if prepend is not np._NoValue:
+ prepend = np.ma.asanyarray(prepend)
+ if prepend.ndim == 0:
+ shape = list(a.shape)
+ shape[axis] = 1
+ prepend = np.broadcast_to(prepend, tuple(shape))
+ combined.append(prepend)
+
+ combined.append(a)
+
+ if append is not np._NoValue:
+ append = np.ma.asanyarray(append)
+ if append.ndim == 0:
+ shape = list(a.shape)
+ shape[axis] = 1
+ append = np.broadcast_to(append, tuple(shape))
+ combined.append(append)
+
+ if len(combined) > 1:
+ a = np.ma.concatenate(combined, axis)
+
+ # GH 22465 np.diff without prepend/append preserves the mask
+ return np.diff(a, n, axis)
+
+
+##############################################################################
+# Extra functions #
+##############################################################################
+
+
+def where(condition, x=_NoValue, y=_NoValue):
+ """
+ Return a masked array with elements from `x` or `y`, depending on condition.
+
+ .. note::
+ When only `condition` is provided, this function is identical to
+ `nonzero`. The rest of this documentation covers only the case where
+ all three arguments are provided.
+
+ Parameters
+ ----------
+ condition : array_like, bool
+ Where True, yield `x`, otherwise yield `y`.
+ x, y : array_like, optional
+ Values from which to choose. `x`, `y` and `condition` need to be
+ broadcastable to some shape.
+
+ Returns
+ -------
+ out : MaskedArray
+ An masked array with `masked` elements where the condition is masked,
+ elements from `x` where `condition` is True, and elements from `y`
+ elsewhere.
+
+ See Also
+ --------
+ numpy.where : Equivalent function in the top-level NumPy module.
+ nonzero : The function that is called when x and y are omitted
+
+ Examples
+ --------
+ >>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0],
+ ... [1, 0, 1],
+ ... [0, 1, 0]])
+ >>> x
+ masked_array(
+ data=[[0.0, --, 2.0],
+ [--, 4.0, --],
+ [6.0, --, 8.0]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=1e+20)
+ >>> np.ma.where(x > 5, x, -3.1416)
+ masked_array(
+ data=[[-3.1416, --, -3.1416],
+ [--, -3.1416, --],
+ [6.0, --, 8.0]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=1e+20)
+
+ """
+
+ # handle the single-argument case
+ missing = (x is _NoValue, y is _NoValue).count(True)
+ if missing == 1:
+ raise ValueError("Must provide both 'x' and 'y' or neither.")
+ if missing == 2:
+ return nonzero(condition)
+
+ # we only care if the condition is true - false or masked pick y
+ cf = filled(condition, False)
+ xd = getdata(x)
+ yd = getdata(y)
+
+ # we need the full arrays here for correct final dimensions
+ cm = getmaskarray(condition)
+ xm = getmaskarray(x)
+ ym = getmaskarray(y)
+
+ # deal with the fact that masked.dtype == float64, but we don't actually
+ # want to treat it as that.
+ if x is masked and y is not masked:
+ xd = np.zeros((), dtype=yd.dtype)
+ xm = np.ones((), dtype=ym.dtype)
+ elif y is masked and x is not masked:
+ yd = np.zeros((), dtype=xd.dtype)
+ ym = np.ones((), dtype=xm.dtype)
+
+ data = np.where(cf, xd, yd)
+ mask = np.where(cf, xm, ym)
+ mask = np.where(cm, np.ones((), dtype=mask.dtype), mask)
+
+ # collapse the mask, for backwards compatibility
+ mask = _shrink_mask(mask)
+
+ return masked_array(data, mask=mask)
+
+
+def choose(indices, choices, out=None, mode='raise'):
+ """
+ Use an index array to construct a new array from a list of choices.
+
+ Given an array of integers and a list of n choice arrays, this method
+ will create a new array that merges each of the choice arrays. Where a
+ value in `index` is i, the new array will have the value that choices[i]
+ contains in the same place.
+
+ Parameters
+ ----------
+ indices : ndarray of ints
+ This array must contain integers in ``[0, n-1]``, where n is the
+ number of choices.
+ choices : sequence of arrays
+ Choice arrays. The index array and all of the choices should be
+ broadcastable to the same shape.
+ out : array, optional
+ If provided, the result will be inserted into this array. It should
+ be of the appropriate shape and `dtype`.
+ mode : {'raise', 'wrap', 'clip'}, optional
+ Specifies how out-of-bounds indices will behave.
+
+ * 'raise' : raise an error
+ * 'wrap' : wrap around
+ * 'clip' : clip to the range
+
+ Returns
+ -------
+ merged_array : array
+
+ See Also
+ --------
+ choose : equivalent function
+
+ Examples
+ --------
+ >>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]])
+ >>> a = np.array([2, 1, 0])
+ >>> np.ma.choose(a, choice)
+ masked_array(data=[3, 2, 1],
+ mask=False,
+ fill_value=999999)
+
+ """
+ def fmask(x):
+ "Returns the filled array, or True if masked."
+ if x is masked:
+ return True
+ return filled(x)
+
+ def nmask(x):
+ "Returns the mask, True if ``masked``, False if ``nomask``."
+ if x is masked:
+ return True
+ return getmask(x)
+ # Get the indices.
+ c = filled(indices, 0)
+ # Get the masks.
+ masks = [nmask(x) for x in choices]
+ data = [fmask(x) for x in choices]
+ # Construct the mask
+ outputmask = np.choose(c, masks, mode=mode)
+ outputmask = make_mask(mask_or(outputmask, getmask(indices)),
+ copy=False, shrink=True)
+ # Get the choices.
+ d = np.choose(c, data, mode=mode, out=out).view(MaskedArray)
+ if out is not None:
+ if isinstance(out, MaskedArray):
+ out.__setmask__(outputmask)
+ return out
+ d.__setmask__(outputmask)
+ return d
+
+
+def round_(a, decimals=0, out=None):
+ """
+ Return a copy of a, rounded to 'decimals' places.
+
+ When 'decimals' is negative, it specifies the number of positions
+ to the left of the decimal point. The real and imaginary parts of
+ complex numbers are rounded separately. Nothing is done if the
+ array is not of float type and 'decimals' is greater than or equal
+ to 0.
+
+ Parameters
+ ----------
+ decimals : int
+ Number of decimals to round to. May be negative.
+ out : array_like
+ Existing array to use for output.
+ If not given, returns a default copy of a.
+
+ Notes
+ -----
+ If out is given and does not have a mask attribute, the mask of a
+ is lost!
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> x = [11.2, -3.973, 0.801, -1.41]
+ >>> mask = [0, 0, 0, 1]
+ >>> masked_x = ma.masked_array(x, mask)
+ >>> masked_x
+ masked_array(data=[11.2, -3.973, 0.801, --],
+ mask=[False, False, False, True],
+ fill_value=1e+20)
+ >>> ma.round_(masked_x)
+ masked_array(data=[11.0, -4.0, 1.0, --],
+ mask=[False, False, False, True],
+ fill_value=1e+20)
+ >>> ma.round(masked_x, decimals=1)
+ masked_array(data=[11.2, -4.0, 0.8, --],
+ mask=[False, False, False, True],
+ fill_value=1e+20)
+ >>> ma.round_(masked_x, decimals=-1)
+ masked_array(data=[10.0, -0.0, 0.0, --],
+ mask=[False, False, False, True],
+ fill_value=1e+20)
+ """
+ if out is None:
+ return np.round_(a, decimals, out)
+ else:
+ np.round_(getdata(a), decimals, out)
+ if hasattr(out, '_mask'):
+ out._mask = getmask(a)
+ return out
+round = round_
+
+
+def _mask_propagate(a, axis):
+ """
+ Mask whole 1-d vectors of an array that contain masked values.
+ """
+ a = array(a, subok=False)
+ m = getmask(a)
+ if m is nomask or not m.any() or axis is None:
+ return a
+ a._mask = a._mask.copy()
+ axes = normalize_axis_tuple(axis, a.ndim)
+ for ax in axes:
+ a._mask |= m.any(axis=ax, keepdims=True)
+ return a
+
+
+# Include masked dot here to avoid import problems in getting it from
+# extras.py. Note that it is not included in __all__, but rather exported
+# from extras in order to avoid backward compatibility problems.
+def dot(a, b, strict=False, out=None):
+ """
+ Return the dot product of two arrays.
+
+ This function is the equivalent of `numpy.dot` that takes masked values
+ into account. Note that `strict` and `out` are in different position
+ than in the method version. In order to maintain compatibility with the
+ corresponding method, it is recommended that the optional arguments be
+ treated as keyword only. At some point that may be mandatory.
+
+ Parameters
+ ----------
+ a, b : masked_array_like
+ Inputs arrays.
+ strict : bool, optional
+ Whether masked data are propagated (True) or set to 0 (False) for
+ the computation. Default is False. Propagating the mask means that
+ if a masked value appears in a row or column, the whole row or
+ column is considered masked.
+ out : masked_array, optional
+ Output argument. This must have the exact kind that would be returned
+ if it was not used. In particular, it must have the right type, must be
+ C-contiguous, and its dtype must be the dtype that would be returned
+ for `dot(a,b)`. This is a performance feature. Therefore, if these
+ conditions are not met, an exception is raised, instead of attempting
+ to be flexible.
+
+ .. versionadded:: 1.10.2
+
+ See Also
+ --------
+ numpy.dot : Equivalent function for ndarrays.
+
+ Examples
+ --------
+ >>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
+ >>> b = np.ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
+ >>> np.ma.dot(a, b)
+ masked_array(
+ data=[[21, 26],
+ [45, 64]],
+ mask=[[False, False],
+ [False, False]],
+ fill_value=999999)
+ >>> np.ma.dot(a, b, strict=True)
+ masked_array(
+ data=[[--, --],
+ [--, 64]],
+ mask=[[ True, True],
+ [ True, False]],
+ fill_value=999999)
+
+ """
+ if strict is True:
+ if np.ndim(a) == 0 or np.ndim(b) == 0:
+ pass
+ elif b.ndim == 1:
+ a = _mask_propagate(a, a.ndim - 1)
+ b = _mask_propagate(b, b.ndim - 1)
+ else:
+ a = _mask_propagate(a, a.ndim - 1)
+ b = _mask_propagate(b, b.ndim - 2)
+ am = ~getmaskarray(a)
+ bm = ~getmaskarray(b)
+
+ if out is None:
+ d = np.dot(filled(a, 0), filled(b, 0))
+ m = ~np.dot(am, bm)
+ if np.ndim(d) == 0:
+ d = np.asarray(d)
+ r = d.view(get_masked_subclass(a, b))
+ r.__setmask__(m)
+ return r
+ else:
+ d = np.dot(filled(a, 0), filled(b, 0), out._data)
+ if out.mask.shape != d.shape:
+ out._mask = np.empty(d.shape, MaskType)
+ np.dot(am, bm, out._mask)
+ np.logical_not(out._mask, out._mask)
+ return out
+
+
+def inner(a, b):
+ """
+ Returns the inner product of a and b for arrays of floating point types.
+
+ Like the generic NumPy equivalent the product sum is over the last dimension
+ of a and b. The first argument is not conjugated.
+
+ """
+ fa = filled(a, 0)
+ fb = filled(b, 0)
+ if fa.ndim == 0:
+ fa.shape = (1,)
+ if fb.ndim == 0:
+ fb.shape = (1,)
+ return np.inner(fa, fb).view(MaskedArray)
+inner.__doc__ = doc_note(np.inner.__doc__,
+ "Masked values are replaced by 0.")
+innerproduct = inner
+
+
+def outer(a, b):
+ "maskedarray version of the numpy function."
+ fa = filled(a, 0).ravel()
+ fb = filled(b, 0).ravel()
+ d = np.outer(fa, fb)
+ ma = getmask(a)
+ mb = getmask(b)
+ if ma is nomask and mb is nomask:
+ return masked_array(d)
+ ma = getmaskarray(a)
+ mb = getmaskarray(b)
+ m = make_mask(1 - np.outer(1 - ma, 1 - mb), copy=False)
+ return masked_array(d, mask=m)
+outer.__doc__ = doc_note(np.outer.__doc__,
+ "Masked values are replaced by 0.")
+outerproduct = outer
+
+
+def _convolve_or_correlate(f, a, v, mode, propagate_mask):
+ """
+ Helper function for ma.correlate and ma.convolve
+ """
+ if propagate_mask:
+ # results which are contributed to by either item in any pair being invalid
+ mask = (
+ f(getmaskarray(a), np.ones(np.shape(v), dtype=bool), mode=mode)
+ | f(np.ones(np.shape(a), dtype=bool), getmaskarray(v), mode=mode)
+ )
+ data = f(getdata(a), getdata(v), mode=mode)
+ else:
+ # results which are not contributed to by any pair of valid elements
+ mask = ~f(~getmaskarray(a), ~getmaskarray(v))
+ data = f(filled(a, 0), filled(v, 0), mode=mode)
+
+ return masked_array(data, mask=mask)
+
+
+def correlate(a, v, mode='valid', propagate_mask=True):
+ """
+ Cross-correlation of two 1-dimensional sequences.
+
+ Parameters
+ ----------
+ a, v : array_like
+ Input sequences.
+ mode : {'valid', 'same', 'full'}, optional
+ Refer to the `np.convolve` docstring. Note that the default
+ is 'valid', unlike `convolve`, which uses 'full'.
+ propagate_mask : bool
+ If True, then a result element is masked if any masked element contributes towards it.
+ If False, then a result element is only masked if no non-masked element
+ contribute towards it
+
+ Returns
+ -------
+ out : MaskedArray
+ Discrete cross-correlation of `a` and `v`.
+
+ See Also
+ --------
+ numpy.correlate : Equivalent function in the top-level NumPy module.
+ """
+ return _convolve_or_correlate(np.correlate, a, v, mode, propagate_mask)
+
+
+def convolve(a, v, mode='full', propagate_mask=True):
+ """
+ Returns the discrete, linear convolution of two one-dimensional sequences.
+
+ Parameters
+ ----------
+ a, v : array_like
+ Input sequences.
+ mode : {'valid', 'same', 'full'}, optional
+ Refer to the `np.convolve` docstring.
+ propagate_mask : bool
+ If True, then if any masked element is included in the sum for a result
+ element, then the result is masked.
+ If False, then the result element is only masked if no non-masked cells
+ contribute towards it
+
+ Returns
+ -------
+ out : MaskedArray
+ Discrete, linear convolution of `a` and `v`.
+
+ See Also
+ --------
+ numpy.convolve : Equivalent function in the top-level NumPy module.
+ """
+ return _convolve_or_correlate(np.convolve, a, v, mode, propagate_mask)
+
+
+def allequal(a, b, fill_value=True):
+ """
+ Return True if all entries of a and b are equal, using
+ fill_value as a truth value where either or both are masked.
+
+ Parameters
+ ----------
+ a, b : array_like
+ Input arrays to compare.
+ fill_value : bool, optional
+ Whether masked values in a or b are considered equal (True) or not
+ (False).
+
+ Returns
+ -------
+ y : bool
+ Returns True if the two arrays are equal within the given
+ tolerance, False otherwise. If either array contains NaN,
+ then False is returned.
+
+ See Also
+ --------
+ all, any
+ numpy.ma.allclose
+
+ Examples
+ --------
+ >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
+ >>> a
+ masked_array(data=[10000000000.0, 1e-07, --],
+ mask=[False, False, True],
+ fill_value=1e+20)
+
+ >>> b = np.array([1e10, 1e-7, -42.0])
+ >>> b
+ array([ 1.00000000e+10, 1.00000000e-07, -4.20000000e+01])
+ >>> np.ma.allequal(a, b, fill_value=False)
+ False
+ >>> np.ma.allequal(a, b)
+ True
+
+ """
+ m = mask_or(getmask(a), getmask(b))
+ if m is nomask:
+ x = getdata(a)
+ y = getdata(b)
+ d = umath.equal(x, y)
+ return d.all()
+ elif fill_value:
+ x = getdata(a)
+ y = getdata(b)
+ d = umath.equal(x, y)
+ dm = array(d, mask=m, copy=False)
+ return dm.filled(True).all(None)
+ else:
+ return False
+
+
+def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8):
+ """
+ Returns True if two arrays are element-wise equal within a tolerance.
+
+ This function is equivalent to `allclose` except that masked values
+ are treated as equal (default) or unequal, depending on the `masked_equal`
+ argument.
+
+ Parameters
+ ----------
+ a, b : array_like
+ Input arrays to compare.
+ masked_equal : bool, optional
+ Whether masked values in `a` and `b` are considered equal (True) or not
+ (False). They are considered equal by default.
+ rtol : float, optional
+ Relative tolerance. The relative difference is equal to ``rtol * b``.
+ Default is 1e-5.
+ atol : float, optional
+ Absolute tolerance. The absolute difference is equal to `atol`.
+ Default is 1e-8.
+
+ Returns
+ -------
+ y : bool
+ Returns True if the two arrays are equal within the given
+ tolerance, False otherwise. If either array contains NaN, then
+ False is returned.
+
+ See Also
+ --------
+ all, any
+ numpy.allclose : the non-masked `allclose`.
+
+ Notes
+ -----
+ If the following equation is element-wise True, then `allclose` returns
+ True::
+
+ absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
+
+ Return True if all elements of `a` and `b` are equal subject to
+ given tolerances.
+
+ Examples
+ --------
+ >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
+ >>> a
+ masked_array(data=[10000000000.0, 1e-07, --],
+ mask=[False, False, True],
+ fill_value=1e+20)
+ >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
+ >>> np.ma.allclose(a, b)
+ False
+
+ >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
+ >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
+ >>> np.ma.allclose(a, b)
+ True
+ >>> np.ma.allclose(a, b, masked_equal=False)
+ False
+
+ Masked values are not compared directly.
+
+ >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
+ >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
+ >>> np.ma.allclose(a, b)
+ True
+ >>> np.ma.allclose(a, b, masked_equal=False)
+ False
+
+ """
+ x = masked_array(a, copy=False)
+ y = masked_array(b, copy=False)
+
+ # make sure y is an inexact type to avoid abs(MIN_INT); will cause
+ # casting of x later.
+ # NOTE: We explicitly allow timedelta, which used to work. This could
+ # possibly be deprecated. See also gh-18286.
+ # timedelta works if `atol` is an integer or also a timedelta.
+ # Although, the default tolerances are unlikely to be useful
+ if y.dtype.kind != "m":
+ dtype = np.result_type(y, 1.)
+ if y.dtype != dtype:
+ y = masked_array(y, dtype=dtype, copy=False)
+
+ m = mask_or(getmask(x), getmask(y))
+ xinf = np.isinf(masked_array(x, copy=False, mask=m)).filled(False)
+ # If we have some infs, they should fall at the same place.
+ if not np.all(xinf == filled(np.isinf(y), False)):
+ return False
+ # No infs at all
+ if not np.any(xinf):
+ d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)),
+ masked_equal)
+ return np.all(d)
+
+ if not np.all(filled(x[xinf] == y[xinf], masked_equal)):
+ return False
+ x = x[~xinf]
+ y = y[~xinf]
+
+ d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)),
+ masked_equal)
+
+ return np.all(d)
+
+
+def asarray(a, dtype=None, order=None):
+ """
+ Convert the input to a masked array of the given data-type.
+
+ No copy is performed if the input is already an `ndarray`. If `a` is
+ a subclass of `MaskedArray`, a base class `MaskedArray` is returned.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data, in any form that can be converted to a masked array. This
+ includes lists, lists of tuples, tuples, tuples of tuples, tuples
+ of lists, ndarrays and masked arrays.
+ dtype : dtype, optional
+ By default, the data-type is inferred from the input data.
+ order : {'C', 'F'}, optional
+ Whether to use row-major ('C') or column-major ('FORTRAN') memory
+ representation. Default is 'C'.
+
+ Returns
+ -------
+ out : MaskedArray
+ Masked array interpretation of `a`.
+
+ See Also
+ --------
+ asanyarray : Similar to `asarray`, but conserves subclasses.
+
+ Examples
+ --------
+ >>> x = np.arange(10.).reshape(2, 5)
+ >>> x
+ array([[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]])
+ >>> np.ma.asarray(x)
+ masked_array(
+ data=[[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]],
+ mask=False,
+ fill_value=1e+20)
+ >>> type(np.ma.asarray(x))
+ <class 'numpy.ma.core.MaskedArray'>
+
+ """
+ order = order or 'C'
+ return masked_array(a, dtype=dtype, copy=False, keep_mask=True,
+ subok=False, order=order)
+
+
+def asanyarray(a, dtype=None):
+ """
+ Convert the input to a masked array, conserving subclasses.
+
+ If `a` is a subclass of `MaskedArray`, its class is conserved.
+ No copy is performed if the input is already an `ndarray`.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data, in any form that can be converted to an array.
+ dtype : dtype, optional
+ By default, the data-type is inferred from the input data.
+ order : {'C', 'F'}, optional
+ Whether to use row-major ('C') or column-major ('FORTRAN') memory
+ representation. Default is 'C'.
+
+ Returns
+ -------
+ out : MaskedArray
+ MaskedArray interpretation of `a`.
+
+ See Also
+ --------
+ asarray : Similar to `asanyarray`, but does not conserve subclass.
+
+ Examples
+ --------
+ >>> x = np.arange(10.).reshape(2, 5)
+ >>> x
+ array([[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]])
+ >>> np.ma.asanyarray(x)
+ masked_array(
+ data=[[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]],
+ mask=False,
+ fill_value=1e+20)
+ >>> type(np.ma.asanyarray(x))
+ <class 'numpy.ma.core.MaskedArray'>
+
+ """
+ # workaround for #8666, to preserve identity. Ideally the bottom line
+ # would handle this for us.
+ if isinstance(a, MaskedArray) and (dtype is None or dtype == a.dtype):
+ return a
+ return masked_array(a, dtype=dtype, copy=False, keep_mask=True, subok=True)
+
+
+##############################################################################
+# Pickling #
+##############################################################################
+
+
+def fromfile(file, dtype=float, count=-1, sep=''):
+ raise NotImplementedError(
+ "fromfile() not yet implemented for a MaskedArray.")
+
+
+def fromflex(fxarray):
+ """
+ Build a masked array from a suitable flexible-type array.
+
+ The input array has to have a data-type with ``_data`` and ``_mask``
+ fields. This type of array is output by `MaskedArray.toflex`.
+
+ Parameters
+ ----------
+ fxarray : ndarray
+ The structured input array, containing ``_data`` and ``_mask``
+ fields. If present, other fields are discarded.
+
+ Returns
+ -------
+ result : MaskedArray
+ The constructed masked array.
+
+ See Also
+ --------
+ MaskedArray.toflex : Build a flexible-type array from a masked array.
+
+ Examples
+ --------
+ >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4)
+ >>> rec = x.toflex()
+ >>> rec
+ array([[(0, False), (1, True), (2, False)],
+ [(3, True), (4, False), (5, True)],
+ [(6, False), (7, True), (8, False)]],
+ dtype=[('_data', '<i8'), ('_mask', '?')])
+ >>> x2 = np.ma.fromflex(rec)
+ >>> x2
+ masked_array(
+ data=[[0, --, 2],
+ [--, 4, --],
+ [6, --, 8]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+
+ Extra fields can be present in the structured array but are discarded:
+
+ >>> dt = [('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')]
+ >>> rec2 = np.zeros((2, 2), dtype=dt)
+ >>> rec2
+ array([[(0, False, 0.), (0, False, 0.)],
+ [(0, False, 0.), (0, False, 0.)]],
+ dtype=[('_data', '<i4'), ('_mask', '?'), ('field3', '<f4')])
+ >>> y = np.ma.fromflex(rec2)
+ >>> y
+ masked_array(
+ data=[[0, 0],
+ [0, 0]],
+ mask=[[False, False],
+ [False, False]],
+ fill_value=999999,
+ dtype=int32)
+
+ """
+ return masked_array(fxarray['_data'], mask=fxarray['_mask'])
+
+
+class _convert2ma:
+
+ """
+ Convert functions from numpy to numpy.ma.
+
+ Parameters
+ ----------
+ _methodname : string
+ Name of the method to transform.
+
+ """
+ __doc__ = None
+
+ def __init__(self, funcname, np_ret, np_ma_ret, params=None):
+ self._func = getattr(np, funcname)
+ self.__doc__ = self.getdoc(np_ret, np_ma_ret)
+ self._extras = params or {}
+
+ def getdoc(self, np_ret, np_ma_ret):
+ "Return the doc of the function (from the doc of the method)."
+ doc = getattr(self._func, '__doc__', None)
+ sig = get_object_signature(self._func)
+ if doc:
+ doc = self._replace_return_type(doc, np_ret, np_ma_ret)
+ # Add the signature of the function at the beginning of the doc
+ if sig:
+ sig = "%s%s\n" % (self._func.__name__, sig)
+ doc = sig + doc
+ return doc
+
+ def _replace_return_type(self, doc, np_ret, np_ma_ret):
+ """
+ Replace documentation of ``np`` function's return type.
+
+ Replaces it with the proper type for the ``np.ma`` function.
+
+ Parameters
+ ----------
+ doc : str
+ The documentation of the ``np`` method.
+ np_ret : str
+ The return type string of the ``np`` method that we want to
+ replace. (e.g. "out : ndarray")
+ np_ma_ret : str
+ The return type string of the ``np.ma`` method.
+ (e.g. "out : MaskedArray")
+ """
+ if np_ret not in doc:
+ raise RuntimeError(
+ f"Failed to replace `{np_ret}` with `{np_ma_ret}`. "
+ f"The documentation string for return type, {np_ret}, is not "
+ f"found in the docstring for `np.{self._func.__name__}`. "
+ f"Fix the docstring for `np.{self._func.__name__}` or "
+ "update the expected string for return type."
+ )
+
+ return doc.replace(np_ret, np_ma_ret)
+
+ def __call__(self, *args, **params):
+ # Find the common parameters to the call and the definition
+ _extras = self._extras
+ common_params = set(params).intersection(_extras)
+ # Drop the common parameters from the call
+ for p in common_params:
+ _extras[p] = params.pop(p)
+ # Get the result
+ result = self._func.__call__(*args, **params).view(MaskedArray)
+ if "fill_value" in common_params:
+ result.fill_value = _extras.get("fill_value", None)
+ if "hardmask" in common_params:
+ result._hardmask = bool(_extras.get("hard_mask", False))
+ return result
+
+
+arange = _convert2ma(
+ 'arange',
+ params=dict(fill_value=None, hardmask=False),
+ np_ret='arange : ndarray',
+ np_ma_ret='arange : MaskedArray',
+)
+clip = _convert2ma(
+ 'clip',
+ params=dict(fill_value=None, hardmask=False),
+ np_ret='clipped_array : ndarray',
+ np_ma_ret='clipped_array : MaskedArray',
+)
+empty = _convert2ma(
+ 'empty',
+ params=dict(fill_value=None, hardmask=False),
+ np_ret='out : ndarray',
+ np_ma_ret='out : MaskedArray',
+)
+empty_like = _convert2ma(
+ 'empty_like',
+ np_ret='out : ndarray',
+ np_ma_ret='out : MaskedArray',
+)
+frombuffer = _convert2ma(
+ 'frombuffer',
+ np_ret='out : ndarray',
+ np_ma_ret='out: MaskedArray',
+)
+fromfunction = _convert2ma(
+ 'fromfunction',
+ np_ret='fromfunction : any',
+ np_ma_ret='fromfunction: MaskedArray',
+)
+identity = _convert2ma(
+ 'identity',
+ params=dict(fill_value=None, hardmask=False),
+ np_ret='out : ndarray',
+ np_ma_ret='out : MaskedArray',
+)
+indices = _convert2ma(
+ 'indices',
+ params=dict(fill_value=None, hardmask=False),
+ np_ret='grid : one ndarray or tuple of ndarrays',
+ np_ma_ret='grid : one MaskedArray or tuple of MaskedArrays',
+)
+ones = _convert2ma(
+ 'ones',
+ params=dict(fill_value=None, hardmask=False),
+ np_ret='out : ndarray',
+ np_ma_ret='out : MaskedArray',
+)
+ones_like = _convert2ma(
+ 'ones_like',
+ np_ret='out : ndarray',
+ np_ma_ret='out : MaskedArray',
+)
+squeeze = _convert2ma(
+ 'squeeze',
+ params=dict(fill_value=None, hardmask=False),
+ np_ret='squeezed : ndarray',
+ np_ma_ret='squeezed : MaskedArray',
+)
+zeros = _convert2ma(
+ 'zeros',
+ params=dict(fill_value=None, hardmask=False),
+ np_ret='out : ndarray',
+ np_ma_ret='out : MaskedArray',
+)
+zeros_like = _convert2ma(
+ 'zeros_like',
+ np_ret='out : ndarray',
+ np_ma_ret='out : MaskedArray',
+)
+
+
+def append(a, b, axis=None):
+ """Append values to the end of an array.
+
+ .. versionadded:: 1.9.0
+
+ Parameters
+ ----------
+ a : array_like
+ Values are appended to a copy of this array.
+ b : array_like
+ These values are appended to a copy of `a`. It must be of the
+ correct shape (the same shape as `a`, excluding `axis`). If `axis`
+ is not specified, `b` can be any shape and will be flattened
+ before use.
+ axis : int, optional
+ The axis along which `v` are appended. If `axis` is not given,
+ both `a` and `b` are flattened before use.
+
+ Returns
+ -------
+ append : MaskedArray
+ A copy of `a` with `b` appended to `axis`. Note that `append`
+ does not occur in-place: a new array is allocated and filled. If
+ `axis` is None, the result is a flattened array.
+
+ See Also
+ --------
+ numpy.append : Equivalent function in the top-level NumPy module.
+
+ Examples
+ --------
+ >>> import numpy.ma as ma
+ >>> a = ma.masked_values([1, 2, 3], 2)
+ >>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
+ >>> ma.append(a, b)
+ masked_array(data=[1, --, 3, 4, 5, 6, --, 8, 9],
+ mask=[False, True, False, False, False, False, True, False,
+ False],
+ fill_value=999999)
+ """
+ return concatenate([a, b], axis)