aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/ma/__init__.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/ma/__init__.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/__init__.py54
1 files changed, 54 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/__init__.py b/.venv/lib/python3.12/site-packages/numpy/ma/__init__.py
new file mode 100644
index 00000000..870cc4ef
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/__init__.py
@@ -0,0 +1,54 @@
+"""
+=============
+Masked Arrays
+=============
+
+Arrays sometimes contain invalid or missing data. When doing operations
+on such arrays, we wish to suppress invalid values, which is the purpose masked
+arrays fulfill (an example of typical use is given below).
+
+For example, examine the following array:
+
+>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan])
+
+When we try to calculate the mean of the data, the result is undetermined:
+
+>>> np.mean(x)
+nan
+
+The mean is calculated using roughly ``np.sum(x)/len(x)``, but since
+any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work. Enter
+masked arrays:
+
+>>> m = np.ma.masked_array(x, np.isnan(x))
+>>> m
+masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --],
+ mask = [False False False True False False False True],
+ fill_value=1e+20)
+
+Here, we construct a masked array that suppress all ``NaN`` values. We
+may now proceed to calculate the mean of the other values:
+
+>>> np.mean(m)
+2.6666666666666665
+
+.. [1] Not-a-Number, a floating point value that is the result of an
+ invalid operation.
+
+.. moduleauthor:: Pierre Gerard-Marchant
+.. moduleauthor:: Jarrod Millman
+
+"""
+from . import core
+from .core import *
+
+from . import extras
+from .extras import *
+
+__all__ = ['core', 'extras']
+__all__ += core.__all__
+__all__ += extras.__all__
+
+from numpy._pytesttester import PytestTester
+test = PytestTester(__name__)
+del PytestTester